JP2011129354A - Light source device and lighting system - Google Patents

Light source device and lighting system Download PDF

Info

Publication number
JP2011129354A
JP2011129354A JP2009286397A JP2009286397A JP2011129354A JP 2011129354 A JP2011129354 A JP 2011129354A JP 2009286397 A JP2009286397 A JP 2009286397A JP 2009286397 A JP2009286397 A JP 2009286397A JP 2011129354 A JP2011129354 A JP 2011129354A
Authority
JP
Japan
Prior art keywords
light source
phosphor layer
light
phosphor
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009286397A
Other languages
Japanese (ja)
Other versions
JP5530165B2 (en
Inventor
Yasuyuki Miyake
康之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009286397A priority Critical patent/JP5530165B2/en
Priority to US12/972,056 priority patent/US8556437B2/en
Publication of JP2011129354A publication Critical patent/JP2011129354A/en
Application granted granted Critical
Publication of JP5530165B2 publication Critical patent/JP5530165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/72Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps in street lighting

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light source device capable of aiming at sufficiently higher luminance as compared with a conventional one. <P>SOLUTION: The light source device includes a solid light source 5 emitting light of a prescribed wavelength out of a wavelength region from an ultraviolet light to a visible light, a phosphor layer 2 including at least one kind of phosphors which is excited by an exciting light from the solid light source 5 and emits fluorescent light of a wavelength longer than the light emitting wavelength of the solid light source 5, and a heat radiating substrate 6 set on a face side opposite to the face side into which the excited light from the phosphor layer 2 is made incident. The phosphor layer 2 does not contain a resin composition substantially, and the solid light source 5 and the phosphor layer 2 are located in separation spatially, and a fluorescent light is extracted by using reflection by a reflection surface provided on the opposite side to the side face, out of the faces of the phosphor layer 2, where the excited light is made incident. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光源装置および照明装置に関する。   The present invention relates to a light source device and an illumination device.

LED等の光半導体と蛍光体層を組み合わせた光源装置は広く普及しているが、近年では高輝度化が進み、一般照明や自動車のヘッドランプなどその応用範囲が広がってきている。このような光源装置は、今後も高輝度化することで、さらに多様な用途での普及が進むと考えられている。   A light source device combining an optical semiconductor such as an LED and a phosphor layer has been widely used. However, in recent years, the brightness has been increased, and its application range such as general lighting and automobile headlamps has been expanded. It is considered that such light source devices will continue to be widely used in various applications by increasing the luminance.

このような光半導体と蛍光体層を組み合わせた光源装置を高輝度化するための手段として、光半導体に大電流を投入し光半導体からの励起光強度を強めることが考えられるが、実際には蛍光体層で熱が発生し、蛍光体層において樹脂成分の変色や蛍光体の温度消光による蛍光強度の低下が生じてしまう。このため、結果として、発光強度は飽和、減少し、光半導体と蛍光体層を組み合わせた光源装置の高輝度化は困難であった。   As a means for increasing the brightness of a light source device combining such an optical semiconductor and a phosphor layer, it is conceivable to increase the excitation light intensity from the optical semiconductor by supplying a large current to the optical semiconductor. Heat is generated in the phosphor layer, and in the phosphor layer, the fluorescence intensity decreases due to discoloration of the resin component or temperature quenching of the phosphor. Therefore, as a result, the emission intensity is saturated and decreased, and it is difficult to increase the luminance of the light source device that combines the optical semiconductor and the phosphor layer.

ここで、蛍光体層内の樹脂成分の変色とは、通常、蛍光体層は一定の形状に再現性良く形成するため、蛍光体粉末を樹脂成分と混練してペースト状に調製し、印刷法等を用いて塗布形成しており、この樹脂成分が加熱され200℃程度以上になると変色してしまう現象のことである。樹脂成分は本来透明であるため、熱により樹脂成分に変色が起きると、光半導体からの励起光や蛍光体層からの蛍光の一部を吸収してしまい、高輝度化を妨げる要因となっていた。   Here, the discoloration of the resin component in the phosphor layer means that the phosphor layer is usually formed into a fixed shape with good reproducibility. This is a phenomenon in which the resin component is discolored when the resin component is heated to about 200 ° C. or higher. Since the resin component is inherently transparent, if the resin component is discolored by heat, it absorbs a part of the excitation light from the optical semiconductor and the fluorescence from the phosphor layer, which prevents high brightness. It was.

また、蛍光体の温度消光とは、蛍光体を加熱すると蛍光強度が低下する現象のことである。温度消光により蛍光強度が低下すると、蛍光に変換されなかったエネルギーが熱となるため蛍光体の発熱量が増加し、さらに蛍光体の温度が上昇して温度消光が進み、蛍光強度もさらに低下するという現象が起きる。このため、熱により発生する蛍光体の温度消光も、高輝度化を妨げる要因となっていた。   The temperature quenching of the phosphor is a phenomenon in which the fluorescence intensity decreases when the phosphor is heated. If the fluorescence intensity decreases due to temperature quenching, the energy that has not been converted to fluorescence becomes heat, so the amount of heat generated by the phosphor increases, the temperature of the phosphor rises, temperature quenching proceeds, and the fluorescence intensity further decreases. This happens. For this reason, temperature quenching of the phosphors generated by heat has also been a factor that hinders high brightness.

これらの問題を解決するために、特許文献1には、樹脂を含まない蛍光体層を用いた光源装置が提案されている。この場合、蛍光体層は、樹脂成分を含まないため変色は起こらず、さらに蛍光体層を温度感受性の低い蛍光体のセラミックス層とするために温度消光が起きないので、高輝度化が可能である。また、図1のように蛍光体層92を光半導体(固体光源)95と直接接合することで、蛍光体層92で発生した熱を光半導体(固体光源)95側に放散することを意図していた。   In order to solve these problems, Patent Document 1 proposes a light source device using a phosphor layer that does not contain a resin. In this case, since the phosphor layer does not contain a resin component, discoloration does not occur, and furthermore, temperature quenching does not occur because the phosphor layer is a ceramic layer of a phosphor with low temperature sensitivity, so that high brightness can be achieved. is there. In addition, as shown in FIG. 1, the phosphor layer 92 is directly bonded to the optical semiconductor (solid light source) 95 to dissipate heat generated in the phosphor layer 92 to the optical semiconductor (solid light source) 95 side. It was.

特開2006−005367号公報JP 2006-005367 A

ところで、従来の図1に示すような光半導体(固体光源)95と蛍光体層92とが直接接合された光源装置では、光半導体(固体光源)95からの励起光によって励起された蛍光体層92からの発光(蛍光)のうち光半導体(固体光源)95側とは反対側に出射する蛍光と、蛍光体層92で吸収されずに蛍光体層92を透過する光半導体(固体光源)95からの励起光とを用いている。つまり、図1の光源装置は、蛍光体層92を透過する光を利用する透過方式のものとなっている。   Incidentally, in the conventional light source device in which the optical semiconductor (solid light source) 95 and the phosphor layer 92 are directly bonded as shown in FIG. 1, the phosphor layer excited by the excitation light from the optical semiconductor (solid light source) 95. The light emitted from the light 92 (fluorescence) is emitted to the side opposite to the optical semiconductor (solid light source) 95 side, and the light semiconductor (solid light source) 95 that is not absorbed by the phosphor layer 92 and passes through the phosphor layer 92. The excitation light from is used. That is, the light source device of FIG. 1 is of a transmissive type that uses light transmitted through the phosphor layer 92.

ここで、蛍光体層92からの出射光を考えると、上記透過光とともに蛍光体層92との界面で反射されて光半導体(固体光源)95側へ戻って行く光、つまり反射光も存在しており、この光(反射光)は、光半導体(固体光源)95に再吸収されるため、照明光として利用できない光となってしまうという問題があった。   Here, when light emitted from the phosphor layer 92 is considered, there is also light reflected from the interface with the phosphor layer 92 together with the transmitted light and returning to the optical semiconductor (solid light source) 95 side, that is, reflected light. This light (reflected light) is re-absorbed by the optical semiconductor (solid light source) 95, so that there is a problem that the light cannot be used as illumination light.

また、図1の光源装置では、蛍光体層92の熱を光半導体(固体光源)95側に放散することを意図しているが、光半導体(固体光源)95の励起光強度を高めた場合、蛍光体層92のみならず光半導体(固体光源)95でも発熱が起きるため、蛍光体層92の発熱を同じく発熱している光半導体(固体光源)95の側から放散させることとなり、熱放散の効率が良くないという問題があった。   1 is intended to dissipate the heat of the phosphor layer 92 to the optical semiconductor (solid light source) 95 side, but the excitation light intensity of the optical semiconductor (solid light source) 95 is increased. Since heat is generated not only in the phosphor layer 92 but also in the optical semiconductor (solid light source) 95, the heat generated in the phosphor layer 92 is dissipated from the side of the optical semiconductor (solid light source) 95 that is also generating heat. There was a problem that the efficiency of was not good.

このように、図1の光源装置では、透過方式のものとなっていることと、蛍光体層92の発熱に対する熱放散の効率が良くないということとから、高輝度化に限界があった。   As described above, the light source device shown in FIG. 1 has a limitation on high luminance because it is of a transmissive type and the efficiency of heat dissipation with respect to the heat generation of the phosphor layer 92 is not good.

本発明は、従来に比べて十分な高輝度化を図ることの可能な光源装置および照明装置を提供することを目的としている。   An object of the present invention is to provide a light source device and an illuminating device capable of achieving a sufficiently high luminance as compared with the conventional art.

上記目的を達成するために、請求項1記載の発明は、紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層と、該蛍光体層の前記励起光が入射する側の面とは反対の面側に設けられる放熱基板とを備え、前記蛍光体層は実質的に樹脂成分を含まず、前記固体光源と前記蛍光体層とが空間的に離れて配置されており、前記蛍光体層の面のうち励起光が入射する側の面とは反対側に設けられた反射面による反射を用いて蛍光を取り出すことを特徴とする光源装置である。   In order to achieve the above object, the invention described in claim 1 is excited by a solid light source that emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light, and excitation light from the solid light source. A phosphor layer containing at least one type of phosphor that emits fluorescence having a longer wavelength than the emission wavelength of the solid-state light source, and a surface of the phosphor layer opposite to the surface on which the excitation light is incident; The phosphor layer substantially does not contain a resin component, the solid light source and the phosphor layer are spatially separated from each other, and are excited among the surfaces of the phosphor layer. The light source device is characterized in that fluorescence is extracted using reflection by a reflection surface provided on the side opposite to a surface on which light is incident.

また、請求項2記載の発明は、請求項1記載の光源装置において、前記蛍光体層は、蛍光体セラミックスであることを特徴としている。   According to a second aspect of the present invention, in the light source device according to the first aspect, the phosphor layer is phosphor ceramic.

また、請求項3記載の発明は、請求項1または請求項2記載の光源装置において、前記蛍光体層は、前記放熱基板に金属を介して接合されていることを特徴としている。   According to a third aspect of the present invention, in the light source device according to the first or second aspect, the phosphor layer is bonded to the heat dissipation substrate via a metal.

また、請求項4記載の発明は、請求項1乃至請求項3のいずれか一項に記載の光源装置において、該光源装置は、前記蛍光体層と前記放熱基板とを有する蛍光回転体を備えていることを特徴としている。   According to a fourth aspect of the present invention, in the light source device according to any one of the first to third aspects, the light source device includes a fluorescent rotating body having the phosphor layer and the heat dissipation substrate. It is characterized by having.

また、請求項5記載の発明は、請求項1乃至請求項4のいずれか一項に記載の光源装置が用いられていることを特徴とする照明装置である。   The invention according to claim 5 is an illumination device characterized by using the light source device according to any one of claims 1 to 4.

請求項1乃至請求項5記載の発明によれば、紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層と、該蛍光体層の前記励起光が入射する側の面とは反対の面側に設けられる放熱基板とを備え、前記蛍光体層は実質的に樹脂成分を含まず、前記固体光源と前記蛍光体層とが空間的に離れて配置されており、前記蛍光体層の面のうち励起光が入射する側の面とは反対側に設けられた反射面による反射を用いて蛍光を取り出すので、従来に比べて十分な高輝度化を図ることができる。   According to the first to fifth aspects of the present invention, the solid light source that emits light having a predetermined wavelength in the wavelength region from ultraviolet light to visible light, and the solid that is excited by the excitation light from the solid light source. A phosphor layer containing at least one type of phosphor that emits fluorescence having a wavelength longer than the emission wavelength of the light source, and heat dissipation provided on the surface of the phosphor layer opposite to the surface on which the excitation light is incident A substrate, the phosphor layer substantially does not contain a resin component, the solid light source and the phosphor layer are arranged spatially separated from each other, and excitation light out of the surface of the phosphor layer Since the fluorescence is extracted using the reflection by the reflection surface provided on the side opposite to the incident side, it is possible to achieve a sufficiently high luminance as compared with the conventional case.

特に、請求項3記載の発明によれば、請求項1または請求項2記載の光源装置において、前記蛍光体層は、前記放熱基板に金属を介して接合されているので、蛍光体層からの熱放散の効率を、より一層高めることができ、より一層高輝度化を図ることができる。   Particularly, according to the invention described in claim 3, in the light source device according to claim 1 or 2, since the phosphor layer is bonded to the heat dissipation substrate via a metal, The efficiency of heat dissipation can be further increased, and higher brightness can be achieved.

また、請求項4記載の発明によれば、請求項1乃至請求項3のいずれか一項に記載の光源装置において、該光源装置は、前記蛍光体層と前記放熱基板とを有する蛍光回転体を備えているので、固体光源に対して蛍光体層を回転させることにより、固体光源からの励起光が当たる場所を分散させ、光照射部での発熱を抑えることができ、これにより、より一層の高輝度化が可能となる。   According to a fourth aspect of the present invention, in the light source device according to any one of the first to third aspects, the light source device includes a fluorescent rotator having the phosphor layer and the heat dissipation substrate. Therefore, by rotating the phosphor layer with respect to the solid light source, it is possible to disperse the place where the excitation light from the solid light source hits, and to suppress the heat generation in the light irradiating part. The brightness can be increased.

従来の光源装置を示す図である。It is a figure which shows the conventional light source device. 本発明の光源装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the light source device of this invention. 放熱基板にフィンなどの構造を設けた構成例を示す図である。It is a figure which shows the structural example which provided structures, such as a fin, in the thermal radiation board | substrate. 互いに異なる蛍光体からなる複数の蛍光体層が積層された構成例を示す図である。It is a figure which shows the structural example on which the several fluorescent substance layer which consists of a mutually different fluorescent substance was laminated | stacked. 蛍光体層を回転軸の周りに回転させる反射型蛍光回転体として構成した例を示す図である。It is a figure which shows the example comprised as a reflection type fluorescence rotary body which rotates a fluorescent substance layer around a rotating shaft. 反射型蛍光回転体の蛍光体層についての構成例を示す図である。It is a figure which shows the structural example about the fluorescent substance layer of a reflection type fluorescent rotating body. 反射型蛍光回転体の蛍光体層についての他の構成例を示す図である。It is a figure which shows the other structural example about the fluorescent substance layer of a reflection type fluorescent rotator. 反射型蛍光回転体の蛍光体層についての他の構成例を示す図である。It is a figure which shows the other structural example about the fluorescent substance layer of a reflection type fluorescent rotator. 反射型蛍光回転体の蛍光体層についての他の構成例を示す図である。It is a figure which shows the other structural example about the fluorescent substance layer of a reflection type fluorescent rotator. 反射型蛍光回転体の蛍光体層についての他の構成例を示す図である。It is a figure which shows the other structural example about the fluorescent substance layer of a reflection type fluorescent rotator.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2(a),(b)は、本発明の光源装置の一構成例を示す図である。なお、図2(a)は全体の正面図、図2(b)は蛍光体層が設けられている部分の平面図である。図2(a),(b)を参照すると、この光源装置10は、紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源5と、該固体光源5からの励起光により励起され該固体光源5の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層2とを備え、固体光源5と蛍光体層2とが空間的に離れて配置されている。   FIGS. 2A and 2B are diagrams showing a configuration example of the light source device of the present invention. 2A is a front view of the whole, and FIG. 2B is a plan view of a portion where a phosphor layer is provided. Referring to FIGS. 2A and 2B, the light source device 10 includes a solid-state light source 5 that emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light, A phosphor layer 2 including at least one kind of phosphor that is excited by excitation light and emits fluorescence having a wavelength longer than that of the solid light source 5, and the solid light source 5 and the phosphor layer 2 are spatially separated. Are located apart.

ここで、蛍光体層2には、実質的に樹脂成分を含んでいないものが用いられる。   Here, the phosphor layer 2 is substantially free of a resin component.

また、蛍光体層2の前記励起光が入射する側の面とは反対の面側には放熱基板6が設けられており、蛍光体層2は、放熱基板6に接合部7によって接合されている。ここで、接合部7には、後述のように、熱伝導率の大きな材料が用いられるのが良い。   In addition, a heat dissipation substrate 6 is provided on the surface of the phosphor layer 2 opposite to the surface on which the excitation light is incident, and the phosphor layer 2 is bonded to the heat dissipation substrate 6 by the joint portion 7. Yes. Here, as described later, a material having a high thermal conductivity is preferably used for the joint portion 7.

また、この光源装置10では、蛍光体層2の面のうち固体光源5からの励起光が入射する側の面とは反対側に設けられた反射面による反射を用いて蛍光などの光を取り出す方式(以下、反射方式と称す)が採用されている。   Moreover, in this light source device 10, light, such as fluorescence, is taken out using the reflection by the reflective surface provided on the opposite side to the surface where the excitation light from the solid light source 5 is incident on the surface of the phosphor layer 2. A method (hereinafter referred to as a reflection method) is employed.

このように、この光源装置10は、基本的には、固体光源5と蛍光体層2とを空間的に離して配置し、発光を反射方式で利用することを特徴としている。   As described above, the light source device 10 is basically characterized in that the solid light source 5 and the phosphor layer 2 are spatially separated and light emission is used in a reflective manner.

すなわち、図1に示した従来の光源装置のように、蛍光体層92が固体光源95と接している場合には、高輝度化をしようとしても、蛍光体層92と固体光源95との両方とも加熱されてしまうため、蛍光体層92からの熱放散の効率が悪かったが、図2(a),(b)の光源装置10では、蛍光体層2を固体光源5から離して配置することで、高輝度化をする場合にも、蛍光体層2からの熱を、接合部7を介して低温の放熱基板6へ放散させることが可能となり、蛍光体層2からの熱放散の効率を、図1に示した従来の光源装置に比べて、著しく高めることができる。   That is, as in the conventional light source device shown in FIG. 1, when the phosphor layer 92 is in contact with the solid light source 95, both the phosphor layer 92 and the solid light source 95 are used even if the luminance is increased. However, in the light source device 10 shown in FIGS. 2A and 2B, the phosphor layer 2 is arranged away from the solid light source 5 because the heat dissipation efficiency from the phosphor layer 92 is poor. As a result, even when the luminance is increased, the heat from the phosphor layer 2 can be dissipated to the low-temperature heat dissipation substrate 6 via the joint portion 7, and the efficiency of heat dissipation from the phosphor layer 2 can be reduced. Compared to the conventional light source device shown in FIG.

また、図1に示した従来の光源装置では、固体光源95からの励起光と蛍光体層92からの蛍光のうち、固体光源95とは反対の側に出射する蛍光と、蛍光体層92で吸収されずに透過する固体光源95からの励起光とを用いている。つまり透過方式を使用している。ここで、透過方式では、蛍光体層92からの出射光を考えると、励起光については上記透過光とともに蛍光体層92との界面で反射されて固体光源95側へ戻って行く発光、つまり反射光も存在しており、この反射光は固体光源95に再吸収されるため照明光として利用できない光となってしまう。また、蛍光体層92からの蛍光は、蛍光体層92の両面から出射するため、やはり固体光源95側に出射する光は利用できない。このように、透過方式では、光の利用効率が低下してしまう。また、透過方式では、目的の色度の照明光を得るためには蛍光体層92の厚みを厚くする必要があり、蛍光体層92から固体光源95までの距離が長くなるため、蛍光体層92からの熱を固体光源95に放散する上で不利であった。   Further, in the conventional light source device shown in FIG. 1, among the excitation light from the solid light source 95 and the fluorescence from the phosphor layer 92, the fluorescence emitted to the side opposite to the solid light source 95 and the phosphor layer 92 Excitation light from a solid light source 95 that is transmitted without being absorbed is used. In other words, the transmission method is used. Here, in the transmission method, when the emitted light from the phosphor layer 92 is considered, the excitation light is reflected at the interface with the phosphor layer 92 together with the transmitted light and returns to the solid light source 95 side, that is, reflected. There is also light, and this reflected light is reabsorbed by the solid light source 95 and becomes light that cannot be used as illumination light. Further, since the fluorescence from the phosphor layer 92 is emitted from both sides of the phosphor layer 92, the light emitted to the solid light source 95 side cannot be used. Thus, in the transmission method, the light use efficiency is reduced. In addition, in the transmission method, in order to obtain illumination light with a desired chromaticity, it is necessary to increase the thickness of the phosphor layer 92, and the distance from the phosphor layer 92 to the solid light source 95 becomes long. It was disadvantageous in dissipating the heat from 92 to the solid light source 95.

これに対し、図2(a),(b)の光源装置10では、固体光源5とは反対の側に出射する光(励起光、蛍光)を反射面(例えば基板の反射面)で固体光源5側に反射する反射方式を採用しているので、固体光源5からの励起光によって励起された蛍光体層2からの発光(蛍光)の全て(すなわち、固体光源5側に出射する蛍光)と、蛍光体層2で吸収されなかった固体光源5からの励起光の全て(すなわち、蛍光体層2で吸収されなかった固体光源5からの光の反射光)とを照明光として利用できるため(すなわち、励起光、蛍光とも効率よく照明光として利用できるため)、光の利用効率を著しく高めることができ、高輝度化が可能となる。また、透過型に対し、反射型では、蛍光体層2の厚みが半分以下でも蛍光体層2内の光路長が等しくなり、同じ色度の光が得られるため、蛍光体層2を薄くすることができ、蛍光体層2から基板6までの距離が短くなるので、熱放散の面でも有利である。   On the other hand, in the light source device 10 of FIGS. 2A and 2B, the light (excitation light, fluorescence) emitted to the side opposite to the solid light source 5 is reflected on the reflective surface (for example, the reflective surface of the substrate). Since the reflection method reflecting to the 5 side is adopted, all of the light emission (fluorescence) from the phosphor layer 2 excited by the excitation light from the solid light source 5 (that is, the fluorescence emitted to the solid light source 5 side) and Since all of the excitation light from the solid light source 5 that is not absorbed by the phosphor layer 2 (that is, the reflected light of the light from the solid light source 5 that is not absorbed by the phosphor layer 2) can be used as illumination light ( That is, since both excitation light and fluorescence can be efficiently used as illumination light), the light use efficiency can be remarkably increased, and high brightness can be achieved. In contrast to the transmission type, in the reflection type, even if the thickness of the phosphor layer 2 is less than half, the optical path lengths in the phosphor layer 2 are equal, and light of the same chromaticity can be obtained. In addition, the distance from the phosphor layer 2 to the substrate 6 is shortened, which is advantageous in terms of heat dissipation.

このように、図2(a),(b)の光源装置10では、基本的には、固体光源5と蛍光体層2とを空間的に離して配置し、発光を反射方式で利用するので、従来に比べて十分な高輝度化を図ることができる。   As described above, in the light source device 10 of FIGS. 2A and 2B, the solid light source 5 and the phosphor layer 2 are basically spatially separated and light emission is used in a reflective manner. Therefore, it is possible to achieve a sufficiently high brightness as compared with the conventional case.

さらに、図2(a),(b)の光源装置10では、蛍光体層2には、実質的に樹脂成分を含んでいないものが用いられるので、熱による変色がなく、光の吸収が少ないことから、より一層の高輝度化を図ることができる。   Further, in the light source device 10 shown in FIGS. 2A and 2B, since the phosphor layer 2 that does not substantially contain a resin component is used, there is no discoloration due to heat and light absorption is small. For this reason, it is possible to further increase the luminance.

ここで、樹脂成分を実質的に含まない蛍光体層2とは、蛍光体層の形成に通常使用される樹脂成分が蛍光体層の5wt%以下であるものを意味する。このような蛍光体層を実現するものとして蛍光体粉末をガラス中に分散させたもの、ガラス母体に発光中心イオンを添加したガラス蛍光体、蛍光体の単結晶や蛍光体の多結晶体(以下、蛍光体セラミックスと称す)などが挙げられる。蛍光体セラミックスは、蛍光体の製造過程において、焼成前に材料を任意の形状に成形し、焼成した蛍光体の塊である。蛍光体セラミックスは、その製造工程のうち、成形工程においてバインダーとして有機物を使用する場合があるが、成形後に脱脂工程を設けて有機成分を焼き飛ばすため、焼成後の蛍光体セラミックスには有機樹脂成分は5wt%以下しか残留しない。したがって、ここに挙げた蛍光体層は、実質的に樹脂成分を含まず、無機物質のみから構成されているため、熱による変色が発生することがない。また、無機物質のみからなるガラスやセラミックスは、一般に、樹脂よりも熱伝導率が高いため、蛍光体層2から基板6への熱放散においても有利である。特に蛍光体セラミックスは、一般的に、ガラスよりもさらに熱伝導率が高く、単結晶より製造コストが安いため、これを蛍光体層2に用いるのが好適である。   Here, the phosphor layer 2 substantially not containing a resin component means that the resin component normally used for forming the phosphor layer is 5 wt% or less of the phosphor layer. As a material for realizing such a phosphor layer, a phosphor powder dispersed in glass, a glass phosphor in which a luminescent center ion is added to a glass matrix, a phosphor single crystal, or a phosphor polycrystal (hereinafter referred to as a phosphor) And phosphor ceramics). The phosphor ceramic is a lump of phosphor that is formed by firing a material into an arbitrary shape before firing in the phosphor manufacturing process. Phosphor ceramics may use an organic substance as a binder in the molding process in the manufacturing process. However, since the organic component is burned off by providing a degreasing process after molding, the phosphor ceramics after firing have an organic resin component. Remains only 5 wt% or less. Therefore, since the phosphor layer mentioned here does not substantially contain a resin component and is composed only of an inorganic substance, discoloration due to heat does not occur. In addition, glass or ceramics made of only an inorganic substance generally has a higher thermal conductivity than a resin, and is therefore advantageous in heat dissipation from the phosphor layer 2 to the substrate 6. In particular, phosphor ceramics generally have higher thermal conductivity than glass and are less expensive to manufacture than single crystals. Therefore, it is preferable to use them for the phosphor layer 2.

また、蛍光体層2は、固体光源5からの励起光により励起され固体光源5の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含んでいる。具体的には、固体光源5が紫外光を発光するものである場合、蛍光体層2は、例えば、青、緑、赤色などの蛍光体のうち、少なくとも1種類の蛍光体を含んでいる。固体光源5が紫外光を発光するものである場合、蛍光体層2が、例えば、青、緑、赤色の蛍光体を含んでいるときには(青、緑、赤色の蛍光体のそれぞれが例えば均一に分散されて混合されたものとなっているときには)、固体光源5からの紫外光を蛍光体層2に照射するとき、反射光として白色の照明光を得ることができる。また、固体光源5が可視光として青色光を発光するものである場合、蛍光体層2は、例えば、緑、赤、黄色などの蛍光体のうち、少なくとも1種類の蛍光体を含んでいる。固体光源5が可視光として青色光を発光するものである場合、蛍光体層2が、例えば、緑、赤色の蛍光体を含んでいるときには(緑、赤色の蛍光体のそれぞれが例えば均一に分散されて混合されたものとなっているときには)、固体光源5からの青色光を蛍光体層2に照射するとき、反射光として白色などの照明光を得ることができる。また、固体光源5が可視光として青色光を発光するものである場合、蛍光体層2が、例えば、黄色の蛍光体だけを含んでいるときには、固体光源5からの青色光を蛍光体層2に照射するとき、反射光として白色などの照明光を得ることができる。   The phosphor layer 2 includes at least one kind of phosphor that is excited by excitation light from the solid light source 5 and emits fluorescence having a longer wavelength than the emission wavelength of the solid light source 5. Specifically, when the solid-state light source 5 emits ultraviolet light, the phosphor layer 2 includes at least one kind of phosphor among phosphors such as blue, green, and red. When the solid light source 5 emits ultraviolet light, the phosphor layer 2 contains, for example, blue, green, and red phosphors (the blue, green, and red phosphors are, for example, uniformly When the phosphor layer 2 is irradiated with ultraviolet light from the solid light source 5, white illumination light can be obtained as reflected light. Moreover, when the solid light source 5 emits blue light as visible light, the phosphor layer 2 includes at least one kind of phosphor among phosphors such as green, red, and yellow. When the solid-state light source 5 emits blue light as visible light, when the phosphor layer 2 contains, for example, green and red phosphors (the green and red phosphors are dispersed uniformly, for example) When the phosphor layer 2 is irradiated with blue light from the solid light source 5, illumination light such as white can be obtained as reflected light. Further, when the solid light source 5 emits blue light as visible light, for example, when the phosphor layer 2 contains only a yellow phosphor, the blue light from the solid light source 5 is emitted from the phosphor layer 2. When illuminating, illumination light such as white can be obtained as reflected light.

また、図2(a),(b)の光源装置10において、放熱基板6は、光(固体光源5からの励起光によって励起された蛍光体層2からの発光(蛍光)と、蛍光体層2で吸収されなかった固体光源5からの光)に対する反射面の役割と、蛍光体層2から放散してきた熱を外部へ放散させる役割と、蛍光体層2の支持基板の役割も担うものである。このため、高い光反射特性、伝熱特性、加工性が求められる。この放熱基板6には、金属基板やアルミナなどの酸化物セラミックス、窒化アルミニウムなどの非酸化セラミックスなどが使用可能であるが、特に高い光反射特性、伝熱特性、加工性を併せ持つ金属基板が使用されるのが望ましい。   Further, in the light source device 10 of FIGS. 2A and 2B, the heat dissipation substrate 6 includes light (light emission (fluorescence) from the phosphor layer 2 excited by excitation light from the solid light source 5 and phosphor layer). The role of the reflecting surface for the light from the solid light source 5 not absorbed by 2), the role of dissipating the heat dissipated from the phosphor layer 2 to the outside, and the role of the support substrate of the phosphor layer 2 is there. For this reason, high light reflection characteristics, heat transfer characteristics, and workability are required. The heat dissipation substrate 6 can be a metal substrate, oxide ceramics such as alumina, or non-oxide ceramics such as aluminum nitride, but a metal substrate having particularly high light reflection characteristics, heat transfer characteristics, and workability is used. It is desirable to be done.

また、蛍光体層2と放熱基板6との接合部7には、有機接着剤、無機接着剤、低融点ガラス、金属(金属のろう付け)などを用いることができる。接合部7も、光(固体光源5からの励起光によって励起された蛍光体層2からの発光(蛍光)と、蛍光体層2で吸収されなかった固体光源5からの光)に対する反射面の役割と、蛍光体層から熱を放散させる役割とを担うものであるから、高い光反射特性と伝熱特性を併せ持つ金属(金属のろう付け)が用いられるのが望ましい。   In addition, an organic adhesive, an inorganic adhesive, low-melting glass, metal (metal brazing), or the like can be used for the joint 7 between the phosphor layer 2 and the heat dissipation substrate 6. The junction 7 also has a reflection surface for light (light emission (fluorescence) from the phosphor layer 2 excited by excitation light from the solid light source 5 and light from the solid light source 5 not absorbed by the phosphor layer 2). Since it plays a role and a role to dissipate heat from the phosphor layer, it is desirable to use a metal (metal brazing) having both high light reflection characteristics and heat transfer characteristics.

次に、図2(a),(b)の光源装置10をより詳細に説明する。   Next, the light source device 10 shown in FIGS. 2A and 2B will be described in more detail.

図2(a),(b)の光源装置10において、固体光源5には、紫外光から可視光領域に発光波長をもつ発光ダイオードや半導体レーザーなどが使用可能である。   In the light source device 10 shown in FIGS. 2A and 2B, the solid-state light source 5 can be a light emitting diode or a semiconductor laser having an emission wavelength from ultraviolet light to visible light.

より具体的に、固体光源5には、例えば、InGaN系の材料を用いた発光波長が約380nmの近紫外光を発光する発光ダイオードや半導体レーザーなどを用いることができる。この場合、蛍光体層2の蛍光体としては、波長が約380nmないし約400nmの紫外光により励起されるものとして、例えば、赤色蛍光体には、CaAlSiN:Eu2+、CaSi:Eu2+、LaS:Eu3+、KSiF:Mn4+、 KTiF:Mn4+等を用いることができ、緑色蛍光体には、(Si,Al)(O,N):Eu2+、BaMgAl1017:Eu2+,Mn2+、(Ba,Sr)SiO:Eu2+等を用いることができ、青色蛍光体には、(Sr,Ca,Ba,Mg)10(POl2:Eu2+、BaMgAl1017:Eu2+、LaAl(Si,Al)(N,O)10:Ce3+等を用いることができる。 More specifically, the solid-state light source 5 may be, for example, a light emitting diode or semiconductor laser that emits near-ultraviolet light having an emission wavelength of about 380 nm using an InGaN-based material. In this case, the phosphor of the phosphor layer 2 is excited by ultraviolet light having a wavelength of about 380 nm to about 400 nm. For example, the red phosphor has CaAlSiN 3 : Eu 2+ , Ca 2 Si 5 N 8. : Eu 2+ , La 2 O 2 S: Eu 3+ , KSiF 6 : Mn 4+ , KTiF 6 : Mn 4+ can be used, and (Si, Al) 6 (O, N): Eu can be used as a green phosphor. 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , (Ba, Sr) 2 SiO 4 : Eu 2+ and the like can be used, and (Sr, Ca, Ba, Mg) 10 (PO 4 ) is used as a blue phosphor. ) 6 C l2: Eu 2+, BaMgAl 10 O 17: Eu 2+, LaAl (Si, Al) 6 (N, O) 10: Ce 3+ and the like can be used.

また、固体光源5には、例えば、GaN系の材料を用いた発光波長が約460nmの青色光を発光する発光ダイオードや半導体レーザーなどを用いることができる。この場合、蛍光体層2の蛍光体としては、波長が約440nmないし約470nmの青色光により励起されるものとして、例えば、赤色蛍光体には、CaAlSiN:Eu2+、CaSi:Eu2+、KSiF:Mn4+、KTiF:Mn4+等を用いることができ、緑色蛍光体には、Y(Ga,Al)12:Ce3+、CaScSi12:Ce3+、CaSc:Eu2+、(Ba,Sr)SiO:Eu2+、BaSi12:Eu2+、(Si,Al)(O,N):Eu2+等を用いることができる。また、波長が約440nmないし約470nmの青色光により励起されるものとして、例えば、YAl12:Ce3+ (YAG)、(Sr,Ba)SiO:Eu2+、Ca(Si,Al)12(O,N)16:Eu2+等の黄色蛍光体を用いることができる。 The solid light source 5 may be, for example, a light emitting diode or a semiconductor laser that emits blue light having a light emission wavelength of about 460 nm using a GaN-based material. In this case, the phosphor of the phosphor layer 2 is excited by blue light having a wavelength of about 440 nm to about 470 nm. For example, the red phosphor has CaAlSiN 3 : Eu 2+ , Ca 2 Si 5 N 8. : Eu 2+ , KSiF 6 : Mn 4+ , KTiF 6 : Mn 4+ can be used, and Y 3 (Ga, Al) 5 O 12 : Ce 3+ , Ca 3 Sc 2 Si 3 O 12 can be used as a green phosphor. : Ce 3+ , CaSc 2 O 4 : Eu 2+ , (Ba, Sr) 2 SiO 4 : Eu 2+ , Ba 3 Si 6 O 12 N 2 : Eu 2+ , (Si, Al) 6 (O, N): Eu 2+ Etc. can be used. Moreover, as what is excited by blue light having a wavelength of about 440 nm to about 470 nm, for example, Y 3 Al 5 O 12 : Ce 3+ (YAG), (Sr, Ba) 2 SiO 4 : Eu 2+ , Ca x (Si , Al) 12 (O, N) 16 : Eu 2+ or the like can be used.

蛍光体層2としては、これらの蛍光体粉末をガラス中に分散させたものや、ガラス母体に発光中心イオンを添加したガラス蛍光体、樹脂などの結合部材を含まない蛍光体セラミックス等を用いることができる。蛍光体粉末をガラス中に分散させたものの具体例としては、上に列挙した組成の蛍光体粉末をP、SiO、B、Alなどの成分を含むガラス中に分散したものが挙げられる。ガラス母体に発光中心イオンを添加したガラス蛍光体としては、Ce3+やEu2+を付活剤として添加したCa−Si−Al−O−N系やY−Si−Al−O−N系などの酸窒化物系ガラス蛍光体が挙げられる。蛍光体セラミックスとしては、上に列挙した組成の蛍光体組成からなり、樹脂成分を実質的に含まない焼結体が挙げられる。これらの中でも透光性を有する蛍光体セラミックスを使用することが望ましい。これは、焼結体中に光の散乱の原因となるポアや粒界の不純物がほとんど存在しないために透光性を有するに至った蛍光体セラミックスである。ポアや不純物は熱拡散を妨げる原因にもなるため、透光性セラミックスは高い熱伝導率を示す。このため蛍光体層として利用した場合には励起光や蛍光を拡散により失うことなく蛍光体層から取り出して利用でき、さらに蛍光体層で発生した熱を効率良く放散することができる。透光性を示さない焼結体でも出来るだけポアや不純物の少ないものが望ましい。ポアの残存量を評価する指標としては蛍光体セラミックスの比重の値を用いることができ、その値が計算される理論値に対して95%以上のものが望ましい。 As the phosphor layer 2, a phosphor in which these phosphor powders are dispersed in glass, a glass phosphor in which a luminescent center ion is added to a glass matrix, a phosphor ceramic that does not include a binding member such as a resin, or the like is used. Can do. As a specific example of the phosphor powder dispersed in glass, the phosphor powder having the composition listed above is contained in a glass containing components such as P 2 O 3 , SiO 2 , B 2 O 3 , and Al 2 O 3. Are dispersed. Examples of glass phosphors in which a luminescent center ion is added to a glass matrix include Ca—Si—Al—O—N and Y—Si—Al—O—N systems in which Ce 3+ or Eu 2+ is added as an activator. Examples thereof include oxynitride glass phosphors. Examples of the phosphor ceramic include a sintered body having a phosphor composition having the above-described composition and substantially not including a resin component. Among these, it is desirable to use a phosphor ceramic having translucency. This is a phosphor ceramic that has translucency because there are almost no pores or impurities at grain boundaries that cause light scattering in the sintered body. Since pores and impurities can also prevent thermal diffusion, translucent ceramics exhibit high thermal conductivity. For this reason, when it uses as a fluorescent substance layer, it can take out from a fluorescent substance layer, and can utilize it, without losing excitation light and fluorescence by spreading | diffusion, Furthermore, the heat | fever which generate | occur | produced in the fluorescent substance layer can be dissipated efficiently. Even a sintered body that does not show translucency is desirable to have as few pores and impurities as possible. As an index for evaluating the residual amount of pores, the value of specific gravity of the phosphor ceramic can be used, and it is desirable that the value is 95% or more with respect to the theoretical value by which the value is calculated.

ここで、青色励起の黄色発光蛍光体であるYAl12:Ce3+蛍光体を例に、透光性を有する蛍光体セラミックスの製造方法を説明する。蛍光体セラミックスは出発原料の混合工程、成形工程、焼成工程、加工工程を経て製造される。出発原料には、酸化イットリウムや酸化セリウムやアルミナ等、YAl12:Ce3+蛍光体の構成元素の酸化物や、焼成後に酸化物となる炭酸塩、硝酸塩、硫酸塩等を用いる。出発原料の粒径はサブミクロンサイズのものが望ましい。これらの原料を化学量論比となるように秤量する。このとき焼成後のセラミックスの透過率向上を目的として、カルシウムやシリコンなどの化合物を添加することも可能である。秤量した原料は、水もしくは有機溶剤を用い、湿式ボールミルにより十分に分散、混合を行う。次に混合物を所定の形状に成形する。成形方法としては、一軸加圧法、冷間静水圧法、スリップキャスティング法や射出成形法等を用いることができる。得られた成形体を1600〜1800℃で焼成する。これにより、透光性のYAl12:Ce3+蛍光体セラミックスを得ることができる。 Here, a method of manufacturing a phosphor ceramic having translucency will be described by taking as an example a Y 3 Al 5 O 12 : Ce 3+ phosphor which is a blue-excited yellow light-emitting phosphor. The phosphor ceramic is manufactured through a starting material mixing process, a forming process, a firing process, and a processing process. As starting materials, yttrium oxide, cerium oxide, alumina, and the like, oxides of constituent elements of Y 3 Al 5 O 12 : Ce 3+ phosphor, carbonates, nitrates, sulfates and the like that become oxides after firing are used. The particle size of the starting material is preferably a submicron size. These raw materials are weighed so as to have a stoichiometric ratio. At this time, for the purpose of improving the transmittance of the ceramic after firing, it is also possible to add a compound such as calcium or silicon. The weighed raw materials are sufficiently dispersed and mixed by a wet ball mill using water or an organic solvent. Next, the mixture is formed into a predetermined shape. As the molding method, a uniaxial pressing method, a cold isostatic pressing method, a slip casting method, an injection molding method, or the like can be used. The obtained molded body is fired at 1600 to 1800 ° C. Thus, translucent Y 3 Al 5 O 12: Ce 3+ phosphor ceramic can be obtained.

以上のようにして作製した蛍光体セラミックスは、自動研磨装置などを用いて、厚さ数十〜数百μmの厚みに研磨し、さらに、ダイアモンドカッターやレーザーを用いたダイシングやスクライブにより、円形や四角形や扇形、リング形など任意の形状の板に切り出して使用する。   The phosphor ceramic produced as described above is polished to a thickness of several tens to several hundreds of μm using an automatic polishing apparatus, and further, circular or diced by dicing or scribing using a diamond cutter or laser. Cut out to a board of any shape such as a square, fan or ring.

ここで、蛍光体セラミックスは、空気に対して屈折率が高く、さらに、内部にポアなどの散乱の原因となるものが少なく、光がセラミックス内部を導波するため、板状に成形した場合には側面から出射される発光成分が増加し、正面方向へ出射される発光成分が減少してしまう。この問題を解決するために、セラミックスの表面にエッチングにより凹凸の光取出し構造を設けたり、レンズを実装したり、側面に反射層を設けることで、正面方向へ出射される発光成分を増加させることも可能である。   Here, phosphor ceramics have a high refractive index with respect to air, and there are few things that cause scattering such as pores inside, and light is guided inside the ceramics. The light emission component emitted from the side surface increases, and the light emission component emitted in the front direction decreases. In order to solve this problem, the light emission component emitted in the front direction can be increased by providing an uneven light extraction structure by etching on the ceramic surface, mounting a lens, or providing a reflective layer on the side surface. Is also possible.

また、放熱基板6には、金属基板や酸化物セラミックス、非酸化セラミックスなどを使用可能であるが、特に高い光反射特性、伝熱特性、加工性を併せ持つ金属基板を使用するのが望ましい。金属としては、Al、Cu、Ti、Si、Ag、Au、Ni、Mo、W、Fe、Pdなどの単体や、それらを含む合金が使用可能である。また、放熱基板6の表面に増反射や腐食防止を目的としたコーティングを施しても良い。また、放熱基板6には、放熱性を高めるために、図3に示すようにフィンなどの構造8を設けても良い。   Moreover, although a metal substrate, oxide ceramics, non-oxide ceramics, etc. can be used for the heat dissipation substrate 6, it is desirable to use a metal substrate having particularly high light reflection characteristics, heat transfer characteristics, and workability. As the metal, simple substances such as Al, Cu, Ti, Si, Ag, Au, Ni, Mo, W, Fe, Pd, and alloys containing them can be used. Further, the surface of the heat dissipation substrate 6 may be coated for the purpose of preventing reflection and corrosion. Moreover, in order to improve heat dissipation, the heat dissipation substrate 6 may be provided with a structure 8 such as a fin as shown in FIG.

また、蛍光体層2と放熱基板6との接合部7には、有機接着剤、無機接着剤、低融点ガラス、金属ろう付けなどを用いることができる。これらの中でも、高い反射率と伝熱特性を両立可能な金属ろう付けを用いるのが望ましい。セラミックス(蛍光体層2)と金属基板(放熱基板6)との接合は、まず、セラミックス側に金属膜を形成し、その金属膜と金属基板を金属ろう付けすることで可能である。セラミックスへの金属膜の形成は、真空中での蒸着法やスパッタ法、もしくは高融点金属法などが使用可能である。なお、高融点金属法とは、セラミックスの表面に金属微粒子を含む有機バインダーを塗布し、水蒸気と水素を含む還元雰囲気下で1000〜1700℃に加熱する方法である。このとき形成される金属膜には、Si、Nb、Ti、Zr、Mo、Ni、Mn、W、Fe、Pt、Al、Au、Pd、Ta、Cuなどを含む単体や合金が用いられる。また、金属ろう材には、Ag、Cu、Zn、Ni、Sn、Ti、Mn、In、Biなどを含むろう材が使用可能である。必要であれば金属膜と金属の接合面の酸化被膜をフラックスで除去し、接合面に金属ろう材を配置し、200〜800℃に加熱し、冷却することで、接合することができる。また、接合後にセラミックスと金属の膨張係数の差による接合面の破壊を防ぐために、セラミックスと金属の中間の膨張係数を有する物質を介在させて接合を行っても良い。   In addition, an organic adhesive, an inorganic adhesive, low-melting glass, metal brazing, or the like can be used for the joint 7 between the phosphor layer 2 and the heat dissipation substrate 6. Among these, it is desirable to use metal brazing that can achieve both high reflectance and heat transfer characteristics. The ceramic (phosphor layer 2) and the metal substrate (heat dissipation substrate 6) can be joined by first forming a metal film on the ceramic side and brazing the metal film to the metal substrate. The metal film can be formed on the ceramic by a vacuum deposition method, a sputtering method, a refractory metal method, or the like. The refractory metal method is a method in which an organic binder containing metal fine particles is applied to the surface of a ceramic and heated to 1000 to 1700 ° C. in a reducing atmosphere containing water vapor and hydrogen. For the metal film formed at this time, a simple substance or an alloy containing Si, Nb, Ti, Zr, Mo, Ni, Mn, W, Fe, Pt, Al, Au, Pd, Ta, Cu, or the like is used. Further, as the metal brazing material, a brazing material containing Ag, Cu, Zn, Ni, Sn, Ti, Mn, In, Bi, or the like can be used. If necessary, the oxide film on the joining surface of the metal film and the metal can be removed with a flux, a metal brazing material is placed on the joining surface, heated to 200 to 800 ° C., and cooled to be joined. Further, in order to prevent destruction of the joint surface due to the difference in expansion coefficient between the ceramic and the metal after joining, the joining may be performed with a substance having an intermediate expansion coefficient between the ceramic and the metal interposed.

図2(a),(b)の光源装置10では、1つの蛍光体層2だけが設けられている構成となっているが、例えば図4に示すように、複数の蛍光体層(図4の例では、2つの蛍光体層2j,2k)が積層された構成にすることもできる。この場合、例えば、固体光源5が可視光として青色光を発光するものであるとき、蛍光体層2jには、緑色の蛍光体からなるものを用い、蛍光体層2kには、赤色の蛍光体からなるものを用いれば、反射光として白色などの照明光を得ることができる。   In the light source device 10 of FIGS. 2A and 2B, only one phosphor layer 2 is provided. For example, as shown in FIG. 4, a plurality of phosphor layers (FIG. 4) are provided. In the example, it is possible to adopt a configuration in which two phosphor layers 2j and 2k) are laminated. In this case, for example, when the solid light source 5 emits blue light as visible light, the phosphor layer 2j is made of a green phosphor, and the phosphor layer 2k is a red phosphor. If it is used, illumination light such as white can be obtained as reflected light.

また、図2(a),(b)の光源装置10において、蛍光体層2は、固定されていてもよいが、蛍光体層2を移動可能に構成することもできる。例えば、図5に示すように、蛍光体層2を回転軸Xの周りに回転させる(モーター4等によって回転させる)反射型蛍光回転体1として構成することもできる。すなわち、反射型蛍光回転体1は、蛍光体層2と放熱基板6を接合したものをモーター4等と連結することで実現できる。また、この反射型蛍光回転体1において、放熱基板6や接合部7が、励起光および蛍光の反射面として機能している。なお、放熱基板6の形状は、円盤状や四角形などが考えられる。また回転の安定性を確保するために、円盤の一部を切り欠いたり、逆におもりをつけた形状とすることも可能である。   Moreover, in the light source device 10 of FIGS. 2A and 2B, the phosphor layer 2 may be fixed, but the phosphor layer 2 may be configured to be movable. For example, as shown in FIG. 5, the phosphor layer 2 can be configured as a reflection type fluorescent rotating body 1 that rotates around a rotation axis X (rotated by a motor 4 or the like). That is, the reflection type fluorescent rotator 1 can be realized by connecting the phosphor layer 2 and the heat dissipation substrate 6 joined to the motor 4 or the like. In the reflection type fluorescent rotating body 1, the heat dissipation substrate 6 and the joint 7 function as a reflection surface for excitation light and fluorescence. In addition, the shape of the heat dissipation substrate 6 may be a disk shape or a quadrangle. In addition, in order to ensure the stability of rotation, it is possible to cut out a part of the disk or to have a shape with a weight on the contrary.

なお、図5の例では、反射型蛍光回転体1の蛍光体層2としては、1種類の蛍光体層だけが用いられている。具体的に、図5の例では、反射型蛍光回転体1の蛍光体層2として、例えば黄色蛍光体からなる蛍光体層だけが用いられ、この場合、固体光源5として青色光を発光するものを用いれば、反射光として白色などの照明光を得ることができる。あるいは、図5の例では、反射型蛍光回転体1の蛍光体層2として、例えば青、緑、赤色の蛍光体のそれぞれが例えば均一に分散されて混合されたものとなっている蛍光体層だけが用いられ、この場合、固体光源5として紫外光を発光するものを用いれば、反射光として白色などの照明光を得ることができる。ただし、本発明は、これに限定されず、種々の変形が可能である。すなわち、反射型蛍光回転体1の蛍光体層2としては、青、緑、黄、赤色などの蛍光体層を少なくとも1つ配置した構成にすることができる。図6(a),(b)、図7(a),(b)、図8(a),(b)、図9(a),(b)には、反射型蛍光回転体1の蛍光体層2についての種々の構成例が示されている。なお、図6(a)、図7(a)、図8(a)、図9(a)はそれぞれ平面図、図6(b)、図7(b)、図8(b)、図9(b)は、それぞれ、図6(a)、図7(a)、図8(a)、図9(a)のA−A線における断面図である。図6(a),(b)の例は、蛍光体層2としては、1種類の蛍光体層(例えば黄色蛍光体からなる蛍光体層)だけが用いられる場合であり、図5の例に相当している。また、図7(a),(b)の例は、反射型蛍光回転体1の蛍光体層2として、2種類の蛍光体層2a,2b(例えば赤色蛍光体からなる赤色の蛍光体層2aと緑色蛍光体からなる緑色の蛍光体層2b)が2等分に分割された蛍光体領域として設けられており、この場合、固体光源5として青色光を発光するものを用いれば、反射型蛍光回転体1の回転時の反射光として白色などの照明光を得ることができる。また、図8(a),(b)の例は、反射型蛍光回転体1の蛍光体層2として、3種類の蛍光体層2a,2b,2c(例えば赤色蛍光体からなる赤色の蛍光体層2aと緑色蛍光体からなる緑色の蛍光体層2bと青色蛍光体からなる青色の蛍光体層2c)が3等分に分割された蛍光体領域として設けられており、この場合、固体光源5として紫外光を発光するものを用いれば、反射型蛍光回転体1の回転時の反射光として白色などの照明光を得ることができる。また、図9(a),(b)の例は、反射型蛍光回転体1の蛍光体層2として、2種類の蛍光体層2a,2b(例えば赤色蛍光体からなる赤色の蛍光体層2aと緑色蛍光体からなる緑色の蛍光体層2b)が蛍光体領域として設けられ、蛍光体層が設けられていない領域が非蛍光体領域12cとして設けられており、この場合、固体光源5として青色光を発光するものを用いれば、反射型蛍光回転体1の回転時の反射光として白色などの照明光を得ることができる。この他にも、種々の変形が可能である。   In the example of FIG. 5, only one type of phosphor layer is used as the phosphor layer 2 of the reflective phosphor rotator 1. Specifically, in the example of FIG. 5, only the phosphor layer made of, for example, a yellow phosphor is used as the phosphor layer 2 of the reflective phosphor rotator 1, and in this case, the solid light source 5 emits blue light. If it is used, illumination lights, such as white, can be obtained as reflected light. Alternatively, in the example of FIG. 5, as the phosphor layer 2 of the reflective phosphor rotator 1, for example, a phosphor layer in which, for example, blue, green, and red phosphors are uniformly dispersed and mixed, for example. In this case, if a solid-state light source that emits ultraviolet light is used, illumination light such as white can be obtained as reflected light. However, the present invention is not limited to this, and various modifications are possible. That is, the phosphor layer 2 of the reflection type fluorescent rotator 1 can be configured such that at least one phosphor layer of blue, green, yellow, red, or the like is disposed. FIGS. 6A, 6B, 7A, 7B, 8A, 8B, 9A, and 9B show the fluorescence of the reflection type fluorescent rotator 1. FIG. Various configuration examples for the body layer 2 are shown. 6A, FIG. 7A, FIG. 8A, and FIG. 9A are plan views, respectively, FIG. 6B, FIG. 7B, FIG. 8B, and FIG. (B) is sectional drawing in the AA line | wire of Fig.6 (a), Fig.7 (a), Fig.8 (a), and Fig.9 (a), respectively. The example of FIGS. 6A and 6B is a case where only one type of phosphor layer (for example, a phosphor layer made of a yellow phosphor) is used as the phosphor layer 2, and the example of FIG. It corresponds. In the example of FIGS. 7A and 7B, two types of phosphor layers 2a and 2b (for example, a red phosphor layer 2a made of a red phosphor) are used as the phosphor layer 2 of the reflective phosphor rotator 1. And a green phosphor layer 2b) made of green phosphor is provided as a phosphor region divided into two equal parts. In this case, if a solid light source that emits blue light is used, the reflection type fluorescence Illumination light such as white can be obtained as reflected light when the rotating body 1 rotates. 8 (a) and 8 (b) show three types of phosphor layers 2a, 2b, and 2c (for example, a red phosphor composed of a red phosphor) as the phosphor layer 2 of the reflection type fluorescent rotator 1. The green phosphor layer 2b composed of the layer 2a, the green phosphor, and the blue phosphor layer 2c) composed of the blue phosphor are provided as phosphor regions divided into three equal parts. In this case, the solid light source 5 If a material that emits ultraviolet light is used, illumination light such as white can be obtained as reflected light when the reflective fluorescent rotating body 1 is rotated. 9A and 9B show two types of phosphor layers 2a and 2b (for example, a red phosphor layer 2a made of a red phosphor) as the phosphor layer 2 of the reflective phosphor rotator 1. And a green phosphor layer 2b made of a green phosphor is provided as a phosphor region, and a region where no phosphor layer is provided is provided as a non-phosphor region 12c. In this case, the solid light source 5 is blue. If a light emitting material is used, illumination light such as white can be obtained as reflected light when the reflective fluorescent rotator 1 is rotated. In addition, various modifications are possible.

また、反射型蛍光回転体1の上述の各例では、複数の蛍光体層を使用する場合、各蛍光体層を水平方向に並べて配置しているが、図10(a),(b)に示すように、複数の蛍光体層(図10(a),(b)の例では、2つの蛍光体層2j,2k)を垂直方向に重ねて(積層して)配置しても良い。なお、図10(a)は平面図、図10(b)は、図10(a)のA−A線における断面図である。この場合、例えば、固体光源5が可視光として青色光を発光するものであるとき、蛍光体層2jには、緑色蛍光体からなるものを用い、蛍光体層2kには、赤色蛍光体からなるものを用いれば、反射光として白色などの照明光を得ることができる。   Further, in each of the above examples of the reflective fluorescent rotator 1, when using a plurality of phosphor layers, the phosphor layers are arranged side by side in the horizontal direction, but in FIGS. 10 (a) and 10 (b). As shown, a plurality of phosphor layers (in the example of FIGS. 10A and 10B, two phosphor layers 2j and 2k) may be arranged vertically stacked (stacked). 10A is a plan view, and FIG. 10B is a cross-sectional view taken along line AA in FIG. 10A. In this case, for example, when the solid light source 5 emits blue light as visible light, the phosphor layer 2j is made of a green phosphor, and the phosphor layer 2k is made of a red phosphor. If a thing is used, illumination lights, such as white, can be obtained as reflected light.

このように、蛍光体層2を回転軸Xの周りに回転させる(モーター4等によって回転させる)反射型蛍光回転体1として構成することにより、すなわち、固体光源5に対して蛍光体層2を回転させることにより、固体光源5からの励起光が当たる場所を分散させ、光照射部での発熱を抑えることができ(この蛍光回転体1を用いることで、そもそも蛍光体の発熱を抑えることができ)、これにより、より一層の高輝度化が可能となる。   In this way, by configuring the phosphor layer 2 as the reflection-type phosphor rotator 1 that rotates around the rotation axis X (rotates by the motor 4 or the like), that is, the phosphor layer 2 is formed with respect to the solid light source 5. By rotating, it is possible to disperse the place where the excitation light from the solid light source 5 hits, and to suppress the heat generation in the light irradiating part (using this fluorescent rotating body 1 can suppress the heat generation of the fluorescent substance in the first place). This makes it possible to further increase the brightness.

上述したように、本発明では、固体光源5と蛍光体層2を放熱基板6に対して同じ側に設置することで、反射型の光源装置となる。もちろん必要であれば、固体光源5と蛍光体層2との間にレンズなどの光学素子を入れることもできる。   As described above, in the present invention, the solid-state light source 5 and the phosphor layer 2 are installed on the same side with respect to the heat radiating substrate 6 to provide a reflective light source device. Of course, if necessary, an optical element such as a lens can be inserted between the solid-state light source 5 and the phosphor layer 2.

また、本発明の上述した種々の光源装置を所定のレンズ系などの光学部品と組み合わせることで、高輝度化が可能な照明装置を提供できる。   Further, by combining the above-described various light source devices of the present invention with optical components such as a predetermined lens system, it is possible to provide an illumination device capable of increasing the brightness.

本発明は、照明一般などに利用可能である。
The present invention can be used for lighting in general.

1 蛍光回転体
2 蛍光体層
4 モーター
5 固体光源
6 放熱基板
7 接合部
10 光源装置
DESCRIPTION OF SYMBOLS 1 Fluorescence rotating body 2 Fluorescent substance layer 4 Motor 5 Solid light source 6 Heat dissipation board 7 Junction part 10 Light source device

Claims (5)

紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層と、該蛍光体層の前記励起光が入射する側の面とは反対の面側に設けられる放熱基板とを備え、前記蛍光体層は実質的に樹脂成分を含まず、前記固体光源と前記蛍光体層とが空間的に離れて配置されており、前記蛍光体層の面のうち励起光が入射する側の面とは反対側に設けられた反射面による反射を用いて蛍光を取り出すことを特徴とする光源装置。 A solid-state light source that emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light, and at least emits fluorescence having a wavelength longer than the emission wavelength of the solid-state light source when excited by excitation light from the solid-state light source A phosphor layer including one type of phosphor, and a heat dissipation substrate provided on a surface of the phosphor layer opposite to the surface on which the excitation light is incident, the phosphor layer being substantially a resin The solid light source and the phosphor layer are spatially separated from each other, and the reflection is provided on the opposite side of the surface of the phosphor layer from the surface on which excitation light is incident. A light source device that extracts fluorescence using reflection by a surface. 請求項1記載の光源装置において、前記蛍光体層は、蛍光体セラミックスであることを特徴とする光源装置。 2. The light source device according to claim 1, wherein the phosphor layer is phosphor ceramic. 請求項1または請求項2記載の光源装置において、前記蛍光体層は、前記放熱基板に金属を介して接合されていることを特徴とする光源装置。 3. The light source device according to claim 1, wherein the phosphor layer is bonded to the heat dissipation substrate via a metal. 請求項1乃至請求項3のいずれか一項に記載の光源装置において、該光源装置は、前記蛍光体層と前記放熱基板とを有する蛍光回転体を備えていることを特徴とする光源装置。 4. The light source device according to claim 1, wherein the light source device includes a fluorescent rotator including the phosphor layer and the heat dissipation substrate. 5. 請求項1乃至請求項4のいずれか一項に記載の光源装置が用いられていることを特徴とする照明装置。 An illumination device, wherein the light source device according to any one of claims 1 to 4 is used.
JP2009286397A 2009-12-17 2009-12-17 Light source device and lighting device Active JP5530165B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009286397A JP5530165B2 (en) 2009-12-17 2009-12-17 Light source device and lighting device
US12/972,056 US8556437B2 (en) 2009-12-17 2010-12-17 Semiconductor light source apparatus and lighting unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009286397A JP5530165B2 (en) 2009-12-17 2009-12-17 Light source device and lighting device

Publications (2)

Publication Number Publication Date
JP2011129354A true JP2011129354A (en) 2011-06-30
JP5530165B2 JP5530165B2 (en) 2014-06-25

Family

ID=44291734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286397A Active JP5530165B2 (en) 2009-12-17 2009-12-17 Light source device and lighting device

Country Status (1)

Country Link
JP (1) JP5530165B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197212A (en) * 2010-03-18 2011-10-06 Seiko Epson Corp Lighting system and projector
JP2012004009A (en) * 2010-06-18 2012-01-05 Sony Corp Lighting system and image display device
JP2012073489A (en) * 2010-09-29 2012-04-12 Casio Comput Co Ltd Light source unit and projector
JP2012079989A (en) * 2010-10-05 2012-04-19 Stanley Electric Co Ltd Light source device and lighting fixture
JP2013016268A (en) * 2011-06-30 2013-01-24 Sharp Corp Light-emitting device
JP2013069547A (en) * 2011-09-22 2013-04-18 Stanley Electric Co Ltd Heat dissipation substrate, its manufacturing method, and semiconductor device using heat dissipation substrate
JP2013187043A (en) * 2012-03-08 2013-09-19 Stanley Electric Co Ltd Light source device and lighting device
JP2013214426A (en) * 2012-04-03 2013-10-17 Nippon Electric Glass Co Ltd Wavelength conversion member and light emitting device
US8872208B2 (en) 2011-05-20 2014-10-28 Stanley Electric Co., Ltd. Light source device and lighting device
JP2015503180A (en) * 2011-10-25 2015-01-29 ショット アクチエンゲゼルシャフトSchott AG High brightness light converter
JP2015022954A (en) * 2013-07-22 2015-02-02 日立金属株式会社 Light source device
JP2015215583A (en) * 2013-11-08 2015-12-03 日本電気硝子株式会社 Fluorescent wheel for projector and light-emitting device for projector
JP2016012116A (en) * 2014-06-02 2016-01-21 カシオ計算機株式会社 Light source device and projection device
JP2016100090A (en) * 2014-11-18 2016-05-30 スタンレー電気株式会社 Light-emitting module and light-emitting device using the same
KR20160070122A (en) * 2013-10-15 2016-06-17 아포트로닉스 코포레이션 리미티드 Manufacturing method for wavelength conversion device
KR20160070121A (en) * 2013-10-15 2016-06-17 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, and light source system and projection system there for
WO2016185860A1 (en) * 2015-05-15 2016-11-24 ソニー株式会社 Phosphor substrate, light source device, and projection display device
US9609293B2 (en) 2014-11-21 2017-03-28 Nichia Corporation Wavelength converting member and projector including the wavelength converting member
KR20170085605A (en) * 2013-03-05 2017-07-24 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, light-emitting device and projection system
WO2017126027A1 (en) * 2016-01-19 2017-07-27 Necディスプレイソリューションズ株式会社 Fluorescent body wheel, and light-emitting unit and projector using same
JP2017142539A (en) * 2017-05-16 2017-08-17 ソニー株式会社 Light source device and image projection apparatus
JP2017527847A (en) * 2014-12-11 2017-09-21 深▲せん▼市光峰光電技術有限公司Appotronics Corporation Limited Diffuse reflection material, diffuse reflection layer, wavelength converter and light source system
WO2017203782A1 (en) * 2016-05-24 2017-11-30 ソニー株式会社 Light source device and projection display device
JP2017216244A (en) * 2013-06-08 2017-12-07 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation Wavelength conversion device, manufacturing method thereof and related light-emitting device
JP2017224784A (en) * 2016-06-17 2017-12-21 日亜化学工業株式会社 Light-emitting device and waveform conversion member
JP2018081327A (en) * 2014-06-02 2018-05-24 カシオ計算機株式会社 Light source device and projection device
US9989215B2 (en) 2015-03-31 2018-06-05 Ushio Denki Kabushiki Kaisha Fluorescence light source apparatus
WO2018124082A1 (en) 2016-12-28 2018-07-05 ウシオ電機株式会社 Fluorescent light source apparatus and method for manufacturing same
JP2018151667A (en) * 2018-06-08 2018-09-27 ソニー株式会社 Light source device and image projection device
JP2018159742A (en) * 2017-03-22 2018-10-11 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
US10101645B2 (en) 2016-08-20 2018-10-16 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
WO2018201628A1 (en) * 2017-05-04 2018-11-08 深圳市光峰光电技术有限公司 Color wheel module, light source module, and projector system
US10203071B2 (en) 2015-03-31 2019-02-12 Ushio Denki Kabushiki Kaisha Reflection type fluorescence light source apparatus
US10248014B2 (en) 2017-02-13 2019-04-02 Seiko Epson Corporation Wavelength conversion device, light source device, and projector
JP2019079054A (en) * 2018-10-31 2019-05-23 日亜化学工業株式会社 Wavelength conversion member and projector including wavelength conversion member
US10451958B2 (en) 2015-12-22 2019-10-22 Seiko Epson Corporation Wavelength conversion device, illumination device and projector
US10520745B2 (en) 2017-08-31 2019-12-31 Seiko Epson Corporation Wavelength conversion element, light source device, and projector for reducing heat damage in the wavelength conversion element
US10571107B2 (en) 2015-03-20 2020-02-25 Ushio Denki Kabushiki Kaisha Fluorescence light source apparatus
US10942433B2 (en) 2018-12-28 2021-03-09 Seiko Epson Corporation Light source device and projector
US11442349B2 (en) 2020-01-22 2022-09-13 Seiko Epson Corporation Wavelength conversion element, method of manufacturing wavelength conversion element, light source device, and projector
US11500136B2 (en) 2019-11-25 2022-11-15 Seiko Epson Corporation Light source device and projector
US11556050B2 (en) 2019-11-28 2023-01-17 Seiko Epson Corporation Wavelength conversion element, light source device, and projector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017081741A1 (en) 2015-11-10 2017-05-18 Necディスプレイソリューションズ株式会社 Phosphor wheel, projector, and phosphor-wheel production method
WO2017217486A1 (en) 2016-06-16 2017-12-21 日本碍子株式会社 Phosphor element and lighting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005367A (en) * 2004-06-03 2006-01-05 Lumileds Lighting Us Llc Luminescent ceramic for light emitting device
JP2006164854A (en) * 2004-12-09 2006-06-22 Toshiba Corp Fluorescent screen and image display device
JP2009042678A (en) * 2007-08-10 2009-02-26 Olympus Corp Fiber light source
JP2009129683A (en) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp On-vehicle headlamp
JP2009231228A (en) * 2008-03-25 2009-10-08 C I Kasei Co Ltd Illumination fixture
JP2009238513A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Luminaire
JP2009266437A (en) * 2008-04-22 2009-11-12 Koito Mfg Co Ltd Lighting fixture for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005367A (en) * 2004-06-03 2006-01-05 Lumileds Lighting Us Llc Luminescent ceramic for light emitting device
JP2006164854A (en) * 2004-12-09 2006-06-22 Toshiba Corp Fluorescent screen and image display device
JP2009042678A (en) * 2007-08-10 2009-02-26 Olympus Corp Fiber light source
JP2009129683A (en) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp On-vehicle headlamp
JP2009231228A (en) * 2008-03-25 2009-10-08 C I Kasei Co Ltd Illumination fixture
JP2009238513A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Luminaire
JP2009266437A (en) * 2008-04-22 2009-11-12 Koito Mfg Co Ltd Lighting fixture for vehicle

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197212A (en) * 2010-03-18 2011-10-06 Seiko Epson Corp Lighting system and projector
US8678596B2 (en) 2010-03-18 2014-03-25 Seiko Epson Corporation Illumination device and projector with fluorescent plate
US9323045B2 (en) 2010-03-18 2016-04-26 Seiko Epson Corporation Illumination device and projector
US8820940B2 (en) 2010-06-18 2014-09-02 Sony Corporation Illumination device and image display apparatus
US10317784B2 (en) 2010-06-18 2019-06-11 Sony Corporation Illumination device and image display apparatus
US10571790B2 (en) 2010-06-18 2020-02-25 Sony Corporation Illumination device and image display apparatus
JP2012004009A (en) * 2010-06-18 2012-01-05 Sony Corp Lighting system and image display device
US9658521B2 (en) 2010-06-18 2017-05-23 Sony Corporation Illumination device and image display apparatus
US9581805B2 (en) 2010-06-18 2017-02-28 Sony Corporation Illumination device and image display apparatus
US9323046B2 (en) 2010-06-18 2016-04-26 Sony Corporation Illumination device and image display apparatus
US10852630B2 (en) 2010-06-18 2020-12-01 Sony Corporation Illumination device and image display apparatus
US10018900B2 (en) 2010-06-18 2018-07-10 Sony Corporation Illumination device and image display apparatus
JP2012073489A (en) * 2010-09-29 2012-04-12 Casio Comput Co Ltd Light source unit and projector
JP2012079989A (en) * 2010-10-05 2012-04-19 Stanley Electric Co Ltd Light source device and lighting fixture
US8872208B2 (en) 2011-05-20 2014-10-28 Stanley Electric Co., Ltd. Light source device and lighting device
US9163791B2 (en) 2011-06-30 2015-10-20 Sharp Kabushiki Kaisha Light emitting device
US8979314B2 (en) 2011-06-30 2015-03-17 Sharp Kabushiki Kaisha Light emitting device
JP2013016268A (en) * 2011-06-30 2013-01-24 Sharp Corp Light-emitting device
JP2013069547A (en) * 2011-09-22 2013-04-18 Stanley Electric Co Ltd Heat dissipation substrate, its manufacturing method, and semiconductor device using heat dissipation substrate
JP2015503180A (en) * 2011-10-25 2015-01-29 ショット アクチエンゲゼルシャフトSchott AG High brightness light converter
US9738828B2 (en) 2011-10-25 2017-08-22 Schott Ag Optical converter for high luminances
JP2018185542A (en) * 2011-10-25 2018-11-22 ショット アクチエンゲゼルシャフトSchott AG Optical converter for high luminance
JP2013187043A (en) * 2012-03-08 2013-09-19 Stanley Electric Co Ltd Light source device and lighting device
JP2013214426A (en) * 2012-04-03 2013-10-17 Nippon Electric Glass Co Ltd Wavelength conversion member and light emitting device
KR102066153B1 (en) * 2013-03-05 2020-01-14 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, light-emitting device and projection system
JP2018141986A (en) * 2013-03-05 2018-09-13 深▲せん▼市光峰光電技術有限公司Appotronics Corporation Limited Wavelength conversion device, light-emitting device and projection system
KR20170085605A (en) * 2013-03-05 2017-07-24 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, light-emitting device and projection system
JP2017216244A (en) * 2013-06-08 2017-12-07 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation Wavelength conversion device, manufacturing method thereof and related light-emitting device
US11022276B2 (en) 2013-06-08 2021-06-01 Appotronics Corporation Limited Wavelength conversion device, manufacturing method thereof, and related illumination device
JP2015022954A (en) * 2013-07-22 2015-02-02 日立金属株式会社 Light source device
JP2016535396A (en) * 2013-10-15 2016-11-10 深▲ちぇん▼市光峰光電技術有限公司Appotronics Corporation Limited Wavelength converter, light source system thereof, and projection system
US10288872B2 (en) 2013-10-15 2019-05-14 Appotronics Corporation Limited Wavelength conversion device, and light source system and projection system therefor
US10146045B2 (en) 2013-10-15 2018-12-04 Appotronics Corporation Limited Manufacturing method for wavelength conversion device
KR101954126B1 (en) * 2013-10-15 2019-03-05 아포트로닉스 코포레이션 리미티드 Manufacturing method for wavelength conversion device
KR101868093B1 (en) * 2013-10-15 2018-07-19 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, and light source system and projection system there for
JP2016536633A (en) * 2013-10-15 2016-11-24 アポトロニクス コーポレイション リミテッド Method for manufacturing wavelength converter
KR20160070121A (en) * 2013-10-15 2016-06-17 아포트로닉스 코포레이션 리미티드 Wavelength conversion device, and light source system and projection system there for
KR20160070122A (en) * 2013-10-15 2016-06-17 아포트로닉스 코포레이션 리미티드 Manufacturing method for wavelength conversion device
JP2015215583A (en) * 2013-11-08 2015-12-03 日本電気硝子株式会社 Fluorescent wheel for projector and light-emitting device for projector
JP2018081327A (en) * 2014-06-02 2018-05-24 カシオ計算機株式会社 Light source device and projection device
JP2016012116A (en) * 2014-06-02 2016-01-21 カシオ計算機株式会社 Light source device and projection device
JP2016100090A (en) * 2014-11-18 2016-05-30 スタンレー電気株式会社 Light-emitting module and light-emitting device using the same
US9609293B2 (en) 2014-11-21 2017-03-28 Nichia Corporation Wavelength converting member and projector including the wavelength converting member
US9823557B2 (en) 2014-11-21 2017-11-21 Nichia Corporation Wavelength converting member and projector including the wavelength converting member
KR101926475B1 (en) * 2014-12-11 2018-12-10 아포트로닉스 코포레이션 리미티드 Diffuse reflection material, diffuse reflection layer, wavelength conversion device and light source system
JP2017527847A (en) * 2014-12-11 2017-09-21 深▲せん▼市光峰光電技術有限公司Appotronics Corporation Limited Diffuse reflection material, diffuse reflection layer, wavelength converter and light source system
US10571107B2 (en) 2015-03-20 2020-02-25 Ushio Denki Kabushiki Kaisha Fluorescence light source apparatus
US9989215B2 (en) 2015-03-31 2018-06-05 Ushio Denki Kabushiki Kaisha Fluorescence light source apparatus
US10203071B2 (en) 2015-03-31 2019-02-12 Ushio Denki Kabushiki Kaisha Reflection type fluorescence light source apparatus
JPWO2016185860A1 (en) * 2015-05-15 2018-03-08 ソニー株式会社 Phosphor substrate, light source device, and projection display device
WO2016185860A1 (en) * 2015-05-15 2016-11-24 ソニー株式会社 Phosphor substrate, light source device, and projection display device
US10578957B2 (en) 2015-05-15 2020-03-03 Sony Corporation Fluorescent substrate, light source device, and projection display unit
US10185213B2 (en) 2015-05-15 2019-01-22 Sony Corporation Fluorescent substrate, light source device, and projection display unit
US10451958B2 (en) 2015-12-22 2019-10-22 Seiko Epson Corporation Wavelength conversion device, illumination device and projector
WO2017126027A1 (en) * 2016-01-19 2017-07-27 Necディスプレイソリューションズ株式会社 Fluorescent body wheel, and light-emitting unit and projector using same
US10409149B2 (en) 2016-01-19 2019-09-10 Nec Display Solutions, Ltd. Phosphor wheel, light-emitting unit, and projector using same
TWI720157B (en) * 2016-05-24 2021-03-01 日商新力股份有限公司 Light source device and projection display device
US11156907B2 (en) 2016-05-24 2021-10-26 Sony Corporation Light source apparatus and projection display apparatus
JPWO2017203782A1 (en) * 2016-05-24 2019-03-22 ソニー株式会社 Light source device and projection display device
WO2017203782A1 (en) * 2016-05-24 2017-11-30 ソニー株式会社 Light source device and projection display device
JP2017224784A (en) * 2016-06-17 2017-12-21 日亜化学工業株式会社 Light-emitting device and waveform conversion member
US10180237B2 (en) 2016-06-17 2019-01-15 Nichia Corporation Light emitting device and wavelength conversion member
US10101645B2 (en) 2016-08-20 2018-10-16 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
WO2018124082A1 (en) 2016-12-28 2018-07-05 ウシオ電機株式会社 Fluorescent light source apparatus and method for manufacturing same
US10704777B2 (en) 2016-12-28 2020-07-07 Ushio Denki Kabushiki Kaisha Fluorescent light source device and production process of same
US10248014B2 (en) 2017-02-13 2019-04-02 Seiko Epson Corporation Wavelength conversion device, light source device, and projector
JP2018159742A (en) * 2017-03-22 2018-10-11 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
WO2018201628A1 (en) * 2017-05-04 2018-11-08 深圳市光峰光电技术有限公司 Color wheel module, light source module, and projector system
JP2017142539A (en) * 2017-05-16 2017-08-17 ソニー株式会社 Light source device and image projection apparatus
US10520745B2 (en) 2017-08-31 2019-12-31 Seiko Epson Corporation Wavelength conversion element, light source device, and projector for reducing heat damage in the wavelength conversion element
JP2018151667A (en) * 2018-06-08 2018-09-27 ソニー株式会社 Light source device and image projection device
JP2019079054A (en) * 2018-10-31 2019-05-23 日亜化学工業株式会社 Wavelength conversion member and projector including wavelength conversion member
US10942433B2 (en) 2018-12-28 2021-03-09 Seiko Epson Corporation Light source device and projector
US11500136B2 (en) 2019-11-25 2022-11-15 Seiko Epson Corporation Light source device and projector
US11556050B2 (en) 2019-11-28 2023-01-17 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
US11442349B2 (en) 2020-01-22 2022-09-13 Seiko Epson Corporation Wavelength conversion element, method of manufacturing wavelength conversion element, light source device, and projector

Also Published As

Publication number Publication date
JP5530165B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5530165B2 (en) Light source device and lighting device
JP5530171B2 (en) Lighting device
JP5611690B2 (en) Light source device, color adjustment method, lighting device
JP5759776B2 (en) Light source device and lighting device
JP2012243624A (en) Light source device and lighting device
JP5530187B2 (en) Light source device and lighting device
JP2012190628A (en) Light source device, and lighting device
JP2012129135A (en) Light source device, illumination device, and method of manufacturing phosphor layer
JP2012104267A (en) Light source device and lighting system
JP6253392B2 (en) Light emitting device and light source for projector using the same
JP2012089316A (en) Light source device, and lighting system
JP2011129406A (en) Light source device and lighting system
JP2012243618A (en) Light source device and lighting device
JP2015050124A (en) Light emitting device
JP5550368B2 (en) Light source device and lighting device
JP2012114040A (en) Light source device and lighting system
JP2013187043A (en) Light source device and lighting device
JP2012079989A (en) Light source device and lighting fixture
JP5917183B2 (en) Light source device and lighting device
JP2011243840A (en) Light source device and luminaire
JP5695887B2 (en) Light source device and lighting device
JP5781367B2 (en) Light source device and lighting device
TWI817246B (en) Fluorescent light-emitting modules and light-emitting devices
JP5766521B2 (en) Lighting device
JP7147138B2 (en) Light-emitting device, lighting device, image display device, and vehicle indicator light

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250