JP2011124515A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2011124515A
JP2011124515A JP2009283297A JP2009283297A JP2011124515A JP 2011124515 A JP2011124515 A JP 2011124515A JP 2009283297 A JP2009283297 A JP 2009283297A JP 2009283297 A JP2009283297 A JP 2009283297A JP 2011124515 A JP2011124515 A JP 2011124515A
Authority
JP
Japan
Prior art keywords
light
lead
light emitting
emitting element
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009283297A
Other languages
Japanese (ja)
Inventor
Tamotsu Jitosho
保 地頭所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009283297A priority Critical patent/JP2011124515A/en
Publication of JP2011124515A publication Critical patent/JP2011124515A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting device capable of raising light extraction efficiency while suppressing deterioration of a molding by reducing light absorption by the molding. <P>SOLUTION: The light-emitting device includes: a first lead; a light-emitting element adhering to the first lead; a second lead which faces one end of the first lead and has one end electrically connected to the light-emitting element; the molding made of a translucent resin which has a recess and in which a reflective filler is dispersedly arranged, wherein the light-emitting element and the one end of the second lead are exposed on the bottom surface of the recess and the other end of the first lead and the other end of the second lead protrudes in mutually opposite directions; and a sealing resin layer which is filled in the recess to cover the light-emitting element and has a higher refractive index than the molding, and is translucent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光装置に関する。   The present invention relates to a light emitting device.

表面実装(SMD:Surface Mounted Device)型の発光装置は、凹部を有し樹脂からなる成型体を筐体として用いると量産性を高めることができる。この場合、成型体に酸化チタン微粒子を混合すると、発光素子からの放出光が凹部の内側壁に当たって上方に反射される。このために光取り出し効率を高めることができる。   A surface mounted device (SMD) type light-emitting device can increase mass productivity when a molded body made of resin having a recess is used as a housing. In this case, when titanium oxide fine particles are mixed in the molded body, the light emitted from the light emitting element strikes the inner wall of the recess and is reflected upward. For this reason, the light extraction efficiency can be increased.

また、成型体の凹部内に封止樹脂を充填すると、凹部の底面に接着された発光素子を保護することができるので信頼性を高めることができる。   In addition, when the sealing resin is filled in the concave portion of the molded body, the light emitting element bonded to the bottom surface of the concave portion can be protected, so that reliability can be improved.

筐体とする成型体の樹脂材料として、例えば熱可塑性樹脂を用いるとその屈折率は略1.6である。また、封止樹脂としてシリコーンを用いるとその屈折率は、略1.4である。発光素子からの放出光が、屈折率が低い封止樹脂から屈折率が高い成型体へ向かって入射する場合、界面において全反射を生じないので放出光は成型体側に集まりやすくなり、光取り出し効率が低下する。   For example, when a thermoplastic resin is used as the resin material of the molded body used as the housing, the refractive index is approximately 1.6. Further, when silicone is used as the sealing resin, the refractive index is about 1.4. When the light emitted from the light emitting element is incident from a sealing resin having a low refractive index toward a molded body having a high refractive index, total reflection does not occur at the interface, so that the emitted light tends to gather on the molded body side and light extraction efficiency is improved. Decreases.

発光素子から出射される光の取り出し効率を向上させる発光装置の開示例がある(特許文献1)。この例では、エポキシ系樹脂またはアクリル系樹脂を主成分とする樹脂層と、樹脂層の屈折率よりも高い屈折率を有するジルコニア分散樹脂層と、からなる樹脂封止層を用いて発光素子を封止している。
しかしながら、この例では樹脂封止層が、屈折率の高い樹脂成型体に取り囲まれる場合が多く、光取り出し効率をより高めることが困難である。
There is a disclosed example of a light emitting device that improves the extraction efficiency of light emitted from a light emitting element (Patent Document 1). In this example, a light-emitting element is formed using a resin sealing layer including a resin layer mainly composed of an epoxy resin or an acrylic resin and a zirconia-dispersed resin layer having a refractive index higher than that of the resin layer. It is sealed.
However, in this example, the resin sealing layer is often surrounded by a resin molded body having a high refractive index, and it is difficult to further increase the light extraction efficiency.

特開2009−146924号公報JP 2009-146924 A

成型体における光吸収を低減し、成型体の劣化を抑制しつつ光取り出し効率を高めることが可能な発光装置を提供する。   Provided is a light emitting device capable of reducing light absorption in a molded body and increasing light extraction efficiency while suppressing deterioration of the molded body.

本発明の一態様によれば、第1のリードと、前記第1のリードに接着された発光素子と、前記第1のリードの一方の端部と対向し、かつ前記発光素子との間で電気的に接続された一方の端部を有する第2のリードと、凹部を有し、反射性フィラーが分散配置された透光性樹脂からなる成型体であって、前記凹部の底面には少なくとも前記発光素子及び前記第2のリードの前記一方の端部が露出し、前記第1のリードの他方の端部及び前記第2のリードの他方の端部が互いに反対方向に突出するように設けられた成型体と、前記発光素子を覆うように前記凹部内に充填され、前記成型体の屈折率よりも高い屈折率を有し、透光性を有する封止樹脂層と、を備えたことを特徴とする発光装置が提供される。   According to an aspect of the present invention, the first lead, the light emitting element bonded to the first lead, the one end of the first lead, and the light emitting element A molded body made of a translucent resin having a second lead having one end portion electrically connected and a concave portion and having a reflective filler dispersed therein, the bottom surface of the concave portion being at least The one end of the light emitting element and the second lead is exposed, and the other end of the first lead and the other end of the second lead are provided so as to protrude in opposite directions. And a sealing resin layer having a refractive index higher than the refractive index of the molded body and having a light-transmitting property, filled in the recess so as to cover the light emitting element. Is provided.

成型体における光吸収を低減し、成型体の劣化を抑制しつつ光取り出し効率を高めることが可能な発光装置が提供される。   Provided is a light-emitting device capable of reducing light absorption in a molded body and increasing light extraction efficiency while suppressing deterioration of the molded body.

第1の実施形態にかかる発光装置の模式断面図1 is a schematic cross-sectional view of a light emitting device according to a first embodiment. 比較例にかかる発光装置の模式断面図Schematic sectional view of a light emitting device according to a comparative example シリコーン系樹脂の構造式Structural formula of silicone resin 第2の実施形態にかかる発光装置の模式断面図Schematic sectional view of a light emitting device according to a second embodiment 第3の実施形態にかかる発光装置の模式断面図Schematic sectional view of a light emitting device according to a third embodiment 第4の実施形態にかかる発光装置の模式断面図Schematic sectional view of a light emitting device according to a fourth embodiment 第5の実施形態にかかる発光装置の模式断面図Schematic cross-sectional view of a light emitting device according to a fifth embodiment

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1(a)は本発明の第1の実施形態にかかる発光装置の模式平面図、図1(b)はA−A線に沿った模式断面図、図1(c)は部分拡大模式断面図、である。
第1のリード20の一方の端部側に可視光などを放出可能な発光素子10が、導電性接着剤や金属半田材(図示せず)を用いて接着されている。発光素子10の電極(図示せず)が、第1のリード20の一方の端部と対向する第2のリード22の一方の端部と、金線などからなるボンディングワイヤ36を用いて電気的に接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A is a schematic plan view of the light emitting device according to the first embodiment of the present invention, FIG. 1B is a schematic cross-sectional view taken along the line AA, and FIG. 1C is a partially enlarged schematic cross-section. Figure.
The light emitting element 10 capable of emitting visible light or the like is bonded to one end side of the first lead 20 using a conductive adhesive or a metal solder material (not shown). An electrode (not shown) of the light emitting element 10 is electrically connected using one end portion of the second lead 22 facing one end portion of the first lead 20 and a bonding wire 36 made of a gold wire or the like. It is connected to the.

なお、第1及び第2のリード20、22は、銅または鉄系合金などからなり、厚さは0.1〜1mmなどとする。また、厚さ100nmのNi及び厚さ100nmのAgをリードの表面にメッキなどによりコーティングすると反射率を高めることができる。   The first and second leads 20 and 22 are made of copper or an iron-based alloy and have a thickness of 0.1 to 1 mm. Also, the reflectance can be increased by coating the surface of the lead with 100 nm thick Ni and 100 nm thick Ag by plating or the like.

上方に向かって拡開したカップ状の凹部を有し、樹脂からなる成型体30が、第1のリード20の一方の端部及び第2のリード22の一方の端部を埋め込むように設けられている。また、第1のリード20の他方の端部及び第2のリード22の他方の端部は、成型体30から互いに反対方向に向かって突出するように設けられている。すなわち、成型体30は発光装置のパッケージの基材となっている。パッケージの長さLは10mm、幅Wは5mm、高さHは2mmなどとすることができる。   A molded body 30 having a cup-shaped concave portion that expands upward and made of resin is provided so as to embed one end of the first lead 20 and one end of the second lead 22. ing. The other end of the first lead 20 and the other end of the second lead 22 are provided so as to protrude from the molded body 30 in opposite directions. That is, the molded body 30 is a base material for the package of the light emitting device. The length L of the package can be 10 mm, the width W can be 5 mm, the height H can be 2 mm, and the like.

成型体30の凹部30aの底面には、第1のリード20の上面20aの一部に接着された発光素子10と、第2のリード22の一方の端部の上面22aの一部と、ボンディングワイヤ36と、が露出している。成型体30の凹部30aは、カップ部及び切り欠き部30bを有している。切り欠き部30bを設けると、ボンディングワイヤ36を設けることが容易となる。また、第1のリード20の下面20b及び第2のリード22の下面22bは成型体30の下面から露出している。第1のリード20の下面20b、第2のリード22の下面22b、及び成型体30の下面30c、が同一平面となるようにすると、回路基板へ確実に取り付けることができる。   On the bottom surface of the concave portion 30a of the molded body 30, the light emitting element 10 bonded to a part of the upper surface 20a of the first lead 20, the part of the upper surface 22a of one end of the second lead 22, and the bonding The wire 36 is exposed. The recessed part 30a of the molded body 30 has a cup part and a notch part 30b. Providing the notch 30b makes it easy to provide the bonding wire 36. Further, the lower surface 20 b of the first lead 20 and the lower surface 22 b of the second lead 22 are exposed from the lower surface of the molded body 30. If the lower surface 20b of the first lead 20, the lower surface 22b of the second lead 22, and the lower surface 30c of the molded body 30 are in the same plane, they can be securely attached to the circuit board.

さらに、凹部30a内において、発光素子10を覆うように透光性を有する封止樹脂層40を充填すると、発光素子10を保護し信頼性を高めることができる。   Furthermore, when the sealing resin layer 40 having translucency is filled so as to cover the light emitting element 10 in the recess 30a, the light emitting element 10 can be protected and the reliability can be improved.

成型体30は、シリコーン樹脂のような熱硬化性樹脂を用いて成型することができる。また、成型体30は、チタン酸カリウムの微粒子などからなる反射性フィラー32が分散配置された白樹脂とすることができる。このように反射性フィラー32が混合配置され、封止樹脂層40との界面31をなす凹部30aの側壁に傾斜を設けると、発光素子10からの放出光を上方に向けて反射させることが容易となる。   The molded body 30 can be molded using a thermosetting resin such as a silicone resin. The molded body 30 may be a white resin in which reflective fillers 32 made of potassium titanate fine particles and the like are dispersed. When the reflective fillers 32 are mixedly arranged in this way and the inclination is provided on the side wall of the recess 30a that forms the interface 31 with the sealing resin layer 40, the emitted light from the light emitting element 10 can be easily reflected upward. It becomes.

封止樹脂層40は、成型体30に設けられた凹部30aにシリコーン樹脂のような熱硬化性樹脂を充填し、熱硬化して形成することができる。図1(a)の模式平面図において、封止樹脂層40の領域を塗りつぶしにして表してある。   The sealing resin layer 40 can be formed by filling a recess 30 a provided in the molded body 30 with a thermosetting resin such as a silicone resin and thermosetting the resin. In the schematic plan view of FIG. 1A, the region of the sealing resin layer 40 is shown by being filled.

図1(c)は、本実施形態の作用を表す。例えば、成型体30の屈折率nを1.4などとし、封止樹脂層40の屈折率nを成型体30の屈折率nよりも高く1.6などとする。また発光素子10の周囲に充填された封止樹脂層40から成型体30への入射光の入射角をθi1とする。この場合、入射光は屈折率が1.6の媒質から屈折率が1.4と低い媒質へ入射するので、臨界角θcが略61度となる。臨界角θc以上の入射角θi1を有する光G1は、界面31において全反射されて成型体30には入射しない。 FIG. 1C shows the operation of this embodiment. For example, the refractive index n m of the molded body 30 and the like 1.4, and so 1.6 higher than the refractive index n m of the molded body 30 a refractive index n s of the sealing resin layer 40. Further, an incident angle of incident light from the sealing resin layer 40 filled around the light emitting element 10 to the molded body 30 is defined as θi1. In this case, the incident light is incident from a medium having a refractive index of 1.6 to a medium having a low refractive index of 1.4, so the critical angle θc is approximately 61 degrees. Light G1 having an incident angle θi1 equal to or greater than the critical angle θc is totally reflected at the interface 31 and does not enter the molded body 30.

他方、θc>θi1≧0の光G2は、成型体30へ入射可能である。入射された光は成型体30に分散配置された反射性フィラー32により反射され散乱される。散乱された光
のうち、成型体30から封止樹脂層40への光の入射角をθi2とする。90°>θi2≧0の光G3は界面31で全反射を生じることなく、式(1)に表すスネルの法則に従って封止樹脂層40へ戻ることが可能である。

sinθt/sinθi=n/n 式(1)

但し、θi:媒質1から媒質2への入射角
θt:媒質2内の屈折角
:媒質1の屈折率
:媒質2の屈折率
On the other hand, light G2 with θc> θi1 ≧ 0 can enter the molded body 30. The incident light is reflected and scattered by the reflective filler 32 dispersedly arranged on the molded body 30. Of the scattered light, the incident angle of light from the molded body 30 to the sealing resin layer 40 is θi2. The light G3 of 90 °> θi2 ≧ 0 can return to the sealing resin layer 40 according to Snell's law expressed by the formula (1) without causing total reflection at the interface 31.

sin θt / sin θi = n 1 / n 2 formula (1)

Where θi: angle of incidence from medium 1 to medium 2 θt: angle of refraction in medium 2 n 1 : refractive index of medium 1 n 2 : refractive index of medium 2

他方、反射性フィラー32により反射されたのち、界面31へ入射できない光は、成型体30内で吸収されるなどして有効に外部に取り出すことが困難である。なお、本明細書において、屈折率は発光素子10の放出光波長において測られるものとする。   On the other hand, light that cannot be incident on the interface 31 after being reflected by the reflective filler 32 is difficult to take out effectively by being absorbed in the molded body 30. Note that in this specification, the refractive index is measured at the emission light wavelength of the light emitting element 10.

発光素子10は、例えば、発光ダイオードである。具体的には、発光素子10は、In(GaAl1−y1−xP(0≦x≦1、0≦y≦1)なる組成式で表されるInGaAlP系材料やGaAl1−xAs(0<x≦1)なる組成式で表されるGaAlAs系材料などからなる発光層を有し、緑色〜赤色波長範囲の光を放出するものとすることができる。または、発光素子10は、InGaAl1−x−yN(0≦x≦1、0≦y≦1、x+y≦1)なる組成式で表される窒化物系半導体からなる発光層を有し、紫外〜緑色波長範囲の光を放出するものとすることができる。 The light emitting element 10 is, for example, a light emitting diode. Specifically, the light emitting element 10, In x (Ga y Al 1 -y) 1-x P (0 ≦ x ≦ 1,0 ≦ y ≦ 1) comprising represented by the composition formula InGaAlP based material and Ga x It has a light emitting layer made of a GaAlAs material represented by a composition formula of Al 1-x As (0 <x ≦ 1) and emits light in the green to red wavelength range. Alternatively, the light-emitting element 10 is a light-emitting layer made of a nitride-based semiconductor represented by a composition formula of In x Ga y Al 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1). And emit light in the ultraviolet to green wavelength range.

例えば、発光素子10が青色光を放出する場合、封止樹脂層40に珪酸塩系材料からなる蛍光体粒子42を分散配置すると、青色光を吸収した蛍光体粒子42が波長変換光として黄色光を放出する。このために、青色光と黄色光との混合色として、白色光や白熱電球色を得ることができる。また、YAG(Yttrium Aluminum Garnet)材料からなる蛍光体粒子42などを用いて、赤色、緑色などの波長変換光を生成して、3色以上の光を混合することもできる。蛍光体粒子の平均粒径は、1〜50μmの範囲などとすることができる。なお、波長変換光も、界面の2つの屈折率により決定される屈折方向や臨界角によりその進路が決定される。   For example, when the light emitting element 10 emits blue light, if phosphor particles 42 made of a silicate material are dispersedly arranged in the sealing resin layer 40, the phosphor particles 42 that have absorbed blue light are converted into yellow light as wavelength converted light. Release. For this reason, white light and an incandescent light bulb color can be obtained as a mixed color of blue light and yellow light. Further, using phosphor particles 42 made of a YAG (Yttrium Aluminum Garnet) material, wavelength converted light such as red and green can be generated, and light of three colors or more can be mixed. The average particle diameter of the phosphor particles may be in the range of 1 to 50 μm. The path of the wavelength-converted light is determined by the refraction direction and the critical angle determined by the two refractive indexes of the interface.

図2(a)は比較例にかかる発光装置の模式平面図、図2(b)はB−B線に沿った模式断面図、である。
第1のリード120の一方の端部近傍に可視光などを放出可能な発光素子110が、接着剤などを用いて接着されている。発光素子110の電極(図示せず)が、第1のリード120の一方の端部と対向する第2のリード122の一方の端部と、金線などのボンディングワイヤ136を用いて電気的に接続されている。カップ部を有する凹部130aを有し、樹脂からなる成型体130が、第1のリード120の一方の端部及び第2のリード122の一方の端部を埋め込むように設けられている。凹部130aの底面には、発光素子110と、第2のリード122の一方の端部と、ボンディングワイヤ136と、が露出している。また、成型体130には、チタン酸カリウムのような反射性フィラー132の微粒子が分散配置されている。
FIG. 2A is a schematic plan view of a light emitting device according to a comparative example, and FIG. 2B is a schematic cross-sectional view taken along the line BB.
A light emitting element 110 capable of emitting visible light or the like is adhered to one end portion of the first lead 120 using an adhesive or the like. An electrode (not shown) of the light emitting element 110 is electrically connected to one end portion of the second lead 122 facing the one end portion of the first lead 120 and a bonding wire 136 such as a gold wire. It is connected. A molded body 130 having a recess 130 a having a cup portion and made of resin is provided so as to embed one end portion of the first lead 120 and one end portion of the second lead 122. The light emitting element 110, one end portion of the second lead 122, and the bonding wire 136 are exposed on the bottom surface of the recess 130a. In the molded body 130, fine particles of a reflective filler 132 such as potassium titanate are dispersedly arranged.

比較例では、成型体130はポリアミド(polyamide)樹脂やポリフタルアミド(polyphthalamide)樹脂などからなり、屈折率が例えば1.6であるものとする。また、凹部130内に充填される封止樹脂層140をシリコーン樹脂とし、その屈折率は1.4であるものとする。発光素子110の周囲の封止樹脂層140から成型体130へ向かう光は、界面131において全反射を生じることなく、成型体130へ入射することができる。すなわち、入射角θi11と屈折角θt11との間には式(1)のスネルの法則が成り立っている。   In the comparative example, the molded body 130 is made of polyamide resin, polyphthalamide resin, or the like, and has a refractive index of, for example, 1.6. Further, the sealing resin layer 140 filled in the recess 130 is made of silicone resin, and its refractive index is 1.4. Light traveling from the sealing resin layer 140 around the light emitting element 110 toward the molded body 130 can enter the molded body 130 without causing total reflection at the interface 131. That is, Snell's law of Formula (1) is established between the incident angle θi11 and the refraction angle θt11.

他方、成型体130から封止樹脂層140へ入射する場合、臨界角は略61度である。このために、反射性フィラー132により反射された光のうち、式(2)で表される範囲の入射角θi22の光は封止樹脂層140に戻ることができる。

61°>θi22≧0 式(2)
On the other hand, when the light enters the sealing resin layer 140 from the molded body 130, the critical angle is approximately 61 degrees. For this reason, among the light reflected by the reflective filler 132, the light having the incident angle θi 22 in the range represented by the formula (2) can return to the sealing resin layer 140.

61 °> θi22 ≧ 0 Formula (2)

他方、式(3)で表される範囲の入射角θi22の光G1は界面131で全反射され、成型体130内で吸収される。

90°≧θi22≧61° 式(3)
On the other hand, the light G1 having the incident angle θi22 in the range represented by the expression (3) is totally reflected by the interface 131 and absorbed in the molded body 130.

90 ° ≧ θi22 ≧ 61 ° Formula (3)

すなわち、封止樹脂層140から成型体130への入射では全反射を生じることなく、成型体130から封止樹脂層140への入射では全反射を生じる。このために、成型体130内にとどまる光量が多くなり、封止樹脂層140の上方からの光取り出し効率を高くすることが困難である。   That is, total reflection does not occur when incident from the sealing resin layer 140 to the molded body 130, and total reflection occurs when incident from the molded body 130 to the sealing resin layer 140. For this reason, the amount of light remaining in the molded body 130 increases, and it is difficult to increase the light extraction efficiency from above the sealing resin layer 140.

これに対して、本実施形態では、成型体30へ入射する光は比較例よりも低減された上に、界面31で全反射されないので封止樹脂層30へ戻る光の割合が比較例よりも多い。このために、成型体30内で吸収される光量を少なくし、封止樹脂層40から外部に放出される光量を多くできる。すなわち、光吸収が低減され光取り出し効率を高くすることができる。   On the other hand, in this embodiment, the light incident on the molded body 30 is reduced as compared with the comparative example, and further, the ratio of the light returning to the sealing resin layer 30 is lower than that in the comparative example because it is not totally reflected at the interface 31. Many. For this reason, the amount of light absorbed in the molded body 30 can be reduced, and the amount of light emitted from the sealing resin layer 40 to the outside can be increased. That is, light absorption is reduced and light extraction efficiency can be increased.

図3(a)はジメチル系シリコーン樹脂、図3(b)はフェニール系シリコーン樹脂、の構造式をそれぞれ表す。例えば成型体30に用いる樹脂として、図3(a)に表す屈折率が略1.4のジメチル系シリコーン樹脂とすることができる。また、メチル基CHの一つをフェニール基Cで置換すると、フェニール系シリコーン樹脂とできる。フェニール系シリコーン樹脂の屈折率は、例えば1.4〜1.6の間とすることができ、封止樹脂層40として用いることが可能となる。 3A shows a structural formula of a dimethyl silicone resin, and FIG. 3B shows a structural formula of a phenyl silicone resin. For example, the resin used for the molded body 30 may be a dimethyl silicone resin having a refractive index of approximately 1.4 shown in FIG. Further, when one of the methyl groups CH 3 is substituted with a phenyl group C 6 H 5 , a phenyl silicone resin can be obtained. The refractive index of the phenyl silicone resin can be, for example, between 1.4 and 1.6, and can be used as the sealing resin layer 40.

発明者は、第1の実施形態及び比較例において光度及びその経時変化を調べた。発光素子としてはSiC基板上にGaN/InGaN量子井戸層からなる発光層が設けられたチップを用い、銅系合金からなる第1及び第2のリードと、酸化チタン微粒子からなる反射性フィラーが分散配置されシリコーン系材料からなる成型体と、黄色蛍光体粒子が分散配置された封止樹脂層と、を備えた発光装置をそれぞれ準備した。   The inventor examined the luminous intensity and its change with time in the first embodiment and the comparative example. As a light-emitting element, a chip in which a light-emitting layer made of a GaN / InGaN quantum well layer is provided on a SiC substrate is used. First and second leads made of a copper alloy and a reflective filler made of titanium oxide fine particles are dispersed. Light emitting devices each including a molded body that is disposed and made of a silicone-based material and a sealing resin layer in which yellow phosphor particles are dispersedly disposed were prepared.

この結果、色度を0.3に設定した場合、第1の実施形態の光度は比較例の光度よりも略5%高いことが判明した。また、1000時間連続動作したのちの光度は、比較例では初期値よりも略12%低下した。これに対して、本実施形態の光度は初期値に対して略3%の低下と改善された。一般に、発光素子10の放出光の波長範囲が青色光よりも短いと、放出光の照射により樹脂が変色を生じやすい。本実施形態では、このような樹脂変色による光の反射率変化または透過率変化を抑制することが容易であり、1000時間動作後においても光度変化を抑制できることが判明した。   As a result, it was found that when the chromaticity was set to 0.3, the luminous intensity of the first embodiment was approximately 5% higher than that of the comparative example. In addition, the luminous intensity after 1000 hours of continuous operation decreased by approximately 12% from the initial value in the comparative example. On the other hand, the luminous intensity of the present embodiment was improved by about 3% lower than the initial value. In general, when the wavelength range of emitted light of the light emitting element 10 is shorter than that of blue light, the resin is likely to be discolored by irradiation of the emitted light. In this embodiment, it has been found that it is easy to suppress a change in reflectance or transmittance of light due to such resin discoloration, and it is possible to suppress a change in luminous intensity even after 1000 hours of operation.

図4(a)は第2の実施形態にかかる発光装置の模式平面図、図4(b)はA−A線に沿った模式断面図、である。図1に表す第1の実施形態と同様に、成型体30の屈折率nは1.4、封止樹脂層40の屈折率nは1.6とする。本実施形態では、第1のリード21は、カップ状の凹部21aを有している。凹部21aの深さRは0.5mm、凹部21aの底面21cの直径Dは2mm、などとする。また、発光素子10のサイズは、一辺の長さが0.5mmの正方形、厚さを0.4mm、などとする。第1のリード21の凹部21aの側壁の傾きは、要求された指向特性に合わせて適正な角度とすることができる。 FIG. 4A is a schematic plan view of the light emitting device according to the second embodiment, and FIG. 4B is a schematic cross-sectional view taken along the line AA. Similar to the first embodiment represented in FIG. 1, the refractive index n m of the molded body 30 is 1.4, the refractive index n s of the sealing resin layer 40 to 1.6. In the present embodiment, the first lead 21 has a cup-shaped recess 21a. The depth R of the recess 21a is 0.5 mm, the diameter D of the bottom surface 21c of the recess 21a is 2 mm, and so on. The size of the light emitting element 10 is a square with a side length of 0.5 mm, a thickness of 0.4 mm, and the like. The inclination of the side wall of the recess 21a of the first lead 21 can be set to an appropriate angle in accordance with the required directivity.

このような発光素子10を凹部21aの底面21cに接着すると、発光素子10から側方へ放出される光G5は凹部21aの側壁で反射され上方へ向かって進む。本実施形態では、成型体30の凹部30aの側壁へ臨界角よりも小さい入射角で入射する光を低減可能であり、成型体30内での光吸収が低減可能できる。また、第1のリード21の凹部21aの深さRを発光素子10の厚さよりも大きくすると側方へ向かう光をより上方へ向けて反射させることができる。   When such a light emitting element 10 is bonded to the bottom surface 21c of the recess 21a, the light G5 emitted from the light emitting element 10 to the side is reflected by the side wall of the recess 21a and travels upward. In the present embodiment, it is possible to reduce the light incident on the side wall of the recess 30a of the molded body 30 at an incident angle smaller than the critical angle, and to reduce light absorption in the molded body 30. Further, when the depth R of the concave portion 21a of the first lead 21 is made larger than the thickness of the light emitting element 10, the light directed to the side can be reflected further upward.

図5(a)は第3の実施形態にかかる発光装置の模式平面図、図5(b)はA−A線に沿った模式断面図、である。
凹部30a内に充填された封止樹脂層40の上面40aの上には、シリコーン系樹脂からなり、屈折率が封止樹脂層40の屈折率nよりも低く、空気のような外部空間の屈折率よりも高い上部樹脂層28が設けられている。なお、上部樹脂層28には反射性フィラーや蛍光体粒子が分散されなくともよい。
FIG. 5A is a schematic plan view of the light emitting device according to the third embodiment, and FIG. 5B is a schematic cross-sectional view taken along the line AA.
On the top surface 40a of the sealing resin layer 40 filled in the concave portion 30a is made of a silicone-based resin, a refractive index lower than the refractive index n s of the sealing resin layer 40, the outer space such as air An upper resin layer 28 higher than the refractive index is provided. The upper resin layer 28 does not have to be dispersed with a reflective filler or phosphor particles.

例えば、屈折率nが1.6の封止樹脂層40と屈折率が1の空気層との間に中間の屈折率1.4を有する上部樹脂層28を設けると、封止樹脂層40内にとどまる光量を低減し、光取り出し効率を高めることができる。また、上部樹脂層28の上面28aに上に向かって凸となる球面や微小凹凸を設けると、上面28aにおける全反射を低減し光取り出し効率をさらに改善することが容易となる。 For example, if the refractive index between the sealing resin layer 40 having a refractive index n s is 1.6 provided upper resin layer 28 having an intermediate refractive index of 1.4 between the first air layer, the sealing resin layer 40 The amount of light staying inside can be reduced, and the light extraction efficiency can be increased. In addition, when a spherical surface or minute unevenness is provided on the upper surface 28a of the upper resin layer 28, it becomes easy to reduce the total reflection on the upper surface 28a and further improve the light extraction efficiency.

図6(a)は第4の実施形態にかかる発光装置の模式平面図、図6(b)はA−A線に沿った模式断面図、である。下部樹脂層26が発光素子10を覆うように設けられている。下部樹脂層26はシリコーン系樹脂からなり、その屈折率は発光素子10の屈折率よりも低く封止樹脂層40よりも高い1.6とする。なお、成型体30の屈折率nは1.4、下部樹脂層26を覆い凹部30a内に充填される封止樹脂層40の屈折率は1.45、とする。この場合、下部樹脂層26を球状、または楕円体状など外部に向かって凸となる球面とすると発光素子10から上方へ向かう光G6は集光され出射される。また、側方へ向かう光G7は集光されカップ状の凹部21aの側壁に当たり上方に反射される。このために高い光取り出し効率が可能となる。 FIG. 6A is a schematic plan view of the light emitting device according to the fourth embodiment, and FIG. 6B is a schematic cross-sectional view taken along the line AA. A lower resin layer 26 is provided so as to cover the light emitting element 10. The lower resin layer 26 is made of a silicone-based resin, and its refractive index is 1.6, which is lower than the refractive index of the light emitting element 10 and higher than that of the sealing resin layer 40. The refractive index n m of the molded body 30 is 1.4, the refractive index of the sealing resin layer 40 filled in the concave portion 30a covers the lower resin layer 26 is 1.45, that. In this case, if the lower resin layer 26 is a spherical surface or a spherical surface that protrudes outward, such as an ellipsoidal shape, the upward light G6 is condensed and emitted from the light emitting element 10. Moreover, the light G7 which goes to the side is condensed, hits the side wall of the cup-shaped recess 21a, and is reflected upward. For this reason, high light extraction efficiency is possible.

なお、発光素子10が窒化物系半導体からなる場合、その屈折率は2.5〜2.7の間などである。また、発光素子10がInGaAlP系半導体からなる場合、屈折率は3.2近傍である。   In addition, when the light emitting element 10 consists of nitride type semiconductors, the refractive index is between 2.5-2.7. Further, when the light emitting element 10 is made of an InGaAlP-based semiconductor, the refractive index is around 3.2.

図7(a)は第5の実施形態にかかる発光装置の模式平面図、図7(b)はA−A線に沿った模式断面図、である。第1のリード21及び第2のリード23は、成型体30の側面からは突出するが、成型体30の底面30dからは露出しないようにすると、成型体30と第1及び第2のリード21、23との間で密着性を高めることが容易となる。   FIG. 7A is a schematic plan view of the light emitting device according to the fifth embodiment, and FIG. 7B is a schematic cross-sectional view taken along the line AA. If the first lead 21 and the second lead 23 protrude from the side surface of the molded body 30 but are not exposed from the bottom surface 30d of the molded body 30, the molded body 30 and the first and second leads 21 are exposed. , 23 can be easily improved.

第1〜第5の実施形態により、樹脂からなる成型体が放出光や波長変換光により劣化することが抑制され、光取り出し効率が高められた発光装置が提供される。このような発光装置は、照明装置、表示装置、信号機などに広く用いることができる。   According to the first to fifth embodiments, it is possible to provide a light emitting device in which a molded body made of resin is suppressed from being deteriorated by emitted light or wavelength converted light, and light extraction efficiency is increased. Such a light-emitting device can be widely used for lighting devices, display devices, traffic lights, and the like.

以上、図面を参照しつつ、本発明の実施の形態について説明した。しかしながら、本発明はこれらの実施形態に限定されない。本発明を構成する成型体、封止樹脂層、リード、反射性フィラー、蛍光体粒子、シリコーン樹脂、発光素子などの材質、サイズ、形状、配置などに関して当業者が設計変更を行ったものであっても、本発明の主旨を逸脱しない限り本発明の範囲に包含される。   The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments. Those skilled in the art have made design changes with respect to the material, size, shape, arrangement, etc. of the molded body, sealing resin layer, lead, reflective filler, phosphor particles, silicone resin, and light-emitting element constituting the present invention. However, it is included in the scope of the present invention without departing from the gist of the present invention.

10 発光素子、20、21 第1のリード、21a (リード)凹部、22、23 第2のリード、26 下部樹脂層、28 上部樹脂層、30 成型体、30a (成型体)凹部、32 反射性フィラー、42 蛍光体粒子 DESCRIPTION OF SYMBOLS 10 Light emitting element, 20, 21 1st lead, 21a (lead) recessed part, 22, 23 2nd lead, 26 Lower resin layer, 28 Upper resin layer, 30 Molded body, 30a (molded body) Recessed part, 32 Reflectivity Filler, 42 phosphor particles

Claims (5)

第1のリードと、
前記第1のリードに接着された発光素子と、
前記第1のリードの一方の端部と対向し、かつ前記発光素子との間で電気的に接続された一方の端部を有する第2のリードと、
凹部を有し、反射性フィラーが分散配置された透光性樹脂からなる成型体であって、前記凹部の底面には前記発光素子及び前記第2のリードの前記一方の端部が露出し、前記第1のリードの他方の端部及び前記第2のリードの他方の端部が互いに反対方向に突出するように設けられた成型体と、
前記発光素子を覆うように前記凹部内に充填され、前記成型体の屈折率よりも高い屈折率を有し、透光性を有する封止樹脂層と、
を備えたことを特徴とする発光装置。
The first lead,
A light emitting device bonded to the first lead;
A second lead having one end facing one end of the first lead and electrically connected to the light emitting element;
A molded body made of a translucent resin having a recess and a reflective filler dispersedly disposed, wherein the one end of the light emitting element and the second lead is exposed on the bottom surface of the recess, A molded body provided such that the other end of the first lead and the other end of the second lead protrude in opposite directions;
A sealing resin layer filled in the recess so as to cover the light emitting element, having a refractive index higher than the refractive index of the molded body, and having translucency;
A light-emitting device comprising:
前記第1のリードは、前記発光素子が接着された底面及び前記発光素子からの放出光を上方に向けて反射可能な側壁を有し、上方からみて前記成型体に設けられた前記凹部よりも小さい凹部を有することを特徴とする請求項1記載の発光装置。   The first lead has a bottom surface to which the light emitting element is bonded and a side wall capable of reflecting light emitted from the light emitting element upward, and is more than the recess provided in the molded body when viewed from above. The light emitting device according to claim 1, wherein the light emitting device has a small recess. 前記封止樹脂層の上に設けられ、外部空間の屈折率よりも高く前記封止樹脂層の屈折率よりも低い屈折率を有し、透光性を有する上部樹脂層をさらに備えたことを特徴とする請求項1または2に記載の発光装置。   It further includes an upper resin layer that is provided on the sealing resin layer and has a refractive index that is higher than the refractive index of the external space and lower than the refractive index of the sealing resin layer, and has translucency. The light emitting device according to claim 1 or 2, characterized in that: 前記発光素子を覆うように前記封止樹脂層の下に設けられ、前記発光素子の屈折率よりも低く前記封止樹脂層の屈折率よりも高い屈折率を有し、かつ透光性を有する下部樹脂層をさらに備えたことを特徴とする請求項1または2に記載の発光装置。   It is provided under the sealing resin layer so as to cover the light emitting element, has a refractive index lower than the refractive index of the light emitting element and higher than the refractive index of the sealing resin layer, and has translucency. The light emitting device according to claim 1, further comprising a lower resin layer. 前記成型体の前記凹部は上方に向かって拡開したことを特徴とする請求項1〜4のいずれか1つに記載の発光装置。   The light-emitting device according to claim 1, wherein the concave portion of the molded body is expanded upward.
JP2009283297A 2009-12-14 2009-12-14 Light-emitting device Pending JP2011124515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009283297A JP2011124515A (en) 2009-12-14 2009-12-14 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009283297A JP2011124515A (en) 2009-12-14 2009-12-14 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2011124515A true JP2011124515A (en) 2011-06-23

Family

ID=44288081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009283297A Pending JP2011124515A (en) 2009-12-14 2009-12-14 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2011124515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152362A1 (en) * 2012-04-07 2013-10-10 Axlen, Inc. High flux high brightness led lighting devices
JP2014067933A (en) * 2012-09-27 2014-04-17 Nichia Chem Ind Ltd Light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152362A1 (en) * 2012-04-07 2013-10-10 Axlen, Inc. High flux high brightness led lighting devices
JP2014067933A (en) * 2012-09-27 2014-04-17 Nichia Chem Ind Ltd Light emitting device

Similar Documents

Publication Publication Date Title
JP5515992B2 (en) Light emitting device
JP6459880B2 (en) Light emitting device and manufacturing method thereof
JP4918238B2 (en) Light emitting device
US8723409B2 (en) Light emitting device
TW201218428A (en) Light emitting diode package structure
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
JP2010283281A (en) Light emitting device
JP2017117858A (en) Light-emitting device
JP2008041699A (en) Led package
JP2007012993A (en) Chip semiconductor light emitting device
JP2010062427A (en) Light emitting device
JP2018019023A (en) Light-emitting device and method for manufacturing the same
WO2016093325A1 (en) Light emitting device
JP2015099940A (en) Light-emitting device
JP6318495B2 (en) Light emitting device
JP5786278B2 (en) Light emitting device
JP2009071090A (en) Light-emitting device
JP2018088485A (en) Light-emitting device
KR20140004351A (en) Light emitting diode package
JP5931006B2 (en) Light emitting device
JP2019165237A (en) Light-emitting device
JP2011124515A (en) Light-emitting device
JP5678462B2 (en) Light emitting device
JP2008166311A (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP6024685B2 (en) Light emitting device