JP2011124443A - 半導体光素子の製造方法 - Google Patents

半導体光素子の製造方法 Download PDF

Info

Publication number
JP2011124443A
JP2011124443A JP2009282007A JP2009282007A JP2011124443A JP 2011124443 A JP2011124443 A JP 2011124443A JP 2009282007 A JP2009282007 A JP 2009282007A JP 2009282007 A JP2009282007 A JP 2009282007A JP 2011124443 A JP2011124443 A JP 2011124443A
Authority
JP
Japan
Prior art keywords
layer
strain
height
active layer
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009282007A
Other languages
English (en)
Inventor
Atsushi Nakamura
厚 中村
Nozomi Yasuhara
望 安原
Hiroshi Yamamoto
寛 山本
Masaru Mukaikubo
優 向久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opnext Japan Inc
Original Assignee
Opnext Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opnext Japan Inc filed Critical Opnext Japan Inc
Priority to JP2009282007A priority Critical patent/JP2011124443A/ja
Publication of JP2011124443A publication Critical patent/JP2011124443A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】量子井戸構造を備える半導体光素子であって、特性向上を実現する半導体光素子の製造方法の提供。
【解決手段】基板上に、積層される多層構造のうち、基板上面から、多層構造に含まれる量子井戸構造の内部にある第1の高さまでの累積歪をゼロとなるよう、第1の高さより下側に位置する各層の歪量と層厚を決定する工程と、各層に前記歪量それぞれの歪が導入され、前記層厚それぞれに、積層される工程と、を含むことを特徴とする。
【選択図】図3

Description

本発明は、半導体光素子の製造方法に関し、特に、歪が導入される量子井戸構造を有する半導体光素子の特性向上に関する。
一般的な半導体光素子の構造は、例えば、基板上に、下側光ガイド層、活性層、上側光ガイド層が、順に、形成されている多層構造となっている。通常、この活性層には、互いにバンドギャップの異なる半導体薄膜が交互に積層化されている。すなわち、いわゆる単一量子井戸(Single-Quantum Well:以下、SQWと記す)構造、もしくは、多重量子井戸(Multiple-Quantum Well:以下、MQWと記す)構造となっている。なお、本明細書において、MQWとは、通常のMQWに加えて、SQWをも含むものとする。
このMQW構造において、バンドギャップの大きい半導体薄膜が障壁層となり、バンドギャップの小さい半導体膜が井戸層となる。障壁層によって、井戸層にキャリアが閉じ込められ、そのキャリアである電子とホールが結合することで、発光がなされる。
半導体光素子の特性を向上するために、MQW構造に含まれる井戸層に歪が導入されるのが一般的である。井戸層に歪が導入されることにより、閾値電圧の低減、発光効率の増加、緩和振動振動数の増加等、井戸層に歪を導入しないMQW構造を有する半導体光素子に比べて、半導体光素子の特性を改善することが出来るからである。
ここで、歪が導入されるとは、基板の格子定数aとは異なる格子定数aを有する物質で層が形成されることをいい、歪量はε=(a−a)/aで定義される。格子定数aが基板の格子定数aより大きい場合、すなわち、歪量εが正となる場合は、圧縮歪と、格子定数aが基板の格子定数aより小さい場合、すなわち、歪量εが負となる場合は、引張り歪と、表される。
一般に、歪のある層が積層されると、その歪量に対して、積層される層の層厚には限界値(以下、臨界層厚と記す)が生じてしまう。臨界層厚を超えて、層が積層されると、その層の結晶に欠陥などが発生してしまい、半導体光素子の特性が悪化する。
井戸層の歪量を大きくすると、半導体光素子の特性改善効果も大きくなる。しかし、歪量を大きくすると、それに応じて、臨界層厚が小さくなる。それゆえ、臨界層厚の範囲内で、半導体光素子を作製しようとすると、MQW構造において、井戸層の層厚が十分に取ることが出来なかったり、井戸層の層数を十分に増やすことが出来なかったり、不具合が生じることとなる。
結晶性を悪化させずに、井戸層の歪量を大きくしたり、井戸層の層数を増やしたりするMQW構造について、特許文献1及び特許文献2に開示がある。特許文献1には、MQW構造の障壁層に、井戸層の歪と反対の符号の歪を導入する構造について記載がある。また、特許文献2には、MQW構造の上下に接して配置される光ガイド層に、井戸層の歪と反対の符号の歪を導入する構造について記載がある。
特開平8−172241号公報 特開平6−85387号公報
特許文献1に記載の従来技術のように、MQW構造の井戸層と障壁層とに互いに異なる符号の歪を導入する場合、MQW構造のみを考慮して、MQW構造全体の歪量を軽減することにより、井戸層の歪量を大きくしたり、井戸層の層数を増やそうと試みているに過ぎない。
同様に、特許文献2に記載の従来技術のように、MQW構造の上下に接して配置される光ガイド層に、MQW構造の井戸層の歪と反対の符号の歪を導入する場合、光ガイド層のみを考慮して、井戸層の歪量の補償をすることにより、井戸層の歪量を大きくしたり、井戸層の層数を増やそうと試みているに過ぎない。
半導体光素子のさらなる特性向上を実現させるためには、半導体光素子の多層構造を考慮する必要が生じる。
本発明は、このような課題を鑑みて、基板上に積層される多層構造に含まれる多層ぞれぞれの歪量及び層厚を考慮することにより、さらなる特性向上を実現する半導体光素子の製造方法を提供することを目的とする。
(1)上記課題を解決するために、本発明に係る半導体光素子の製造方法は、基板上に、所定の歪量の歪が導入される1以上の井戸層と、前記井戸層と交互に配置される2以上の障壁層を備える量子井戸活性層と、前記量子井戸活性層の上側と下型のそれぞれに接して配置され、前記井戸層の歪と反対の符号となる歪が導入されるそれぞれ1以上の層とを、含んで積層される多層構造を備える、半導体光素子の製造方法であって、多層構造下面からの積層方向に対する累積歪が、前記量子井戸活性層の中に位置する所定の第1の高さにおいてゼロとなるように、前記量子井戸活性層の下側に接して配置される前記1以上の層それぞれの歪量及び層厚と、量子井戸活性層に含まれ、前記第1の高さより下側に配置される障壁層それぞれの歪量及び層厚とを決定する工程と、前記量子井戸活性層の下側に接して配置される前記1以上の層と、前記第1の高さより下側に配置される障壁層それぞれに、前記歪量がそれぞれ導入され、前記層厚それぞれに、積層される工程と、を含む、ことを特徴とする。
(2)上記(1)に記載の半導体光素子の製造方法であって、前記量子井戸活性層の中に位置する所定の第2の高さから多層構造上面までの積層方向に対する累積歪がゼロとなるように、前記量子井戸活性層の上側に接して配置される前記1以上の層それぞれの歪量及び層厚と、量子井戸活性層に含まれ、前記第2の高さより上側に配置される障壁層それぞれの歪量及び層厚とを決定する工程と、前記量子井戸活性層の上側に接して配置される前記1以上の層と、前記第2の高さより上側に配置される前記障壁層それぞれに、前記歪量がそれぞれ導入され、前記層厚それぞれに、積層される工程と、を含んでいてもよい。
(3)上記(1)又は(2)に記載の半導体光素子の製造方法であって、前記第1の高さとは、前記量子井戸活性層の多層のうち、上層から下層へ数えて真ん中に位置する層の内部にあってもよい。
(4)上記(1)又は(2)に記載の半導体光素子の製造方法であって、前記第1の高さと前記第2の高さは、ともに、前記量子井戸活性層の内部に位置する同じ層の中に位置していてもよい。
(5)上記(2)に記載の半導体光素子の製造方法であって、前記第2の高さとは、前記量子井戸活性層の多層のうち、上層から下層へ数えて真ん中に位置する層の内部にあってもよい。
(6)上記(2)乃至(5)のいずれかに記載の半導体光素子の製造方法であって、前記半導体光素子はリッジストライプ構造を有し、前記多層構造上面とは、前記リッジストライプ構造のリッジがその上側に配置される層の上面であってもよい。
本発明により、基板上に積層される多層構造に含まれる多層ぞれぞれの歪量及び層厚を考慮することにより、さらなる特性向上を実現する半導体光素子の製造方法が提供される。
本発明の実施形態に係る半導体レーザ素子の全体斜視図である。 本発明の実施形態に係る半導体レーザ素子主要部の断面図である。 本発明の実施形態に係る半導体レーザ素子の多層構造の累積歪プロファイルを表す図である。 本発明の第1の比較例に係る半導体レーザ素子の多層構造の累積歪プロファイルを表す図である。 本発明の第2の比較例に係る半導体レーザ素子の多層構造の累積歪プロファイルを表す図である。
本発明の実施形態に係る半導体光素子は、MQW構造を有する半導体レーザ素子1であり、リッジストライプ構造を有している。
図1は、本発明の実施形態に係る半導体レーザ素子1の全体斜視図である。後述する通り、n型InP基板2上に多層構造が形成され、n型InP基板2の下面には、n型電極13が、多層構造の上面の一部には、p型電極12が設けられている。
図2は、本発明の実施形態に係る半導体レーザ素子1主要部の断面図である。当該断面は、光の出射方向に対して垂直な断面である。
図2に示す通り、n型InP基板2上に、n型InPバッファ層3、n型光ガイドInGaAlAs層4、MQW活性層5、p型光ガイドInGaAlAs層6、p型クラッドInAlAs層7、エッチング停止InGaAlAs層8、p型InP層9、p型コンタクト層10が、順に積層されており、多層構造をとっている。p型InP層9及びp型コンタクト層10のうち、MQW活性層5の光導波路領域の上方に位置する領域の両側が、エッチングにより除外されており、リッジストライプ構造となっている。リッジストライプ構造のリッジ両側と、上方にリッジが配置されていないエッチング停止InGaAlAs層8の上面には、パッシベーション膜11が設けられている。
図2の右側には、MQW活性層5の拡大図が示されている。図に示すMQW活性層5は、井戸層5aの層数Nが5であるMQW構造である。隣り合う井戸層5aの間には、障壁層5bが配置される。そして、5層ある井戸層5aのうち、最下層の井戸層5aの下側と、最上層の井戸層5aの上側には、それぞれ障壁層5cが配置されている。MQW活性層5に備えられる井戸層5a及び障壁層5b,5cは、ともにInGaAlAs系の材料が用いられている。
MQW活性層5に備えられる井戸層5aには、それぞれ、圧縮歪が導入されている。すなわち、井戸層5aの歪量εは正の値をとる。これに対して、MQW活性層5に備えられる障壁層5b,5cには、それぞれ、引張り歪が導入されている。すなわち、障壁層5b,5cの歪量εは負の値をとる。これにより、MQW活性層5の井戸層5aと障壁層5b,5cには、互いに異なる符号の歪が導入されている。
n型光ガイドInGaAlAs層4が、MQW活性層5の下側に接して配置されており、n型光ガイドInGaAlAs層4には、引張り歪が導入されている。また、下から順に、p型光ガイドInGaAlAs層6、p型クラッドInAlAs層7、エッチング停止InGaAlAs層8と積層される多層が、MQW活性層5の上側に接して配置されている。当該多層にも、引張り歪が導入されている。
ここで、累積歪について、以下のように定義する。一般に、歪が導入された層が形成されると、層の層厚dが大きくなるにつれて、その層の上面において、歪が累積的に増加する。その層の上面における歪は、この層の歪量εと層厚dの積ε・dで表される。さらに、その上に、異なる歪量εの層が層厚dで積層されると、この層の上面における歪は、ε・d+ε・dとなる。すなわち、層が積層されるにつれ、その層の上面における歪は、その層より下に位置する多層とその層の歪を総和となる。これを累積歪とする。
層に歪が導入されると、それに応じて、応力がかかる。半導体レーザ素子1において、発光がなされるMQW活性層5にかかる応力が小さくなるのが望ましいのは言うまでもない。すなわち、n型InP基板2の上面からの累積歪がMQW活性層5の内部においてゼロとなっているのが望ましい。とくに、MQW活性層5の中心部近傍であるのがさらに望ましい。
ここで、MQW活性層5における井戸層5aの層数Nは5であり、奇数である。また、井戸層5aそれぞれは、同じ歪量ε5aと同じ層厚d5aを有しており、歪量ε5aはε5a=+1.00%であり、層厚d5aはd5a=8nmであるとする。MQW活性層5が積層方向に沿って対称的であるならば、MQW活性層5の中心部は、MQW活性層5を構成する多層のうち、上層から下層に数えて真ん中に位置する層、すなわち、上から3番目の井戸層5aの積層方向に沿って中央の位置となる。
今、この位置の高さを第1の高さとして、多層構造の下面から第1の高さまでの累積歪がゼロとなるよう、第1の高さより下側に位置する障壁層5b,5cやn型光ガイドInGaAlAs層4それぞれの歪量と層厚が決定される。
対称性を鑑みて、隣り合う井戸層5aの間に位置する障壁層5bそれぞれは、同じ歪量ε5bと同じ層厚d5bを有しており、同様に、最上層の井戸層5aの上側と、最下層の井戸層5aの下側に位置する障壁層5cそれぞれは、同じ歪量ε5bと同じ層厚d5bを有しているとする。また、n型光ガイドInGaAlAs層4の歪量εと層厚dとする。
n型InPバッファ層3に歪は導入されないので、多層構造の下面から第1の高さまでの累積歪は、ε・d+ε5c・d5c+ε5b・d5b×2+ε5a・d5a×2.5=0で表される。例えば、障壁層5bの歪量ε5bがε5b=−0.30%、層厚d5bがd5b=10nmであり、障壁層5cの歪量ε5cがε5c=−0.30%、層厚d5cがd5c=20nmであり、n型光ガイドInGaAlAs層4の歪量εがε=−0.05%、層厚dがd=160nmであるとき、多層構造の下面から第1の高さまでの累積歪は0となる。
有機金属気相成長(MOCVD)法を用いて、第1の高さより下側に位置する各層の歪量と層厚が上記となるよう、n型InP基板2上に、多層構造を形成することにより、半導体レーザ素子1が作製される。これにより、n型InP基板2の上面からMQW活性層5の内部にある第1の高さまでの累積歪がゼロとすることが出来、MQW構造のうち、第1の高さに位置にする部分にかかる応力を最小化することが出来、半導体レーザ素子1が特性向上される。
また、第1の高さより下側に位置する障壁層5b,5cやn型光ガイドInGaAlAs層4それぞれの歪量や層厚を調整することにより、井戸層5aの歪量ε5aや井戸層5aの層数Nを増加させることが可能となる。
結晶性を考慮すると、半導体レーザ素子1の多層構造全体の累積歪が小さい方が、さらに望ましい。上記において、多層構造の下面から第1の高さまで累積歪がゼロとなっているので、さらに、MQW活性層5の内部から多層構造の上面までの累積歪がゼロとなっている場合、多層構造全体の累積歪を小さくすることが出来る。とくに、MQW活性層5の中心部近傍から多層構造の上面までの累積歪がゼロであるのがさらに望ましい。MQW活性層5の内部に位置する第2の高さから多層構造上面までの累積歪がゼロであり、かつ、第1の高さと第2の高さが一致する場合、多層構造全体の累積歪はゼロとなる。
ここで、第1の高さと同様に、第2の高さも、MQW活性層5の多層のうち、上層から下層へ数えて真ん中に位置する層、すなわち、上から3番目の井戸層5aの積層方向に沿って中央の位置とする。そして、第2の高さから多層構造の上面までの累積歪がゼロとなるよう、第2の高さより上側に位置する障壁層5b,5cやp型光ガイドInGaAlAs層6、p型クラッドInAlAs層7、エッチング停止InGaAlAs層8それぞれの歪量と層厚が決定される。
MQW活性層5の井戸層5aと障壁層5b,5cの構成は、上記のものとして、p型光ガイドInGaAlAs層6の歪量εと層厚dと、p型クラッドInAlAs層7の歪量εと層厚dと、エッチング停止InGaAlAs層8の歪量εと層厚dとする。
上記の場合と同様に、第2の高さから多層構造の上面までの累積歪は、ε・d+ε・d+ε・d+ε5c・d5c+ε5b・d5b×2+ε5a・d5a×2.5=0で表される。例えば、p型光ガイドInGaAlAs層6の歪量εがε=−0.05%、層厚dがd=20nmであり、p型クラッドInAlAs層7の歪量εがε=−0.05%、層厚dがd=100nmであり、エッチング停止InGaAlAs層8の歪量εがε=−0.05%、層厚dがd=40nmであるとき、第2の高さから多層構造の上面までの累積歪は0となる。
前述の通り、MOCVD法を用いて、第2の高さより上側に位置する各層の歪量と層厚が上記となるよう、n型InP基板2上に、多層構造を形成することにより、半導体レーザ素子1が作製される。これにより、MQW活性層5の内部にある第2の高さから多層構造の上面であるエッチング停止InGaAlAs層8までの累積歪がゼロとすることが出来、半導体レーザ素子1の多層構造全体の歪を小さくなるので、半導体レーザ素子1がさらに、特性向上される。
また、第2の高さより上側に位置する障壁層5b,5cやp型光ガイドInGaAlAs層6、p型クラッドInAlAs層7、エッチング停止InGaAlAs層8それぞれの歪量と層厚を調整することにより、井戸層5aの歪量ε5aや井戸層5aの層数Nをさらに増加させることが可能となる。
以上説明した通り、本発明の実施形態に係る半導体レーザ素子1の多層構造の歪量ε及び層厚dは、以下のように表される。なお、前述の通り、MQW活性層5における井戸層5aの層数Nは5である。また、表の1行目の数字は、各層に付される符号であり、例えば、4とは、n型光ガイドInGaAlAs層4を表している。
Figure 2011124443
ここで、さらに、累積歪関数H(z)について、以下のように定義する。ある高さにある点を原点として、積層方向に対して、z軸をとり、原点からの高さをzとする。高さzに位置する層の歪量をε(z)として、原点から高さzまでε(z)を積分する関数が、累積歪関数H(z)である。累積歪関数H(z)は、次式によって表される。
Figure 2011124443
ここで、zは、積分変数である。累積歪関数H(z)は、原点から高さzまでの累積歪を表している。半導体レーザ素子1の多層構造において、適当な高さの点を原点にとることにより、半導体レーザ素子1の多層構造において高さzにおける累積歪を、累積歪関数H(z)によって表すことが出来る。このようにして表される、高さzにおける累積歪は、累積歪プロファイルと呼ばれる。
図3は、本発明の実施形態に係る半導体レーザ素子の多層構造の累積歪プロファイルを表す図である。
ここで、多層構造における累積歪とは、n型InP基板2上面からの累積歪であるので、通常、n型InP基板2の上面上の点を原点にとるべきである。しかし、n型InP基板2に重ねて積層されるn型InPバッファ層3に歪は導入されていないので、ここでは表示を簡単とするために、n型InPバッファ層3の上面上の点を原点にとり、原点からの高さをzとし、高さzにおける累積歪関数H(z)が、多層構造の累積歪プロファイルとして表されている。図の横軸方向に、矢印によって示されている数字は、多層構造の各層を示している。
z=220となる高さzは、MQW活性層5の中央に位置する、上から3番目の井戸層5aの中央の位置である。そして、z=220において、累積歪関数H(z)=0となっている。すなわち、z=220を第1の高さとすると、多層構造の下面から第1の高さまでの累積歪がゼロである。
また、z=440となる高さzは、エッチング停止InGaAlAs層8の上面の高さである。そして、z=440において、累積歪関数H(z)=0となっている。すなわち、多層構造の下面から上面までの累積歪がゼロである。このとき、z=220を第1の高さと同じく、第2の高さとすると、第2の高さから多層構造の上面までの累積歪がゼロである。
本発明の実施形態に係る半導体レーザ素子1の比較例として、従来技術に係る半導体レーザ素子の多層構造の累積プロファイルを以下に示す。
本発明の第1の比較例に係る半導体レーザ素子は、当該実施形態に係る半導体レーザ素子1と同様に、MQW活性層5の井戸層5aそれぞれに、圧縮歪が導入されている。しかし、MQW活性層5における障壁層5b,5cには、歪は導入されておらず、また、MQW活性層5の上下に接して配置される多層それぞれにも、歪は導入されていない。
本発明の第1の比較例に係る半導体レーザ素子の多層構造の歪量ε及び層厚dは、以下のように表される。なお、MQW活性層5における井戸層5aの層数Nは、同様に5である。
Figure 2011124443
図4Aは、本発明の第1の比較例に係る半導体レーザ素子の多層構造の累積歪プロファイルを表す図である。ここで、当該実施形態と同様に、n型InPバッファ層3の上面上の点を原点にとっている。
第1の比較例に係る半導体レーザ素子において、MQW活性層5の中央に位置するz=100において、累積歪関数H(z)=0.20となっており、MQW活性層5の中央部には、この歪に応じた応力がかかっている。さらに、多層構造の上面であるエッチング停止InGaAlAs層8の上面の高さであるz=320において、累積歪関数H(z)=0.40となっており、多層構造全体の累積歪は0.40nmとなる。
本発明の第2の比較例に係る半導体レーザ素子は、第1の比較例に係る半導体レーザ素子の多層構造とは異なり、MQW活性層5の障壁層5b,5cそれぞれに、引張り歪が導入されている。第1の比較例と同様に、MQW活性層5の上下に接して配置される多層それぞれにも、歪は導入されていない。
本発明の第2の比較例に係る半導体レーザ素子の多層構造の歪量ε及び層厚dは、以下のように表される。なお、MQW活性層5における井戸層5aの層数Nは、同様に5である。
Figure 2011124443
図4Bは、本発明の第2の比較例に係る半導体レーザ素子の多層構造の累積歪プロファイルを表す図である。ここで、当該実施形態と同様に、n型InPバッファ層3の上面上の点を原点にとっている。
第2の比較例に係る半導体レーザ素子において、MQW活性層5の中央に位置するz=100において、累積歪関数H(z)=0.11となっており、第1の比較例と比較すると小さいが、MQW活性層5の中央部には、この歪に応じた応力がかかっている。さらに、多層構造の上面であるエッチング停止InGaAlAs層8の上面の高さであるz=320において、累積歪関数H(z)=0.22となっており、第1の比較例と比較すると小さいが、多層構造全体の累積歪は0.22nmとなる。
以上、説明したように、本実施形態に係る半導体レーザ素子1は、多層構造に含まれる多層それぞれの歪量及び層厚を考慮することにより、比較例に係る半導体レーザ素子に比べて、MQW活性層5の内部にかかる応力を減じることが出来、さらなる特性向上を実現することが出来る。さらに、多層構造全体の累積歪を減じることが出来、さらなる特性向上を実現することが出来る。
なお、半導体レーザ素子の多層構造全体の累積歪をゼロとするために、第1の高さと第2の高さが同じであると望ましい。しかし、必ずしも、第1の高さと第2の高さをしている必要はなく、第1の高さと第2の高さが十分に近く、多層構造の上面における累積歪の大きさが0.05nm以下となるのが望ましい。たとえば、図3に示す場合において、z=440においてH(z)が、−0.05nm以上+0.05nm以下であればよい。
また、第1の高さや第2の高さは、ともに、MQW活性層5の多層のうち上層から下層へ数えて真ん中に位置する層の中に位置するのが望ましい。上記には、MQW活性層5において井戸層5aの層数Nが奇数の場合で、井戸層5aが積層方向に対してMQW活性層5の真ん中に位置する場合について、説明していたが、積層方向に沿って対称的であり、井戸層5aの層数Nwが偶数の場合には、障壁層5bが積層方向に対してMQW活性層5の中央に位置する。すなわち、例えば、井戸層5aの層数Nw=6となる場合は、7層ある障壁層5b,5cのうち、上から4番目の障壁層5bが、MQW活性層5の真ん中に位置している。
しかし、第1の高さや第2の高さは、それぞれ、必ずしも、MQW活性層5の真ん中に位置する層の中に位置する必要はない。多層構造下面から第1の高さまでの累積歪がゼロとなり、第1の高さは、そこにかかる応力が最小となる高さである。MQW活性層5の内部において、必要に応じて、応力を最小としたい高さを第1の高さとすればよい。
同様に、第2の高さから多層構造上面までの累積歪がゼロであり、第2の高さが第1の高さの近くとすれば、多層構造全体の累積歪を小さくすることが出来る。よって、第1の高さが決定した後に、多層構造全体の累積歪が小さくなるよう、必要に応じて、第2の高さを決めればよい。
上記説明に用いた半導体レーザ素子1は、リッジストライプ構造を有している。多層構造がリッジストライプ構造有している場合、リッジが配置される領域と、リッジが配置されていない領域では、多層構造の最上層が異なる。すなわち、図2において、リッジが配置されている領域の場合、最上層は、p型コンタクト層10であり、リッジが配置されていない領域の場合、最上層は、エッチング停止InGaAlAs層8である。図1に示す通り、半導体レーザ素子1の多層構造において、リッジが配置されていない領域は、リッジが配置されている領域よりも非常に大きいので、結晶構造の安定の観点から、多層構造上面とは、エッチング停止InGaAlAs層8の上面、すなわち、p型InP層9やp型コンタクト層10からなるリッジが上側に配置される層の上面とする。
また、半導体光素子は、リッジストライプ構造を有する素子に限定されることなく、例えば、埋め込みヘテロ構造を有する場合など、他の構造を有する半導体光素子であってもよい。
なお、当該実施形態に係る半導体レーザ素子1において、MQW活性層5の井戸層5aそれぞれは、同じ層厚d5aであり、また、同じ歪量ε5aの歪が導入されるとしたが、必要に応じて、井戸層5aの構造は異なっていてもよい。MQW活性層5の構造により、それぞれ適した第1の高さと第2の高さが選択される。また、MQW活性層5の井戸層5aに、引張り歪が導入される場合においても、本発明を適用出来るのは、言うまでもない。
さらに、本発明は、例えば、集積レーザにおいて、レーザ部のみならず、電界吸収型(Electro-Absorption:以下、EAと記す)変調器などの変調器部においても、適用出来ることは言うまでもない。
1 半導体レーザ素子、2 n型InP基板、3 n型InPバッファ層、4 n型光ガイドInGaAlAs層、5 MQW活性層、5a 井戸層、5b 障壁層、5c 障壁層、6 p型光ガイドInGaAlAs層、7 p型クラッドInAlAs層、8 エッチング停止InGaAlAs層、9 p型InP層、10 p型コンタクト層、11 パッシベーション膜、12 p型電極、13 n型電極。

Claims (6)

  1. 基板上に、所定の歪量の歪が導入される1以上の井戸層と、前記井戸層と交互に配置される2以上の障壁層を備える量子井戸活性層と、
    前記量子井戸活性層の上側と下型のそれぞれに接して配置され、前記井戸層の歪と反対の符号となる歪が導入されるそれぞれ1以上の層とを、含んで積層される多層構造を備える、半導体光素子の製造方法であって、
    多層構造下面からの積層方向に対する累積歪が、前記量子井戸活性層の中に位置する所定の第1の高さにおいてゼロとなるように、前記量子井戸活性層の下側に接して配置される前記1以上の層それぞれの歪量及び層厚と、量子井戸活性層に含まれ、前記第1の高さより下側に配置される障壁層それぞれの歪量及び層厚とを決定する工程と、
    前記量子井戸活性層の下側に接して配置される前記1以上の層と、前記第1の高さより下側に配置される障壁層それぞれに、前記歪量がそれぞれ導入され、前記層厚それぞれに、積層される工程と、
    を含む、
    ことを特徴とする、半導体光素子の製造方法。
  2. 請求項1に記載の半導体光素子の製造方法であって、
    前記量子井戸活性層の中に位置する所定の第2の高さから多層構造上面までの積層方向に対する累積歪がゼロとなるように、前記量子井戸活性層の上側に接して配置される前記1以上の層それぞれの歪量及び層厚と、量子井戸活性層に含まれ、前記第2の高さより上側に配置される障壁層それぞれの歪量及び層厚とを決定する工程と、
    前記量子井戸活性層の上側に接して配置される前記1以上の層と、前記第2の高さより上側に配置される前記障壁層それぞれに、前記歪量がそれぞれ導入され、前記層厚それぞれに、積層される工程と、
    を含む、
    ことを特徴とする、半導体光素子の製造方法。
  3. 請求項1又は請求項2に記載の半導体光素子の製造方法であって、
    前記第1の高さとは、前記量子井戸活性層の多層のうち、上層から下層へ数えて真ん中に位置する層の内部にある、
    ことを特徴とする、半導体光素子の製造方法。
  4. 請求項1又は請求項2に記載の半導体光素子の製造方法であって、
    前記第1の高さと前記第2の高さは、ともに、前記量子井戸活性層の内部に位置する同じ層の中に位置する、
    ことを特徴とする、半導体光素子の製造方法。
  5. 請求項2に記載の半導体光素子の製造方法であって、
    前記第2の高さとは、前記量子井戸活性層の多層のうち、上層から下層へ数えて真ん中に位置する層の内部にある、
    ことを特徴とする、半導体光素子の製造方法。
  6. 請求項2乃至請求項5のいずれかに記載の半導体光素子の製造方法であって、
    前記半導体光素子はリッジストライプ構造を有し、
    前記多層構造上面とは、前記リッジストライプ構造のリッジがその上側に配置される層の上面である、
    ことを特徴とする、半導体光素子の製造方法。
JP2009282007A 2009-12-11 2009-12-11 半導体光素子の製造方法 Withdrawn JP2011124443A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282007A JP2011124443A (ja) 2009-12-11 2009-12-11 半導体光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282007A JP2011124443A (ja) 2009-12-11 2009-12-11 半導体光素子の製造方法

Publications (1)

Publication Number Publication Date
JP2011124443A true JP2011124443A (ja) 2011-06-23

Family

ID=44288029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282007A Withdrawn JP2011124443A (ja) 2009-12-11 2009-12-11 半導体光素子の製造方法

Country Status (1)

Country Link
JP (1) JP2011124443A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7038913B1 (ja) * 2020-12-23 2022-03-18 三菱電機株式会社 半導体レーザ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7038913B1 (ja) * 2020-12-23 2022-03-18 三菱電機株式会社 半導体レーザ装置
WO2022137390A1 (ja) * 2020-12-23 2022-06-30 三菱電機株式会社 半導体レーザ装置

Similar Documents

Publication Publication Date Title
KR101133380B1 (ko) 면 발광 레이저
KR101199114B1 (ko) 반도체 레이저 소자
JP2007201040A (ja) 半導体発光素子
JP2010080757A (ja) 半導体発光素子
JP2014506017A (ja) 歪みバランスレーザダイオード
US8610105B2 (en) Semiconductor electroluminescent device with a multiple-quantum well layer formed therein
US11114586B2 (en) Semiconductor light emitting device
US20100142578A1 (en) Surface-emitting laser including two-dimensional photonic crystal
US20100090196A1 (en) Optical semiconductor device and manufacturing method of the same
JP2011124443A (ja) 半導体光素子の製造方法
JP2009164512A (ja) 半導体レーザ装置
US20050218415A1 (en) Semiconductor light-emitting device
JP2008103498A (ja) 発光素子
JP5822458B2 (ja) 半導体レーザ素子
US11721954B2 (en) Vertical cavity surface emitting laser diode (VCSEL) having AlGaAsP layer with compressive strain
JPH07147454A (ja) 半導体素子
JP2013120893A (ja) 半導体レーザ
JP5646852B2 (ja) 半導体光素子及びその製造方法
CN111446621B (zh) 半导体激光元件及其制造方法
JP2009277844A (ja) 窒化物半導体レーザ素子
JP6197614B2 (ja) 半導体レーザ素子
WO2019130655A1 (ja) 窒化物半導体レーザ素子
US20220238737A1 (en) Fabricating a semiconductor structure with multiple quantum wells
JP2013008743A (ja) 面発光レーザ素子
JP6240738B2 (ja) 半導体光増幅器

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130305