JP2011126237A - Laser welding method of resin material and welding resin molded article - Google Patents

Laser welding method of resin material and welding resin molded article Download PDF

Info

Publication number
JP2011126237A
JP2011126237A JP2009289027A JP2009289027A JP2011126237A JP 2011126237 A JP2011126237 A JP 2011126237A JP 2009289027 A JP2009289027 A JP 2009289027A JP 2009289027 A JP2009289027 A JP 2009289027A JP 2011126237 A JP2011126237 A JP 2011126237A
Authority
JP
Japan
Prior art keywords
resin member
laser
contact surface
welding
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009289027A
Other languages
Japanese (ja)
Other versions
JP5412265B2 (en
Inventor
Hisashi Shimizu
久志 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2009289027A priority Critical patent/JP5412265B2/en
Publication of JP2011126237A publication Critical patent/JP2011126237A/en
Application granted granted Critical
Publication of JP5412265B2 publication Critical patent/JP5412265B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • B29C65/1638Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding focusing the laser beam on the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1606Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/863Robotised, e.g. mounted on a robot arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9231Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the displacement of the joining tools
    • B29C66/92311Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the displacement of the joining tools with special measurement means or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/747Lightning equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding method capable of obtaining at high efficacy a molded article having high quality where welding strength is stable and there is no extrusion, dull nor the deforming of the article even if there is a clearance partially and to provide a welding resin molded article obtained by the method. <P>SOLUTION: In a laser welding method for welding a permeable resin material (A) making a laser ray permeate with a non-permeable resin material (B) making a laser ray not permeate by irradiation with laser rays, a spot diameter of the laser ray irradiating an welding surface is changed according to a size of a clearance formed at the welding surface of the permeable resin material (A) and the non-permeable resin material (B), and laser ray irradiation energy (J/mm<SP>2</SP>) per unit surface area in the welding part is kept around one and the same value. A welding resin molded article is obtained by the method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、樹脂部材のレーザー溶着方法及び溶着樹脂成形品に関し、さらに詳しくは、溶着すべき樹脂部材間に部分的に隙間があっても、安定した溶着強度を有し、かつ溶着部のはみ出しや成形品のくすみや変形がない、品質の高い溶着成形品を、効率よく得ることができる樹脂部材のレーザー溶着方法及び該方法により得られる溶着樹脂成形品に関するものである。   The present invention relates to a resin member laser welding method and a welded resin molded product, and more specifically, has a stable welding strength and a protruding portion of a welded portion even if there is a gap between resin members to be welded. The present invention relates to a laser welding method of a resin member that can efficiently obtain a high-quality welded molded product free from dullness and deformation of the molded product, and a welded resin molded product obtained by the method.

従来から、大きなレーザー光透過率を有する透過性材料と小さなレーザー光透過率を有する吸収性材料とを重ね合わせ、透過性材料の外側から両材料の接触面にレーザー光を照射して、両材料を溶着するプラスチック溶着方法は一般に知られている。
レーザー溶着は沈み込みの少ない溶着工法であるため、安定した溶着状態を得るためには、透過性材料と吸収性材料との接触面を充分に密接させ、この状態で溶着する必要がある。そこで従来は、透過性材料と吸収性材料とを接触させた状態で、接触面に外部から大きな力を加え、この加圧力で接触面の密接性を向上させる方法を採っている。
Conventionally, a transparent material having a large laser light transmittance and an absorptive material having a small laser light transmittance are overlapped, and the contact surface of both materials is irradiated with laser light from the outside of the transparent material. A plastic welding method for welding is generally known.
Since laser welding is a welding method with less sinking, in order to obtain a stable welding state, the contact surface between the permeable material and the absorbent material needs to be brought into close contact and welded in this state. Therefore, conventionally, a method is adopted in which a large force is applied to the contact surface from the outside in a state where the permeable material and the absorbent material are in contact with each other, and the contact surface is improved by this applied pressure.

前記従来のプラスチック溶着方法においては、外部からの圧力のみにより接触面の密接性を確保する方法を採っているため、加圧手段が複雑、大型化してコストが嵩むとともに、取扱いも容易でなく、また大きな外力を加えても、接触面の密接性を常に確保できるとは限らず、接触面に隙間があると溶着強度が低下してしまい、安定した溶着強度が得られないという問題がある。すなわち、隙間部分には空気が介在することになり、熱伝導率が悪くなるため、樹脂の分解等が発生し、発泡による溶着強度の低下が生じてしまう。   In the conventional plastic welding method, since the method of ensuring the close contact of the contact surface only by the pressure from the outside, the pressurizing means is complicated, the size is increased, the cost is increased, and the handling is not easy, In addition, even when a large external force is applied, the contact surface cannot always be secured, and there is a problem in that if there is a gap in the contact surface, the welding strength decreases, and a stable welding strength cannot be obtained. That is, air is interposed in the gap portion, and the thermal conductivity is deteriorated, so that the resin is decomposed and the like, and the welding strength is reduced due to foaming.

かかる問題点を解決する手段として、すなわち接触面に隙間があっても溶着強度の低下を抑える手段として、接触面を予備加熱する方法が提案されている(例えば、特許文献1、特許文献2、特許文献3参照。)   As a means for solving such a problem, that is, as a means for suppressing a decrease in welding strength even if there is a gap in the contact surface, a method of preheating the contact surface has been proposed (for example, Patent Document 1, Patent Document 2, (See Patent Document 3.)

特許文献1に記載された樹脂材のレーザー溶着方法では、溶着用レーザー光によって透過性樹脂材と吸収性樹脂材とが溶着される前に、吸収性樹脂材に当接する透過性樹脂材の表面、および、透過性樹脂材に当接する吸収性樹脂材の表面が、予め加熱され、軟化せしめられている。それにより、同文献に記載された樹脂材のレーザー溶着方法では、透過性樹脂材の表面と吸収性樹脂材の表面との密接性が悪い場合、つまり、透過性樹脂材の表面および吸収性樹脂材の表面に凹凸が存在する場合であっても、透過性樹脂材と吸収性樹脂材との溶着強度が向上せしめられている。
具体的には、同文献には、吸収性樹脂材に当接する透過性樹脂材の表面、および、透過性樹脂材に当接する吸収性樹脂材の表面を予備加熱するための方式として、電磁誘導加熱方式、ヒーター加熱方式、熱風加熱方式、赤外線ランプ加熱方式およびレーザー加熱方式が記載されている。
In the laser welding method of the resin material described in Patent Document 1, the surface of the transparent resin material that comes into contact with the absorbent resin material before the transparent resin material and the absorbent resin material are welded by welding laser light. And the surface of the absorptive resin material which contacts the permeable resin material is preheated and softened. Accordingly, in the laser welding method of the resin material described in the same document, when the close contact between the surface of the transparent resin material and the surface of the absorbent resin material is poor, that is, the surface of the transparent resin material and the absorbent resin Even when unevenness exists on the surface of the material, the welding strength between the permeable resin material and the absorbent resin material is improved.
Specifically, this document describes electromagnetic induction as a method for preheating the surface of the permeable resin material that contacts the absorbent resin material and the surface of the absorbent resin material that contacts the permeable resin material. A heating method, a heater heating method, a hot air heating method, an infrared lamp heating method, and a laser heating method are described.

また、特許文献2に記載された樹脂材のレーザー溶着方法では、溶着用レーザー光によって透過性樹脂材と非透過性樹脂材とが溶着される前に、非透過性樹脂材に当接する透過性樹脂材の表面、および、透過性樹脂材に当接する非透過性樹脂材の表面が、予め加熱され、軟化せしめられている。それにより、特許文献2に記載された樹脂材のレーザー溶着方法では、透過性樹脂材の表面と非透過性樹脂材の表面との密接性が悪い場合、つまり、透過性樹脂材の表面および非透過性樹脂材の表面に凹凸が存在する場合であっても、透過性樹脂材と吸収性樹脂材との溶着強度が向上せしめられている。
具体的には、特許文献2には、非透過性樹脂材に当接する透過性樹脂材の表面、および、透過性樹脂材に当接する非透過性樹脂材の表面を予備加熱するための手段として、予備加熱用レーザー光、加熱部材および温風が記載されている。
Moreover, in the laser welding method of the resin material described in patent document 2, before the permeable resin material and the non-permeable resin material are welded by the welding laser beam, the permeability which contacts the non-permeable resin material is used. The surface of the resin material and the surface of the non-permeable resin material in contact with the permeable resin material are preheated and softened. Thereby, in the laser welding method of the resin material described in Patent Document 2, when the close contact between the surface of the permeable resin material and the surface of the non-permeable resin material is poor, that is, the surface of the permeable resin material Even if there are irregularities on the surface of the permeable resin material, the welding strength between the permeable resin material and the absorbent resin material is improved.
Specifically, in Patent Document 2, as a means for preheating the surface of the permeable resin material that contacts the non-permeable resin material and the surface of the non-permeable resin material that contacts the permeable resin material. A preheating laser beam, a heating member and hot air are described.

さらに、特許文献3に記載された樹脂材のレーザー溶着方法では、溶着用レーザー光によってレーザー光の透過率の大きい第1樹脂部材とレーザー光の透過率の小さい第2樹脂部材とが溶着される前に、第1樹脂部材と第2樹脂部材との当接面が、予め加熱され、軟化せしめられている。それにより、特許文献3に記載された樹脂材のレーザー溶着方法では、レーザー光の透過率の大きい第1樹脂部材の表面とレーザー光の透過率の小さい第2樹脂部材の表面との密接性が悪い場合、つまり、レーザー光の透過率の大きい第1樹脂部材の表面およびレーザー光の透過率の小さい第2樹脂部材の表面に凹凸が存在する場合であっても、レーザー光の透過率の大きい第1樹脂部材とレーザー光の透過率の小さい第2樹脂部材との溶着強度が向上せしめられている。
具体的には、特許文献3には、溶着用レーザー光によってレーザー光の透過率の大きい第1樹脂部材とレーザー光の透過率の小さい第2樹脂部材との当接面を予備加熱するための手段として、溶着用レーザー光のスポット径よりも大きいスポット径の予備加熱用レーザー光が記載されている。
Furthermore, in the laser welding method of the resin material described in Patent Document 3, the first resin member having a high laser beam transmittance and the second resin member having a low laser beam transmittance are welded by the welding laser beam. Before, the contact surface of the first resin member and the second resin member is preheated and softened. Thereby, in the laser welding method of the resin material described in Patent Document 3, the adhesion between the surface of the first resin member having a high laser light transmittance and the surface of the second resin member having a low laser light transmittance is low. Even if there are irregularities on the surface of the first resin member having a high laser light transmittance and the surface of the second resin member having a low laser light transmittance, the laser light transmittance is high. The welding strength between the first resin member and the second resin member having a low laser beam transmittance is improved.
Specifically, Patent Document 3 discloses a method for preheating a contact surface between a first resin member having a high laser light transmittance and a second resin member having a low laser light transmittance by welding laser light. As a means, a preheating laser beam having a spot diameter larger than the spot diameter of the welding laser beam is described.

これらの予備加熱する方法では、基本的に隙間の有無にかかわらず当接面全体を加熱するため、外観がくすんだり、耐熱性不足やひずみの緩和によって製品に変形が生じるなどの問題があった。同様に、隙間部分の安定した接着強度を得るためにレーザー出力を高くすると、レーザー光透過性樹脂部材の表面に焼けや溶融等の不具合が生じたり、溶融・膨張せしめられた樹脂部材がはみ出すなど、製品の美観を損ね、品質低下を招くおそれがあった。   In these preheating methods, the entire contact surface is basically heated regardless of the presence or absence of a gap, so that there are problems such as dull appearance, deformation of the product due to insufficient heat resistance and strain relaxation. . Similarly, if the laser output is increased to obtain a stable adhesive strength in the gap portion, defects such as burning or melting may occur on the surface of the laser light transmitting resin member, or the molten or expanded resin member may protrude. The appearance of the product may be impaired and the quality may be deteriorated.

したがって、樹脂部材のレーザー溶着方法として、溶着部のはみ出しや成形品のくすみや変形がなく、製品の美観を損ねずに、溶着すべき樹脂部材間に部分的に隙間があっても、十分な溶着強度を得るのに過不足のないレーザー光を照射し、品質の高い成形品を得ることができる簡便な方法が望まれていた。   Therefore, as a laser welding method of the resin member, there is no protrusion of the welded portion, dullness or deformation of the molded product, and even if there is a partial gap between the resin members to be welded without impairing the appearance of the product, it is sufficient. There has been a demand for a simple method capable of irradiating a laser beam without excess or deficiency to obtain a welding strength and obtaining a high-quality molded product.

特開2004−74734号公報JP 2004-74734 A 特開2004−188802号公報JP 2004-188802 A 特開2007−182003号公報JP 2007-182003 A

本発明の目的は、上記した従来技術の問題点に鑑み、溶着すべき樹脂部材間に部分的に隙間があっても、安定した溶着強度を有し、かつ溶着部のはみ出しや成形品のくすみや変形がない、品質の高い溶着成形品を、効率よく得ることができる樹脂部材のレーザー溶着方法及び該方法により得られる溶着樹脂成形品を提供することにある。   The object of the present invention is to solve the problems of the prior art described above, even if there is a gap between the resin members to be welded, even if there is a gap, it has a stable welding strength, and the protrusion of the welded part and the dullness of the molded product Another object of the present invention is to provide a resin member laser welding method capable of efficiently obtaining a high-quality welded molded product free from deformation and a welded resin molded product obtained by the method.

本発明者らは、上記課題を解決すべく鋭意検討した結果、レーザー光の照射によりレーザー光を透過する透過性樹脂部材とレーザー光を透過しない非透過性樹脂部材とを溶着させる際に、両部材の当接面に生じる隙間の大きさに応じて、当接面に照射するレーザー光のスポット径を変化させ、かつ、当接面における単位面積当たりのレーザー光照射エネルギー(J/mm)を略同一に保ったところ、上記課題を解決することができることを見出した。それらの知見に、さらに検討を重ね、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that when a transparent resin member that transmits laser light and a non-transparent resin member that does not transmit laser light are welded together, Depending on the size of the gap generated on the contact surface of the member, the spot diameter of the laser beam irradiated on the contact surface is changed, and the laser beam irradiation energy per unit area on the contact surface (J / mm 2 ) Was found to be able to solve the above problems. These findings have been further studied and the present invention has been completed.

すなわち、本発明の第1の発明によれば、レーザー光の照射によりレーザー光を透過する透過性樹脂部材(A)とレーザー光を透過しない非透過性樹脂部材(B)とを溶着させるレーザー溶着方法において、
透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさに応じて、当接面に照射するレーザー光のスポット径を変化させ、かつ、当接面における単位面積当たりのレーザー光照射エネルギー(J/mm)を略同一に保つことを特徴とする樹脂部材のレーザー溶着方法が提供される。
That is, according to the first aspect of the present invention, laser welding is performed by welding a transparent resin member (A) that transmits laser light by irradiation with laser light and an impermeable resin member (B) that does not transmit laser light. In the method
According to the size of the gap between the two members generated on the contact surface between the transparent resin member (A) and the non-transparent resin member (B), the spot diameter of the laser light applied to the contact surface is changed, and There is provided a method of laser welding a resin member, characterized in that the laser beam irradiation energy (J / mm 2 ) per unit area on the contact surface is kept substantially the same.

また、本発明の第2の発明によれば、第1の発明において、前記レーザー光のスポット径は、透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさ(距離)が広いほど大きくなるように変化させることを特徴とする樹脂部材のレーザー溶着方法が提供される。   According to the second invention of the present invention, in the first invention, the spot diameter of the laser beam is generated on the contact surface between the transmissive resin member (A) and the non-transmissive resin member (B). There is provided a laser welding method for a resin member, characterized in that the larger the gap (distance) between the two members is, the larger the gap is.

また、本発明の第3の発明によれば、第1または2の発明において、前記レーザー光のスポット径は、下記の関係を満たすことを特徴とする樹脂部材のレーザー溶着方法が提供される。
≧0.012d+1.8 式(1)
(式中、Aは透過性樹脂部材と非透過性樹脂部材との隙間距離がdである場合における当接面におけるレーザー光のスポット径[mm]、dは透過性樹脂部材と非透過性樹脂部材との隙間距離[mm]である。)
According to a third aspect of the present invention, there is provided the method for laser welding a resin member according to the first or second aspect, wherein the spot diameter of the laser beam satisfies the following relationship.
A d ≧ 0.012d + 1.8 Formula (1)
(In the formula, Ad is the spot diameter [mm] of the laser beam on the contact surface when the gap distance between the transparent resin member and the non-permeable resin member is d, and d is the transparent resin member and the non-permeable material. (Gap distance [mm] with resin member)

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、前記当接面における単位面積当たりのレーザー光照射エネルギーは、レーザー光の照射出力(W)及び/又はレーザー光のスキャン速度(mm/sec)を変化させることにより略同一に保つことを特徴とする樹脂部材のレーザー溶着方法が提供される。   According to a fourth invention of the present invention, in any one of the first to third inventions, the laser beam irradiation energy per unit area on the contact surface is the laser beam irradiation output (W) and / or There is provided a laser welding method for a resin member, characterized in that it is kept substantially the same by changing the scanning speed (mm / sec) of laser light.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、前記レーザー光のスポット径は、該レーザー光の発生源と該当接面との距離を調整することにより変化させることを特徴とするレーザー溶着方法が提供される。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the spot diameter of the laser light is adjusted by adjusting a distance between the laser light source and the corresponding contact surface. A laser welding method is provided which is characterized by being varied.

また、本発明の第6の発明によれば、第1〜4のいずれかの発明において、前記レーザー光のスポット径は、該レーザー光の焦点距離を調整することにより変化させることを特徴とするレーザー溶着方法が提供される。   According to a sixth aspect of the present invention, in any one of the first to fourth aspects, the spot diameter of the laser light is changed by adjusting a focal length of the laser light. A laser welding method is provided.

また、本発明の第7の発明によれば、第1〜4のいずれかの発明において、前記レーザー光のスポット径は、該レーザー光の光軸と該当接面との照射角を調整することにより変化させることを特徴とするレーザー溶着方法が提供される。   According to a seventh invention of the present invention, in any one of the first to fourth inventions, the spot diameter of the laser light is an adjustment of an irradiation angle between the optical axis of the laser light and the corresponding contact surface. There is provided a laser welding method characterized in that the laser welding method is changed.

また、本発明の第8の発明によれば、第1〜7のいずれかの発明において、前記レーザー光の照射による溶着に先立ち、あらかじめ透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさ(距離)を検出しておくことを特徴とする樹脂部材のレーザー溶着方法が提供される。   According to an eighth invention of the present invention, in any one of the first to seventh inventions, the permeable resin member (A) and the non-permeable resin member (B) are preliminarily formed prior to welding by the laser light irradiation. The method of laser welding a resin member is provided in which the size (distance) of the gap between the two members generated on the contact surface is detected.

また、本発明の第9の発明によれば、第8の発明において、前記隙間の大きさ(距離)の検出は、光学的手法、電気的手法又は熱的手法のいずれかによることを特徴とする樹脂部材のレーザー溶着方法が提供される。   According to a ninth aspect of the present invention, in the eighth aspect, the size (distance) of the gap is detected by any one of an optical method, an electrical method, and a thermal method. A method for laser welding a resin member is provided.

また、本発明の第10の発明によれば、第8の発明において、前記隙間の大きさ(距離)の検出は、当接面に、透過性樹脂部材(A)および非透過性樹脂部材(B)の溶融温度以下に該部材を加熱するレーザー光を照射して、その際の当接面の温度をモニターすることにより行うことを特徴とする樹脂部材のレーザー溶着方法が提供される。   According to a tenth aspect of the present invention, in the eighth aspect of the invention, the size (distance) of the gap is detected on the contact surface by a permeable resin member (A) and a non-permeable resin member ( A resin member laser welding method is provided, which is performed by irradiating a laser beam for heating the member below the melting temperature of B) and monitoring the temperature of the contact surface at that time.

また、本発明の第11の発明によれば、第1〜7のいずれかの発明において、前記レーザー光の照射による溶着に先立ち、あらかじめ透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさ(距離)を検出した後、それぞれ同じ製造ラインで製造された別の透過性樹脂部材(A’)と非透過性樹脂部材(B’)との当接面に、該検出結果に応じて決定されたスポット径のレーザー光を照射して、該当接面を溶着することを特徴とする樹脂部材のレーザー溶着方法が提供される。   According to the eleventh aspect of the present invention, in any one of the first to seventh aspects, the permeable resin member (A) and the non-permeable resin member (B) are preliminarily formed prior to welding by the laser light irradiation. ) And the permeable resin member (B ′) and the non-permeable resin member (B ′) respectively produced on the same production line. ) Is irradiated with a laser beam having a spot diameter determined according to the detection result, and the corresponding contact surface is welded. Thus, a resin member laser welding method is provided.

また、本発明の第12の発明によれば、第1〜11のいずれかの発明の樹脂部材のレーザー溶着方法によって得られる溶着樹脂成形品が提供される。   According to the twelfth aspect of the present invention, there is provided a welded resin molded article obtained by the laser welding method for a resin member according to any one of the first to eleventh aspects.

本発明の樹脂部材のレーザー溶着方法及び樹脂成形品によれば、第1の発明においては、当接面に生じる両部材の隙間の大きさに応じて、レーザー光のスポット径を変化させて照射を行うことにより、加熱溶融される樹脂量(体積)を増大させ、隙間を埋めることによって、当該部位の溶着強度を向上させることができるため、部分的に隙間があっても、製品の美観を損ねずに、安定した溶着強度の溶着樹脂成形品が得られるという効果がある。   According to the laser welding method and resin molded product of the resin member of the present invention, in the first invention, irradiation is performed by changing the spot diameter of the laser beam according to the size of the gap between the two members generated on the contact surface. By increasing the amount of resin (volume) to be melted by heating and filling the gap, the welding strength of the part can be improved. There is an effect that a welded resin molded article having stable welding strength can be obtained without damaging.

また、第2又は3の発明においては、当接面において、隙間がある部分では隙間がない部分よりも、隙間の距離に応じて、特定の割合でレーザー光のスポット径を大きくすることにより、加熱溶融される樹脂量(体積)を増大させ、確実に隙間を埋めることができる。これにより、当該部位の溶着強度を向上させることができるため、部分的に隙間があっても、安定した溶着強度の溶着樹脂成形品が得られるという効果がある。   Further, in the second or third invention, in the contact surface, in the portion where there is a gap, by increasing the spot diameter of the laser light at a specific ratio according to the distance of the gap, The amount (volume) of resin melted by heating can be increased, and the gap can be reliably filled. Thereby, since the welding strength of the said site | part can be improved, even if there exists a clearance gap partially, there exists an effect that the welding resin molded product of the stable welding strength is obtained.

また、第4の発明においては、当接面に照射された単位面積当たりのレーザー光照射エネルギーは、該レーザー光の照射出力(W)及び/又は該レーザー光のスキャン速度(mm/sec)を変化させることにより略同一に保つものであるため、簡便に、調整された過不足のないレーザー光照射を行うことができ、隙間部における溶着不足によるリークの発生が無く、溶着部のはみ出し等のない品質の高い溶着樹脂成型品を得ることができるという効果がある。   In the fourth invention, the laser beam irradiation energy per unit area irradiated on the contact surface is determined by the irradiation output (W) of the laser beam and / or the scanning speed (mm / sec) of the laser beam. Since it is kept substantially the same by changing, it is possible to easily perform laser light irradiation that is adjusted without excess or deficiency, there is no occurrence of leakage due to insufficient welding in the gap, and the welding part protrudes, etc. There is an effect that it is possible to obtain a welded resin molded product having no high quality.

また、第5〜7の発明においては、レーザー光のスポット径を、簡便に調整するものであるため、効率よく溶着を行うことができるという効果がある。   In the fifth to seventh inventions, since the spot diameter of the laser beam is simply adjusted, there is an effect that the welding can be performed efficiently.

また、第8〜10の発明においては、レーザー光の照射による溶着に先立ち、あらかじめ透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさ(距離)を、詳細に検出しておくものであるため、調整された過不足のないレーザー光照射を行うことができ、隙間部における溶着不足によるリークの発生が無く、溶着部のはみ出し等のない品質の高い溶着樹脂成型品を得ることができるという効果がある。   In the eighth to tenth inventions, the size of the gap between the two members generated in advance on the contact surface between the transparent resin member (A) and the non-permeable resin member (B) prior to welding by laser light irradiation. Since the length (distance) is detected in detail, it is possible to perform laser light irradiation with adjusted excess and deficiency, there is no occurrence of leakage due to insufficient welding in the gap, and the welding part protrudes, etc. There is an effect that a high-quality welded resin molded product can be obtained.

また、第11の発明においては、レーザー光の照射による溶着に先立ち、あらかじめ透過性樹脂部材と非透過性樹脂部材との当接面に生じる両部材の隙間の大きさ(距離)を検出し、これに応じて決定されたスポット径のレーザー光を、それぞれ同じ製造ラインで製造された別の透過性樹脂部材(A’)と非透過性樹脂部材(B’)との当接面に照射して、該当接面を溶着するものであるため、1つの部材のレーザー照射毎に隙間距離の検出を行う必要がなく、効率よく低コストで同じ成型品を繰り返し生産することができるという効果がある。   In the eleventh aspect of the invention, prior to welding by laser light irradiation, the size (distance) of the gap between both members generated on the contact surface between the transparent resin member and the non-permeable resin member is detected in advance. A laser beam having a spot diameter determined in accordance with this is applied to the contact surface between another transmissive resin member (A ′) and non-permeable resin member (B ′) manufactured on the same production line. In addition, since the corresponding contact surface is welded, there is no need to detect the gap distance for each laser irradiation of one member, and the same molded product can be repeatedly produced efficiently and at low cost. .

また、第12の発明においては、第1〜11の方法によって得られる溶着樹脂成形品であるため、品質の高い成形品であるという効果がある。   Moreover, in the twelfth invention, since it is a welded resin molded product obtained by the first to eleventh methods, there is an effect that it is a high-quality molded product.

図1は、本発明において、当接面におけるレーザー光のスポット径を、レーザー光の発生源と当接面との距離を調整することにより変化させる方法の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a method for changing the spot diameter of laser light on the contact surface by adjusting the distance between the laser light source and the contact surface in the present invention. 図2は、本発明において、当接面におけるレーザー光のスポット径を、焦点距離を調整することにより変化させる方法の一例を示す概略図である。FIG. 2 is a schematic view showing an example of a method of changing the spot diameter of laser light on the contact surface by adjusting the focal length in the present invention. 図3は、本発明において、当接面におけるレーザー光のスポット径を、レーザー光の光軸と当接面との照射角を調整することにより変化させる方法の一例を示す概略図である。FIG. 3 is a schematic view showing an example of a method of changing the spot diameter of the laser beam on the contact surface by adjusting the irradiation angle between the optical axis of the laser beam and the contact surface in the present invention. 図4は、本発明において、溶着されるべき部材の一例を示した概略図である。FIG. 4 is a schematic view showing an example of a member to be welded in the present invention. 図5は、図4の部材について、熱的手段で隙間を検出した一例を示したグラフである。FIG. 5 is a graph showing an example in which a gap is detected by thermal means for the member of FIG. 図6は、図4の部材について、熱的手段で隙間を検出し、この結果を用いてスポット径を大きくした一例を示したグラフである。FIG. 6 is a graph showing an example in which the gap of the member of FIG. 4 is detected by thermal means and the spot diameter is increased using this result. 図7は、本発明において、隙間検出用及び溶着用レーザー配置の一例を示した概略図である。FIG. 7 is a schematic view showing an example of a gap detection and welding laser arrangement in the present invention. 図8は、実施例において用いた樹脂部材の一例を示す概略図である。FIG. 8 is a schematic view showing an example of a resin member used in the examples. 図9は、実施例において用いた溶着強度測定方法の一例を示す概略図であり、図8のX−Y断面図を示す。FIG. 9 is a schematic view showing an example of the welding strength measuring method used in the example, and shows an XY cross-sectional view of FIG.

1 レーザー光発生源
2 レーザー光
3 透過性樹脂部材(A)
4 非透過性樹脂部材(B)
5 当接面
6、7、8 当接面におけるレーザー光照射部
1 Laser Light Source 2 Laser Light 3 Translucent Resin Member (A)
4 Non-permeable resin member (B)
5 Abutting surface 6, 7, 8 Laser light irradiation part on abutting surface

以下、本発明の樹脂部材のレーザー溶着方法について、各項目ごとに詳細に説明する。
本発明の樹脂部材のレーザー溶着方法は、レーザー光の照射によりレーザー光を透過する透過性樹脂部材(A)とレーザー光を透過しない非透過性樹脂部材(B)とを溶着させるレーザー溶着方法において、
透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさに応じて、当接面に照射するレーザー光のスポット径を変化させ、かつ、当接面における単位面積当たりのレーザー光照射エネルギー(J/mm)を略同一に保つことを特徴とする。
Hereinafter, the laser welding method of the resin member of this invention is demonstrated in detail for every item.
The laser welding method of the resin member of the present invention is a laser welding method in which a transparent resin member (A) that transmits laser light by laser light irradiation and an impermeable resin member (B) that does not transmit laser light are welded. ,
According to the size of the gap between the two members generated on the contact surface between the transparent resin member (A) and the non-transparent resin member (B), the spot diameter of the laser light applied to the contact surface is changed, and The laser light irradiation energy (J / mm 2 ) per unit area on the contact surface is kept substantially the same.

[各部材の光学特性]
本発明においては、レーザー光を透過する透過性樹脂部材と該レーザー光を透過しない非透過性樹脂部材とを溶着する際に、レーザー光を透過する透過性樹脂部材側からレーザー光を照射することで、該レーザー光に対して高い透過率を有する透過性樹脂部材をレーザー光が通過する。透過したレーザー光は、該レーザー光を透過しない非透過性樹脂部材の表面に到達し、エネルギーとして蓄積される。この蓄積されたエネルギー分布は、レーザー光があらかじめ持っていたエネルギー分布に対して透過性樹脂部材の透過の際の散乱によって、不均一なエネルギー分布となる。そして、前記部材の当接面においては、不均一なエネルギー分布を持った加熱、溶融が行われるため、透過性樹脂部材及び非透過性樹脂部材が互いに絡み合った状態の接合部が生じ、得られる接合体の接合部が強固になる。
[Optical characteristics of each member]
In the present invention, when welding a transparent resin member that transmits laser light and a non-transparent resin member that does not transmit laser light, laser light is irradiated from the side of the transparent resin member that transmits laser light. Thus, the laser light passes through the transparent resin member having a high transmittance with respect to the laser light. The transmitted laser light reaches the surface of the non-transmissive resin member that does not transmit the laser light and is accumulated as energy. This accumulated energy distribution becomes a non-uniform energy distribution due to scattering during transmission of the transparent resin member with respect to the energy distribution previously possessed by the laser beam. Further, since heating and melting with non-uniform energy distribution are performed on the contact surface of the member, a joined portion in which the permeable resin member and the non-permeable resin member are intertwined with each other is generated and obtained. The joined portion of the joined body becomes strong.

この際、当接された透過性樹脂部材と非透過性樹脂部材との間に隙間がある場合には、溶着不良となり易い。樹脂材間に隙間がある場合、レーザー光の吸収により非透過性樹脂部材の表面で生じた熱は、対向する透過性樹脂部材の表面に伝達し難くなる。このため、隙間のない場合と比較して、非透過性樹脂部材の表面温度は高くなる。つまり、樹脂材間に隙間がある場合には、溶着強度が劣るばかりでなく、レーザー光非透過性樹脂部材の表面の温度が高くなりすぎ、焼けやガス発生等の不具合が生じ美観を損ねるという問題が生じていた。
本発明においては、透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさに応じて、当接面に照射するレーザー光のスポット径を変化させ、かつ、当接面における単位面積当たりのレーザー光照射エネルギー(J/mm)を略同一に保つことにより、溶着部のはみ出しや成形品のくすみや変形等の悪影響を与えることなく、隙間部周囲の樹脂を溶融させ、安定した溶着強度で、品質の高い溶着成形品を得ることができる。
At this time, if there is a gap between the permeable resin member and the non-permeable resin member that are in contact with each other, poor welding tends to occur. When there is a gap between the resin materials, the heat generated on the surface of the non-permeable resin member due to the absorption of the laser light is difficult to be transmitted to the surface of the opposing transparent resin member. For this reason, the surface temperature of a non-permeable resin member becomes high compared with the case where there is no gap. That is, when there is a gap between the resin materials, not only the welding strength is inferior, but the temperature of the surface of the laser light non-permeable resin member becomes too high, causing problems such as burning and gas generation, which impairs the appearance. There was a problem.
In the present invention, the spot diameter of the laser beam irradiated on the contact surface according to the size of the gap between the two members generated on the contact surface between the transparent resin member (A) and the non-permeable resin member (B). And the laser beam irradiation energy (J / mm 2 ) per unit area on the abutting surface is kept substantially the same without causing adverse effects such as protrusion of the welded portion, dullness or deformation of the molded product. The resin around the gap is melted, and a high-quality welded molded product can be obtained with a stable welding strength.

透過性樹脂部材のレーザー光透過率は、30%以上であることが好ましい。透過性樹脂部材のレーザー光に対する透過率が30%未満では、レーザー光を受けた部分において該レーザー光の拡散等が生じ、かつ非透過性樹脂部材に入射するレーザー光のエネルギーが少なくなって当接面での溶着が不充分になり、所望の溶着強度が得られにくくなる。透過性樹脂部材のレーザー光に対する好ましい透過率は40%以上であり、さらに50%以上であることが好ましい。   The laser light transmittance of the transparent resin member is preferably 30% or more. If the transmittance of the transparent resin member with respect to the laser beam is less than 30%, the laser beam is diffused in the portion that receives the laser beam, and the energy of the laser beam incident on the non-transparent resin member is reduced. Insufficient welding at the contact surface makes it difficult to obtain a desired welding strength. The preferable transmittance of the transparent resin member with respect to the laser light is 40% or more, and more preferably 50% or more.

一方、非透過性樹脂部材はレーザー光を全く透過しないものである必要はなく、透過性樹脂部材のレーザー光透過率よりも小さいことが重要であり、非透過性樹脂部材のレーザー光に対する透過率は30%未満であることが好ましい。この透過率が30%以上であると、入射されたレーザー光が透過することによって、非透過性樹脂部材に吸収されるレーザー光のエネルギーが減少し、当接面での溶着が不充分になると共に、レーザー光のエネルギーの損失が生じやすい。非透過性部材のレーザー光に対する好ましい透過率は20%以下であり、さらに10%以下であることが好ましい。
非透過性樹脂部材には、レーザー光に対して30%未満の透過率を得るために、レーザー光吸収材料を含有させることが好ましい。このレーザー光吸収材料としては、例えばカーボンブラックや複合酸化物系顔料等の無機系着色材、フタロシアニン系顔料、ポリメチン系顔料等の有機系着色材を用いることができ、これらは単独で又は二種以上を組み合わせて用いることができるが、これらの中では効果及び経済性の観点から、カーボンブラックが好適である。
On the other hand, it is not necessary for the non-transparent resin member to transmit laser light at all, and it is important that the non-transparent resin member be smaller than the laser light transmittance of the transparent resin member. Is preferably less than 30%. When the transmittance is 30% or more, the incident laser beam is transmitted, so that the energy of the laser beam absorbed by the non-transmissive resin member is reduced and the welding on the contact surface becomes insufficient. At the same time, energy loss of the laser beam is likely to occur. The preferable transmittance of the non-transmissive member with respect to the laser beam is 20% or less, and preferably 10% or less.
The non-transparent resin member preferably contains a laser light absorbing material in order to obtain a transmittance of less than 30% with respect to the laser light. As this laser light absorbing material, for example, inorganic colorants such as carbon black and complex oxide pigments, and organic colorants such as phthalocyanine pigments and polymethine pigments can be used, either alone or in combination. The above can be used in combination, but among these, carbon black is preferred from the viewpoints of effects and economy.

なお、透過性樹脂部材及び非透過性樹脂部材のレーザー光に対する透過率(%)は、パワーエネルギーアナライザー(コヒレント・ジャパン社製、FieldMaster(商標登録)GS LM−45)を用いて、ASTM1号ダンベルの形状に成形したものについて測定した値である。   In addition, the transmittance | permeability (%) with respect to the laser beam of a transparent resin member and a non-transmissive resin member is ASTM No. 1 dumbbell using a power energy analyzer (Fieldmaster (trademark registration) GSLM-45 by Coherent Japan Co., Ltd.). It is the value measured about what was shape | molded in this shape.

[レーザー光照射方法]
本発明の方法においては、レーザー光の照射は、透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさに応じて、当接面に照射するレーザー光のスポット径を変化させ、かつ、当接面における単位面積当たりのレーザー光照射エネルギー(J/mm)を略同一に保つことが必要である。
前記当接面に生じる両部材の隙間の大きさに応じてスポット径を変化させずに、隙間が有る部分も無い部分も、同じスポット径でレーザーが通過した場合、隙間のある部分に溶着不足が生じたり、断熱効果により発熱し、発泡、焼け等が発生し、溶着強度が極めて低くなる。また、前記当接面に生じる両部材の隙間の大きさに応じてスポット径を変化させるが、隙間が有る部分も無い部分も、レーザー光の出力を一定にした場合、隙間のある部分はレーザー光照射エネルギーが増減することになる。このようにレーザー光照射エネルギーを略同一に保たない場合、照射エネルギーに過不足が生じ、やはり溶着強度が低下する不具合が生じる。本発明においては、上記問題を改善する為に、レーザー光発生源と溶着させるべき樹脂部材(「ワーク」ともいう)との距離を変える等の方法で、レーザー光をデフォーカスにし、広範囲の樹脂を適度に溶融させ隙間を埋めることができるため、外観に問題なく溶着強度を向上させることができると考えられる。
[Laser irradiation method]
In the method of the present invention, the laser beam is irradiated on the contact surface according to the size of the gap between the two members generated on the contact surface between the transparent resin member (A) and the non-permeable resin member (B). It is necessary to change the spot diameter of the laser beam irradiated to the laser beam and to keep the laser beam irradiation energy (J / mm 2 ) per unit area on the contact surface substantially the same.
Without changing the spot diameter according to the size of the gap between the two members on the contact surface, if the laser passes through the same spot diameter without any gap, the weld will not be welded to the gap. Or heat is generated due to the heat insulation effect, foaming, burning, etc. occur, and the welding strength becomes extremely low. In addition, the spot diameter is changed according to the size of the gap between the two members generated on the contact surface. The light irradiation energy will increase or decrease. Thus, when laser beam irradiation energy is not kept substantially the same, excess and deficiency occurs in the irradiation energy, which also causes a problem that the welding strength decreases. In the present invention, in order to improve the above problems, the laser beam is defocused by a method such as changing the distance between the laser beam generation source and the resin member to be welded (also referred to as “work”), and a wide range of resins. Therefore, it is considered that the welding strength can be improved without any problem in appearance.

隙間の有無の判断は、特に限定されるものではなく、目視、光学的方法、電気的方法、熱的方法等で行うことができる。例えば、部材にヒケ、ソリなどが生じている場合、隙間が無い部分の当接面に照射するレーザー光のスポット径よりも、スポット径を大きく変化させたレーザー光を、上記部材のヒケ、ソリなどの影響で隙間が生じている部分の当接面に照射する。上記のように、部材にヒケ、ソリなどが生じている場合の隙間部分のスポット径は、1〜10mm程度とすることが好ましく、より好ましくは1.2〜7mm程度、さらに好ましくは1.5〜4mm程度とすることができる。
これにより、ヒケ、ソリなどに起因した隙間を有する部材であっても、隙間がある部分において、加熱溶融される樹脂量(体積)を増大させ、隙間を埋めることによって、当該部位の溶着強度を向上させることができるため、安定した溶着強度の成形品が得られる。
The determination of the presence or absence of a gap is not particularly limited, and can be performed by visual observation, an optical method, an electrical method, a thermal method, or the like. For example, when sink marks or warps occur in a member, laser light having a spot diameter changed to be larger than the spot diameter of laser light applied to a contact surface where there is no gap is used. Irradiate the contact surface of the part where the gap is generated due to the influence of the above. As described above, the spot diameter of the gap portion when sink marks, warps or the like are generated on the member is preferably about 1 to 10 mm, more preferably about 1.2 to 7 mm, and still more preferably 1.5. It can be set to about 4 mm.
As a result, even in a member having a gap due to sinking, warping, etc., the amount of resin (volume) to be heated and melted is increased in the portion where there is a gap, and the welding strength of the part is increased by filling the gap. Since it can be improved, a molded article having stable welding strength can be obtained.

また、当接面におけるレーザー光のスポット径は、透過性樹脂部材と非透過性樹脂部材との当接面に生じる両部材の隙間の大きさ(距離)が広いほど大きくなるように変化させることが好ましい。   Further, the spot diameter of the laser beam on the abutting surface should be changed so as to increase as the size (distance) of the gap between both members generated on the abutting surface between the transmissive resin member and the non-permeable resin member increases. Is preferred.

好ましくは、当接面におけるレーザー光のスポット径は、下記式(1)の関係を満たす。   Preferably, the spot diameter of the laser beam on the contact surface satisfies the relationship of the following formula (1).

≧0.012d+A 式(1)
(式中、Aは透過性樹脂部材と非透過性樹脂部材との隙間の距離がdである場合における当接面におけるレーザー光のスポット径[mm]、dは透過性樹脂部材と非透過性樹脂部材との隙間距離[μm]、Aは透過性樹脂部材と非透過性樹脂部材との隙間の距離が0である場合の当接面におけるレーザー光のスポット径[mm]を表す。)
A d ≧ 0.012d + A 0 formula (1)
(In the formula, Ad is the spot diameter [mm] of the laser beam on the contact surface when the distance between the transparent resin member and the non-permeable resin member is d, and d is the non-transparent resin member and the non-transmissive resin member The gap distance [μm] between the transparent resin member and A 0 represents the spot diameter [mm] of the laser beam on the contact surface when the gap distance between the transparent resin member and the non-permeable resin member is zero. )

ここで、透過性樹脂部材と非透過性樹脂部材との隙間の距離が0である場合の当接面におけるレーザー光のスポット径A[mm]は、装置の仕様、部材の材質、要求される溶着幅、温度、外観等によって適宜調整して決定することができる。
例えば、正常部分のスポット径が1.8mm、dが50[μm]、当接面におけるスポット径Aは2.4[mm]以上とすることが好ましい。2.4[mm]より小さいと、安定した溶着強度が得られないおそれがある。
上記式(1)に従い、当接面の隙間の距離に応じて、スポット径を変化させることにより、溶着部分の状態に応じた過不足のない、より調整されたレーザー光照射を行うことができ、溶着部のはみ出しや成形品のくすみや変形がない、品質の高い成形品を得ることができる。
Here, the spot diameter A 0 [mm] of the laser beam on the contact surface when the gap distance between the permeable resin member and the non-permeable resin member is 0 is required for the specification of the apparatus, the material of the member, and the like. It can be determined by appropriately adjusting according to the welding width, temperature, appearance and the like.
For example, the spot diameter of the normal portion 1.8 mm, d is 50 [[mu] m], the spot diameter A d of the abutment surface is preferably set to 2.4 [mm] or more. If it is smaller than 2.4 [mm], stable welding strength may not be obtained.
According to the above formula (1), by adjusting the spot diameter according to the gap distance of the contact surface, it is possible to perform more adjusted laser light irradiation without excess or deficiency according to the state of the welded portion. In addition, it is possible to obtain a high-quality molded product that is free from protrusion of the welded portion and dullness or deformation of the molded product.

なお、レーザー光の照射は、当接面における単位面積当たりのレーザー光照射エネルギー(J/mm)を略同一に保って行うことが必要である。
ここで、「略同一」とは、隙間が存在する部分の当接面に照射された単位面積当たりのレーザー光照射エネルギー(J/mm)を、隙間が存在しない正常部分の当接面に照射された単位面積当たりのレーザー光照射エネルギー(J/mm)との比較で一定に保つようにすることであり、これにより安定した溶着強度を保つことができる。言い換えれば、溶着ラインの始点から終点まで、どの箇所でも、当接面に照射された単位面積当たりのレーザー光照射エネルギー(J/mm)を一定に保つようにすることである。より具体的には、隙間部分のレーザー光照射エネルギーが、その前後における当接面の密接性が保たれている正常部分のレーザー光照射エネルギーを基準として、好ましくは±30%程度、より好ましくは±20%程度、さらに好ましくは±10%程度の範囲にあることをいう。
したがって、レーザー光照射エネルギー(J/mm)が略同一と言えない場合は、部分的に隙間が生じている等の溶着部分の状態に応じた過不足のないレーザー光照射を行うことができず、溶着部のはみ出し、成形品のくすみや変形又は焼けのおそれがあり、品質の高い成形品を得ることができない。
なお、上記の当接面に照射された単位面積当たりのレーザー光照射エネルギー(J/mm)は、光パワーメーターを用いて、照射エネルギーについて測定し、スポット径で除して求めた値である。
Note that the laser beam irradiation needs to be performed while keeping the laser beam irradiation energy (J / mm 2 ) per unit area on the contact surface substantially the same.
Here, “substantially the same” means that the laser beam irradiation energy (J / mm 2 ) per unit area irradiated on the contact surface of the portion where the gap exists is applied to the contact surface of the normal portion where there is no gap. It is to keep constant in comparison with the irradiation energy (J / mm 2 ) of the laser beam per unit area, and thereby stable welding strength can be maintained. In other words, the laser beam irradiation energy (J / mm 2 ) per unit area irradiated on the contact surface is kept constant at any point from the start point to the end point of the welding line. More specifically, the laser beam irradiation energy of the gap portion is preferably about ± 30%, more preferably, based on the laser beam irradiation energy of the normal portion where the contact surface is kept in close contact before and after the gap portion. It means about ± 20%, more preferably about ± 10%.
Therefore, when the laser beam irradiation energy (J / mm 2 ) cannot be said to be substantially the same, it is possible to perform laser beam irradiation with no excess or deficiency according to the state of the welded part such as a gap partially formed. Therefore, there is a possibility that the welded portion protrudes and the molded product is dull, deformed or burnt, and a high-quality molded product cannot be obtained.
The laser beam irradiation energy (J / mm 2 ) per unit area irradiated on the contact surface is a value obtained by measuring the irradiation energy using an optical power meter and dividing by the spot diameter. is there.

レーザー光のスポット径を変化させ、かつ、当接面に照射された単位面積当たりのレーザー光照射エネルギー(J/mm)を略同一に保ってレーザー光の照射を行う方法としては、特に限定されるものではないが、レーザー光の照射出力(W)及び/又はレーザー光のスキャン速度(mm/sec)を変化させることが好ましい。スキャン速度を変化させることにより、照射時間が調整される。
例えば、スキャン速度は変化させずに、スポット径を大きくする箇所ではレーザー光の照射出力が大きくなるように調整したり、又は、レーザー光の出力は変化させずに、スポット径を大きくする箇所ではスキャン速度を遅くして、照射時間を長くしたりすることができる。具体的には、照射時間は、通常の溶着工程では、ワークを固定してレーザーを移動させながら、又は、レーザーを固定してワークを移動させながら線状に溶着を施すが、相対的な移動速度を変えると、照射時間を調整することができる。また、レーザー光の照射出力とスキャン速度の両方を変化させることもできる。
これにより、別途、特定の工程や装置を用いることなく、簡便に、調整された過不足のないレーザー光照射を行うことができ、隙間部における溶着不足によるリークの発生が無く、溶着部のはみ出し等のない品質の高い成形品を得ることができる。
A method for performing laser light irradiation by changing the spot diameter of the laser light and maintaining the laser light irradiation energy (J / mm 2 ) per unit area irradiated on the contact surface substantially the same is particularly limited. Although not performed, it is preferable to change the laser beam irradiation output (W) and / or the laser beam scanning speed (mm / sec). The irradiation time is adjusted by changing the scan speed.
For example, at a location where the spot diameter is increased without changing the scanning speed, the laser beam irradiation output is adjusted to be large, or at a location where the spot diameter is increased without changing the laser beam output. The scanning speed can be slowed down and the irradiation time can be lengthened. Specifically, in the normal welding process, the irradiation time is linearly welded while fixing the workpiece and moving the laser, or moving the workpiece while fixing the laser. The irradiation time can be adjusted by changing the speed. Further, both the laser beam irradiation output and the scanning speed can be changed.
As a result, laser light irradiation can be performed easily and without excess or deficiency without using a specific process or apparatus separately, and there is no occurrence of leakage due to insufficient welding in the gap portion, and the weld portion protrudes. It is possible to obtain a high-quality molded product without any such problems.

当接面におけるレーザー光のスポット径を変化させる方法としては、特に限定されるものではないが、例えば、以下のように変化させることが簡便であり好ましい。
1.レーザー光の発生源と当接面との距離を調整することにより変化させる。
2.レーザー光の焦点距離を調整することにより変化させる。
3.レーザー光の光軸と当接面との照射角を調整することにより変化させる。
The method for changing the spot diameter of the laser beam on the contact surface is not particularly limited, but for example, it is preferable to change it as follows.
1. The distance is changed by adjusting the distance between the laser light source and the contact surface.
2. It is changed by adjusting the focal length of the laser beam.
3. It is changed by adjusting the irradiation angle between the optical axis of the laser beam and the contact surface.

図1は、当接面におけるレーザー光のスポット径を、レーザー光の発生源と当接面との距離を調整することにより変化させる方法の一例を示す概略図である。図1では、レーザー光発生源1とワーク当接面2との距離を変えることにより、スポット径を変化させている。図1(a)は、当接面におけるレーザー光照射部6のスポット径は、1.8[mm]程度に小さくなるように、レーザー光発生源1とワーク当接面5との距離を調整されており、透過性樹脂部材と非透過性樹脂部材との当接面に生じる両部材の隙間の大きさ(距離)がほぼ0である場合に採用される。図1(b)では、図1(a)の場合と比較して、レーザー光発生源1と当接面5との距離を短くすることにより、当接面におけるレーザー光照射部7のスポット径が大きくなるように変化させており、透過性樹脂部材と非透過性樹脂部材との当接面に隙間が生じている場合に採用される。同様に、図1(c)では、図1(a)の場合と比較して、レーザー光発生源1と当接面5との距離を長くすることにより、当接面におけるレーザー光照射部7のスポット径が大きくなるように変化させており、透過性樹脂部材と非透過性樹脂部材との当接面に隙間が生じている場合に採用される。
このように、当接面におけるレーザー光のスポット径を、レーザー光の発生源と当接面との距離を調整することにより変化させる方法は、特に限定されないが、例えば、六軸ロボット装置を用いて高さ調整することができる。
FIG. 1 is a schematic view showing an example of a method for changing the spot diameter of laser light on the contact surface by adjusting the distance between the laser light source and the contact surface. In FIG. 1, the spot diameter is changed by changing the distance between the laser light source 1 and the workpiece contact surface 2. In FIG. 1A, the distance between the laser light source 1 and the work contact surface 5 is adjusted so that the spot diameter of the laser light irradiation unit 6 on the contact surface becomes as small as about 1.8 [mm]. It is used when the size (distance) of the gap between the two members formed on the contact surface between the permeable resin member and the non-permeable resin member is substantially zero. In FIG. 1B, the spot diameter of the laser light irradiation unit 7 on the contact surface is shortened by shortening the distance between the laser light source 1 and the contact surface 5 as compared with the case of FIG. This is adopted when there is a gap on the contact surface between the permeable resin member and the non-permeable resin member. Similarly, in FIG. 1C, as compared with the case of FIG. 1A, by increasing the distance between the laser light source 1 and the contact surface 5, the laser light irradiation unit 7 on the contact surface is obtained. This is adopted when the spot diameter is changed so as to increase, and there is a gap on the contact surface between the permeable resin member and the non-permeable resin member.
As described above, the method of changing the spot diameter of the laser beam on the contact surface by adjusting the distance between the laser light source and the contact surface is not particularly limited. For example, a six-axis robot apparatus is used. Height can be adjusted.

図2は、当接面におけるレーザー光のスポット径を、レーザー光の焦点距離を調整することにより変化させる方法の一例を示す概略図である。図2では、レーザー光2の焦点距離を変えることにより、スポット径を変化させている。図2(a)は、当接面におけるレーザー光照射部6においてレーザー光2の焦点が結ぶように、レーザー光2の焦点距離を調整されており、透過性樹脂部材と非透過性樹脂部材との当接面に生じる両部材の隙間の大きさ(距離)がほぼ0である場合に採用される。図2(b)では、図2(a)の場合と比較して、レーザー光2の焦点距離を長くすることにより、当接面におけるレーザー光照射部7のスポット径が大きくなるように変化させており、透過性樹脂部材と非透過性樹脂部材との当接面に隙間が生じている場合に採用される。同様に、図2(c)では、図2(a)の場合と比較して、レーザー光2の焦点距離を短くすることにより、当接面におけるレーザー光照射部7のスポット径が大きくなるように変化させており、透過性樹脂部材と非透過性樹脂部材との当接面に隙間が生じている場合に採用される。
このような、当接面におけるレーザー光のスポット径を、レーザー光の焦点距離を変えることにより変化させる方法は、特に限定されないが、例えば、レンズの曲率や屈折率を調節する方法が挙げられる。
FIG. 2 is a schematic diagram showing an example of a method for changing the spot diameter of the laser beam on the contact surface by adjusting the focal length of the laser beam. In FIG. 2, the spot diameter is changed by changing the focal length of the laser beam 2. In FIG. 2A, the focal length of the laser beam 2 is adjusted so that the laser beam 2 is focused at the laser beam irradiation unit 6 on the contact surface. This is employed when the size (distance) of the gap between the two members generated on the contact surface is substantially zero. In FIG. 2B, compared with the case of FIG. 2A, by increasing the focal length of the laser beam 2, the spot diameter of the laser beam irradiation unit 7 on the contact surface is changed to be larger. This is employed when a gap is formed on the contact surface between the permeable resin member and the non-permeable resin member. Similarly, in FIG. 2C, the spot diameter of the laser beam irradiation unit 7 on the contact surface is increased by shortening the focal length of the laser beam 2 as compared with the case of FIG. This is adopted when there is a gap on the contact surface between the permeable resin member and the non-permeable resin member.
Such a method of changing the spot diameter of the laser beam on the contact surface by changing the focal length of the laser beam is not particularly limited, and examples thereof include a method of adjusting the curvature and refractive index of the lens.

図3は、当接面におけるレーザー光のスポット径を、レーザー光の光軸と該当接面との照射角を調整することにより変化させる方法の一例を示す概略図である。図3では、レーザー光2の照射角を変えることにより、スポット径を変化させている。図3(a)は、レーザー光2の光軸と当接面5とがほぼ直角となるように、レーザー光2の照射角を調整されており、透過性樹脂部材と非透過性樹脂部材との当接面に生じる両部材の隙間の大きさ(距離)がほぼ0である場合に採用される。図3(b)では、図3(a)の場合と比較して、レーザー光2の照射角は、大きく又は小さくすることにより、当接面におけるレーザー光照射部7のスポット径が大きくなるように変化させており、透過性樹脂部材と非透過性樹脂部材との当接面に隙間が生じている場合に採用される。
このような、当接面におけるレーザー光の照射角を変えることにより変化させる方法は、特に限定されないが、例えば、六軸ロボット装置を用いて、角度調整することができる。
FIG. 3 is a schematic diagram showing an example of a method for changing the spot diameter of the laser beam on the contact surface by adjusting the irradiation angle between the optical axis of the laser beam and the corresponding contact surface. In FIG. 3, the spot diameter is changed by changing the irradiation angle of the laser beam 2. In FIG. 3 (a), the irradiation angle of the laser beam 2 is adjusted so that the optical axis of the laser beam 2 and the contact surface 5 are substantially perpendicular to each other. This is employed when the size (distance) of the gap between the two members generated on the contact surface is substantially zero. In FIG. 3B, the spot diameter of the laser beam irradiation part 7 on the contact surface is increased by increasing or decreasing the irradiation angle of the laser beam 2 as compared with the case of FIG. This is adopted when there is a gap on the contact surface between the permeable resin member and the non-permeable resin member.
A method for changing the irradiation angle of the laser beam on the contact surface is not particularly limited. For example, the angle can be adjusted using a six-axis robot apparatus.

(レーザー光)
本発明において、レーザー溶着に用いられるレーザー光としては、ガラス:ネオジム3+レーザー、YAG:ネオジム3+レーザー、ルビーレーザー、ヘリウム−ネオンレーザー、クリプトンレーザー、アルゴンレーザー、Hレーザー、Nレーザー、半導体レーザー等のレーザー光を挙げることができる。より好ましいレーザーとしては、半導体レーザーである。
レーザー光の波長は、接合される樹脂部材の種類、近赤外吸収剤の種類により異なるため一概に決定できないが、400nm以上であることが好ましい。波長が400nmより短いと、樹脂部材が著しく劣化しやすくなる。レーザー光のより好ましい波長は400〜1300nmである。
また、レーザー光の出力は、スキャン速度と透過性樹脂部材の吸収能力により調整することができる。レーザー光の出力が低いと樹脂部材の当接部接合面を互いに溶融させることが困難となり、出力が高いと樹脂部材が蒸発したり、変質し強度が低下する等の問題が生じるようになる。
(Laser light)
In the present invention, the laser beam used for laser welding is glass: neodymium 3+ laser, YAG: neodymium 3+ laser, ruby laser, helium-neon laser, krypton laser, argon laser, H 2 laser, N 2 laser, semiconductor laser. And the like. A more preferable laser is a semiconductor laser.
The wavelength of the laser beam varies depending on the type of the resin member to be bonded and the type of the near-infrared absorber, and thus cannot be determined unconditionally, but is preferably 400 nm or more. If the wavelength is shorter than 400 nm, the resin member is likely to deteriorate significantly. A more preferable wavelength of the laser light is 400 to 1300 nm.
Further, the output of the laser beam can be adjusted by the scanning speed and the absorption capability of the transmissive resin member. When the output of the laser beam is low, it becomes difficult to melt the contact surfaces of the resin members, and when the output is high, problems such as evaporation of the resin member or deterioration of the resin member due to deterioration.

[隙間距離の測定]
本発明において、レーザー光の照射による溶着に先立ち、あらかじめ透過性樹脂部材と非透過性樹脂部材との当接面に生じる両部材の隙間の大きさ(距離)を温度計測等で検出した後、該当接面に、該検出結果に応じて決定されたスポット径のレーザー光を照射して、該当接面を溶着することが好ましい。これにより、調整された過不足のないレーザー光照射を行うことができ、隙間部における溶着不足によるリークの発生が無く、溶着部のはみ出し等のない品質の高い成形品を得ることができる。
本発明によれば、隙間の距離が0〜500μm程度の隙間でも、溶着可能であり、好ましくは0〜100μm程度、より好ましくは0〜50μm程度の隙間が溶着可能である。
隙間は部材のヒケ、ソリに起因するものの他、接合面の一方又は両方が、シボ加工等意匠に起因するものであっても構わない。
[Measurement of gap distance]
In the present invention, prior to welding by laser light irradiation, after detecting the size (distance) of the gap between both members generated on the contact surface between the transparent resin member and the non-permeable resin member in advance by temperature measurement or the like, It is preferable that the contact surface is welded by irradiating the contact surface with laser light having a spot diameter determined according to the detection result. Thereby, the adjusted laser beam irradiation without excess and deficiency can be performed, there is no occurrence of leakage due to insufficient welding in the gap portion, and a high-quality molded product without protrusion of the welded portion can be obtained.
According to the present invention, it is possible to weld even a gap with a gap distance of about 0 to 500 μm, preferably about 0 to 100 μm, more preferably about 0 to 50 μm.
The gap may be caused by a design such as embossing, or one or both of the joint surfaces may be caused by sinking or warping of the member.

前記隙間距離の測定の方法としては、特に限定するものではなく、公知の種々の方法が使用できるが、光学的手法、電気的手法又は熱的手法のいずれかによることが好ましい。光学的手法は、赤外線レーザーやその他のレーザーを用いるもの、電気的手法は、電磁気を用いるもの、熱的手法は、温度の測定を用いるものがそれぞれ挙げられる。   The method for measuring the gap distance is not particularly limited, and various known methods can be used, but any one of an optical method, an electric method, and a thermal method is preferable. Examples of the optical method include those using an infrared laser and other lasers, the electric method using electromagnetism, and the thermal method using temperature measurement.

本発明においては、当接面に生じる両部材の隙間の大きさ(距離)の検出は、該当接面に、透過性樹脂部材及び非透過性樹脂部材の溶融温度以下に該部材を加熱するレーザー光を照射して、その際の該当接面の温度をモニターすることにより行うことが好ましい。具体的には、溶着予定ラインを、透過性樹脂部材及び非透過性樹脂部材の溶融温度以下に該部材を加熱する出力又は波長等のレーザー光で1回又は2回以上スキャンする。この際、隙間部は熱伝導の関係で樹脂温度が上昇するので、温度をモニターすることにより、隙間部を検出することができる。
例えば、図4は、一対のフランジを有する直方体状の容器をフランジ部分が重なり合うように重ねたものを上から見た図であり、フランジ同士が溶着されるべき部位である。a−b間フランジ裏面にリブが設けられており、部材のヒケにより、当接部a−bに隙間が生じている。A→B→C→D→Aのライン上1周が溶着予定線である場合、a−b間に隙間があると、その隙間部分で温度が上昇する(図5参照)。そのため、温度が上昇した部分で、溶着に用いるレーザー光のスポット径を、温度の上昇が見られない部分、つまり、隙間が生じていない部分よりも大きくすればよい。
なお、前述のように、隙間が検出できたならば、図6に示したように、レーザーが当該部分を通過する少し前から少し過ぎた時点までスポット径を大きくすることが好ましい。これにより、確実に隙間部分の溶着を行うことができる。
In the present invention, the size (distance) of the gap between the two members generated on the contact surface is detected by a laser that heats the member to the contact surface below the melting temperature of the permeable resin member and the non-permeable resin member. It is preferable to carry out by irradiating light and monitoring the temperature of the corresponding contact surface at that time. Specifically, the line to be welded is scanned once or twice or more with a laser beam such as an output or a wavelength that heats the member below the melting temperature of the permeable resin member and the non-permeable resin member. At this time, since the resin temperature rises in the gap due to heat conduction, the gap can be detected by monitoring the temperature.
For example, FIG. 4 is a top view of a rectangular parallelepiped container having a pair of flanges so that the flange portions overlap each other, and is a portion where the flanges should be welded. The rib is provided in the back surface of the flange between a and b, and the clearance gap has arisen in contact part ab by the sink of a member. When one round on the line of A → B → C → D → A is a planned welding line, if there is a gap between a and b, the temperature rises at the gap (see FIG. 5). Therefore, the spot diameter of the laser beam used for welding at the portion where the temperature has increased may be made larger than the portion where no increase in temperature is observed, that is, the portion where no gap is formed.
As described above, if the gap can be detected, as shown in FIG. 6, it is preferable to increase the spot diameter from a short time before the laser passes through the portion to a point just past. Thereby, welding of a clearance gap part can be performed reliably.

さらに、本発明においては、レーザー光の照射による溶着に先立ち、あらかじめ透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさ(距離)を検出した後、それぞれ同じ製造ラインで製造された別の透過性樹脂部材(A’)と非透過性樹脂部材(B’)との当接面に、該検出結果に応じて決定されたスポット径のレーザー光を照射して、当接面を溶着することが好ましい。これにより、同じ製品を繰り返し生産する場合、当然樹脂部材は同じものを使うこととなるが、その樹脂部材は通常、一定位置に、同程度のヒケやソリが生じることが多いから、上述のように最初の1スキャンで隙間部を検出した後、当該部位通過時のスポット径が大きくなるようシーケンスを組んでおけば、重ねて検出作業をしなくてよいためである。   Further, in the present invention, the size (distance) of the gap between the two members generated on the contact surface between the transparent resin member (A) and the non-permeable resin member (B) in advance prior to welding by laser light irradiation. Spot detected on the contact surface of another permeable resin member (A ′) and non-permeable resin member (B ′) manufactured on the same production line, respectively, according to the detection result. It is preferable to weld the contact surface by irradiating a laser beam having a diameter. As a result, when the same product is repeatedly produced, the same resin member is naturally used. However, since the resin member usually has the same degree of sink and warp at a certain position, as described above. This is because if a gap is detected in the first one scan and then a sequence is set up so that the spot diameter when passing through the part is increased, the detection work need not be repeated.

また、図7に示したように、前述のような隙間検出用レーザーと溶着用レーザーとを組み合わせ、隙間検出とスポット径調整を同期させることもできる。この方法により、レーザーのスキャンを複数回行う必要がないため、効率的に確実に溶着することができる。   Further, as shown in FIG. 7, the gap detection laser and the welding laser as described above can be combined to synchronize the gap detection and the spot diameter adjustment. By this method, since it is not necessary to perform laser scanning a plurality of times, it is possible to perform welding efficiently and reliably.

本発明において、隙間検出用レーザーに用いられるレーザー光としては、部材に悪影響を与えずに隙間の検出ができるものであれば、特に限定されないが、前述の溶着用レーザーと同様のものを用いることができる。
上記の隙間検出用レーザー光を用いる際には、透過性樹脂部材及び非透過性樹脂部材の溶融温度以下に該部材を加熱するレーザー光とすることが必要である。例えば、溶着用レーザー光と比較して、出力を小さくする、又は、レーザー光の波長を長くすることにより上記部材の溶融温度以下に加熱することができる。好ましくは、隙間検出用レーザー光の波長を800〜940nm程度に長くすることによる。例えば、隙間検出用レーザー光の波長が940nmの場合、部材に悪影響を与えずに、隙間の検出を行うことができる。
In the present invention, the laser beam used for the gap detection laser is not particularly limited as long as it can detect the gap without adversely affecting the member, but the same laser beam as the above welding laser should be used. Can do.
When using the above-described gap detection laser light, it is necessary to use laser light that heats the member below the melting temperature of the transmissive resin member and the non-permeable resin member. For example, it can be heated below the melting temperature of the member by reducing the output or increasing the wavelength of the laser light as compared with the welding laser light. Preferably, the wavelength of the gap detection laser light is increased to about 800 to 940 nm. For example, when the wavelength of the gap detection laser beam is 940 nm, the gap can be detected without adversely affecting the member.

[樹脂部材に用いる樹脂]
本発明においては、透過性樹脂部材(A)及び非透過性樹脂部材(B)を形成するための樹脂は、好ましくは同一樹脂であるが、溶着可能であれば異なる樹脂であってもよく、加熱溶融によって固体状態より体積の膨張しやすい熱可塑性樹脂が好ましい。
詳しくは、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、ポリ(メタ)アクリレート、ポリ塩化ビニル、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンスルフィド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルケトン、ポリエーテルエーテルケトン、液晶ポリマー等が挙げられる。
[Resin used for resin members]
In the present invention, the resins for forming the permeable resin member (A) and the non-permeable resin member (B) are preferably the same resin, but may be different resins as long as they can be welded. A thermoplastic resin whose volume is more easily expanded by heating and melting than the solid state is preferable.
Specifically, polyethylene, polypropylene, polystyrene, ABS resin, poly (meth) acrylate, polyvinyl chloride, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyimide, polyamideimide, polyetherimide , Polyarylate, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, liquid crystal polymer and the like.

透過性樹脂部材(A)を形成するための樹脂(「透過性樹脂」ともいう。)としては、上記樹脂が用いられ、非透過性樹脂部材(B)を形成するための樹脂(「非透過性樹脂」ともいう。)としては、好ましくは透過性樹脂部材と同一樹脂であるが、溶着可能であれば透過性樹脂と異なる樹脂であってもよい。例えば、透過側ポリカーボネートとして、非透過側ポリフェニレンスルフィドとすると、ポリカーボネートの融点はポリフェニレンスルフィドの融点より低いので、ポリフェニレンスルフィドが溶融すればポリカーボネートも溶融する。また、ポリカーボネートの透過率は高いので効率も良い。
また、非透過性樹脂としては、上記樹脂そのものでも使用できるが、好ましくはレーザー光を吸収し、発熱を促進するために、上記樹脂にカーボンブラック等の無機又は有機添加剤等が添加されたものが用いられる。これらの添加量は、樹脂100重量部に対して0.05〜40重量部、好ましくは0.1〜30重量部である。あるいは、強化材を加えたり、厚みを増してレーザー光を吸収するようにしてもよい。
As the resin for forming the permeable resin member (A) (also referred to as “permeable resin”), the above resin is used, and the resin for forming the non-permeable resin member (B) (“non-transmissive”). The resin is also the same resin as the permeable resin member, but may be a resin different from the permeable resin as long as it can be welded. For example, when the non-transparent side polyphenylene sulfide is used as the transmission side polycarbonate, the melting point of the polycarbonate is lower than the melting point of the polyphenylene sulfide. Therefore, when the polyphenylene sulfide melts, the polycarbonate also melts. Moreover, since the transmittance | permeability of a polycarbonate is high, its efficiency is also good.
In addition, as the non-permeable resin, the resin itself can be used, but preferably, an inorganic or organic additive such as carbon black is added to the resin in order to absorb laser light and promote heat generation. Is used. These addition amounts are 0.05-40 weight part with respect to 100 weight part of resin, Preferably it is 0.1-30 weight part. Alternatively, a reinforcing material may be added or the thickness may be increased to absorb laser light.

上記透過性樹脂には、必要に応じて、さらに各種の樹脂添加剤、充填剤、補強材、樹脂改質剤等が入っていてもよい。具体的には、ガラス繊維,カーボン繊維等の補強繊維や着色材を添加することができる。これらの添加量は、透過性樹脂100重量部に対して0〜70重量部、好ましくは0〜30重量部である。
同様に、上記非透過性樹脂には、前述したカーボンブラック、染料や顔料等の所定の着色材の他に、必要に応じて、さらに各種の樹脂添加剤、充填剤、補強材、難燃剤、樹脂改質剤等が入っていてもよい。具体的には、ガラス繊維、カーボン繊維等の補強繊維を添加したものを用いてもよい。これらの添加量は、非透過性樹脂100重量部に対して0〜200重量部である。
The permeable resin may further contain various resin additives, fillers, reinforcing materials, resin modifiers, and the like as necessary. Specifically, reinforcing fibers such as glass fibers and carbon fibers, and coloring materials can be added. These addition amounts are 0-70 weight part with respect to 100 weight part of permeable resin, Preferably it is 0-30 weight part.
Similarly, in addition to the above-mentioned predetermined colorants such as carbon black, dyes and pigments, the non-permeable resin further includes various resin additives, fillers, reinforcing materials, flame retardants, if necessary. A resin modifier or the like may be contained. Specifically, those added with reinforcing fibers such as glass fibers and carbon fibers may be used. These addition amounts are 0 to 200 parts by weight with respect to 100 parts by weight of the non-permeable resin.

[成形体]
本発明の樹脂部材のレーザー溶着方法は、部分的に隙間があっても、安定した溶着強度で、溶着部のはみ出しや成形品のくすみや変形がない、品質の高い成形品を、効率よく得ることができる樹脂部材のレーザー溶着方法であるため、例えば、両樹脂部材の当接面にヒケやソリ等からなる隙間が生じた場合であっても、効率良くかつ高歩留まりで樹脂成形品を提供することが可能である。また、高度に精製しない部材であっても、同様に、効率良くかつ高歩留まりで樹脂成形品を提供することが可能である。
具体的には、本発明により、軽量化が望まれる自動車部品、ヘッドランプ等において、複雑な形状であっても美観を損ねずに効率的に樹脂成形品を製造できる。
したがって、本発明は、製造効率、製造コストを大幅に削減することができるものであり、その工業的価値は大きい。
[Molded body]
The laser welding method of the resin member of the present invention efficiently obtains a high-quality molded product that has stable welding strength and does not protrude from the welded portion, dullness or deformation of the molded product even if there is a gap in part. Because it is a laser welding method of resin members that can be used, for example, even if there is a gap made of sink or warp on the contact surface of both resin members, a resin molded product can be provided efficiently and with a high yield Is possible. Further, even a member that is not highly purified can similarly provide a resin molded product with high efficiency and high yield.
Specifically, according to the present invention, a resin molded product can be efficiently manufactured without impairing the aesthetic appearance even in a complicated shape in automobile parts, headlamps, and the like that are desired to be reduced in weight.
Therefore, the present invention can greatly reduce the production efficiency and the production cost, and its industrial value is great.

以下に実施例を用いて、本発明を更に詳細に説明するが、本発明はその趣旨を逸脱しない限り、これによって限定されるものではない。
なお、実施例に於ける各種物性の測定は、下記要領に従った。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto without departing from the gist thereof.
The various physical properties in the examples were measured according to the following procedures.

[測定方法]
(1)隙間距離測定方法
装置名:浜松ホトニクス社製の温度計測装置を用いて、当接部における隙間を測定した。
(2)溶着部の外観
目視にて、溶着部の発泡、焼けの有無を確認した。
(3)溶着強度
実製品を用いて溶着ラインと直交する方向に引張試験を行い、破壊強度を測定し、溶着強度とした。破壊強度は、装置名:島津社製の引張装置を用いて、引張速度:5mm/minの条件で行った時の値である。破壊強度は10MPa以上が実用レベルである。
[Measuring method]
(1) Gap distance measurement method Device name: A gap at the contact portion was measured using a temperature measuring device manufactured by Hamamatsu Photonics.
(2) Appearance of welded portion The presence or absence of foaming and burning of the welded portion was visually confirmed.
(3) Weld strength Tensile tests were performed in the direction perpendicular to the weld line using the actual product, and the fracture strength was measured to obtain the weld strength. The breaking strength is a value when the device name is a tensile device manufactured by Shimadzu Corporation and the tensile speed is 5 mm / min. The breaking strength is at a practical level of 10 MPa or more.

[実施例及び比較例]
(実施例1)
非透過性樹脂部材:ポリプロピレン樹脂40重量%、スチレン系エラストマー30重量%及びタルク30重量%からなる樹脂組成物を用いて、上部に幅5mmのフランジを有する縦120×横100×高70×厚み2mmの上部開口の直方体状の容器を作成した。このフランジに、レーザー光吸収剤(富士フイルム製900NP)を塗布した。また、このフランジには、横辺一部に幅3mmの裏リブが設けられており、リブ部には目視でヒケが観察された。
図8(a)は、本実施例において用いた樹脂部材を示す概略図であり、溶着すべき樹脂部材を、レーザー光照射方向から見た図である。フランジのリブ部の一部にヒケが観察された。図8(b)は、リブ断面を示す概略図であり、断面の幅を測定したところ、3mmであった。
透過性樹脂部材:ポリメチルメタクリレートを用いて、上部に幅5mmのフランジを有する縦120×横100×高70×厚さ2mmの上部開口の直方体状の容器を作成した。
溶着:透過性樹脂部材と非透過性樹脂部材とを、フランジ同士が非透過性樹脂部材のヒケ部分と透過性樹脂部材の正常部分とが対向するよう重ね合わせ、ヒケ部分(隙間部位)が含まれるよう、四辺をレーザー溶着した。図9に、重ね合わせた部材の概略図を示す。
レーザー光としては、装置名:浜松ホトニクス社製レーザー装置を用いて、940nmの波長のものを使用した。
溶着条件は、正常部位のスポット径1.8mmφ、出力30W、スキャン速度は3m/分、ヒケ部分に相当する隙間部位(隙間:100μm)はレーザー発生源と部材との距離を狭めることでデフォーカスさせスポット径を3.6mmφとした。出力を120Wに高め照射エネルギーを正常部位のそれと略同一にした。スキャン速度は3m/分であった。
溶着強度測定:図9は、本実施例において、溶着強度測定に用いた試験片を説明する概略図である。ヒケ部分を含む一辺、溶着方向に10mm×垂直方向に40mm切り出し、溶着ラインと直交する方向に引張試験を行ったところ、破壊強度は13MPaであった。
評価結果を表1に示す。
[Examples and Comparative Examples]
Example 1
Non-permeable resin member: using a resin composition comprising 40% by weight of polypropylene resin, 30% by weight of styrene elastomer and 30% by weight of talc, and having a flange with a width of 5 mm at the top, 120 × 100 × 70 × thickness A rectangular parallelepiped container having a top opening of 2 mm was prepared. A laser light absorber (900NP manufactured by Fuji Film) was applied to the flange. Further, this flange was provided with a back rib having a width of 3 mm on a part of the lateral side, and sink marks were visually observed in the rib portion.
FIG. 8A is a schematic view showing the resin member used in this example, and is a view of the resin member to be welded as seen from the laser light irradiation direction. Sink marks were observed in a part of the rib portion of the flange. FIG. 8B is a schematic view showing a cross section of the rib. When the width of the cross section was measured, it was 3 mm.
Translucent resin member: Using polymethylmethacrylate, a rectangular parallelepiped container having an upper opening of length 120 × width 100 × height 70 × thickness 2 mm having a flange 5 mm wide at the top was prepared.
Welding: The permeable resin member and the non-permeable resin member are overlapped so that the flange portions of the non-permeable resin member and the normal portion of the permeable resin member face each other. All four sides were laser welded so that FIG. 9 shows a schematic view of the superimposed members.
As the laser light, a laser device having a wavelength of 940 nm was used using a laser device manufactured by Hamamatsu Photonics.
Welding conditions are: normal part spot diameter 1.8mmφ, output 30W, scan speed 3m / min, gap part corresponding to sink part (gap: 100μm) is defocused by narrowing the distance between laser source and member The spot diameter was 3.6 mmφ. The output was increased to 120 W and the irradiation energy was made substantially the same as that of the normal part. The scan speed was 3 m / min.
Measurement of Weld Strength: FIG. 9 is a schematic diagram illustrating a test piece used for measurement of weld strength in this example. When one side including the sink part, 10 mm in the welding direction × 40 mm in the vertical direction was cut out and a tensile test was performed in a direction perpendicular to the welding line, the breaking strength was 13 MPa.
The evaluation results are shown in Table 1.

(比較例1)
正常部位と隙間部位とで溶着条件を変えることなく、スポット径も変えずに、溶着:出力30W、スポット径1.8mmφで溶着した以外は、実施例1と同様にして溶着を行った。つまり、部材は、実施例1のものと同じ製造ラインにて製造されたものを使用し、レーザー光、隙間部位、スキャン速度等の溶着条件を実施例1と同様にして溶着を行った。
溶着強度測定:ヒケ部分を含む一辺、溶着方向に10mm×垂直方向に40mm切り出し、溶着ラインと直交する方向に引張試験を行ったところ、破壊強度は3MPaであった。隙間部分には発泡、焼けが生じ、外観が悪化した。
評価結果を表1に示す。
(Comparative Example 1)
Welding was performed in the same manner as in Example 1 except that welding was performed at a power of 30 W and a spot diameter of 1.8 mmφ without changing the welding conditions between the normal part and the gap part and without changing the spot diameter. That is, the members manufactured on the same production line as in Example 1 were used, and welding was performed in the same manner as in Example 1 with the welding conditions such as laser light, gap portions, and scanning speed.
Measurement of welding strength: One side including a sink part, 10 mm in the welding direction × 40 mm in the vertical direction, and a tensile test was performed in a direction perpendicular to the welding line, the fracture strength was 3 MPa. Foaming and burning occurred in the gap, and the appearance deteriorated.
The evaluation results are shown in Table 1.

(実施例2)
実施例1において、非透過性樹脂部材の横辺の正常部をフランジ幅方向5mm×長さ3mmにわたり深さ50μmの切削加工を施した。切削加工部分を隙間部分に見立てた。
溶着:透過性樹脂部材と非透過性樹脂部材とを、フランジ同士が非透過性樹脂部材の切削加工部分と透過性樹脂部材の正常部分とが対向するよう重ね合わせ、隙間部位が含まれるよう、四辺をレーザー溶着した。
レーザー光としては、装置名:浜松ホトニクス社製レーザー装置を用いて、940nmの波長のものを使用した。
溶着条件は、正常部位のスポット径1.8mmφ、出力30W、スキャン速度は3m/分、隙間部位(隙間:50μm)はレーザー発生源と部材との距離を狭めることでデフォーカスさせスポット径を2.7mmφとした。出力を70Wに高め照射エネルギーを正常部位のそれと略同一にした。スキャン速度は3m/分であった。
隙間部分を含む一辺、溶着方向に10mm×垂直方向に40mm切り出し、溶着ラインと直交する方向に引張試験を行ったところ、破壊強度は15MPaであった。
評価結果を表1に示す。
(Example 2)
In Example 1, the normal part of the horizontal side of the impermeable resin member was cut to a depth of 50 μm over a flange width direction of 5 mm × length of 3 mm. The cut portion was regarded as a gap portion.
Welding: Superimposing the permeable resin member and the non-permeable resin member so that the flanges face each other so that the cut portion of the non-permeable resin member and the normal portion of the permeable resin member face each other, so that a gap portion is included. Four sides were laser welded.
As the laser beam, an apparatus having a wavelength of 940 nm was used using a laser apparatus manufactured by Hamamatsu Photonics.
The welding conditions are: normal part spot diameter 1.8 mmφ, output 30 W, scanning speed 3 m / min, gap part (gap: 50 μm) is defocused by narrowing the distance between the laser source and the member, and the spot diameter is 2 It was set to 7 mmφ. The output was increased to 70 W and the irradiation energy was made substantially the same as that of the normal part. The scan speed was 3 m / min.
When one side including the gap portion, 10 mm in the welding direction × 40 mm in the vertical direction was cut out and a tensile test was performed in a direction perpendicular to the welding line, the fracture strength was 15 MPa.
The evaluation results are shown in Table 1.

(実施例3)
実施例1において、溶着条件として、正常部位のスポット径1.98mmφ、出力36W、隙間部位のスポット径3.96mmφ、出力145Wとした以外は実施例1と同様に評価した。評価結果を表1に示す。
(Example 3)
In Example 1, evaluation was performed in the same manner as in Example 1 except that the spot diameter of the normal part was 1.98 mmφ, the output was 36 W, the spot diameter of the gap part was 3.96 mmφ, and the output was 145 W. The evaluation results are shown in Table 1.

(実施例4)
実施例2において、溶着条件として、正常部位のスポット径1.98mmφ、出力36W、隙間部位のスポット径2.97mmφ、出力85Wとした以外は実施例2と同様に評価した。評価結果を表1に示す。
Example 4
In Example 2, evaluation was performed in the same manner as in Example 2 except that the spot diameter of the normal part was 1.98 mmφ, the output was 36 W, the spot diameter of the gap part was 2.97 mmφ, and the output was 85 W. The evaluation results are shown in Table 1.

(実施例5)
実施例1において、溶着条件として、正常部位のスポット径1.8mmφ、出力36W、隙間部位のスポット径3.96mmφ、出力145Wとした、ここで隙間部位のスポット径は屈折率の小さいレンズを用い焦点距離を伸ばすことでデフォーカスさせた以外は実施例1と同様に評価した。評価結果を表1に示す。
(Example 5)
In Example 1, as a welding condition, the spot diameter of the normal part was 1.8 mmφ, the output was 36 W, the spot diameter of the gap part was 3.96 mmφ, and the output was 145 W. Here, the spot diameter of the gap part was a lens having a small refractive index. Evaluation was performed in the same manner as in Example 1 except that defocusing was performed by extending the focal length. The evaluation results are shown in Table 1.

(実施例6)
実施例1と同様の材料、装置を用いて予め隙間距離を温度計測で測定し、シーケンスとし隙間がある部分をデフォーカスでスポット径を変化させ、出力もスポット径に併せ、実施例1の隙間がある部分の照射エネルギーと略同等とした。すなわち、隙間距離の検出を溶着試験開始前の1スキャンのみ行い、同一の溶着条件で溶着部品を150個連続生産した。製品の溶着強度は10MPa以上を保ち、安定した生産が行えた。
(Example 6)
The gap distance of the first embodiment is measured by measuring the gap distance in advance by temperature measurement using the same material and apparatus as in the first embodiment, changing the spot diameter by defocusing the portion where there is a gap as a sequence, and the output is also matched with the spot diameter. It was made almost equivalent to the irradiation energy of a certain part. That is, the gap distance was detected only for one scan before the start of the welding test, and 150 welding parts were continuously produced under the same welding conditions. The welding strength of the product was maintained at 10 MPa or more, and stable production was possible.

(比較例2)
実施例1において、隙間部分の出力を30Wとした以外は実施例1と同様に評価した。評価結果を表1に示す。
(Comparative Example 2)
In Example 1, evaluation was performed in the same manner as in Example 1 except that the output of the gap portion was set to 30 W. The evaluation results are shown in Table 1.

Figure 2011126237
Figure 2011126237

[評価]
表1から明らかなように、本発明の製造方法の特定事項である「透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさに応じて、当接面に照射するレーザー光のスポット径を変化させる」との要件を満たさない方法による比較例1は、溶着部外観に発泡、焼けが発生し、溶着強度も弱いものとなり、「当接面における単位面積当たりのレーザー光照射エネルギー(J/mm)を略同一に保つ」との要件を満たさない方法による比較例2は、溶着強度が弱いものとなったのに比べて、本発明の製造方法による実施例1〜6では、溶着部外観の問題は無く、溶着強度も十分強いものとなることが明らかになった。
したがって、本発明の製造方法は、部分的に隙間があっても、十分な溶着強度で、溶着部のはみ出しや成形品のくすみや変形がない、品質の高い成形品を得ることができるという点で優れた結果が得られており、大きな技術的意義を持つことが明らかである。
[Evaluation]
As is apparent from Table 1, the specific matter of the manufacturing method of the present invention is “the size of the gap between the two members generated on the contact surface between the permeable resin member (A) and the non-permeable resin member (B). In accordance with the method that does not satisfy the requirement that “the spot diameter of the laser beam irradiated to the contact surface is changed accordingly”, Comparative Example 1 causes foaming and burning in the appearance of the welded portion, and the welding strength is weak. Comparative Example 2 by a method that does not satisfy the requirement that “the laser beam irradiation energy (J / mm 2 ) per unit area on the contact surface is kept substantially the same” is lower than that in which the welding strength is weak, In Examples 1 to 6 according to the production method of the present invention, it has become clear that there is no problem in the appearance of the welded portion and the weld strength is sufficiently strong.
Therefore, the manufacturing method of the present invention can obtain a high-quality molded product with sufficient welding strength, no protrusion of the welded portion, and no dullness or deformation of the molded product, even if there is a gap in part. It is clear that excellent results have been obtained and have great technical significance.

本発明の方法によれば、部分的に隙間があっても、安定した溶着強度で、溶着部のはみ出しや成形品のくすみや変形がない、品質の高い成形品を、効率よく得ることができる。したがって、例えば、軽量化が望まれる自動車部品、ヘッドランプ等において、複雑な形状であっても美観を損ねずに効率的に樹脂成形品を製造でき、製造効率、製造コストを大幅に削減することができる。したがって、本発明の樹脂部材のレーザー溶着方法及び樹脂成形品は、産業上大いに有用である。
According to the method of the present invention, it is possible to efficiently obtain a high-quality molded product that has stable welding strength and does not protrude from the welded portion or dull or deform the molded product even if there is a gap in some parts. . Therefore, for example, in automobile parts and headlamps that require weight reduction, it is possible to efficiently produce resin molded products without compromising aesthetics even if they have complicated shapes, and greatly reduce production efficiency and production costs. Can do. Therefore, the laser welding method and resin molded product of the resin member of the present invention are very useful in industry.

Claims (12)

レーザー光の照射によりレーザー光を透過する透過性樹脂部材(A)とレーザー光を透過しない非透過性樹脂部材(B)とを溶着させるレーザー溶着方法において、
透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさに応じて、当接面に照射するレーザー光のスポット径を変化させ、かつ、当接面における単位面積当たりのレーザー光照射エネルギー(J/mm)を略同一に保つことを特徴とする樹脂部材のレーザー溶着方法。
In a laser welding method of welding a transparent resin member (A) that transmits laser light by irradiation with laser light and a non-transparent resin member (B) that does not transmit laser light,
According to the size of the gap between the two members generated on the contact surface between the permeable resin member (A) and the non-permeable resin member (B), the spot diameter of the laser light irradiated on the contact surface is changed, and A laser welding method of a resin member, characterized in that the laser beam irradiation energy (J / mm 2 ) per unit area on the contact surface is kept substantially the same.
前記レーザー光のスポット径は、透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさ(距離)が広いほど大きくなるように変化させることを特徴とする請求項1に記載の樹脂部材のレーザー溶着方法。   The spot diameter of the laser beam is changed so as to increase as the size (distance) of the gap between the two members formed on the contact surface between the transparent resin member (A) and the non-transmissive resin member (B) increases. The method for laser welding a resin member according to claim 1. 前記レーザー光のスポット径は、下記式(1)の関係を満たすことを特徴とする請求項1又は2に記載の樹脂部材のレーザー溶着方法。
≧0.012d+A 式(1)
(式中、Aは透過性樹脂部材(A)と非透過性樹脂部材(B)との隙間の距離がdである場合における当接面におけるレーザー光のスポット径[mm]、dは透過性樹脂部材と非透過性樹脂部材との隙間距離[μm]、Aは透過性樹脂部材(A)と非透過性樹脂部材(B)との隙間の距離が0である場合の当接面におけるレーザー光のスポット径[mm]を表す。)
The laser beam spot welding method according to claim 1 or 2, wherein the spot diameter of the laser beam satisfies a relationship of the following formula (1).
A d ≧ 0.012d + A 0 formula (1)
(In the formula, Ad is the spot diameter [mm] of the laser beam on the contact surface when the distance between the transparent resin member (A) and the non-permeable resin member (B) is d, and d is the transmitted light. The clearance distance [μm] between the transparent resin member and the non-permeable resin member, A 0 is the contact surface when the distance between the transparent resin member (A) and the non-permeable resin member (B) is 0 Represents the spot diameter [mm] of the laser beam at.)
前記当接面における単位面積当たりのレーザー光照射エネルギーは、レーザー光の照射出力(W)及び/又はレーザー光のスキャン速度(mm/sec)を変化させることにより略同一に保つことを特徴とする請求項1〜3のいずれか1項に記載の樹脂部材のレーザー溶着方法。   The laser beam irradiation energy per unit area on the contact surface is kept substantially the same by changing the laser beam irradiation output (W) and / or the laser beam scanning speed (mm / sec). The laser welding method of the resin member of any one of Claims 1-3. 前記レーザー光のスポット径は、レーザー光の発生源と当接面との距離を調整することにより変化させることを特徴とする請求項1〜4のいずれか1項に記載のレーザー溶着方法。   The laser welding method according to any one of claims 1 to 4, wherein the spot diameter of the laser light is changed by adjusting a distance between a laser light source and a contact surface. 前記レーザー光のスポット径は、レーザー光の焦点距離を調整することにより変化させることを特徴とする請求項1〜4のいずれか1項に記載のレーザー溶着方法。   The laser welding method according to any one of claims 1 to 4, wherein the spot diameter of the laser beam is changed by adjusting a focal length of the laser beam. 前記レーザー光のスポット径は、レーザー光の光軸と当接面との照射角を調整することにより変化させることを特徴とする請求項1〜4のいずれか1項に記載のレーザー溶着方法。   The laser welding method according to any one of claims 1 to 4, wherein the spot diameter of the laser light is changed by adjusting an irradiation angle between the optical axis of the laser light and the contact surface. 前記レーザー光の照射による溶着に先立ち、あらかじめ透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさ(距離)を検出しておくことを特徴とする請求項1〜7のいずれか1項に記載の樹脂部材のレーザー溶着方法。   Prior to welding by the laser light irradiation, the size (distance) of the gap between the two members generated on the contact surface between the transparent resin member (A) and the non-permeable resin member (B) is detected in advance. The laser welding method for a resin member according to any one of claims 1 to 7. 前記隙間の大きさ(距離)の検出は、光学的手法、電気的手法又は熱的手法のいずれかによることを特徴とする請求項8に記載の樹脂部材のレーザー溶着方法。   The method for laser welding a resin member according to claim 8, wherein the size (distance) of the gap is detected by any one of an optical method, an electrical method, and a thermal method. 前記隙間の大きさ(距離)の検出は、当接面に、透過性樹脂部材(A)および非透過性樹脂部材(B)の溶融温度以下に該部材を加熱するレーザー光を照射して、その際の当接面の温度をモニターすることにより行うことを特徴とする請求項8に記載の樹脂部材のレーザー溶着方法。   Detection of the size (distance) of the gap is performed by irradiating the contact surface with a laser beam that heats the member below the melting temperature of the permeable resin member (A) and the non-permeable resin member (B). 9. The method for laser welding a resin member according to claim 8, wherein the temperature is measured on the contact surface at that time. 前記レーザー光の照射による溶着に先立ち、あらかじめ透過性樹脂部材(A)と非透過性樹脂部材(B)との当接面に生じる両部材の隙間の大きさ(距離)を検出した後、それぞれ同じ製造ラインで製造された別の透過性樹脂部材(A’)と非透過性樹脂部材(B’)との当接面に、該検出結果に応じて決定されたスポット径のレーザー光を照射して、該当接面を溶着することを特徴とする請求項1〜7のいずれか1項に記載の樹脂部材のレーザー溶着方法。   Prior to the welding by the laser light irradiation, after detecting the size (distance) of the gap between the two members generated on the contact surface between the transparent resin member (A) and the non-permeable resin member (B) in advance, A laser beam having a spot diameter determined according to the detection result is applied to a contact surface between another transparent resin member (A ′) and non-permeable resin member (B ′) manufactured on the same manufacturing line. And the said contact surface is welded, The laser welding method of the resin member of any one of Claims 1-7 characterized by the above-mentioned. 請求項1〜11のいずれか1項に記載の樹脂部材のレーザー溶着方法によって得られる溶着樹脂成形品。
The welding resin molded product obtained by the laser welding method of the resin member of any one of Claims 1-11.
JP2009289027A 2009-12-21 2009-12-21 Laser welding method for resin parts Expired - Fee Related JP5412265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289027A JP5412265B2 (en) 2009-12-21 2009-12-21 Laser welding method for resin parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289027A JP5412265B2 (en) 2009-12-21 2009-12-21 Laser welding method for resin parts

Publications (2)

Publication Number Publication Date
JP2011126237A true JP2011126237A (en) 2011-06-30
JP5412265B2 JP5412265B2 (en) 2014-02-12

Family

ID=44289351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289027A Expired - Fee Related JP5412265B2 (en) 2009-12-21 2009-12-21 Laser welding method for resin parts

Country Status (1)

Country Link
JP (1) JP5412265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151438A (en) * 2013-02-04 2014-08-25 Koito Mfg Co Ltd Laser welding method
JP2017113755A (en) * 2015-12-21 2017-06-29 株式会社アルバック Laser processing device, laser processing method, and method for manufacturing joined body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035069A (en) * 2003-07-17 2005-02-10 Nissan Motor Co Ltd Member joining device and member joining method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035069A (en) * 2003-07-17 2005-02-10 Nissan Motor Co Ltd Member joining device and member joining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151438A (en) * 2013-02-04 2014-08-25 Koito Mfg Co Ltd Laser welding method
JP2017113755A (en) * 2015-12-21 2017-06-29 株式会社アルバック Laser processing device, laser processing method, and method for manufacturing joined body

Also Published As

Publication number Publication date
JP5412265B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
Acherjee Laser transmission welding of polymers–A review on process fundamentals, material attributes, weldability, and welding techniques
JP4771371B2 (en) Dissimilar member joining method and dissimilar member joined product
Acherjee Laser transmission welding of polymers–a review on welding parameters, quality attributes, process monitoring, and applications
Mingareev et al. Welding of polymers using a 2 μm thulium fiber laser
JP5502082B2 (en) Method for producing composite materials by transmission laser welding
De Pelsmaeker et al. Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization
Wippo et al. Advanced laser transmission welding strategies for fibre reinforced thermoplastics
Acherjee State-of-art review of laser irradiation strategies applied to laser transmission welding of polymers
JP5364039B2 (en) Manufacturing method of resin molded products
KR20070042883A (en) Method and apparatus for laser welding thermoplastic resin members
US20120181250A1 (en) Infrared laser welding of plastic parts with one or more of the parts having a modified surface providing increased absorbtivity to infrared laser light
Casalino et al. Numerical model of CO2 laser welding of thermoplastic polymers
JP5412265B2 (en) Laser welding method for resin parts
Chen et al. Experimental study on gap bridging in contour laser transmission welding of polycarbonate and polyamide
JP2013196844A (en) Vehicle lamp and manufacturing method thereof
Russek et al. Laser beam welding of thermoplastics
JP5436937B2 (en) Manufacturing method of resin molded products
JP5554629B2 (en) Determination method of welding conditions
DE60309395D1 (en) Material and process for laser welding
JP2008119839A (en) Laser welding method for resin material and resin component
JP2011178156A (en) Laser joining method of resin member, and laser joined body of resin member
Acherjee et al. Laser transmission welding of thermoplastics: An overview of experimental findings–process, development and applications
JP2007210203A (en) Laser welding method and laser-welded resin member
Haque et al. Laser welding of thermoplastics–a review
JP2004188802A (en) Laser welding method of resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Ref document number: 5412265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees