JP2011125818A - Method for manufacturing composite - Google Patents

Method for manufacturing composite Download PDF

Info

Publication number
JP2011125818A
JP2011125818A JP2009288496A JP2009288496A JP2011125818A JP 2011125818 A JP2011125818 A JP 2011125818A JP 2009288496 A JP2009288496 A JP 2009288496A JP 2009288496 A JP2009288496 A JP 2009288496A JP 2011125818 A JP2011125818 A JP 2011125818A
Authority
JP
Japan
Prior art keywords
composite
metal
precursor solution
hydrogen
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009288496A
Other languages
Japanese (ja)
Other versions
JP5253369B2 (en
Inventor
Katsunori Yogo
克則 余語
Yuichi Fujioka
祐一 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2009288496A priority Critical patent/JP5253369B2/en
Publication of JP2011125818A publication Critical patent/JP2011125818A/en
Application granted granted Critical
Publication of JP5253369B2 publication Critical patent/JP5253369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Chemically Coating (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing composite having a thin-film metal packed layer inside a porous member. <P>SOLUTION: The method for manufacturing includes: a process of making a precursor solution containing a metal source (an ion, a fine particle, a compound) or a metal source and a gelling agent to penetrate from one side of a porous base material, then solidifying the precursor solution before the precursor solution exudes from the opposite side to obtain a pore composite (A); a process of making a solution containing a reducing agent to penetrate into the pore composite (A) from the opposite side to make metal nucleus carried in the pore composite (A); and a process of electroless-plating the pore composite (B) with the metal nucleus obtained in the preceding process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水素を含む混合ガスから水素ガスを選択的に透過分離するのに用いられる複合体の製造方法に関する。さらに、本発明は前記複合体を用いて水素ガスを分離する方法に関する。   The present invention relates to a method for producing a composite used to selectively permeate and separate hydrogen gas from a mixed gas containing hydrogen. Furthermore, this invention relates to the method of isolate | separating hydrogen gas using the said composite_body | complex.

水素ガスは化成品の原料ガス、ガラスや電子材料の処理ガス、ロケットや燃料電池の燃料ガス等非常に多岐に渡って大量に利用されている工業的に重要なガスである。近年は、水素燃料電池の本格的な実用化を目前にして、改めて注目されており、高純度の水素を安価に製造する技術の開発が急務となっている。水素の製造方法としては、天然ガスや精油所のオフガス、ナフサ等の石油系炭化水素のスチームリフォーミング法、或いは、重質油やその他の原料炭化水素の熱分解法が代表的な方法であり、これらによって製造された水素含有ガスを水素分離膜により精製分離して高純度の水素ガスを製造する。   Hydrogen gas is an industrially important gas that is used in a great variety of ways, such as raw material gas for chemical products, processing gas for glass and electronic materials, and fuel gas for rockets and fuel cells. In recent years, attention has been attracted to new hydrogen fuel cells in the near future, and there is an urgent need to develop technology for producing high-purity hydrogen at low cost. Typical methods for hydrogen production include steam reforming of petroleum hydrocarbons such as natural gas, refinery off-gas, and naphtha, or pyrolysis of heavy oil and other feed hydrocarbons. The hydrogen-containing gas produced by these is purified and separated by a hydrogen separation membrane to produce high-purity hydrogen gas.

このような水素分離膜として、無機質材料からなる多孔質支持体の表面にパラジウムを含有する薄膜を形成させてなる水素分離膜(特許文献1)や、金属多孔体の表面にバナジウムおよびパラジウムを含有する薄膜を形成させてなる水素分離膜(特許文献2)が知られている。しかしながら、前者の水素分離膜は高価なパラジウムを多量に使用しなければならず、実用的でない。また、後者の水素分離膜は高温下において合金化し、水素透過性能が低下してしまうため、やはり実用的な面で問題があった。そのため、パラジウム使用量を低減する目的でCVD、無電解メッキ等による水素分離膜の薄膜化が試みられていた(特許文献3、4)。しかしながら、薄膜化した場合、水素脆化、球状剥離等の問題があり(非特許文献1)、水素分離膜の耐久性が低くなるという問題が生じていた。   As such a hydrogen separation membrane, a hydrogen separation membrane (Patent Document 1) in which a thin film containing palladium is formed on the surface of a porous support made of an inorganic material, or vanadium and palladium are contained on the surface of a metal porous body. A hydrogen separation membrane (Patent Document 2) formed by forming a thin film is known. However, the former hydrogen separation membrane must use a large amount of expensive palladium, and is not practical. In addition, the latter hydrogen separation membrane is alloyed at a high temperature, and the hydrogen permeation performance is deteriorated. For this reason, attempts have been made to reduce the thickness of the hydrogen separation membrane by CVD, electroless plating, or the like in order to reduce the amount of palladium used (Patent Documents 3 and 4). However, when the film is thinned, there are problems such as hydrogen embrittlement and spherical peeling (Non-Patent Document 1), and there is a problem that the durability of the hydrogen separation membrane decreases.

一方、十分な耐久性を保持する水素分離膜としては、例えば、細孔を有する基材の表面に圧延パラジウム合金膜を付着させた膜が知られている(特許文献5)。この水素分離膜は、耐久性を高くするために、パラジウム合金膜を5μmもしくはそれ以上の膜厚とする必要があり、高価なパラジウムを大量に使用する必要があり、コスト面から実用化が困難である。   On the other hand, as a hydrogen separation membrane that maintains sufficient durability, for example, a membrane in which a rolled palladium alloy membrane is attached to the surface of a substrate having pores is known (Patent Document 5). This hydrogen separation membrane requires a palladium alloy membrane to have a thickness of 5 μm or more in order to increase durability, and it is necessary to use a large amount of expensive palladium. It is.

以上の問題を解決するために、薄膜化し、かつ十分な耐久性を有する水素分離膜として、多孔質基材、多孔質材とその細孔隙に充填され該細孔隙を閉塞する金属とからなる金属緻密充填材および多孔質保護材が順に成層されてなる複合膜が提案されている(特許文献6)。
しかしながら、この水素分離膜では、三層構造をとっているため、製造が煩雑であるとともに、中間層である金属緻密充填材における金属が金属緻密充填材全体に分布しているため、熱膨張により金属緻密充填材内の金属の劣化が生じやすい。また、多孔質基材に金属層を形成したのち、さらに表面に酸化物微粒子を堆積させて焼結させる方法では、金属の融解温度(ケルビン温度)の1/2程度で金属間のシンタリングが生じるため、例えばパラジウムでは700℃以上で酸化物微粒子を焼結させることができない。そのため、例えばアルミナ酸化物微粒子が十分焼結する1250℃程度で複合体を形成することができず、実用的に十分な強度を得ることは困難である。このような問題を解決するため、多孔質材表面に微細孔を有する保護層をあらかじめ形成した後、対抗拡散手法により直接金属を充填する手法が提案されている(特許文献7)。しかしながら、この水素分離膜は従来法で調製した水素分離膜と比較して水素の透過速度が遅いという問題があった。
In order to solve the above problems, as a hydrogen separation membrane which is thinned and has sufficient durability, a metal comprising a porous substrate, a porous material, and a metal which fills the pores and closes the pores A composite film in which a dense filler and a porous protective material are sequentially laminated has been proposed (Patent Document 6).
However, since this hydrogen separation membrane has a three-layer structure, the production is complicated, and the metal in the metal dense filler that is the intermediate layer is distributed throughout the metal dense filler. The metal in the metal dense filler is likely to deteriorate. In addition, after forming a metal layer on the porous substrate and further depositing oxide fine particles on the surface and sintering, the sintering between the metals is performed at about half the melting temperature (Kelvin temperature) of the metal. Therefore, for example, palladium cannot sinter oxide fine particles at 700 ° C. or higher. Therefore, for example, the composite cannot be formed at about 1250 ° C. at which the alumina oxide fine particles are sufficiently sintered, and it is difficult to obtain a practically sufficient strength. In order to solve such a problem, a method has been proposed in which a protective layer having fine pores is formed in advance on the surface of a porous material and then directly filled with metal by a counter diffusion method (Patent Document 7). However, this hydrogen separation membrane has a problem that the permeation rate of hydrogen is slower than the hydrogen separation membrane prepared by the conventional method.

特開昭62−121616号公報Japanese Patent Laid-Open No. 62-121616 特開平5−285355号公報JP-A-5-285355 特開2002−153740号公報JP 2002-153740 A 特開2003−135943号公報JP 2003-135943 A 特開2006−175379号公報JP 2006-175379 A 特開2006−95521号公報JP 2006-95521 A 特開2009−189934号公報JP 2009-189934 A

S.N.Paglieri,J.D.Way、「Separation and Purification Methods」、31巻、p.1〜169、2002年S. N. Paglieri, J.A. D. Way, “Separation and Purification Methods”, 31, p. 1-169, 2002

本発明は、多孔体の内部に薄膜化した金属充填層を有する複合体の製造方法を提供することを目的とする。さらに、複合体を水素分離に用いる場合、水素透過性および耐久性に優れ、なおかつパラジウム等の金属の使用量を大幅に低減しうるため低コストで製造しうる複合体を提供する。   An object of this invention is to provide the manufacturing method of the composite_body | complex which has the metal filling layer thinned inside the porous body. Furthermore, when the composite is used for hydrogen separation, a composite that is excellent in hydrogen permeability and durability and can be manufactured at low cost because the amount of metal such as palladium can be greatly reduced.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、多孔質基材の細孔内に金属を担持させるに際し、例えば多孔質基材が板状(平膜)の場合、還元剤を含む溶液と金属源を含む溶液の一方を多孔質基材の上表面から、他方を下表面からそれぞれ浸透、ゲル化させることにより、還元剤あるいは金属源の基材表面への移動を防止し、多孔質基材の細孔内に金属を選択的に充填することができ、それにより複合体内に成層された金属充填層を極めて薄膜化できることを見出し、この知見に基づいてさらに研究を進め、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have carried out metal loading in the pores of the porous substrate. For example, when the porous substrate is plate-shaped (flat film), One of the solution containing the reducing agent and the solution containing the metal source penetrates and gels from the upper surface of the porous substrate and the other from the lower surface, thereby allowing the reducing agent or metal source to move to the substrate surface. It was found that the metal can be selectively filled into the pores of the porous substrate, thereby making it possible to extremely reduce the thickness of the metal-filled layer formed in the composite. The present invention has been completed.

すなわち、本発明は、
[1]複合体の製造方法であって、(1)金属源及びゲル化剤を含む前駆体溶液を作製し、該前駆体溶液を多孔質基材の片側から浸透させたのち、反対側から該前駆体溶液が滲出する前に、該前駆体溶液を固化させて複合体(A)を得る工程、(2)前記複合体(A)に、前記前駆体溶液を浸透させた反対側から、還元剤を含む溶液を浸透させることにより、前記複合体(A)の細孔内に金属種核を担持させる工程、(3)前記(2)の工程で得られた金属種核を担持した複合体(B)を無電解メッキ処理する工程、を含むことを特徴とする複合体の製造方法、
[2]複合体の製造方法であって、(1)還元剤及びゲル化剤を含む前駆体溶液を多孔質基材の片側から浸透させたのち、反対側から該前駆体溶液が滲出する前に、該前駆体溶液を固化させて複合体(C)を得る工程、(2)前記複合体(C)に、前記前駆体溶液を浸透させた反対側から金属源を含む溶液を浸透させることにより、前記複合体(C)の細孔内に金属種核を担持させる工程、(3)前記(2)の工程で得られた金属種核を担持した複合体(D)を無電解メッキ処理する工程、を含むことを特徴とする複合体の製造方法、
[3]さらに、前記(3)の工程の前又は(3)の工程の後に、上記(2)の工程で得られた複合体を洗浄及び/又は焼成する工程を含む前記[1]又は[2]に記載の製造方法、
[4]ゲル化剤が、アガロース、寒天、でんぷん、アラビアガム、サイリウムシードガム、プルラン、ゼラチン、デキストリン、トラガカント(tragacanth)、ペクチン、グルコマンナン、ガラクトマンナン、キサンタンガム、タマリンドシードガム、カラギーナン、ジェランガム、カルボキシビニルポリマー、アクリルコポリマー、ポリアクリルアミド類、水溶性セルロース性ポリマー、ポリビニルピロリドン、ベントナイト、エチルセルロース、ポリエチレン、プロピレングリコール、カルボキシメチルセルロースナトリウム、ガッディーガム、アラビノガラクタン及びカードランからなる群から選ばれる1以上である前記[1]〜[3]のいずれかに記載の製造方法、
[5]還元剤が、アスコルビン酸、アスコルビン酸ナトリウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミンボラン、トリメチルアミンボラン、クエン酸、クエン酸ナトリウム、タンニン酸、ジボラン、ヒドラジン、ホルムアルデヒド、グルコースおよび塩化スズからなる群から選ばれる1以上である前記[1]〜[4]のいずれかに記載の製造方法、
[6]金属源が、金属イオン、金属微粒子、又は、金属を含む化合物であることを特徴とする前記[1]〜[5]のいずれかに記載の製造方法、
[7]金属が、周期表の4族、5族、8〜11族のいずれかの遷移金属である前記[6]記載の製造方法、
[8]金属が、パラジウムである前記[6]記載の製造方法、
[9]前記[1]〜[8]のいずれかに記載の製造方法によって得られることを特徴とする水素分離膜、及び
[10]水素を含有する混合ガスを、前記[9]に記載の水素分離膜に接触させて、水素を選択的に透過させることを特徴とする水素分離方法、
に関する。
That is, the present invention
[1] A method for producing a composite, wherein (1) a precursor solution containing a metal source and a gelling agent is prepared, and the precursor solution is infiltrated from one side of the porous substrate, and then from the opposite side. Before the precursor solution exudes, solidifying the precursor solution to obtain a composite (A), (2) from the opposite side where the precursor solution has penetrated the composite (A), A step of supporting a metal seed nucleus in the pores of the composite (A) by infiltrating a solution containing a reducing agent, and (3) a composite supporting the metal seed nucleus obtained in the step (2). A process for producing a composite comprising the step of subjecting the body (B) to electroless plating,
[2] A method for producing a composite, wherein (1) a precursor solution containing a reducing agent and a gelling agent is infiltrated from one side of the porous substrate, and then the precursor solution is exuded from the opposite side. Solidifying the precursor solution to obtain a composite (C); (2) impregnating the composite (C) with a solution containing a metal source from the opposite side into which the precursor solution has been impregnated. (3) Electroless plating treatment of the composite (D) supporting the metal seed nucleus obtained in the step (2). A process for producing a composite comprising the steps of:
[3] The above [1] or [3] further comprising a step of washing and / or firing the composite obtained in the step (2) before the step (3) or after the step (3). 2],
[4] The gelling agent is agarose, agar, starch, gum arabic, psyllium seed gum, pullulan, gelatin, dextrin, tragacanth, pectin, glucomannan, galactomannan, xanthan gum, tamarind seed gum, carrageenan, gellan gum, One or more selected from the group consisting of carboxyvinyl polymer, acrylic copolymer, polyacrylamide, water-soluble cellulosic polymer, polyvinylpyrrolidone, bentonite, ethylcellulose, polyethylene, propylene glycol, sodium carboxymethylcellulose, gaddy gum, arabinogalactan and curdlan The production method according to any one of [1] to [3],
[5] The reducing agent is ascorbic acid, sodium ascorbate, sodium borohydride, potassium borohydride, dimethylamine borane, trimethylamine borane, citric acid, sodium citrate, tannic acid, diborane, hydrazine, formaldehyde, glucose and chloride. The production method according to any one of the above [1] to [4], which is one or more selected from the group consisting of tin,
[6] The production method according to any one of [1] to [5], wherein the metal source is a metal ion, metal fine particles, or a compound containing a metal.
[7] The production method according to the above [6], wherein the metal is a transition metal of any of Groups 4, 5, and 8 to 11 in the periodic table.
[8] The production method of the above-mentioned [6], wherein the metal is palladium.
[9] A hydrogen separation membrane obtained by the production method according to any one of [1] to [8], and [10] a mixed gas containing hydrogen, according to [9] A hydrogen separation method characterized by contacting hydrogen separation membrane and selectively permeating hydrogen;
About.

本発明に係る複合体は、それを構成する金属充填層において、充填された金属が多孔質基材中の狭い範囲に分布しているため、充填する金属の使用量の低減が可能となる。特に、本発明の複合体を水素分離に特化して用いる場合、パラジウム(Pd)充填層厚の低減、すなわちパラジウム使用量の大幅な低減が可能となる。また、金属を多孔質基材中に充填することにより、本発明に係る複合体は、優れた水素透過性を有するのみならず、基材表面からのはがれ及び損傷に高い耐性を有し、充填金属を基材中で成長させることにより水素脆化を大幅に緩和することができるという優れた耐久性を有する。さらに、基材表面に保護材を積層する必要がないため、製造が簡便であり、市販のあらゆる多孔質基材内部に金属を直接充填することを可能とし、無機膜のピンホール修復等にも応用可能である。また、金属膜モジュールを触媒反応器と一体型とした膜反応器(メンブレンリアクター)に適用する場合、多孔質基材表面に金属が露出していないため、リアクター内部で触媒との物理的接触による膜の破損や合金化による膜の劣化の防止が可能である。あるいは、膜モジュールの移動・メンテナンス時にも多孔質基材表面に金属が露出していないため壊れにくいという利点がある。   In the composite according to the present invention, in the metal filling layer constituting the composite, the filled metal is distributed in a narrow range in the porous base material, so that the amount of metal to be filled can be reduced. In particular, when the composite of the present invention is used specifically for hydrogen separation, the palladium (Pd) packed layer thickness can be reduced, that is, the amount of palladium used can be greatly reduced. Moreover, by filling the porous substrate with metal, the composite according to the present invention not only has excellent hydrogen permeability, but also has high resistance to peeling and damage from the surface of the substrate. It has excellent durability that hydrogen embrittlement can be remarkably mitigated by growing a metal in a substrate. Furthermore, since there is no need to laminate a protective material on the surface of the base material, the manufacturing is simple, it is possible to directly fill the metal inside any commercially available porous base material, and also for pinhole repair of inorganic films, etc. Applicable. In addition, when the metal membrane module is applied to a membrane reactor integrated with a catalyst reactor (membrane reactor), the metal is not exposed on the surface of the porous substrate, and therefore, due to physical contact with the catalyst inside the reactor. It is possible to prevent film deterioration due to film breakage or alloying. Alternatively, there is an advantage that the metal is not exposed on the surface of the porous substrate even during the movement and maintenance of the membrane module, so that it is difficult to break.

図1は、多孔質基材がアルミナ基板であり、金属源がパラジウムである場合の、本発明の第二の態様の概略図を示す。FIG. 1 shows a schematic diagram of the second embodiment of the present invention when the porous substrate is an alumina substrate and the metal source is palladium. 図2は、本発明に係る複合体の断面図の一例を示す。FIG. 2 shows an example of a cross-sectional view of the composite according to the present invention. 図3は、多孔質基材がアルミナ基板であり、前駆体溶液が塩化パラジウムゲルであり、還元剤がヒドラジンの場合の、本発明の第一の態様の概略図を示す。FIG. 3 shows a schematic diagram of the first embodiment of the present invention when the porous substrate is an alumina substrate, the precursor solution is palladium chloride gel, and the reducing agent is hydrazine. 図4は、実施例1で得られた複合体のレーザー顕微鏡観察の観察結果を示す。FIG. 4 shows an observation result of observation of the composite obtained in Example 1 with a laser microscope. 図5は、実施例2で得られた複合体のレーザー顕微鏡観察の観察結果を示す。右図は、左図の拡大図である。FIG. 5 shows the results of observation of the composite obtained in Example 2 by laser microscope observation. The right figure is an enlarged view of the left figure. 図6は、エネルギー分散型X線分析装置(EDX)での分析結果を示す。図6(a)は、一次めっき後の分析結果を示し、(b)は、二次めっき後の分析結果を示す。FIG. 6 shows an analysis result with an energy dispersive X-ray analyzer (EDX). FIG. 6A shows the analysis results after the primary plating, and FIG. 6B shows the analysis results after the secondary plating. 図7は、気体透過試験装置模式図である。FIG. 7 is a schematic diagram of a gas permeation test apparatus. 図8は、実施例1の複合体の気体透過試験結果(500〜200℃)である。FIG. 8 is a gas permeation test result (500 to 200 ° C.) of the composite of Example 1. 図9は、実施例2の複合体の気体透過試験結果(600〜200℃)である。FIG. 9 is a gas permeation test result (600 to 200 ° C.) of the composite of Example 2. 図10は、実施例3の複合体の気体透過試験結果(500℃)である。FIG. 10 shows the gas permeation test results (500 ° C.) of the composite of Example 3.

以下に、本発明の第一の態様について説明する。本発明の複合体の製造方法は、(1)多孔質基材の片側から、金属源及びゲル化剤を含む前駆体溶液を浸透させたのち、反対側から該前駆体溶液が滲出する前に、該前駆体溶液を固化させて複合体(A)を得る工程、(2)前記複合体(A)に、前記ゾルを浸透させた反対側から、還元剤を含む溶液を浸透させることにより、前記複合体(A)の細孔内に金属種核を担持させる工程、(3)前記(2)の工程で得られた金属種核を担持した複合体(B)を無電解メッキ処理する工程、を含むことを特徴とする。以下、各工程について説明する。   Below, the 1st aspect of this invention is demonstrated. In the method for producing a composite of the present invention, (1) after impregnating a precursor solution containing a metal source and a gelling agent from one side of a porous substrate, before the precursor solution exudes from the opposite side Solidifying the precursor solution to obtain a composite (A), (2) by infiltrating the composite (A) with a solution containing a reducing agent from the opposite side where the sol is infiltrated, A step of supporting metal seed nuclei in the pores of the composite (A), and (3) a step of electroless plating the composite (B) supporting the metal seed nuclei obtained in the step (2). , Including. Hereinafter, each step will be described.

工程(1)は、多孔質基材の片側から、金属源及びゲル化剤を含む混合溶液(以下、前駆体溶液(A)ともいう)を浸透させたのち、反対側から該前駆体溶液が滲出する前に、該前駆体溶液(A)を固化させて複合体(A)を得る工程である。該工程により、多孔質基材の内部に金属源及びゲル化剤を含むゲル層を形成させることができる。   In step (1), a mixed solution containing a metal source and a gelling agent (hereinafter also referred to as precursor solution (A)) is infiltrated from one side of the porous substrate, and then the precursor solution is introduced from the opposite side. This is a step of obtaining the composite (A) by solidifying the precursor solution (A) before leaching. By this step, a gel layer containing a metal source and a gelling agent can be formed inside the porous substrate.

多孔質基材としては、金属充填層を支持し、複合体全体として機械的強度を付与するものであれば特に制限はないが、耐熱性の観点から好ましくは多孔質セラミックス又は多孔質金属からなるものが挙げられ、市販品を用いてもよい。さらに、水素分離膜としてすでに使用したものを多孔質基材として用いることもできる。これにより、何度も複合膜を再生して利用できるためである。多孔質とは、細孔を有し、かつ前記細孔が連通して通気性があるものを意味する。   The porous substrate is not particularly limited as long as it supports a metal-filled layer and imparts mechanical strength to the entire composite, but is preferably made of a porous ceramic or a porous metal from the viewpoint of heat resistance. The thing is mentioned and you may use a commercial item. Furthermore, what was already used as a hydrogen separation membrane can also be used as a porous substrate. This is because the composite membrane can be regenerated and used many times. The term “porous” means a material having pores and having the breathability through the communication of the pores.

前記多孔質セラミックスとしては、酸化物、窒化物または炭化物等が挙げられ、具体的にはアルミナ、ジルコニア、チタニア、ニオビア、セリア、シリカ、コージェライト、ムライト、窒化ケイ素、炭化ケイ素、酸化ニッケル、酸化コバルト、酸化鉄、酸化クロム、酸化マンガン、酸化亜鉛、酸化タングステンまたは酸化モリブデン等が挙げられ、中でもアルミナ、シリカ、ジルコニア、コージェライト、ムライト、窒化ケイ素、炭化ケイ素等が好ましく挙げられるが、これらに限らず、種々の多孔質体を用いることができる。これらの多孔質セラミックスは単独で用いてもよく、2以上を混合して用いてもよい。   Examples of the porous ceramics include oxides, nitrides or carbides. Specifically, alumina, zirconia, titania, niobia, ceria, silica, cordierite, mullite, silicon nitride, silicon carbide, nickel oxide, oxide Examples include cobalt, iron oxide, chromium oxide, manganese oxide, zinc oxide, tungsten oxide, and molybdenum oxide. Among them, alumina, silica, zirconia, cordierite, mullite, silicon nitride, silicon carbide, and the like are preferable. Not limited to this, various porous bodies can be used. These porous ceramics may be used alone or in combination of two or more.

前記多孔質金属については、その構造上からは、金属不織布、金属粉焼結多孔体、金属穿孔体等が、その物性上からは耐熱性や耐食性を有する金属や合金、例えばニッケル、ステンレス鋼等がそれぞれ挙げられる。これらの多孔質金属は単独で用いてもよく、2以上を混合して用いてもよい。   Regarding the porous metal, from the viewpoint of its structure, a metal non-woven fabric, a metal powder sintered porous body, a metal perforated body, etc., from the viewpoint of its physical properties, metals and alloys having heat resistance and corrosion resistance, such as nickel, stainless steel, etc. Respectively. These porous metals may be used alone or in combination of two or more.

多孔質基材の形態は、特に限定されず、必要に応じて適宜選択でき、例えば、管状(チューブ状)、板状等が挙げられる。前記「片側」は、例えば、多孔質基材が管状である場合、管の内側でもよく、外側でもよい。前記多孔質基材の細孔の孔径は、本発明の目的を阻害しない限り特に限定されないが、通常、0.001〜20μmであり、好ましくは0.004〜1μmである。   The form of the porous substrate is not particularly limited and can be appropriately selected as necessary. Examples thereof include a tubular shape (tube shape) and a plate shape. For example, when the porous substrate is tubular, the “one side” may be the inside or the outside of the tube. The pore diameter of the pores of the porous substrate is not particularly limited as long as the object of the present invention is not impaired, but is usually 0.001 to 20 μm, preferably 0.004 to 1 μm.

前駆体溶液(A)は、金属源を含む溶液を作製し、該溶液とゲル化剤とを混合撹拌することにより得ることができる。   The precursor solution (A) can be obtained by preparing a solution containing a metal source and mixing and stirring the solution and the gelling agent.

金属源を含む溶液の金属源としては、無電解メッキ処理の可能な金属であれば、特に限定されず、例えば、遷移金属の単体または合金が挙げられ、これらの金属のイオン、微粒子、化合物のいずれでもよい。前記遷移金属としては、周期表の4族、5族、8族、9族、10族または11族の金属が挙げられる。具体的には、銀、パラジウム、ロジウム、ルテニウム、金、白金、イリジウム、オスミウム、銅、ニッケル、コバルト、鉄、バナジウムまたはチタン等が挙げられる。合金としては、例えばパラジウムと、銀、銅、ニッケル等の金属とからなるもの等が挙げられる。これらの金属は単独で用いてもよく、2以上を混合して用いてもよい。また、金属としては、パラジウム等の水素選択透過性金属が好ましい。金属源を含む溶液としては、前記金属源を適当な溶媒に溶解した溶液が挙げられる。金属をパラジウムとした場合、例えば酢酸パラジウム、硝酸パラジウム、塩化パラジウム、塩化パラジウム酸、パラジウムアセチルアセトナート、パラジウムヘキサフルオロアセチルアセトナート等のパラジウム化合物が挙げられる。溶媒としては、水、エタノール、プロパノール、クロロホルム、塩酸等が挙げられる。金属源を含む溶液の濃度は、通常0.001〜10M程度、好ましくは0.005〜0.1M程度である。   The metal source of the solution containing the metal source is not particularly limited as long as it is a metal that can be electrolessly plated. For example, a transition metal simple substance or an alloy may be used, and ions, fine particles, and compounds of these metals may be used. Either is acceptable. Examples of the transition metal include metals of Group 4, Group 5, Group 8, Group 9, Group 10, or Group 11 of the periodic table. Specific examples include silver, palladium, rhodium, ruthenium, gold, platinum, iridium, osmium, copper, nickel, cobalt, iron, vanadium, and titanium. Examples of the alloy include an alloy made of palladium and a metal such as silver, copper, or nickel. These metals may be used alone or in combination of two or more. The metal is preferably a hydrogen selective permeable metal such as palladium. Examples of the solution containing a metal source include a solution in which the metal source is dissolved in an appropriate solvent. When the metal is palladium, examples thereof include palladium compounds such as palladium acetate, palladium nitrate, palladium chloride, palladium chloride acid, palladium acetylacetonate, palladium hexafluoroacetylacetonate. Examples of the solvent include water, ethanol, propanol, chloroform, hydrochloric acid and the like. The density | concentration of the solution containing a metal source is about 0.001-10M normally, Preferably it is about 0.005-0.1M.

前記ゲル化剤としては、アガロース、寒天、でんぷん、アラビアガム、サイリウムシードガム、プルラン、ゼラチン、デキストリン、トラガカント(tragacanth)、ペクチン、グルコマンナン、ガラクトマンナン、キサンタンガム、タマリンドシードガム、カラギーナン、ジェランガム、カルボキシビニルポリマー、アクリルコポリマー、ポリアクリルアミド類、水溶性セルロース性ポリマー、ポリビニルピロリドン、ベントナイト、エチルセルロース、ポリエチレン、プロピレングリコール、カルボキシメチルセルロースナトリウム、ガッディーガム、アラビノガラクタン、カードラン等が挙げられる。前記水溶性セルロース性ポリマーとしては、例えば、カルボキシアルキルセルロース、ヒドロキシアルキルセルロース、アルキルセルロース、ヒドロキシアルキルアルキルセルロース等が挙げられる。前記ベントナイトとしては、例えば、Na−ベントナイト、Ca−ベントナイト等が挙げられる。ヒドロキシアルキルアルキルセルロースとしては、例えば、ヒドロキシプロピルメチルセルロース等が挙げられる。   Examples of the gelling agent include agarose, agar, starch, gum arabic, psyllium seed gum, pullulan, gelatin, dextrin, tragacanth, pectin, glucomannan, galactomannan, xanthan gum, tamarind seed gum, carrageenan, gellan gum, carboxy Examples include vinyl polymers, acrylic copolymers, polyacrylamides, water-soluble cellulosic polymers, polyvinyl pyrrolidone, bentonite, ethyl cellulose, polyethylene, propylene glycol, sodium carboxymethyl cellulose, gaddy gum, arabinogalactan, curdlan and the like. Examples of the water-soluble cellulosic polymer include carboxyalkyl cellulose, hydroxyalkyl cellulose, alkyl cellulose, and hydroxyalkylalkyl cellulose. Examples of the bentonite include Na-bentonite and Ca-bentonite. Examples of hydroxyalkylalkylcellulose include hydroxypropylmethylcellulose.

前記ゲル化剤は、金属源を含む溶液に添加して混合攪拌してもよく、適当な溶媒(例えば、水、エタノール、プロパノール、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒、酢酸エチル、トルエン等の無極性溶媒等)に溶解させたゲル化剤を含む溶液として、金属源を含む溶液と混合してもよい。ゲル化剤を含む溶液として使用する場合、ゲル化剤の種類に応じて、所望によりオートクレーブ等により加圧下(例えば1.1〜2気圧)で、加熱(例えば、100〜200℃、5分〜3時間等)して溶解させてもよい。例えば、アガロースをゲル化剤として用いる場合、0.5〜7%程度の濃度になるように水に添加し、オートクレーブで加熱してアガロース溶液を調製し、該アガロース溶液と金属源を含む溶液を混合して、前駆体溶液(A)を得ることができる。   The gelling agent may be added to a solution containing a metal source and mixed and stirred. A suitable solvent (for example, polar solvent such as water, ethanol, propanol, N, N-dimethylformamide, dimethyl sulfoxide, ethyl acetate) In addition, a solution containing a gelling agent dissolved in a nonpolar solvent such as toluene may be mixed with a solution containing a metal source. When used as a solution containing a gelling agent, depending on the type of gelling agent, heating (for example, 100 to 200 ° C., 5 minutes to 5 minutes) under pressure (eg, 1.1 to 2 atmospheres) by an autoclave or the like as desired. 3 hours) and may be dissolved. For example, when agarose is used as a gelling agent, it is added to water to a concentration of about 0.5 to 7%, heated in an autoclave to prepare an agarose solution, and a solution containing the agarose solution and a metal source is prepared. By mixing, the precursor solution (A) can be obtained.

前駆体溶液(A)の粘度は、通常0.5mPa・s〜1×10mPa・sであり、1.0mPa・s〜1×10mPa・sが好ましく、多孔質基材の細孔内部まで前駆体溶液(A)を十分浸透させるという点から、1.0mPa・s〜1×10mPa・sが特に好ましく、形態としてはゾルが好ましい。0.5mPa・s未満では、多孔質基材に前駆体溶液(A)を浸透させた際に、前駆体溶液(A)が表面に達する前に該前駆体溶液(A)を固化させることが困難となるおそれがあり、1×10mPa・sを超えると、多孔質基材に接触して急激に冷却される過程で粘度が増加し、前駆体溶液(A)の浸透速度が極端に低下するため、前駆体溶液(A)を多孔質基材に十分に浸透させることが困難だからである。前駆体溶液(A)の粘度は、例えば、低粘度(1×10以下)の場合、ブルックフィールドデジタル粘度計 LVDV−I+C/P(商品名、商品番号:KN3312530、株式会社テックジャム製)等のブルックフィールド粘度計(回転式粘度計)を用いて測定でき、中粘度の場合、ブルックフィールド粘度計 RVDV-II +PRO 中粘度用/KN3312541 (商品名、商品番号:KN3312541、株式会社テックジャム製)等のブルックフィールド粘度計(回転式粘度計)を用いて測定できる。 The viscosity of the precursor solution (A) is usually 0.5 mPa · s to 1 × 10 5 mPa · s, preferably 1.0 mPa · s to 1 × 10 4 mPa · s, and the pores of the porous substrate From the viewpoint that the precursor solution (A) is sufficiently permeated into the inside, 1.0 mPa · s to 1 × 10 3 mPa · s is particularly preferable, and sol is preferable as a form. If it is less than 0.5 mPa · s, when the precursor solution (A) is infiltrated into the porous substrate, the precursor solution (A) may be solidified before the precursor solution (A) reaches the surface. If it exceeds 1 × 10 5 mPa · s, the viscosity increases in the process of rapid cooling in contact with the porous substrate, and the penetration rate of the precursor solution (A) becomes extremely high. This is because it is difficult to sufficiently infiltrate the precursor solution (A) into the porous substrate. When the viscosity of the precursor solution (A) is, for example, low viscosity (1 × 10 4 or less), Brookfield Digital Viscometer LVDV-I + C / P (trade name, product number: KN3312530, manufactured by Techjam Corporation), etc. Brookfield viscometer (rotary viscometer), medium viscosity, Brookfield viscometer RVDV-II + PRO for medium viscosity / KN3312541 (trade name, product number: KN3312541, manufactured by Techjam Corporation) It can be measured using a Brookfield viscometer (rotary viscometer).

本工程において、前駆体溶液(A)を多孔質基材に浸透させる際の温度は、特に限定されないが、通常4〜100℃であり、40〜90℃が好ましい。前駆体溶液(A)を多孔質基材に浸透させる時間は、多孔質基材のサイズ(直径、細孔径等)と前駆体溶液(A)の粘度等により、適宜選択されるため、特に限定されないが、例えば、多孔質基材として、細孔径0.1μm、直径10mm、内径7mm、長さ30cm(両端ガラスシール、有効長さ:5cm)のアルミナ製チューブを用い、前駆体溶液(A)として、パラジウムを含む5%アガロースゾル(以下、パラジウム含有アガロースゾルともいう)を用いて、アルミナ製チューブの内側から前駆体溶液(A)を浸透させる場合、前駆体溶液(A)をアルミナ製チューブに5秒〜5分程度浸透させる。前駆体溶液(A)の浸透は、前駆体溶液(A)の粘度及び温度条件を適宜設定して、数分では前駆体溶液(A)が表面に出てこないようにし、目視で確認しながら、前駆体溶液(A)が表面に滲出する前に固化する。また、前駆体溶液(A)を多孔質基材に浸透させる際に、多孔質基材が管状である場合、中に芯材(例えば、発泡スチロール等)を入れた状態で、前駆体溶液(A)を多孔質基材に浸透させてもよい。これにより、使用する前駆体溶液(A)の量を減らすことができる。   In this step, the temperature at which the precursor solution (A) penetrates into the porous substrate is not particularly limited, but is usually 4 to 100 ° C, and preferably 40 to 90 ° C. The time for allowing the precursor solution (A) to permeate into the porous substrate is particularly limited because it is appropriately selected depending on the size (diameter, pore diameter, etc.) of the porous substrate and the viscosity of the precursor solution (A). However, for example, an alumina tube having a pore diameter of 0.1 μm, a diameter of 10 mm, an inner diameter of 7 mm, and a length of 30 cm (both ends glass seal, effective length: 5 cm) is used as the porous substrate, and the precursor solution (A) When using a 5% agarose sol containing palladium (hereinafter also referred to as a palladium-containing agarose sol) and infiltrating the precursor solution (A) from the inside of the alumina tube, the precursor solution (A) is used as the alumina tube. For 5 seconds to 5 minutes. For the penetration of the precursor solution (A), the viscosity and temperature conditions of the precursor solution (A) are appropriately set so that the precursor solution (A) does not come out on the surface in a few minutes, and visually confirmed. The precursor solution (A) is solidified before leaching to the surface. In addition, when the precursor solution (A) is infiltrated into the porous base material, when the porous base material is tubular, the precursor solution (A ) May penetrate into the porous substrate. Thereby, the quantity of the precursor solution (A) to be used can be reduced.

前記固化の方法としては、前駆体溶液を浸透させた側と反対側から該前駆体溶液が滲出する前にゲル化させることができれば、特に限定されず、ゲル化剤の凝固温度が室温以下の場合、室温で乾燥固化してもよく、ゲル化剤の凝固温度以下まで氷冷又は公知の冷却機により冷却固化してもよい。冷却温度は、本発明の目的を阻害しなければ特に限定されないが、多孔質基材内に充填したゲルがより均一に固化するという観点から、0℃〜40℃程度が好ましい。また、ゲル化剤の種類に応じて、架橋剤、重合開始剤等を適宜加えてもよい。例えば、ゲル化剤がアクリルアミド類の場合、架橋剤として、N,N´−メチレンビスアクリルアミドの存在下、ゾルに過酸化アンモニウムとN,N,N´,N´−テトラメチルエチレンジアミン(TEMED)を重合開始剤として添加し、ラジカル重合することにより固化して、ポリアクリルアミドゲルが得られる。固化させることにより、多孔質基材の細孔に、金属源(例えば、塩化パラジウム等)を有する複合体(A)を得ることができる。   The solidification method is not particularly limited as long as the precursor solution can be gelled before leaching from the side on which the precursor solution has been permeated, and the solidifying temperature of the gelling agent is not more than room temperature. In this case, it may be dried and solidified at room temperature, or it may be solidified by cooling with ice or a known cooler up to the solidification temperature of the gelling agent or lower. The cooling temperature is not particularly limited as long as the object of the present invention is not hindered, but is preferably about 0 ° C. to 40 ° C. from the viewpoint that the gel filled in the porous substrate solidifies more uniformly. Moreover, according to the kind of gelatinizer, you may add a crosslinking agent, a polymerization initiator, etc. suitably. For example, when the gelling agent is an acrylamide, ammonium peroxide and N, N, N ′, N′-tetramethylethylenediamine (TEMED) are added to the sol in the presence of N, N′-methylenebisacrylamide as a crosslinking agent. A polyacrylamide gel is obtained by adding as a polymerization initiator and solidifying by radical polymerization. By solidifying, a composite (A) having a metal source (for example, palladium chloride or the like) in the pores of the porous substrate can be obtained.

工程(2)は、前記複合体(A)に、前記前駆体溶液(A)を浸透させた反対側から、還元剤を含む溶液を浸透させることにより、前記複合体(A)の細孔内に金属種核を担持させる工程である。   In the step (2), the composite (A) is impregnated with a solution containing a reducing agent from the opposite side where the precursor solution (A) is permeated, so that the inside of the pores of the composite (A) This is a step of supporting metal seed nuclei on the substrate.

前記還元剤としては、アスコルビン酸、アスコルビン酸ナトリウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミンボラン、トリメチルアミンボラン、クエン酸、クエン酸ナトリウム、タンニン酸、ジボラン、ヒドラジン、アルデヒド類(例えばホルムアルデヒド)、グルコース、塩化スズ等が挙げられる。前記還元剤を適当な溶媒に溶解して、還元剤を含む溶液が得られる。溶媒としては、水、エタノール、クロロホルム等が挙げられる。前記還元剤は溶液で用いられるほうがより好ましい。還元剤溶液の濃度は、通常0.001〜1M程度、好ましくは0.01〜0.5M程度である。   Examples of the reducing agent include ascorbic acid, sodium ascorbate, sodium borohydride, potassium borohydride, dimethylamine borane, trimethylamine borane, citric acid, sodium citrate, tannic acid, diborane, hydrazine, and aldehydes (for example, formaldehyde). , Glucose, tin chloride and the like. The reducing agent is dissolved in a suitable solvent to obtain a solution containing the reducing agent. Examples of the solvent include water, ethanol, chloroform and the like. The reducing agent is more preferably used in a solution. The concentration of the reducing agent solution is usually about 0.001 to 1M, preferably about 0.01 to 0.5M.

前記還元剤を含む溶液を多孔質基材への浸透は、通常2〜60℃程度、好ましくは20〜40℃程度にて、通常30秒〜100時間程度、好ましくは5〜48時間程度行う。次いで、溶液を水洗除去し、通常1〜48時間程度、好ましくは8〜16時間程度、20〜110℃程度にて乾燥させることにより、多孔質基材の細孔内に金属が担持される。上記の操作によって、前記したゲル内の金属源と前記還元剤を含む溶液とが接触した部分で金属源が還元されて金属種核が形成され、多孔質基材の細孔内に金属種核を担持する複合体(B)を得ることができる。なお、本発明の製造方法により得られる複合体は、金属が多孔質基材の表面に付着することはないため、多孔質基材の表面に保護材を積層することを要しない。 The permeation of the solution containing the reducing agent into the porous substrate is usually about 2 to 60 ° C., preferably about 20 to 40 ° C., usually about 30 seconds to 100 hours, preferably about 5 minutes to 48 hours. . Next, the solution is removed by washing with water, and the metal is supported in the pores of the porous substrate by drying at about 20 to 110 ° C. for about 1 to 48 hours, preferably about 8 to 16 hours. By the above operation, the metal source is reduced at the portion where the metal source in the gel and the solution containing the reducing agent are in contact to form a metal seed nucleus, and the metal seed nucleus is formed in the pores of the porous substrate. Can be obtained. In the composite obtained by the production method of the present invention, the metal does not adhere to the surface of the porous base material, and thus it is not necessary to laminate a protective material on the surface of the porous base material.

工程(3)は、前記(2)の工程で得られた金属種核を担持した複合体(B)を無電解めっき処理する工程である。無電解めっき処理により、金属種核を成長させ、多孔質基材の細孔を成長した金属により閉塞させて金属充填層を形成させることができる。無電解めっき処理の方法としては、通常用いられる方法であれば、特に限定されず、前記特許文献6(特開2006−95521号公報)、特開2005−248192号公報等に示される方法と同様にして行うことができる。   Step (3) is a step of subjecting the composite (B) carrying the metal seed nucleus obtained in the step (2) to electroless plating. By electroless plating treatment, the metal seed nucleus can be grown, and the pores of the porous substrate can be closed with the grown metal to form a metal filled layer. The method of electroless plating treatment is not particularly limited as long as it is a commonly used method, and is the same as the method disclosed in Patent Document 6 (JP 2006-95521 A), JP 2005-248192 A, and the like. Can be done.

無電解めっき処理には、めっき液として、金属イオン、錯形成剤、還元剤、溶剤を含むものを用いるのが好ましい。この金属イオンは、適当な金属塩、例えば酢酸塩、塩化物、硝酸塩、硫酸塩等のメッキ液成分として供され、該金属イオンに相応する金属としては、前記したように、無電解メッキの可能な金属、例えば遷移金属等が挙げられ、遷移金属として好ましくは周期表の4族、5族、8族、9族、10族または11族の金属等が挙げられ、中でも銀、パラジウム、ロジウム、ルテニウム、金、白金、イリジウム、オスミウム、銅、ニッケル、コバルト、鉄、バナジウムまたはチタン等が挙げられる。これらの金属は単独で用いてもよく、2以上を混合して用いてもよい。   In the electroless plating treatment, it is preferable to use a plating solution containing a metal ion, a complexing agent, a reducing agent, and a solvent. This metal ion is provided as a plating solution component of an appropriate metal salt, for example, acetate, chloride, nitrate, sulfate, etc., and the metal corresponding to the metal ion can be electrolessly plated as described above. Examples of the transition metal include, but are not limited to, metals of Group 4, Group 5, Group 8, Group 10, Group 11 or Group 11 of the periodic table. Among them, silver, palladium, rhodium, Examples include ruthenium, gold, platinum, iridium, osmium, copper, nickel, cobalt, iron, vanadium or titanium. These metals may be used alone or in combination of two or more.

前記錯形成剤としては、金属イオンを安定に溶存させるものであればよく、その例として好ましくはアンモニアとキレート剤との組合せ、中でもアンモニアとEDTAとの組合せが挙げられ、キレート剤としては、EDTAの他、NTA(ニトリロトリ酢酸)や、クエン酸、酒石酸等の脂肪族オキシ酸等が挙げられる。無電解メッキ処理に用いる還元剤としては、前記したものが使用できる。無電解メッキ処理に用いる溶剤としては、錯形成剤の種類等にもよるが、水、あるいはアセトニトリル、ベンゼン、クロロホルム等の有機溶媒等が挙げられる。   The complexing agent is not particularly limited as long as it can stably dissolve metal ions, and examples thereof include a combination of ammonia and a chelating agent, and particularly a combination of ammonia and EDTA. In addition, NTA (nitrilotriacetic acid) and aliphatic oxyacids such as citric acid and tartaric acid can be used. As the reducing agent used in the electroless plating treatment, the above-described one can be used. Examples of the solvent used for the electroless plating treatment include water or organic solvents such as acetonitrile, benzene, and chloroform, although depending on the type of complexing agent.

めっき液組成について、例えば金属イオン、キレート剤、アンモニアおよび還元剤を含有する場合、各濃度は、0.001〜0.05M程度、0.01〜0.5M程度、5〜15M程度、0.005〜0.05M程度がよい。メッキ液を調製する場合、前記無電解メッキ処理の直前に還元剤を加えることが好ましい。   About a plating solution composition, when it contains a metal ion, a chelating agent, ammonia, and a reducing agent, each density | concentration is about 0.001-0.05M, about 0.01-0.5M, about 5-15M, 0.00. About 005-0.05M is good. When preparing a plating solution, it is preferable to add a reducing agent immediately before the electroless plating treatment.

前記無電解めっき処理の温度は、適宜に設定できるが、通常1〜60℃程度であり、より好ましくは2〜50℃程度である。無電解めっき処理時間はめっき液温度や膜厚にもよるが、通常1分〜100時間程度、好ましくは1〜72時間程度である。前記無電解メッキ処理後、常法により、得られた複合体を洗浄し、乾燥させて本発明の複合体が得られる。   The temperature of the electroless plating treatment can be appropriately set, but is usually about 1 to 60 ° C, more preferably about 2 to 50 ° C. Although the electroless plating treatment time depends on the plating solution temperature and film thickness, it is usually about 1 minute to 100 hours, preferably about 1 to 72 hours. After the electroless plating treatment, the obtained composite is washed and dried by a conventional method to obtain the composite of the present invention.

本発明では、さらに必要に応じて、前記(3)工程の前又は前記(3)工程の後に、得られた複合体を洗浄及び/又は焼成処理し、不要なゲルおよび金属源等の担持された金属核種以外の余分な残留物を除去する工程を含んでいてもよい。洗浄方法としては、特に限定されないが、例えば、水、エタノール等に複合体を浸漬したのち、室温下、超音波洗浄を行なう方法、温浴(例えば、60〜90℃程度で1〜5時間)で不要物を除去する方法が挙げられる。超音波洗浄で得られた残留物(余剰金属源、ゲル等)を回収して再利用することもできる。また、ゲル等を完全に除去するために、焼成処理を行ってもよい。焼成処理の温度は、特に限定されないが、例えば、400〜900℃が好ましい。焼成処理の時間は、特に限定されないが、1〜48時間程度が好ましい。焼成処理は、空気中でもよく、不活性ガスの存在下でもよい。焼成時の昇温速度は、特に限定されないが、0.1〜1℃/分程度が好ましい。   In the present invention, if necessary, before and after the step (3) or after the step (3), the obtained composite is washed and / or baked to carry unnecessary gels and metal sources. A step of removing excess residues other than the metal nuclides may be included. Although it does not specifically limit as a washing | cleaning method, For example, after immersing a composite_body | complex in water, ethanol, etc., the method of ultrasonically washing at room temperature, for example, with a warm bath (for example, about 60-90 degreeC for 1 to 5 hours). There is a method of removing unnecessary materials. Residues (excess metal source, gel, etc.) obtained by ultrasonic cleaning can be recovered and reused. Further, a baking treatment may be performed in order to completely remove the gel and the like. Although the temperature of a baking process is not specifically limited, For example, 400-900 degreeC is preferable. The time for the baking treatment is not particularly limited, but is preferably about 1 to 48 hours. The firing treatment may be performed in air or in the presence of an inert gas. The temperature rising rate during firing is not particularly limited, but is preferably about 0.1 to 1 ° C./min.

工程(3)の後に、上記洗浄及び/又は焼成処理をした場合、複合体中の金属の緻密化向上を目的として、必要に応じて、さらに、上記した条件で無電解めっき処理を行ってもよく、工程(2)から繰り返しもよく、工程(1)から繰り返してもよい。例えば、一度目は、工程(3)の無電解めっき処理を短時間(例えば、5〜30分程度)行い、上記洗浄及び/又は焼成処理をしたのち、工程(2)を再度行い、次いで、工程(3)の無電解めっき処理(例えば、1〜3時間程度)を行う方法が好ましく挙げられる。   When the washing and / or baking treatment is performed after step (3), an electroless plating treatment may be performed under the above-described conditions as necessary for the purpose of improving the densification of the metal in the composite. It may be repeated from step (2) or may be repeated from step (1). For example, for the first time, the electroless plating process of step (3) is performed for a short time (for example, about 5 to 30 minutes), and after the washing and / or baking process, step (2) is performed again, The method of performing the electroless plating process (for example, about 1-3 hours) of a process (3) is mentioned preferably.

以下に、本発明の第二の態様について説明する。本発明の複合体の製造方法の第二の態様は、(1)多孔質基材の片側から還元剤及びゲル化剤を含む前駆体溶液を浸透させたのち、反対側から前駆体溶液が滲出する前に該前駆体溶液を固化させて複合体(C)を得る工程、(2)前記複合体(C)に、前記前駆体溶液を浸透させた反対側から金属源を含む溶液を浸透させることにより、前記複合体(C)の細孔内に金属種核を担持させる工程、(3)前記(2)の工程で得られた金属種核を担持した複合体(D)を無電解メッキ処理する工程、を含むことを特徴とする。多孔質基材がアルミナ基板であり、金属源を含む溶液が塩化パラジウムである場合の製造方法の概略図を図1に示す。以下、各工程について説明する。   The second aspect of the present invention will be described below. In the second aspect of the method for producing a composite of the present invention, (1) after impregnating a precursor solution containing a reducing agent and a gelling agent from one side of the porous substrate, the precursor solution exudes from the opposite side. Solidifying the precursor solution before obtaining a composite (C); (2) infiltrating the composite (C) with a solution containing a metal source from the opposite side into which the precursor solution has been impregnated. A step of supporting metal seed nuclei in the pores of the composite (C), (3) electroless plating of the composite (D) supporting the metal seed nuclei obtained in the step (2) A step of processing. FIG. 1 shows a schematic diagram of the production method when the porous substrate is an alumina substrate and the solution containing the metal source is palladium chloride. Hereinafter, each step will be described.

工程(1)は、多孔質基材の片側から、還元剤及びゲル化剤を含む混合溶液(以下、前駆体溶液(B)ともいう)を浸透させたのち、反対側から前駆体溶液が滲出する前に該前駆体溶液(B)を固化させて複合体(C)を得る工程である。多孔質基材、還元剤及びゲル化剤は、前記した第一の態様と同様のものを使用することができる。   In step (1), a mixed solution containing a reducing agent and a gelling agent (hereinafter also referred to as a precursor solution (B)) is infiltrated from one side of the porous substrate, and then the precursor solution exudes from the opposite side. This step is a step of solidifying the precursor solution (B) to obtain a composite (C) before performing. As the porous substrate, the reducing agent, and the gelling agent, the same materials as those in the first aspect described above can be used.

前駆体溶液(B)は、還元剤を含む溶液を作製し、該溶液とゲル化剤とを混合撹拌することにより得ることができる。   The precursor solution (B) can be obtained by preparing a solution containing a reducing agent and mixing and stirring the solution and the gelling agent.

前記ゲル化剤は、還元剤を含む溶液に添加して混合攪拌してもよく、適当な溶媒(例えば、水、エタノール、プロパノール、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒、酢酸エチル、トルエン等の無極性溶媒等)に溶解させたゲル化剤を含む溶液として、還元剤を含む溶液と混合してもよい。ゲル化剤を含む溶液として使用する場合、ゲル化剤の種類に応じて、所望によりオートクレーブ等により加圧下(例えば1.1〜2気圧)で、加熱(例えば、100〜200℃、5分〜3時間等)して溶解させてもよい。例えば、アガロースをゲル化剤として用いる場合、0.5〜7%程度の濃度になるように水に添加し、オートクレーブで加熱してアガロース溶液を調製し、該アガロース溶液と還元剤を含む溶液を混合して、前駆体溶液(B)を得ることができる。   The gelling agent may be added to a solution containing a reducing agent and mixed and stirred. A suitable solvent (for example, polar solvent such as water, ethanol, propanol, N, N-dimethylformamide, dimethyl sulfoxide, ethyl acetate) In addition, a solution containing a gelling agent dissolved in a nonpolar solvent such as toluene may be mixed with a solution containing a reducing agent. When used as a solution containing a gelling agent, depending on the type of gelling agent, heating (for example, 100 to 200 ° C., 5 minutes to 5 minutes) under pressure (eg, 1.1 to 2 atmospheres) by an autoclave or the like as desired. 3 hours) and may be dissolved. For example, when agarose is used as a gelling agent, it is added to water to a concentration of about 0.5 to 7%, heated in an autoclave to prepare an agarose solution, and a solution containing the agarose solution and a reducing agent is prepared. By mixing, a precursor solution (B) can be obtained.

前駆体溶液(B)の粘度は、特に限定されないが、通常0.5mPa・s〜1×10mPa・sであり、1.0mPa・s〜1×10mPa・sが好ましく、多孔質基材の細孔内部まで前駆体溶液(B)を十分浸透させるという点から、1.0mPa・s〜1×10mPa・sが特に好ましく、形態としてはゾルが好ましい。0.5mPa・s未満では、多孔質基材に前駆体溶液(B)を浸透させた際に、前駆体溶液(B)が表面に達する前に該前駆体溶液(B)を固化させることが困難となるおそれがあり、1×10mPa・sを超えると、多孔質基材に接触して急激に冷却される過程で粘度が増加し、前駆体溶液(B)の浸透速度が極端に低下するため、前駆体溶液(B)を多孔質基材に十分に浸透させることが困難だからである。前駆体溶液(B)の粘度は、例えば、低粘度(1×10以下)の場合、ブルックフィールドデジタル粘度計 LVDV−I+C/P(商品名、商品番号:KN3312530、株式会社テックジャム製)等のブルックフィールド粘度計(回転式粘度計)を用いて測定でき、中粘度の場合、ブルックフィールド粘度計 RVDV-II +PRO 中粘度用/KN3312541 (商品名、商品番号:KN3312541、株式会社テックジャム製)等のブルックフィールド粘度計(回転式粘度計)を用いて測定できる。 The viscosity of the precursor solution (B) is not particularly limited, but is usually 0.5 mPa · s to 1 × 10 5 mPa · s, preferably 1.0 mPa · s to 1 × 10 4 mPa · s, and is porous. In view of sufficiently allowing the precursor solution (B) to penetrate into the pores of the base material, 1.0 mPa · s to 1 × 10 3 mPa · s is particularly preferable, and the form is preferably sol. If it is less than 0.5 mPa · s, when the precursor solution (B) is infiltrated into the porous substrate, the precursor solution (B) may be solidified before the precursor solution (B) reaches the surface. When it exceeds 1 × 10 5 mPa · s, the viscosity increases in the process of rapidly cooling in contact with the porous substrate, and the penetration rate of the precursor solution (B) is extremely high. This is because it is difficult to sufficiently infiltrate the precursor solution (B) into the porous substrate. For example, when the viscosity of the precursor solution (B) is low (1 × 10 4 or less), Brookfield Digital Viscometer LVDV-I + C / P (trade name, product number: KN3312530, manufactured by Techjam Co., Ltd.), etc. Brookfield viscometer (rotary viscometer), medium viscosity, Brookfield viscometer RVDV-II + PRO for medium viscosity / KN3312541 (trade name, product number: KN3312541, manufactured by Techjam Corporation) It can be measured using a Brookfield viscometer (rotary viscometer).

本工程において、前駆体溶液(B)を多孔質基材に浸透させる際の温度、時間等は、特に限定されず、前記した第一の態様と同様のものを使用することができる。固化の方法も、前記した第一の態様と同様の方法が挙げられ、固化により複合体(C)を得ることができる。   In this step, the temperature, time, and the like when the precursor solution (B) permeates into the porous substrate are not particularly limited, and those similar to those described in the first aspect can be used. The solidification method includes the same method as in the first aspect described above, and the composite (C) can be obtained by solidification.

工程(2)は、前記複合体(C)に、前記前駆体溶液(B)を浸透させた反対側から、金属源を含む溶液を浸透させることにより、前記複合体(C)の細孔内に金属種核を担持させる工程である。   In the step (2), the composite (C) is impregnated with a solution containing a metal source from the opposite side where the precursor solution (B) is impregnated. This is a step of supporting metal seed nuclei on the substrate.

金属源を含む溶液としては、前記した第一の態様と同様のものを使用することができる。第二の態様では、前記した前駆体溶液(B)にゲル化剤を含めるため、金属源を含む溶液にゲル化剤は含まれることはない。   As a solution containing a metal source, the same solution as in the first embodiment described above can be used. In the second embodiment, since the gelling agent is included in the precursor solution (B), the gelling agent is not included in the solution containing the metal source.

前記金属源を含む溶液を多孔質基材への浸透は、通常2〜60℃程度、好ましくは20〜40℃程度にて、通常1〜120分程度、好ましくは10〜40分程度行う。次いで、溶液を除去し、通常1〜48時間程度、好ましくは8〜16時間程度、20〜110℃程度にて乾燥させることにより、多孔質基材の細孔内に金属が担持される。上記の操作によって、前記したゲル内の還元剤と前記金属源を含む溶液とが接触した部分で金属源が還元されて金属種核が形成され、多孔質基材の細孔内に金属種核を担持した複合体(D)を得ることができる。なお、本発明の製造方法により得られる複合体は、金属が多孔質基材の表面に付着することはないため、多孔質基材の表面に保護材を積層することを要しない。   The penetration of the solution containing the metal source into the porous substrate is usually about 2 to 60 ° C., preferably about 20 to 40 ° C., usually about 1 to 120 minutes, preferably about 10 to 40 minutes. Next, the solution is removed, and the metal is supported in the pores of the porous substrate by drying at about 20 to 110 ° C. for about 1 to 48 hours, preferably about 8 to 16 hours. By the above operation, the metal source is reduced at the portion where the reducing agent in the gel and the solution containing the metal source are in contact with each other to form a metal seed nucleus, and the metal seed nucleus is formed in the pores of the porous substrate. Can be obtained. In the composite obtained by the production method of the present invention, the metal does not adhere to the surface of the porous base material, and thus it is not necessary to laminate a protective material on the surface of the porous base material.

工程(3)は、前記(2)の工程で得られた金属種核を担持した複合体(D)を無電解メッキ処理する工程である。無電解メッキ処理は、前記した第一の態様と同様に行うことができる。   Step (3) is a step of subjecting the composite (D) carrying the metal seed nucleus obtained in the step (2) to electroless plating. The electroless plating treatment can be performed in the same manner as in the first aspect described above.

さらに、前記した第一の態様と同様に、必要に応じて、前記(3)工程の前又は前記(3)工程の後に、得られた複合体を洗浄及び/又は焼成処理し、不要なゲルおよび金属源等の担持された金属核種以外の余分な残留物を除去する工程を含んでいてもよい。洗浄方法としては、特に限定されないが、例えば、水、エタノール等に複合体を浸漬したのち、超音波洗浄を行なう方法が挙げられる。超音波洗浄で得られた残留物(余剰金属源、ゲル等)を回収して再利用することもできる。また、ゲル等を完全に除去するために、空気中で焼成処理(例えば、400〜900℃)を行ってもよい。   Further, as in the first aspect described above, the obtained complex is washed and / or baked before the step (3) or after the step (3) as necessary, and an unnecessary gel is obtained. And a step of removing excess residues other than the supported metal nuclide such as a metal source. Although it does not specifically limit as a washing | cleaning method, For example, after immersing a composite_body | complex in water, ethanol, etc., the method of performing ultrasonic cleaning is mentioned. Residues (excess metal source, gel, etc.) obtained by ultrasonic cleaning can be recovered and reused. Further, in order to completely remove the gel or the like, a baking treatment (for example, 400 to 900 ° C.) may be performed in the air.

工程(3)の後に、上記洗浄及び/又は焼成処理をした場合、複合体中の金属の緻密化向上を目的として、必要に応じて、さらに、上記した条件で無電解めっき処理を行ってもよく、工程(2)から繰り返しもよく、工程(1)から繰り返してもよい。例えば、一度目は、工程(3)の無電解めっき処理を短時間(例えば、5〜30分程度)行い、上記洗浄及び/又は焼成処理をしたのち、工程(2)を再度行い、次いで、工程(3)の無電解めっき処理(例えば、1〜3時間程度)を行う方法が好ましく挙げられる。   When the washing and / or baking treatment is performed after step (3), an electroless plating treatment may be performed under the above-described conditions as necessary for the purpose of improving the densification of the metal in the composite. It may be repeated from step (2) or may be repeated from step (1). For example, for the first time, the electroless plating process of step (3) is performed for a short time (for example, about 5 to 30 minutes), and after the washing and / or baking process, step (2) is performed again, The method of performing the electroless plating process (for example, about 1-3 hours) of a process (3) is mentioned preferably.

上記した本発明の製造方法により、多孔質基材の細孔に金属が充填され、層を形成しており、多孔質基材の表面に保護層を有しない複合体が得られる。   By the production method of the present invention described above, a composite is obtained in which the pores of the porous substrate are filled with metal to form a layer, and the surface of the porous substrate does not have a protective layer.

本発明に係る複合体は上記の通り、多孔質基材の細孔に金属が充填されているとともに、該金属により細孔が閉塞されており、しかも該金属が多孔質基材の表面ではなく、基材の表面より内側に層を成して存在する。前記複合体の断面図を図2に示す。   As described above, the composite according to the present invention is filled with metal in the pores of the porous substrate, and the pores are blocked by the metal, and the metal is not the surface of the porous substrate. , Existing in layers from the surface of the substrate. A cross-sectional view of the composite is shown in FIG.

本発明に係る複合体における金属充填層の厚さは、特に限定されないが、1〜10μmとすることが好ましい。本発明の製造方法によって得られた複合体は、金属充填層の空隙率が30%程度であるため、充填金属(例えば、パラジウム)の使用量を低減させることが可能となる。   The thickness of the metal filling layer in the composite according to the present invention is not particularly limited, but is preferably 1 to 10 μm. Since the composite obtained by the production method of the present invention has a porosity of the metal-filled layer of about 30%, it is possible to reduce the amount of filler metal (for example, palladium) used.

次に、本発明の製造方法によって製造された複合体を水素分離膜として使用した場合の水素分離方法について説明する。本発明の水素分離方法は、水素を含有する混合ガス(以下、水素混合ガスという)を前記複合体に接触させて、水素を選択的に透過させることを特徴とする。   Next, a hydrogen separation method when the composite produced by the production method of the present invention is used as a hydrogen separation membrane will be described. The hydrogen separation method of the present invention is characterized in that hydrogen is selectively permeated by bringing a mixed gas containing hydrogen (hereinafter referred to as hydrogen mixed gas) into contact with the composite.

本方法の具体的な態様としては、前記複合体の片側(例えば、管状複合体の場合、内側)に水素混合ガスを置き、その反対側(例えば、複合体の場合、外側)の水素分圧を水素混合ガスの水素分圧以下にすれば、複合体中を水素が選択的に透過し、水素混合ガス中にある水素を反対側に分離することができる。この水素分離方法は通常室温〜700℃程度、好ましくは300〜600℃程度の温度で好適に実施することができる。   As a specific aspect of this method, a hydrogen mixed gas is placed on one side of the composite (for example, the inner side in the case of a tubular composite), and the hydrogen partial pressure on the opposite side (for example, the outer side in the case of a composite). Can be made to be equal to or lower than the hydrogen partial pressure of the hydrogen mixed gas, hydrogen can selectively permeate through the composite, and hydrogen in the hydrogen mixed gas can be separated to the opposite side. This hydrogen separation method can be suitably carried out at a temperature of usually room temperature to about 700 ° C., preferably about 300 to 600 ° C.

前記水素混合ガスとしては、水素を含有しているガスであれば特に限定されず、例えば、水素と、酸素、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン、フッ素、塩素、臭素、一酸化炭素、二酸化炭素、一酸化窒素、二酸化窒素、アンモニア、二酸化イオウ、硫化水素、塩化水素、水(水蒸気)、メタノール、エタノール、パラフィン系炭化水素またはオレフィン系炭化水素等との混合ガスが挙げられる。なお、前記パラフィン系炭化水素は、飽和鎖式炭化水素、アルカンまたはメタン系炭化水素とも呼ばれ、このようなパラフィン系炭化水素としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等が挙げられる。   The hydrogen mixed gas is not particularly limited as long as it contains hydrogen. For example, hydrogen and oxygen, nitrogen, helium, neon, argon, krypton, xenon, radon, fluorine, chlorine, bromine, one Carbon dioxide, carbon dioxide, nitrogen monoxide, nitrogen dioxide, ammonia, sulfur dioxide, hydrogen sulfide, hydrogen chloride, water (steam), methanol, ethanol, paraffinic hydrocarbons, olefinic hydrocarbons, etc. . The paraffinic hydrocarbons are also called saturated chain hydrocarbons, alkanes, or methane hydrocarbons. Examples of such paraffinic hydrocarbons include methane, ethane, propane, butane, pentane, hexane, and heptane. , Octane and the like.

以下に、実施例および試験例を用いて本発明を説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、多孔質基材は、細孔径0.1μm、直径10mm、内径7mmのαアルミナ製のチューブ状(日本ガイシ株式会社製)の多孔質基材(以下、「アルミナ基板」と略称する)を使用した。   Hereinafter, the present invention will be described using examples and test examples, but the present invention is not limited to these examples. In the following examples, the porous substrate is an α-alumina tubular substrate (manufactured by NGK Co., Ltd.) having a pore diameter of 0.1 μm, a diameter of 10 mm, and an inner diameter of 7 mm (hereinafter referred to as “alumina substrate”). For short).

[実施例1]
以下のようにして、複合体を製造した。全工程の合成スキームを図3に示す。
〔工程(1)〕
以下のようにして、アガロースゾル中にパラジウムの種結晶の原料となる塩化パラジウムを分散させて塩化パラジウムゾルを調製した。塩化パラジウム溶液は、0.025gの塩化パラジウム(和光純薬工業株式会社)を0.025mlの塩酸に溶解させ、脱イオン水を加えて全量を5mlとすることにより調製した。ガラス瓶に1.25gのアガロースL(株式会社ニッポンジーン)および脱イオン水20ml加え、100℃に温度設定した恒温槽内で3時間加熱を行い、5%アガロースゾル溶液を調製した。調製直後のアガロースゾル溶液は、水と変わらないほど粘度は極めて低かった(約1.0mPa・s)。得られたアガロースゾル溶液が固化し始めないために、調製直後のアガロースゾル溶液に前記塩化パラジウム溶液を加え、攪拌して、前駆体溶液として塩化パラジウムゾル溶液を調製した。調製直後の該塩化パラジウムゾル溶液をアルミナ基板の内筒側に注入し、溶液を室温で1分程度浸漬させた。次いで、容量3Lのプラスチックビーカーに水および氷を満たして氷浴槽を準備し、該氷浴槽中に脱イオン水をいれた丸底φ40×350mmのガラス試験管を挿入し、この中に塩化パラジウムゾル充填を行ったアルミナ基板を挿入することで、塩化パラジウムゾル溶液が表面から滲出する前に、塩化パラジウムゾル溶液を冷却させて凝固させ(アガロースの凝固温度:35℃)、塩化パラジウムゲルを固定化させた。
[Example 1]
A composite was produced as follows. A synthetic scheme of all steps is shown in FIG.
[Step (1)]
A palladium chloride sol was prepared by dispersing palladium chloride as a raw material for the seed crystal of palladium in an agarose sol as follows. The palladium chloride solution was prepared by dissolving 0.025 g of palladium chloride (Wako Pure Chemical Industries, Ltd.) in 0.025 ml of hydrochloric acid and adding deionized water to a total volume of 5 ml. To a glass bottle, 1.25 g of Agarose L (Nippon Gene Co., Ltd.) and 20 ml of deionized water were added and heated in a thermostat set at 100 ° C. for 3 hours to prepare a 5% agarose sol solution. The agarose sol solution immediately after preparation had an extremely low viscosity (about 1.0 mPa · s) as much as water. Since the obtained agarose sol solution did not start to solidify, the palladium chloride solution was added to the agarose sol solution immediately after preparation and stirred to prepare a palladium chloride sol solution as a precursor solution. The palladium chloride sol solution immediately after preparation was poured into the inner cylinder side of the alumina substrate, and the solution was immersed for about 1 minute at room temperature. Next, a plastic beaker with a capacity of 3 L was filled with water and ice to prepare an ice tub, and a glass test tube having a round bottom of φ40 × 350 mm filled with deionized water was inserted into the ice tub. By inserting the filled alumina substrate, the palladium chloride sol solution is cooled and solidified (solidification temperature of agarose: 35 ° C) before the palladium chloride sol solution exudes from the surface, and the palladium chloride gel is immobilized. I let you.

〔工程(2)〕
多孔質アルミナ基板へのパラジウム複合化は以下の手順にて実施した。還元剤としてヒドラジン水溶液を用いた。ヒドラジン水溶液は、1mlの含水ヒドラジン(和光純薬工業株式会社)を脱イオン水で希釈し、全量を200mlとすることにより調製した。工程(1)で得られた塩化パラジウムゲルを充填したアルミナ基板をヒドラジン水溶液に、室温で30秒浸漬させ、還元剤を注入することで、ゲル中のパラジウムの還元処理を行い、パラジウム種核を形成させた。還元処理後、脱イオン水にて、十分に洗浄を行った。
[Step (2)]
The palladium composite to the porous alumina substrate was carried out by the following procedure. A hydrazine aqueous solution was used as a reducing agent. The hydrazine aqueous solution was prepared by diluting 1 ml of hydrous hydrazine (Wako Pure Chemical Industries, Ltd.) with deionized water to make the total amount 200 ml. The alumina substrate filled with the palladium chloride gel obtained in the step (1) is immersed in a hydrazine aqueous solution at room temperature for 30 seconds, and a reducing agent is injected to reduce the palladium in the gel. Formed. After the reduction treatment, it was thoroughly washed with deionized water.

〔工程(3)〕
パラジウム種核形成後、パラジウム充填率の向上を目的として、以下のようにして、アルミナ多孔質基板へ無電解めっき処理を実施した。めっき液は市販のパラジウムめっき液であるパラトップ(商品名、還元剤:ギ酸ナトリウム、奥野製薬工業株式会社)を規定の濃度に希釈して使用した。すなわち、20mlのパラトップA液および20mlのパラトップB液に脱イオン水を加え、全量200mlとして使用した。めっき温度は50℃、めっき時間は1時間30分として反応を行った。無電解めっき後、複合体を80℃の脱イオン水に浸漬させ、めっき液の洗浄および塩化パラジウムゲルの除去を行い、複合体を得た。
[Step (3)]
After the formation of the palladium seed nuclei, an electroless plating treatment was performed on the alumina porous substrate as follows for the purpose of improving the palladium filling rate. The plating solution used was a commercially available palladium plating solution, Paratop (trade name, reducing agent: sodium formate, Okuno Pharmaceutical Co., Ltd.) diluted to a prescribed concentration. That is, deionized water was added to 20 ml of Paratop A liquid and 20 ml of Paratop B liquid, and used as a total volume of 200 ml. The reaction was performed at a plating temperature of 50 ° C. and a plating time of 1 hour 30 minutes. After electroless plating, the composite was immersed in deionized water at 80 ° C., the plating solution was washed, and the palladium chloride gel was removed to obtain a composite.

作製した複合体(複合膜)の構造をレーザー顕微鏡(VK−8500:商品名、株式会社キーエンス製)にて観察した。レーザー顕微鏡観察の観察結果を図4に示す。無電解めっき処理により形成されたパラジウム複合層は15μmであり、アルミナ基板内に選択的に複合層が形成されていることが確認された。これは、無電解めっきの反応場となるパラジウム核が、予めアルミナ支持体内に選択的に配されていることによる。   The structure of the produced composite (composite film) was observed with a laser microscope (VK-8500: trade name, manufactured by Keyence Corporation). The observation result of laser microscope observation is shown in FIG. The palladium composite layer formed by the electroless plating treatment was 15 μm, and it was confirmed that the composite layer was selectively formed in the alumina substrate. This is because palladium nuclei serving as a reaction field for electroless plating are selectively disposed in advance in an alumina support.

[実施例2]
〔工程(1)〕
以下のようにして、アガロースゾル中に還元剤となる塩化すずを分散させてアガロースゾルと調製した。塩化すず溶液は0.05gの塩化すず(和光純薬工業株式会社)を0.05mlの塩酸に溶解させ、全量を10mlとすることにより調製した。ガラス瓶に0.75gのアガロースL(株式会社ニッポンジーン)および脱イオン水4.0mlを加え、100℃に温度設定した恒温槽内で3時間加熱を行い、5%アガロースゾル溶液を調製した。調製直後のアガロースゾル溶液は、水と変わらないほど粘度は極めて低かった(約1.0mPa・s)。得られたアガロースゾル溶液が固化し始めないために、調製直後のアガロースゾル溶液に前記塩化すず溶液を加え、攪拌して、前駆体溶液として還元剤ゾル溶液を調製した。調製直後の還元剤ゾル溶液をアルミナ基板の内筒側に注入し、溶液を室温で1分程度浸透させ、溶液が表面から滲出する前に、空気中で冷却させて凝固させ還元剤ゲルを固定化させた。
[Example 2]
[Step (1)]
As described below, an agarose sol was prepared by dispersing tin chloride as a reducing agent in an agarose sol. The tin chloride solution was prepared by dissolving 0.05 g of tin chloride (Wako Pure Chemical Industries, Ltd.) in 0.05 ml of hydrochloric acid to make the total amount 10 ml. 0.75 g of Agarose L (Nippon Gene Co., Ltd.) and 4.0 ml of deionized water were added to a glass bottle and heated in a thermostatic bath set at 100 ° C. for 3 hours to prepare a 5% agarose sol solution. The agarose sol solution immediately after preparation had an extremely low viscosity (about 1.0 mPa · s) as much as water. Since the obtained agarose sol solution did not start to solidify, the tin chloride solution was added to the agarose sol solution immediately after preparation and stirred to prepare a reducing agent sol solution as a precursor solution. Immediately after preparation, the reducing agent sol solution is injected into the inner cylinder side of the alumina substrate, and the solution is allowed to permeate at room temperature for about 1 minute. Before the solution exudes from the surface, it is cooled in air and solidified to fix the reducing agent gel. Made it.

〔工程(2)〕
多孔質アルミナ基板へのパラジウム複合化は以下の手順にて実施した。パラジウム源として塩化パラジウム酸水溶液を用いた。塩化パラジウム酸水溶液は、0.1gの塩化パラジウム(II)(和光純薬工業株式会社)を0.1mlの塩酸に溶解させ、全量を1000mlとして調製した。工程(1)で得られた還元剤ゲルを充填したアルミナ基板を、塩化パラジウム酸水溶液に室温で10分浸漬させることで、アルミナ基板内へパラジウムの担持を行った。パラジウム種核形成後、脱イオン水にて、十分に洗浄を行った。
[Step (2)]
The palladium composite to the porous alumina substrate was carried out by the following procedure. A palladium chloride acid aqueous solution was used as a palladium source. A palladium chloride acid aqueous solution was prepared by dissolving 0.1 g of palladium (II) chloride (Wako Pure Chemical Industries, Ltd.) in 0.1 ml of hydrochloric acid to make a total amount of 1000 ml. The alumina substrate filled with the reducing agent gel obtained in the step (1) was immersed in an aqueous chloropalladium acid solution at room temperature for 10 minutes to carry palladium on the alumina substrate. After the formation of palladium seed nuclei, it was thoroughly washed with deionized water.

〔工程(3)〕
パラジウム種核形成後、パラジウム充填率の向上を目的として、以下のようにして、アルミナ多孔質基板へ無電解めっき処理を実施した。680mlの28%アンモニア水溶液(和光純薬工業株式会社)に、3.6gの塩化パラジウムおよび74.5gのエチレンジアミン4酢酸・2ナトリウム塩(和光純薬工業株式会社)を溶解させた後、脱イオン水を加えることにより1000mlとした。その後、無電解めっき処理直前に0.5mlのヒドラジン1水和物を添加し、無電解めっき液とした。無電解めっきはめっき液を多孔質基材の外側(還元剤ゾル溶液を注入した面とは反対側)から浸透させることにより行った。めっき温度は50℃、めっき時間は2時間として反応を行った。
[Step (3)]
After the formation of the palladium seed nuclei, an electroless plating treatment was performed on the alumina porous substrate as follows for the purpose of improving the palladium filling rate. After dissolving 3.6 g of palladium chloride and 74.5 g of ethylenediaminetetraacetic acid disodium salt (Wako Pure Chemical Industries, Ltd.) in 680 ml of 28% aqueous ammonia (Wako Pure Chemical Industries, Ltd.), deionization The volume was made up to 1000 ml by adding water. Thereafter, immediately before the electroless plating treatment, 0.5 ml of hydrazine monohydrate was added to obtain an electroless plating solution. Electroless plating was performed by infiltrating the plating solution from the outside of the porous substrate (the side opposite to the surface on which the reducing agent sol solution was injected). The reaction was performed at a plating temperature of 50 ° C. and a plating time of 2 hours.

〔工程(4)〕
無電解めっき後、複合体を80℃の脱イオン水中に3時間浸漬し、めっき液の洗浄およびアガロースゲルの除去を行った。Pd層の緻密性を向上させることを目的として、無電解めっき処理後、複合体に焼結処理を行った。不活性ガス(窒素ガス)を流通させた条件(200ml/min)で700℃、20時間の焼成処理を行った。
[Step (4)]
After electroless plating, the composite was immersed in deionized water at 80 ° C. for 3 hours to wash the plating solution and remove the agarose gel. For the purpose of improving the denseness of the Pd layer, the composite was sintered after the electroless plating treatment. A baking treatment was performed at 700 ° C. for 20 hours under a condition (200 ml / min) in which an inert gas (nitrogen gas) was circulated.

〔工程(5)〕
焼成処理後、Pd膜の緻密化向上を目的として行った。前記した無電解めっき処理を1時間行い、膜の緻密化を行った。
[Step (5)]
After the baking treatment, it was performed for the purpose of improving the densification of the Pd film. The electroless plating process described above was performed for 1 hour to densify the film.

作製した複合体(複合膜)の構造をレーザー顕微鏡(VK−8500:商品名、株式会社キーエンス製)にて観察し、およびエネルギー分散型X線分析装置(EDX、製品名:Genesis-XM2、エダックス・ジャパン株式会社)により分析した。レーザー顕微鏡観察の観察結果を図5に示す。レーザー顕微鏡観察の結果、無電解めっき処理により形成されたパラジウム複合層は20μmであり、アルミナ基板内に選択的に複合層が形成されていることが確認された。   The structure of the produced composite (composite film) was observed with a laser microscope (VK-8500: trade name, manufactured by Keyence Corporation), and an energy dispersive X-ray analyzer (EDX, product name: Genesis-XM2, EDAX) -Japan Co., Ltd.) The observation result of laser microscope observation is shown in FIG. As a result of laser microscope observation, the palladium composite layer formed by electroless plating was 20 μm, and it was confirmed that the composite layer was selectively formed in the alumina substrate.

[実施例3]
実施例1の工程(3)の無電解めっき処理(一次めっき)を10分とする以外は、実施例1と同様に工程(3)まで行った。次いで、得られた複合体を80℃の脱イオン水に浸漬させてゲルを抽出したのち、850℃の空気条件で12時間焼成し、微量に残存しているゲルの除去を行った。得られた複合体をヒドラジン水溶液に一晩浸漬して還元処理を行った。ヒドラジン水溶液は、1mlの含水ヒドラジン(和光純薬工業株式会社)を脱イオン水で希釈し、全量を200mlとすることにより調製した。還元処理を行った後に、50℃、1時間30分の条件で二次めっき処理を行った。なお、一次めっき及び二次めっきは奥野製薬工業株式会社製のパラトップを規定の条件で調製しためっき液を使用した。図6(a)および図6(b)に作製した膜のEDX分析結果を示す。
[Example 3]
The process up to Step (3) was performed in the same manner as in Example 1 except that the electroless plating treatment (primary plating) in Step (3) of Example 1 was 10 minutes. Next, the obtained composite was immersed in deionized water at 80 ° C. to extract the gel, and then baked for 12 hours at 850 ° C. in air to remove the remaining gel. The obtained composite was immersed in a hydrazine aqueous solution overnight to perform a reduction treatment. The hydrazine aqueous solution was prepared by diluting 1 ml of hydrous hydrazine (Wako Pure Chemical Industries, Ltd.) with deionized water to make the total amount 200 ml. After performing the reduction treatment, the secondary plating treatment was performed at 50 ° C. for 1 hour and 30 minutes. The primary plating and the secondary plating used a plating solution prepared by a paratop manufactured by Okuno Pharmaceutical Co., Ltd. under specified conditions. FIG. 6A and FIG. 6B show the results of EDX analysis of the produced film.

図6の結果から、パラジウム核析出担持後及び一次めっき後にPdピークが確認された位置に、二次めっき後にもPdピークが確認された。無電解めっきにより形成されたパラジウム充填層は8μmであり、本発明により、アルミナ基板内に金属を選択的に充填することができることが確認された。   From the result of FIG. 6, the Pd peak was also confirmed after the secondary plating at the position where the Pd peak was confirmed after supporting the palladium nucleus precipitation and after the primary plating. The palladium-filled layer formed by electroless plating is 8 μm, and it was confirmed that the metal can be selectively filled in the alumina substrate according to the present invention.

[試験例1]
実施例1で得られたパラジウム複合化アルミナ膜を用いて気体透過試験を行った。600℃から200℃の温度条件下で水素/窒素(H/N=50/50)混合ガス透過試験を下記条件にて実施した。気体透過試験装置の模式図を図7に示す。図7に示すように、H/N混合ガスを、実施例で得られた複合体に接触させて、前記複合体を透過したガス(透過ガス)をサンプリングして、下記実験条件にてガスクロマトグラフィー(GC)測定を行った。500℃から200℃におけるガス透過試験結果を図8に示す。
[Test Example 1]
A gas permeation test was performed using the palladium composite alumina membrane obtained in Example 1. A hydrogen / nitrogen (H 2 / N 2 = 50/50) mixed gas permeation test was performed under the following conditions under a temperature condition of 600 ° C. to 200 ° C. A schematic diagram of the gas permeation test apparatus is shown in FIG. As shown in FIG. 7, the H 2 / N 2 mixed gas was brought into contact with the composite obtained in the example, and the gas permeated through the composite (permeated gas) was sampled, under the following experimental conditions. Gas chromatography (GC) measurement was performed. The gas permeation test results from 500 ° C. to 200 ° C. are shown in FIG.

(実験条件)
ガス分析:ガスクロマトグラフィー;GC(TCD)
カラム:Porapak−N 2m、Molecular Sieve 13X 2m(GLサイエンス株式会社)
キャリアガス:Ar
テストガス:H/N=50/50
ガス流量:2000ml/分
入口ガス圧力:50kPa(出口は真空ポンプ減圧で差圧が150kPa)
(Experimental conditions)
Gas analysis: gas chromatography; GC (TCD)
Column: Porapak-N 2m, Molecular Sieve 13X 2m (GL Science Co., Ltd.)
Carrier gas: Ar
Test gas: H 2 / N 2 = 50/50
Gas flow rate: 2000 ml / min Inlet gas pressure: 50 kPa (Outlet is vacuum pump depressurized and differential pressure is 150 kPa)

(結果)
500℃における気体透過試験の結果、水素の透過度PH2は3.5×10−8−2−1Pa−1程度であり、水素選択性α=PH2/PN2は100程度で試験中ほぼ安定な性能を示した。また、試験温度を水素脆化が起こる200℃まで低下させても、50時間の試験時間において水素選択性は25程度を維持しており、水素透過度は1.1×10−8−2−1Pa−1程度の値を示した。試験開始100時間以降、再び500℃まで昇温したところ、初期状態と同等の3.5×10−8−2−1Pa−1の水素透過度および100程度の水素選択性を示した。
(result)
As a result of the gas permeation test at 500 ° C., the hydrogen permeability P H2 is about 3.5 × 10 −8 m 3 m −2 s −1 Pa −1 , and the hydrogen selectivity α = P H2 / P N2 is 100. It showed almost stable performance during the test. Further, even when the test temperature is lowered to 200 ° C. at which hydrogen embrittlement occurs, the hydrogen selectivity is maintained at about 25 in the test time of 50 hours, and the hydrogen permeability is 1.1 × 10 −8 m 3 m. A value of about −2 s −1 Pa −1 was shown. When the temperature was raised again to 500 ° C. after 100 hours from the start of the test, the hydrogen permeability of 3.5 × 10 −8 m 3 m −2 s −1 Pa −1 equivalent to the initial state and the hydrogen selectivity of about 100 were obtained. Indicated.

[試験例2]
実施例2で得られたパラジウム複合化アルミナ膜を用いて気体透過試験を行った。500℃から200℃の温度条件下とする以外は、試験例1と同様の条件にて実施した。結果を図9に示す。
[Test Example 2]
A gas permeation test was performed using the palladium composite alumina membrane obtained in Example 2. The test was carried out under the same conditions as in Test Example 1 except that the temperature was from 500 ° C to 200 ° C. The results are shown in FIG.

(結果)
500℃における気体透過試験の結果、水素の透過度は1.8×10−8−2−1Pa−1程度であり、水素選択性は初期値700程度で試験中ほぼ安定な性能を示した。また、試験温度を水素脆化が起こる200℃まで低下させても、70時間の試験時間において水素選択性は80程度を維持しており、水素透過度は1.1×10−8−2−1Pa−1程度の値を示した。試験開始100時間以降、再び500℃まで昇温したところ、初期状態と同等の1.8×10−8−2−1Pa−1の水素透過度および700程度の水素選択性を示した。さらに600℃まで昇温させたところ、2.7×10−8−2−1Pa−1の水素透過度および800程度の水素選択性を示した。
(result)
As a result of the gas permeation test at 500 ° C., the hydrogen permeability is about 1.8 × 10 −8 m 3 m −2 s −1 Pa −1 , and the hydrogen selectivity is about 700 at the initial value and is almost stable during the test. Showed performance. Further, even when the test temperature is lowered to 200 ° C. where hydrogen embrittlement occurs, the hydrogen selectivity is maintained at about 80 in the test time of 70 hours, and the hydrogen permeability is 1.1 × 10 −8 m 3 m. A value of about −2 s −1 Pa −1 was shown. When the temperature was raised again to 500 ° C. after 100 hours from the start of the test, the hydrogen permeability of 1.8 × 10 −8 m 3 m −2 s −1 Pa −1 equivalent to the initial state and hydrogen selectivity of about 700 were obtained. Indicated. When the temperature was further raised to 600 ° C., hydrogen permeability of 2.7 × 10 −8 m 3 m −2 s −1 Pa −1 and hydrogen selectivity of about 800 were exhibited.

[試験例3]
実施例3で得られたパラジウム複合化アルミナ膜を用いて気体透過試験を行った。500℃の温度条件下とする以外は、試験例1と同様の条件にて実施した。結果を図10に示す。
[Test Example 3]
A gas permeation test was performed using the palladium composite alumina membrane obtained in Example 3. The test was carried out under the same conditions as in Test Example 1 except that the temperature was 500 ° C. The results are shown in FIG.

(結果)
500℃における気体透過試験の結果、水素の透過度は2.5×10−8−2−1Pa−1程度であり、水素選択性は初期値6000程度の値を示した。また、200時間の連続試験においても5000程度の水素選択性を保持していた。これはPd層の剥離などによる急激な膜の破壊がおこらなかったためであると考えられる。
(result)
As a result of the gas permeation test at 500 ° C., the hydrogen permeability was about 2.5 × 10 −8 m 3 m −2 s −1 Pa −1 , and the hydrogen selectivity showed an initial value of about 6000. In addition, the hydrogen selectivity of about 5000 was maintained even in a continuous test for 200 hours. This is presumably because the film was not broken rapidly due to peeling of the Pd layer.

以上の試験例1〜3の結果より、本発明の製造方法は、得られる複合体を水素分離膜として使用する場合、水素耐久性を向上させ、膜の性能寿命を増加させることが可能であり、優れた透過速度を有する水素分離膜を作製することが可能である。さらに、本水素分離膜は、アルミナ基板内にパラジウム粒子が充填された構造を取っており、耐熱性の向上、膜表面の保護など、実用化面においても有用である。また、作製した複合体の構造から推定される空隙率は20〜30%程度であるため、Pdの使用量を低減させることもできる。   From the results of the above Test Examples 1 to 3, the production method of the present invention can improve the hydrogen durability and increase the performance life of the membrane when the obtained composite is used as a hydrogen separation membrane. It is possible to produce a hydrogen separation membrane having an excellent permeation rate. Further, the hydrogen separation membrane has a structure in which palladium particles are filled in an alumina substrate, and is useful in practical use such as improvement of heat resistance and protection of the membrane surface. Moreover, since the porosity estimated from the structure of the produced composite is about 20 to 30%, the amount of Pd used can be reduced.

本発明の製造方法により得られる複合体は、水素透過性及び耐久性に優れ、安価かつ簡便な提供されるため、燃料電池システムに含まれる水素製造装置等に有用である。   The composite obtained by the production method of the present invention is excellent in hydrogen permeability and durability, and is provided inexpensively and simply, and thus is useful for a hydrogen production apparatus included in a fuel cell system.

1 金属充填層
2 多孔質基材
3 複合体
4 金属核
5 ゲル
DESCRIPTION OF SYMBOLS 1 Metal filling layer 2 Porous base material 3 Composite 4 Metal nucleus 5 Gel

Claims (10)

複合体の製造方法であって、
(1)金属源及びゲル化剤を含む前駆体溶液を作製し、該前駆体溶液を多孔質基材の片側から浸透させたのち、反対側から該前駆体溶液が滲出する前に、該前駆体溶液を固化させて複合体(A)を得る工程、
(2)前記複合体(A)に、前記前駆体溶液を浸透させた反対側から、還元剤を含む溶液を浸透させることにより、前記複合体(A)の細孔内に金属種核を担持させる工程、
(3)前記(2)の工程で得られた金属種核を担持した複合体(B)を無電解メッキ処理する工程、を含むことを特徴とする複合体の製造方法。
A method for producing a composite, comprising:
(1) After preparing a precursor solution containing a metal source and a gelling agent and infiltrating the precursor solution from one side of the porous substrate, before the precursor solution exudes from the opposite side, the precursor solution Solidifying the body solution to obtain the composite (A),
(2) A metal seed nucleus is supported in the pores of the composite (A) by impregnating the composite (A) with a solution containing a reducing agent from the opposite side into which the precursor solution has been impregnated. The process of
(3) A method for producing a composite, comprising a step of electroless plating the composite (B) carrying the metal seed nucleus obtained in the step (2).
複合体の製造方法であって、
(1)還元剤及びゲル化剤を含む前駆体溶液を多孔質基材の片側から浸透させたのち、反対側から該前駆体溶液が滲出する前に、該前駆体溶液を固化させて複合体(C)を得る工程、
(2)前記複合体(C)に、前記前駆体溶液を浸透させた反対側から金属源を含む溶液を浸透させることにより、前記複合体(C)の細孔内に金属種核を担持させる工程、
(3)前記(2)の工程で得られた金属種核を担持した複合体(D)を無電解メッキ処理する工程、を含むことを特徴とする複合体の製造方法。
A method for producing a composite, comprising:
(1) After allowing a precursor solution containing a reducing agent and a gelling agent to permeate from one side of the porous substrate, before the precursor solution exudes from the opposite side, the precursor solution is solidified to form a composite Obtaining (C),
(2) A metal seed nucleus is supported in the pores of the composite (C) by infiltrating the composite (C) with a solution containing a metal source from the opposite side into which the precursor solution has been infiltrated. Process,
(3) A method for producing a composite, comprising a step of subjecting the composite (D) carrying the metal seed nucleus obtained in the step (2) to electroless plating.
さらに、前記(3)の工程の前又は(3)の工程の後に、上記(2)の工程で得られた複合体を洗浄及び/又は焼成する工程を含む請求項1又は2に記載の製造方法。   Furthermore, the manufacturing of Claim 1 or 2 including the process of wash | cleaning and / or baking the composite_body | complex obtained by the process of said (2) before the process of said (3) or after the process of (3). Method. ゲル化剤が、アガロース、寒天、でんぷん、アラビアガム、サイリウムシードガム、プルラン、ゼラチン、デキストリン、トラガカント(tragacanth)、ペクチン、グルコマンナン、ガラクトマンナン、キサンタンガム、タマリンドシードガム、カラギーナン、ジェランガム、カルボキシビニルポリマー、アクリルコポリマー、ポリアクリルアミド類、水溶性セルロース性ポリマー、ポリビニルピロリドン、ベントナイト、エチルセルロース、ポリエチレン、プロピレングリコール、カルボキシメチルセルロースナトリウム、ガッディーガム、アラビノガラクタン及びカードランからなる群から選ばれる1以上である請求項1〜3のいずれかに記載の製造方法。   Gelling agents are agarose, agar, starch, gum arabic, psyllium gum, pullulan, gelatin, dextrin, tragacanth, pectin, glucomannan, galactomannan, xanthan gum, tamarind seed gum, carrageenan, gellan gum, carboxyvinyl polymer 1 or more selected from the group consisting of acrylic copolymers, polyacrylamides, water-soluble cellulosic polymers, polyvinylpyrrolidone, bentonite, ethylcellulose, polyethylene, propylene glycol, sodium carboxymethylcellulose, gaddy gum, arabinogalactan and curdlan The manufacturing method in any one of 1-3. 還元剤が、アスコルビン酸、アスコルビン酸ナトリウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミンボラン、トリメチルアミンボラン、クエン酸、クエン酸ナトリウム、タンニン酸、ジボラン、ヒドラジン、ホルムアルデヒド、グルコースおよび塩化スズからなる群から選ばれる1以上である請求項1〜4のいずれかに記載の製造方法。   The reducing agent consists of ascorbic acid, sodium ascorbate, sodium borohydride, potassium borohydride, dimethylamine borane, trimethylamine borane, citric acid, sodium citrate, tannic acid, diborane, hydrazine, formaldehyde, glucose and tin chloride It is 1 or more chosen from a group, The manufacturing method in any one of Claims 1-4. 金属源が、金属イオン、金属微粒子、又は、金属を含む化合物であることを特徴とする請求項1〜5のいずれかに記載の製造方法。   6. The method according to claim 1, wherein the metal source is a metal ion, metal fine particles, or a compound containing a metal. 金属が、周期表の4族、5族、8〜11族のいずれかの遷移金属である請求項6記載の製造方法。   The manufacturing method according to claim 6, wherein the metal is a transition metal of any of groups 4, 5, and 8 to 11 in the periodic table. 金属が、パラジウムである請求項6記載の製造方法。   The method according to claim 6, wherein the metal is palladium. 請求項1〜8のいずれかに記載の製造方法によって得られることを特徴とする水素分離膜。   A hydrogen separation membrane obtained by the production method according to claim 1. 水素を含有する混合ガスを、請求項9に記載の水素分離膜に接触させて、水素を選択的に透過させることを特徴とする水素分離方法。   A hydrogen separation method, wherein hydrogen is selectively permeated by bringing a mixed gas containing hydrogen into contact with the hydrogen separation membrane according to claim 9.
JP2009288496A 2009-12-18 2009-12-18 Method for producing composite Active JP5253369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288496A JP5253369B2 (en) 2009-12-18 2009-12-18 Method for producing composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288496A JP5253369B2 (en) 2009-12-18 2009-12-18 Method for producing composite

Publications (2)

Publication Number Publication Date
JP2011125818A true JP2011125818A (en) 2011-06-30
JP5253369B2 JP5253369B2 (en) 2013-07-31

Family

ID=44289001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288496A Active JP5253369B2 (en) 2009-12-18 2009-12-18 Method for producing composite

Country Status (1)

Country Link
JP (1) JP5253369B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053329A (en) * 2011-09-02 2013-03-21 Osaka Municipal Technical Research Institute Electroless plating pretreatment composition for forming film
JP2015016420A (en) * 2013-07-10 2015-01-29 日本特殊陶業株式会社 Hydrogen separation body and hydrogen production apparatus using hydrogen separation body
JP2017538867A (en) * 2014-12-17 2017-12-28 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Plating bath composition for electroless plating of palladium and electroless plating method of palladium
CN111234323A (en) * 2020-03-27 2020-06-05 南京林业大学 Preparation method of high-strength flame-retardant galactomannan-polysaccharide-based composite membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208067B2 (en) * 2014-03-31 2017-10-04 公益財団法人地球環境産業技術研究機構 Method for producing composite having thin metal-filled layer inside porous substrate, and composite

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284330A (en) * 1990-03-29 1991-12-16 Shinko Pantec Co Ltd Production of inorganic asymmetric membrane
WO2002064241A1 (en) * 2001-02-16 2002-08-22 Sumitomo Electric Industries, Ltd. Hydrogen-permeable structure and method for manufacture thereof or repair thereof
JP2005013853A (en) * 2003-06-25 2005-01-20 Ngk Insulators Ltd Hydrogen separation body and its production method
JP2006239679A (en) * 2005-02-04 2006-09-14 Ngk Insulators Ltd Hydrogen separator and manufacturing method thereof
JP2008018387A (en) * 2006-07-14 2008-01-31 Ngk Insulators Ltd Method for applying seed crystal to porous base material
JP2009022843A (en) * 2007-07-17 2009-02-05 National Institute Of Advanced Industrial & Technology High-durability hydrogen separation membrane and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03284330A (en) * 1990-03-29 1991-12-16 Shinko Pantec Co Ltd Production of inorganic asymmetric membrane
WO2002064241A1 (en) * 2001-02-16 2002-08-22 Sumitomo Electric Industries, Ltd. Hydrogen-permeable structure and method for manufacture thereof or repair thereof
JP2005013853A (en) * 2003-06-25 2005-01-20 Ngk Insulators Ltd Hydrogen separation body and its production method
JP2006239679A (en) * 2005-02-04 2006-09-14 Ngk Insulators Ltd Hydrogen separator and manufacturing method thereof
JP2008018387A (en) * 2006-07-14 2008-01-31 Ngk Insulators Ltd Method for applying seed crystal to porous base material
JP2009022843A (en) * 2007-07-17 2009-02-05 National Institute Of Advanced Industrial & Technology High-durability hydrogen separation membrane and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053329A (en) * 2011-09-02 2013-03-21 Osaka Municipal Technical Research Institute Electroless plating pretreatment composition for forming film
JP2015016420A (en) * 2013-07-10 2015-01-29 日本特殊陶業株式会社 Hydrogen separation body and hydrogen production apparatus using hydrogen separation body
JP2017538867A (en) * 2014-12-17 2017-12-28 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Plating bath composition for electroless plating of palladium and electroless plating method of palladium
CN111234323A (en) * 2020-03-27 2020-06-05 南京林业大学 Preparation method of high-strength flame-retardant galactomannan-polysaccharide-based composite membrane

Also Published As

Publication number Publication date
JP5253369B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP4729755B2 (en) Composite membrane, method for producing the same, and hydrogen separation membrane
US6152987A (en) Hydrogen gas-extraction module and method of fabrication
Paglieri et al. Innovations in palladium membrane research
EP1499452B1 (en) Process for preparing palladium alloy composite membranes for use in hydrogen separation
JP5253369B2 (en) Method for producing composite
Ayturk et al. Synthesis of composite Pd-porous stainless steel (PSS) membranes with a Pd/Ag intermetallic diffusion barrier
Ma et al. Thin composite palladium and palladium/alloy membranes for hydrogen separation
JP4753180B2 (en) Hydrogen separation material and method for producing the same
JP4572385B2 (en) Hydrogen purification separation method
JP4998881B2 (en) High durability hydrogen separation membrane and method for producing the same
CN107376661B (en) Preparation method of palladium-based composite membrane
JP5526387B2 (en) Defect-free hydrogen separation membrane, method for producing defect-free hydrogen separation membrane, and hydrogen separation method
EP4046704A1 (en) Advanced double skin membranes for membrane reactors
JP6208067B2 (en) Method for producing composite having thin metal-filled layer inside porous substrate, and composite
Zeng et al. Defect sealing in Pd membranes via point plating
JP4909600B2 (en) Hydrogen separator and method for producing the same
JP2007069207A (en) Hydrogen separating composite and its production process
JP2002355537A (en) Hydrogen permeable film and producing method thereof
JP5825465B2 (en) Hydrogen separation membrane, production method thereof, and hydrogen separation method
JP2009189934A (en) Composite body and its manufacturing method
JP2006346621A (en) Hydrogen separation membrane and hydrogen separation method
JP5891512B2 (en) Porous filter, manufacturing method thereof, hydrogen separation membrane using porous filter as support, defect sealing method, and hydrogen separation method
JP6561334B2 (en) Method for producing hydrogen separation membrane
Paglieri Palladium membranes
Xue et al. Amorphous Ni–B alloy/ceramic composite membrane prepared by an improved electroless plating technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Ref document number: 5253369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250