JP2011123478A - Light guide fine structure plate, method of guiding light, and application to window structure - Google Patents

Light guide fine structure plate, method of guiding light, and application to window structure Download PDF

Info

Publication number
JP2011123478A
JP2011123478A JP2010204925A JP2010204925A JP2011123478A JP 2011123478 A JP2011123478 A JP 2011123478A JP 2010204925 A JP2010204925 A JP 2010204925A JP 2010204925 A JP2010204925 A JP 2010204925A JP 2011123478 A JP2011123478 A JP 2011123478A
Authority
JP
Japan
Prior art keywords
light
microstructure
light guide
surface structure
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010204925A
Other languages
Japanese (ja)
Other versions
JP5123364B2 (en
Inventor
Ta Hsin Chou
大▲きん▼ 周
Wen Hsien Yang
文賢 楊
紫郁 ▲黄▼
tzu yu Huang
Chinko Ga
陳弘 賀
禎輝 ▲蔡▼
Jen Hui Tsai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2011123478A publication Critical patent/JP2011123478A/en
Application granted granted Critical
Publication of JP5123364B2 publication Critical patent/JP5123364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light guide fine structure plate which refracts and diverges part of solar light up to the ceiling of a room and permits wide-range emission accommodating incidence light of different angles to achieve a relatively good illumination light efficiency when, for example used to a window. <P>SOLUTION: The light guide fine structure plate includes a substrate 210 and a light guide fine structure layer 212. The substrate includes an incidence light surface 210a and an emission light surface 210b, the emission light surface including a reference vertical surface. The light guide fine structure layer is arranged on the incidence light surface. The light guide fine structure layer includes a plurality of projecting optical fine structures. Each optical fine structure includes a curved cylindrical surface structure 214 and an inclined cylindrical surface structure 216 and is crossed and connected at the apex. When entering the plurality of optical fine structures at one incidence angle in relation to the reference vertical surface, the incidence light beam is refracted and emitted from the emission light surface after that at least part of the incidence light beam enters the inclined cylindrical surface structure and then total internal reflection is generated in the inclined cylindrical surface structure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、導光構造(light guide)技術に関し、広角射出光の作用を備えることができるものである。   The present invention relates to a light guide technology and can provide a function of wide-angle emission light.

省エネルギーは、日増しに重要となっている課題である。しかし、工業が急速に発展する際、各種の家電製品、3C(Computer、Communication、Consumer Electronics)製品およびその他の電気設備が絶え間なく増大しており、そのうち、照明設備が夜間に生活のための灯りを提供するだけでなく、昼間のオフィス活動ならびにビジネス活動に重要な地位を占め、電力会社の統計資料から明らかなように、照明用電力が建物全体の消費エネルギーの約30〜40%前後を占めている。   Energy conservation is an issue that is becoming increasingly important. However, as the industry develops rapidly, various home appliances, 3C (Computer, Communication, Consumer Electronics) products and other electrical equipment are constantly increasing, of which lighting equipment is a light for living at night. As well as providing power, lighting power occupies an important position in daytime office activities and business activities. As is clear from the statistics of the power company, lighting power accounts for about 30-40% of the total energy consumption of the entire building. ing.

また、別な角度から見ると、太陽光(sun light)は、使用しても尽きることのない天然光源である。もしも、この天然光源を有効に利用して照明を行えば、照明に使用する電力を節減できる。一般の窓について言えば、その天然光源を使用する効率には、なお限りがある。図1は、従来の窓の作用を示す説明図である。図1において、家屋100の外壁には、一般に、いずれも窓102がある。窓102は、一般に、ガラスまたは透光性の材質であるから、太陽光104が窓102を透過して室内光106となり、照明の作用を提供するが、一般に下向きに照射されるだけであり、室内の奥の方まで照明することができず、照明効果としては優れたものではない。   Seen from another angle, sunlight is a natural light source that can be used up. If lighting is performed by effectively using this natural light source, the power used for lighting can be reduced. For ordinary windows, the efficiency of using the natural light source is still limited. FIG. 1 is an explanatory view showing the operation of a conventional window. In FIG. 1, windows 102 are generally provided on the outer wall of the house 100. Since the window 102 is generally made of glass or a light-transmitting material, the sunlight 104 passes through the window 102 to become room light 106 and provides an illumination function, but is generally only irradiated downward. The interior of the room cannot be illuminated, and the lighting effect is not excellent.

太陽光104の利用効率を改善するために、従来技術も窓に利用できる光学的な導光技術を提供しており、光線を偏向させて利用率を上げようとしている。しかし、太陽が時間に従い東から昇り西に沈むため、仰角が変化していく。従来の導光構造の作用は、単一な仰角に対してのみ設定され、かつ呈現できる導光効果が単一の射出角度だけに制限されるものであった。従って、たとえ使用して室内照明を提供する場合にも明暗領域が時間により変化する現象が生じるものであった。この現象は、現在、太陽光利用の極めて大きな障害となっている。もしも、この欠点が有効に解決できれば、太陽光利用を市場価値のあるものとすることができる。   In order to improve the utilization efficiency of sunlight 104, the prior art also provides an optical light guide technology that can be used for windows, and attempts to increase utilization by deflecting light rays. However, as the sun rises from the east and sinks to the west over time, the elevation angle changes. The operation of the conventional light guide structure is set only for a single elevation angle, and the light guide effect that can be exhibited is limited to a single emission angle. Therefore, even when used to provide indoor lighting, a phenomenon occurs in which the light and dark areas change with time. This phenomenon is now a very big obstacle to the use of sunlight. If this drawback can be solved effectively, the use of sunlight can be made marketable.

この発明の目的は、異なる角度の入射光に適応して広角範囲に射出できる導光微細構造プレートを提供することにある。例えば、それが窓に利用される時、太陽光の一部を屋内の天井まで屈折発散させて、比較的良好な照明光率を達成する。   An object of the present invention is to provide a light guide microstructure plate capable of being adapted to incident light at different angles and emitting in a wide angle range. For example, when it is used for a window, a portion of sunlight is refracted and diverged to the indoor ceiling to achieve a relatively good illumination light rate.

実施形態に従い、この発明は、基材と導光微細構造層とを含む導光微細構造プレートを提供する。
基材が入射光面および射出光面を有し、そのうち、射出光面が参考垂直面を有する。導光微細構造層が入射光面上に配置される。導光微細構造層が突出した複数の光学微細構造を含む。各光学微細構造が頂端で交差連結する曲柱面構造および斜柱面構造を含む。入射光束が参考垂直面に対して1つの入射角で複数の光学微細構造に入射する時、入射光束の少なくとも一部が斜柱面構造へ進入した後、曲柱面構造において内部全面反射を発生させた後に屈折されて射出光面から射出されるものである。
According to an embodiment, the present invention provides a light guide microstructure plate that includes a substrate and a light guide microstructure layer.
The substrate has an incident light surface and an exit light surface, and the exit light surface has a reference vertical surface. A light guide microstructure layer is disposed on the incident light surface. The light guide microstructure layer includes a plurality of optical microstructures protruding. Each optical microstructure includes a curved columnar structure and an oblique columnar structure that are cross-connected at the apex. When the incident light beam enters a plurality of optical microstructures at one incident angle with respect to the reference vertical plane, at least a part of the incident light beam enters the oblique column surface structure, and then internal total reflection occurs in the curved column surface structure. After being refracted and emitted from the exit light surface.

実施形態に従い、この発明は、また、導光方法を提供し、導光微細構造プレートを提供することと導光微細構造プレートを利用することとを含み、1つの仰角で入射光を受け取り、かつ入射光を連続的に分布する角度範囲に射出する。提供する導光微細構造プレートが基材と導光微細構造層とを含む。基材が入射光面および射出光面を有し、そのうち、前記射出光面が参考垂直面を有する。導光微細構造層が入射光面上に配置される。導光微細構造層が突出した複数の光学微細構造を含み、各光学微細構造が頂端で交差連結する曲柱面構造および斜柱面構造を含む。入射光束が参考垂直面に1つの入射角で前記複数の光学微細構造に入射する時、入射光束の少なくとも一部が斜柱面構造へ進入した後、曲柱面構造において内部全面反射を発生させた後に屈折されて射出光面から射出されるものである。   According to an embodiment, the present invention also provides a light guide method, including providing a light guide microstructure plate and utilizing the light guide microstructure plate, receiving incident light at one elevation angle, and Incident light is emitted in a range of angles that are continuously distributed. The provided light guide microstructure plate includes a substrate and a light guide microstructure layer. The substrate has an incident light surface and an exit light surface, and the exit light surface has a reference vertical surface. A light guide microstructure layer is disposed on the incident light surface. The light guide microstructure layer includes a plurality of optical microstructures protruding, and each optical microstructure includes a curved column surface structure and an oblique column surface structure in which the optical microstructures are cross-connected at the top end. When the incident light beam enters the plurality of optical microstructures at a single incident angle on the reference vertical plane, after at least a part of the incident light beam enters the oblique column surface structure, it causes internal total reflection in the curved column surface structure. After being refracted and emitted from the exit light surface.

実施形態に従い、この発明は、また、窓構造を提供し、太陽光を受け取って室内に導入する。窓構造が、平滑透過領域と微細構造屈折領域とを含む。平滑透過領域が、太陽光が同一進行方向を維持して室内に入ることを許す。微細構造屈折領域上に少なくとも1つの導光微細構造プレートを設置し、太陽光を室内に進入させる。導光微細構造プレートが基材と導光微細構造層とを含む。基材が入射光面および射出光面を有し、そのうち、射出光面が参考垂直面を有する。導光微細構造層が入射光面上に配置される。導光微細構造層が突出した複数の光学微細構造を含む。各光学微細構造が頂端で交差連結する曲柱面構造および斜柱面構造を含む。入射光束が参考垂直面に対して1つの入射角で複数の光学微細構造に入射する時、入射光束の少なくとも一部が斜柱面構造へ進入した後、曲柱面構造において内部全面反射を発生させた後に屈折されて射出光面から射出される。また、光学微細構造が太陽光を導き、射出光面において1つの射出角度で射出させ、そのうち、射出角度が1つの角度範囲に連続的に分布するものである。   According to an embodiment, the present invention also provides a window structure for receiving sunlight and introducing it into the room. The window structure includes a smooth transmission region and a fine structure refraction region. The smooth transmission area allows sunlight to enter the room while maintaining the same direction of travel. At least one light guide microstructure plate is installed on the microstructure refraction region to allow sunlight to enter the room. The light guide microstructure plate includes a substrate and a light guide microstructure layer. The substrate has an incident light surface and an exit light surface, and the exit light surface has a reference vertical surface. A light guide microstructure layer is disposed on the incident light surface. The light guide microstructure layer includes a plurality of optical microstructures protruding. Each optical microstructure includes a curved columnar structure and an oblique columnar structure that are cross-connected at the apex. When the incident light beam enters a plurality of optical microstructures at one incident angle with respect to the reference vertical plane, at least a part of the incident light beam enters the oblique column surface structure, and then internal total reflection occurs in the curved column surface structure. After being refracted, it is refracted and emitted from the exit light surface. Moreover, the optical fine structure guides sunlight and emits it at one emission angle on the emission light surface, and the emission angles are continuously distributed in one angle range.

この発明の導光微細構造プレート、導光方法と窓構造への応用は、異なる角度の入射光に適応して広角範囲に射出できる導光微細構造プレートを提供し、例えば、それが窓に利用される時、太陽光の一部を屋内の天井まで屈折発散させて、比較的良好な照明光率を達成する。   The light guide microstructure plate, light guide method and window structure application of the present invention provide a light guide microstructure plate that can adapt to incident light of different angles and emit in a wide angle range, for example, it can be used for windows When done, part of the sunlight is refracted and radiated to the indoor ceiling to achieve a relatively good illumination rate.

従来の窓の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the conventional window. この発明の実施形態にかかる窓の室内照明に対するメカニズムを示す説明図である。It is explanatory drawing which shows the mechanism with respect to the indoor illumination of the window concerning embodiment of this invention. この発明の実施形態にかかる導光微細構造プレートの光学微細構造の断面構造および入射光に対するメカニズムを示す説明図である。It is explanatory drawing which shows the cross-sectional structure of the optical fine structure of the light guide fine structure plate concerning embodiment of this invention, and the mechanism with respect to incident light. この発明の実施形態にかかる単一仰角に対する入射光が光学微細構造を経て出射光をビーム拡大する説明図である。It is explanatory drawing which carries out beam expansion of the emitted light with respect to the single elevation angle concerning embodiment of this invention through an optical fine structure. この発明の実施形態にかかる異なる仰角の入射光が光学微細構造の屈折作用を経た後の出射光角度分布を示す説明図である。It is explanatory drawing which shows the emitted light angle distribution after the incident light of a different elevation angle concerning this Embodiment passes through the refraction | bending effect | action of an optical fine structure. この発明の実施形態にかかる異なる単一仰角に対する入射光が光学微細構造を経て出射光をビーム拡大する説明図である。It is explanatory drawing which carries out the beam expansion of the emitted light with respect to the different single elevation angle concerning embodiment of this invention through an optical fine structure. この発明の実施形態にかかる導光微細構造プレートの断面を示す説明図である。It is explanatory drawing which shows the cross section of the light guide fine structure plate concerning embodiment of this invention. この発明の実施形態にかかる導光微細構造プレートの断面を示す説明図である。It is explanatory drawing which shows the cross section of the light guide fine structure plate concerning embodiment of this invention. この発明の実施形態にかかる導光微細構造プレートの断面を示す説明図である。It is explanatory drawing which shows the cross section of the light guide fine structure plate concerning embodiment of this invention. この発明の実施形態にかかる導光微細構造プレートの断面を示す説明図である。It is explanatory drawing which shows the cross section of the light guide fine structure plate concerning embodiment of this invention. この発明の実施形態にかかる導光微細構造プレートの断面を示す説明図である。It is explanatory drawing which shows the cross section of the light guide fine structure plate concerning embodiment of this invention. この発明の実施形態にかかる光学微細構造の幾何学構造パラメーターを示す図である。It is a figure which shows the geometric structure parameter of the optical microstructure concerning embodiment of this invention. この発明の実施形態にかかる光学微細構造の幾何学構造パラメーターを示す図である。It is a figure which shows the geometric structure parameter of the optical microstructure concerning embodiment of this invention. この発明の実施形態にかかる効能分析に使用する角度定義を示す説明図である。It is explanatory drawing which shows the angle definition used for the efficacy analysis concerning embodiment of this invention. この発明の実施形態図にかかる複数の入射仰角が発生させるビーム拡大の効能分析を示す説明図である。It is explanatory drawing which shows the effect analysis of the beam expansion which the some incident elevation angle concerning this embodiment figure produces | generates. この発明の実施形態図にかかる複数の入射仰角が発生させるビーム拡大の効能分析を示す説明図である。It is explanatory drawing which shows the effect analysis of the beam expansion which the some incident elevation angle concerning this embodiment figure produces | generates. この発明の実施形態図にかかる複数の入射仰角が発生させるビーム拡大の効能分析を示す説明図である。It is explanatory drawing which shows the effect analysis of the beam expansion which the some incident elevation angle concerning this embodiment figure produces | generates. この発明の実施形態図にかかる複数の入射仰角が発生させるビーム拡大の効能分析を示す説明図である。It is explanatory drawing which shows the effect analysis of the beam expansion which the some incident elevation angle concerning this embodiment figure produces | generates.

室内の照明効果に対して太陽光を更に有効に利用するために、この発明は、導光微細構造プレートを提供し、それが窓に利用できる。以下、多くの実施形態によりこの発明を説明するが、この発明は、挙げられた実施形態に限定されるものではなく、かつ挙げられた実施形態間で相互に適切に結合されるものである。   In order to more effectively use sunlight for indoor lighting effects, the present invention provides a light guiding microstructure plate that can be used for windows. Hereinafter, the present invention will be described with reference to many embodiments. However, the present invention is not limited to the above-described embodiments, and the embodiments are appropriately combined with each other.

以下、この発明を実施するための形態を図面に基づいて説明する。
図2は、この発明の実施形態にかかる窓の室内照明に対するメカニズムを示す説明図である。図2において、室内200について言えば、それは、窓202が太陽光104を受け取って室内200に導入できる場所に設置される。しかし、窓202は、例えば、平滑透過領域と微細構造屈折領域とを含む。平滑透過領域は、平滑透過領域が同じ進行方向を維持して透過することを許して室内へ進入し下向きの室内光106となる。微細構造屈折領域上に少なくとも1つの導光微細構造プレート204を設置して、太陽光104を屈折して室内に進入させ上向きの室内光108となる。微細構造屈折領域は、一般に、例えば、上部に設置されて窓の景観に影響を及ぼすことを避けるが、この実施形態の設置方式に限定されるものではない。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 2 is an explanatory diagram showing a mechanism for indoor lighting of a window according to the embodiment of the present invention. In FIG. 2, regarding the room 200, it is installed at a place where the window 202 can receive the sunlight 104 and introduce it into the room 200. However, the window 202 includes, for example, a smooth transmission region and a fine structure refraction region. The smooth transmission region allows the smooth transmission region to transmit while maintaining the same traveling direction, and enters the room to become downward room light 106. At least one light guide microstructure plate 204 is installed on the microstructure refraction region, and the sunlight 104 is refracted to enter the room to become upward room light 108. The microstructure refraction region is generally installed at the upper part to avoid affecting the scenery of the window, but is not limited to the installation method of this embodiment.

この発明の提出する導光微細構造プレート204は、太陽光104が大角度範囲内の任意の仰角から入射する時、導光微細構造プレート204が受け取る太陽光104は、天井方向へ屈折され、かつ1つの広角範囲に発散されるため、大面積の照明を行うとともに、仰角の変化に従って顕著な変化はないので、広角の射出範囲を維持する。   The light guide microstructure plate 204 submitted by the present invention is such that the sunlight 104 received by the light guide microstructure plate 204 when the sunlight 104 is incident from any elevation angle within a large angle range is refracted toward the ceiling, and Since the light is diverged into one wide-angle range, large-area illumination is performed and there is no significant change according to the change in elevation angle, so the wide-angle emission range is maintained.

以下に、図2中の導光微細構造プレート204の構造および作用メカニズムを説明する。図3は、この発明の実施形態にかかる導光微細構造プレートの光学微細構造の断面構造および入射光に対するメカニズムを示す説明図である。図3において、導光微細構造プレートが、基材210と導光微細構造層212とを含む。基材210が入射光面210aと射出光面210bとを有し、そのうち、射出光面210bがバーチャルな参考垂直面を有する。導光微細構造層212が入射光面210a上に配置される。導光微細構造層212が突出した複数の光学微細構造を含む。各光学微細構造が曲柱面構造214と斜柱面構造216とを含み、頂端で交差連結される。斜柱面構造216が例えば2つの斜面216a および 216bにより突出して交接する。   Hereinafter, the structure and operation mechanism of the light guide microstructure plate 204 in FIG. 2 will be described. FIG. 3 is an explanatory diagram showing the cross-sectional structure of the optical microstructure of the light guiding microstructure plate according to the embodiment of the present invention and the mechanism for incident light. In FIG. 3, the light guide microstructure plate includes a substrate 210 and a light guide microstructure layer 212. The substrate 210 has an incident light surface 210a and an exit light surface 210b, of which the exit light surface 210b has a virtual reference vertical surface. A light guide microstructure layer 212 is disposed on the incident light surface 210a. The light guide microstructure layer 212 includes a plurality of optical microstructures protruding. Each optical microstructure includes a curved columnar structure 214 and an oblique columnar structure 216, which are cross-connected at the apex. The oblique column surface structure 216 protrudes and meets with two inclined surfaces 216a and 216b, for example.

入射光束a1〜a6が参考垂直面に対して、1つの入射角で導光微細構造層212の光学微細構造へ入射される。入射角は、参考垂直面に対して仰角とも呼ばれ、つまり、太陽光が導光微細構造プレートへ入射される方向である。   Incident light beams a1 to a6 are incident on the optical microstructure of the light guide microstructure layer 212 at one incident angle with respect to the reference vertical plane. The incident angle is also called the elevation angle with respect to the reference vertical plane, that is, the direction in which sunlight is incident on the light guide microstructure plate.

ここで、上記した光学微細構造は、ストライプ(stripe)柱であり、互いに平行な方式で配列されて導光微細構造層212となる。   Here, the above-mentioned optical microstructure is a stripe pillar, and is arranged in a parallel manner to form the light guide microstructure layer 212.

仰角θに対して入射する入射光a1〜a6は、それが光学微細構造に進入する時、入射領域の異なる構造により、屈折、反射または全反射の特性を経て光進行の方向を変化させて射出光a1’〜a6’に変わる。例えば、入射光a1 および a2は、斜柱面構造216の斜面216bに接触し、屈折して基材210の入射光面210aを透過してから射出光面210bに接触する時、全反射光a1’ および a2’となり、光線が入射方向へ導かれるため、室内へ進入することができない。入射光a3〜a5は、斜柱面構造216の斜面216bに接触して第1次屈折して導光微細構造プレート212の光学微細構造へ進入し、再び曲柱面構造214の曲面を経て内部全反射し、基材210の入射光面210aを透過して、最後に射出光面210bに接触して第2次屈折し、射出光a3’〜a5’となる。入射光a6は、先ず導光微細構造プレート212の曲柱面構造214の曲面に接触して第1次屈折して光学微細構造に進入し、射出光面210bを経て第2次屈折して射出光a6’となる。   Incident light a1 to a6 that is incident on the elevation angle θ is emitted by changing the direction of light travel through the characteristics of refraction, reflection, or total reflection, depending on the structure of the incident region, as it enters the optical microstructure. Changes to light a1'-a6 '. For example, when the incident light a1 and a2 are in contact with the inclined surface 216b of the oblique columnar structure 216, refracted and transmitted through the incident light surface 210a of the substrate 210, then the total reflected light a1 It becomes 'and a2' and the light beam is guided in the incident direction, so it cannot enter the room. Incident light a3 to a5 comes into contact with the inclined surface 216b of the oblique column surface structure 216, undergoes first-order refraction, enters the optical microstructure of the light guiding microstructure plate 212, and again passes through the curved surface of the curved column surface structure 214 to the inside. The light is totally reflected, passes through the incident light surface 210a of the substrate 210, and finally comes into contact with the outgoing light surface 210b to be second-order refracted to become outgoing lights a3 ′ to a5 ′. The incident light a6 first comes into contact with the curved surface of the curved columnar structure 214 of the light guiding microstructure plate 212 and first-order refracts and enters the optical microstructure, and then second-order refracts and exits through the exit light surface 210b. It becomes light a6 '.

単一の仰角θの入射光について言えば、導光微細構造プレート212の光学微細構造を経てビーム拡大作用を発生させて、比較的大角度範囲に分布する射出光a3’〜a6’となり、これにより、室内の異なる深さの天井がいずれも光均一分散の効果を達成して、室内照度を均一に向上させる。   Speaking of incident light with a single elevation angle θ, the beam expansion action is generated through the optical microstructure of the light guide microstructure plate 212, resulting in emitted light a3 ′ to a6 ′ distributed in a relatively large angle range. As a result, the ceilings with different depths in the room achieve the effect of uniform light dispersion, and the room illuminance is improved uniformly.

図4は、この発明の実施形態にかかる単一仰角に対する入射光が光学微細構造を経て出射光をビーム拡大する射出光シミュレーション説明図である。図4において、単一仰角入射光230に対して、それが光学微細構造の斜面を経たのち曲面に接触し、曲面により内部全反射を発生させて射出光232となり、その強度角度分布が射出光強度角度分布線234により描かれ、入射光経路236が射出方向上で得られた光強度を表す。言い換えれば、入射光230がほぼ1つの固定角度で入射するが、屈折されて離れた射出光232が上向きの角度範囲に連続的に分布しており、その細部の分析は、後の図14から図18に記述する。   FIG. 4 is an explanatory diagram of an emitted light simulation in which incident light with respect to a single elevation angle according to the embodiment of the present invention undergoes beam expansion through the optical fine structure. In FIG. 4, the single elevation angle incident light 230 passes through the inclined surface of the optical fine structure and then comes into contact with the curved surface. The curved surface causes total internal reflection to become the emitted light 232, and its intensity angle distribution is the emitted light. It is drawn by the intensity angle distribution line 234, and the incident light path 236 represents the light intensity obtained in the emission direction. In other words, the incident light 230 is incident at approximately one fixed angle, but the refracted and separated exit light 232 is continuously distributed in the upward angle range, and the analysis of its details is shown in FIG. This is described in FIG.

図5は、この発明の実施形態にかかる異なる仰角の入射光が光学微細構造の屈折作用を経た後の出射光角度分布を示す説明図である。光学微細構造が異なる仰角の入射光、例えば、高仰角α、中仰角βおよび低仰角γを受け取ることができ、斜面または曲面に接触して第1次屈折を発生させ、光線の一部が光射出面を経て内部全反射し入射方向へ導かれる。光線の一部が光射出面に直接接触して屈折して光学微細構造を離れ、複数の光線が曲面での内部全反射を経て、射出面に接触する時に屈折して光学微細構造を離れる。   FIG. 5 is an explanatory diagram showing an outgoing light angle distribution after incident light of different elevation angles according to an embodiment of the present invention undergoes a refractive action of the optical microstructure. Incident light with different optical microstructures, such as high elevation angle α, medium elevation angle β, and low elevation angle γ, can be received, contact the slope or curved surface to generate first-order refraction, and part of the light beam is light It is totally reflected internally through the exit surface and guided in the incident direction. A part of the light beam directly contacts and refracts the light exit surface to leave the optical microstructure, and a plurality of light rays undergo internal total reflection on the curved surface and refract to leave the optical microstructure when contacting the exit surface.

仰角α、β、γの入射光が光学微細構造を経ていずれもビーム拡大されて射出光面に垂直な角度より大きく角度なることができ、1つの角度範囲において射出される。かくして、従来の設計中に存在した太陽光の入射仰角が時間に従って変化するために、室内天井の光跡(こうせき)もまた変化する現象を有効に解決できる。従って、導光微細構造プレートの効果を大幅に向上させることができる。   Incident light with elevation angles α, β, and γ are all expanded through an optical fine structure so as to have an angle larger than an angle perpendicular to the exit light surface, and are emitted in one angle range. Thus, the incident elevation angle of sunlight existing in the conventional design changes with time, so that the phenomenon that the light trace of the indoor ceiling also changes can be effectively solved. Therefore, the effect of the light guide microstructure plate can be greatly improved.

図6は、この発明の実施形態にかかる異なる単一仰角に対する入射光が光学微細構造を経て出射光をビーム拡大するシミュレーション説明図である。図6において、その表示方式は、図4と同じである。分析結果から分かるように、図5に対応する3つの仰角の入射光束300, 302, 304は、いずれもビーム拡大の効果がある。つまり、この発明の実施形態の光学微細構造は、異なる仰角の入射光を受け取ることができ、なお広角度範囲のビーム拡大の射出光分布を維持することができる。   FIG. 6 is a simulation explanatory diagram in which incident light with respect to different single elevation angles according to the embodiment of the present invention undergoes beam expansion of outgoing light through an optical fine structure. In FIG. 6, the display method is the same as in FIG. As can be seen from the analysis results, the incident light beams 300, 302, and 304 at three elevation angles corresponding to FIG. 5 have an effect of beam expansion. In other words, the optical microstructure of the embodiment of the present invention can receive incident light with different elevation angles, and can maintain the exit light distribution of beam expansion in a wide angle range.

図7〜図11は、この発明の実施形態にかかる導光微細構造プレートの断面を示す説明図である。図7において、導光微細構造プレートの基材210と導光微細構造層212とは、同一材料の一体構造であり、曲柱面構造214の曲率半径が例えば単一曲率R1の曲面である。また、斜柱面構造216が例えば2つの斜面構造である。   7-11 is explanatory drawing which shows the cross section of the light guide fine structure plate concerning embodiment of this invention. In FIG. 7, the base material 210 and the light guide microstructure layer 212 of the light guide microstructure plate 212 are an integral structure of the same material, and the curved column surface structure 214 is a curved surface having a curvature radius of, for example, a single curvature R1. Further, the inclined column surface structure 216 is, for example, two inclined surface structures.

図8において、図7の構造だけでなく、斜柱面構造216が単一の斜面構造であることができるが、曲柱面構造214の曲率半径R2は、それに合わせて調整が必要である。一般的に言って、斜柱面構造216の斜面数量は、1個または2個に限定されるものではなく、更に多いものにできる。   In FIG. 8, not only the structure of FIG. 7 but also the oblique column surface structure 216 can be a single inclined surface structure, but the curvature radius R2 of the curved column surface structure 214 needs to be adjusted accordingly. Generally speaking, the number of inclined surfaces of the oblique column surface structure 216 is not limited to one or two, but can be increased.

図9において、曲柱面構造214の設計変更であり、それもまた例えば異なる曲率半径R3, R4の組み合わせであることができるが、ここに挙げた曲面に制限するものでなく、更に多くの曲面とすることができる。   FIG. 9 shows a design change of the curved column surface structure 214, which can also be, for example, a combination of different radii of curvature R3 and R4, but is not limited to the curved surfaces listed here, and more curved surfaces. It can be.

図10において、上記した構造は、基材210と導光微細構造層212とを一体構造にしている。しかし、導光微細構造層212もまた基材210上にそれぞれ直接製作できる。基材210は、例えばガラスまたは透光材料である。   In FIG. 10, the above-described structure has a base material 210 and a light guide microstructure layer 212 that are integrated. However, the light guiding microstructure layer 212 can also be fabricated directly on the substrate 210, respectively. The substrate 210 is, for example, glass or a light transmissive material.

図11において、また更に一歩進んだ変化としては、導光微細構造層212を透光薄膜250上に製作するものである。この時、基材210が例えば応用しようとする窓ガラスである。このような方式は、各種の利用ができて便利であり、現在ある窓に導光微細構造層を直接貼り付けるだけでよい。   In FIG. 11, as a further further change, the light guide microstructure layer 212 is manufactured on the light-transmitting thin film 250. At this time, the substrate 210 is, for example, a window glass to be applied. Such a method can be used in various ways and is convenient, and it is only necessary to directly attach the light guide microstructure layer to an existing window.

導光微細構造プレートを製作する方式は、例えば、射出または熱圧成型を利用することができる。導光微細構造層の光学微細構造もまた例えばプレス印刷、ロール印刷方式で透明基材に成型して導光微細構造プレートとすることができる。また、光学微細構造もまた例えば透明膜材に成型して導光微細構造膜として製作することができる。上記した透明材料がプラスチック、ガラス、石英またはその他の種類の透明材料とすることができる。   As a method of manufacturing the light guide microstructure plate, for example, injection or hot pressing can be used. The optical microstructure of the light guide microstructure layer can also be molded into a transparent substrate by, for example, press printing or roll printing to form a light guide microstructure plate. The optical microstructure can also be produced as a light guiding microstructure film, for example, by molding it into a transparent film material. The transparent material described above can be plastic, glass, quartz or other types of transparent material.

以下、光学微細構造の設計を記述する。図12は、この発明の実施形態にかかる光学微細構造の幾何学構造パラメーターを示す図である。図12において、導光微細構造層212の光学微細構造は、ストライプ柱状の構造であり、その横断面構造には2つの面があり、曲柱面構造と斜柱面構造とである。単一曲面と2つの斜面との実施形態について言えば、その曲率半径R、斜面の傾斜率と面積との比率がそのビーム拡大の効能を決定できるので、頂点座標(Hx, H)、曲率半径R、下部斜面の傾斜角A1および2つの斜面の夾角A2を含む、いくつかの設計パラメーターを考慮する必要がある。また、下部斜面の高さをhで表し、光学微細構造の底部幅をPで表示する。 The optical microstructure design is described below. FIG. 12 is a diagram showing the geometric structure parameters of the optical microstructure according to the embodiment of the present invention. In FIG. 12, the optical microstructure of the light guide microstructure layer 212 is a stripe columnar structure, and its cross-sectional structure has two surfaces, a curved column surface structure and an oblique column surface structure. Speaking of the embodiment with a single curved surface and two slopes, the radius of curvature R, the ratio of slope slope and area can determine the effect of the beam expansion, the vertex coordinates (H x , H), the curvature Several design parameters need to be considered, including radius R, lower slope slope angle A1 and two slope slope angles A2. The height of the lower slope is represented by h, and the bottom width of the optical microstructure is represented by P.

光学微細構造を設計する条件は:

Figure 2011123478
そのうち、
Figure 2011123478
しかし、上記した設計条件は、1つの採用できる方式であるが、唯一の方式ではない。 The conditions for designing optical microstructures are:
Figure 2011123478
Of which
Figure 2011123478
However, the above design condition is one method that can be adopted, but it is not the only method.

また、もしも単一斜面の構造を採用した場合、その設計は、いささか異なる。図13は、この発明の実施形態にかかる光学微細構造の幾何学構造パラメーターを示す図である。図13において、導光微細構造層212の光学微細構造は、単一曲率の曲面と1個の斜面の例であり、その斜面が傾斜角Aである。
図13を設計する光学微細構造の条件は、例えば:

Figure 2011123478
そのうち、
Figure 2011123478
また、上記したパラメーター条件は、例えば、H/Pの比率が例えば0.25〜3の範囲である。傾斜角Aと傾斜角A1(図12参照)との範囲が例えば30〜90度の範囲である。 Also, if a single bevel structure is employed, the design is slightly different. FIG. 13 is a diagram showing the geometric structure parameters of the optical microstructure according to the embodiment of the present invention. In FIG. 13, the optical microstructure of the light guiding microstructure layer 212 is an example of a curved surface with a single curvature and one inclined surface, and the inclined surface has an inclination angle A.
The optical microstructure requirements for designing FIG. 13 are, for example:
Figure 2011123478
Of which
Figure 2011123478
Moreover, the above-described parameter conditions are, for example, a range where the H / P ratio is, for example, 0.25-3. The range of the inclination angle A and the inclination angle A1 (see FIG. 12) is, for example, a range of 30 to 90 degrees.

以下、この発明が発生させる効能向上を記載する。図14は、この発明の実施形態にかかる効能分析に使用する角度定義を示す説明図である。図14において、導光微細構造プレート204の側面図であり、それがバーチャルな参考垂直平面を有し、点線で90度に位置することをしている。導光微細構造プレート204が参考垂直平面に相対する一辺が0度であり、他辺が180度であって、反時計方向へ逓増している。入射角方向が参考垂直平面に対して仰角θを有する。言い換えれば、入射光が光学微細構造の作用を経て、その射出光が90度より小さな射出光3300および90度より大きな射出光3302に分けられる。例えば、窓に応用する時、射出光3302が天井の方向へ進み、その効能の向上が照明の応用への助けとなる。   In the following, the improvement in efficacy generated by the present invention will be described. FIG. 14 is an explanatory diagram showing angle definitions used for efficacy analysis according to the embodiment of the present invention. In FIG. 14, it is a side view of the light guiding microstructure plate 204, which has a virtual reference vertical plane and is located at 90 degrees with a dotted line. One side of the light guide microstructure plate 204 relative to the reference vertical plane is 0 degree, and the other side is 180 degrees, increasing in the counterclockwise direction. The incident angle direction has an elevation angle θ with respect to the reference vertical plane. In other words, the incident light undergoes the action of the optical fine structure, and the emitted light is divided into an emitted light 3300 smaller than 90 degrees and an emitted light 3302 larger than 90 degrees. For example, when applied to a window, the emitted light 3302 travels toward the ceiling, and its increased effectiveness helps lighting applications.

図15〜図18は、この発明の実施形態図にかかる複数の入射仰角が発生させるビーム拡大の効能分析を示す説明図である。図15において、仰角が40度の入射光を例に挙げると、実線は、光学微細構造が曲面および斜面により構成する幾何学構造の射出光効果を表す。点線は、光学微細構造の曲面が斜面により置き換えられた射出光効果を表す。点線の分布が単一な射出方向に限られているが、実線の分布は、比較的大きな分布範囲、例えば、65−165度をカバーしており、そのうち、90度より大きい射出光量が大部分を占め、かつ分布の角度範囲が点線の分布より遙かに大きい。つまり、図14に基づく角度の定義は、射出光面が参考垂直面(点線)の一辺であるとともに、入射光と同一辺ではない導光微細構造プレート204の方向が0度であり、反時計方向へ増加する。かくして、導光微細構造プレート204が参考垂直面における別な一辺は180度である。   15-18 is explanatory drawing which shows the effect analysis of the beam expansion which the some incident elevation angle concerning embodiment drawing of this invention generate | occur | produces. In FIG. 15, taking incident light with an elevation angle of 40 degrees as an example, the solid line represents the emission light effect of a geometric structure in which the optical fine structure is constituted by a curved surface and a slope. The dotted line represents the emitted light effect in which the curved surface of the optical microstructure is replaced by a slope. Although the distribution of the dotted line is limited to a single emission direction, the distribution of the solid line covers a relatively large distribution range, for example, 65 to 165 degrees, and most of the emitted light amount is larger than 90 degrees. And the angular range of the distribution is much larger than the dotted distribution. That is, the definition of the angle based on FIG. 14 is that the exit light plane is one side of the reference vertical plane (dotted line), and the direction of the light guide microstructure plate 204 that is not the same side as the incident light is 0 degrees, Increase in the direction. Thus, another side of the light guide microstructure plate 204 on the reference vertical plane is 180 degrees.

図16において、それは、仰角を50度とする入射光を例に挙げると、射出光分布も図15と同一な特性を有する。   In FIG. 16, taking incident light with an elevation angle of 50 degrees as an example, the emission light distribution has the same characteristics as FIG.

図17において、それは、仰角を60度とする入射光を例に挙げると、射出光分布も図15および図16と同一な特性を有し、かつ大部分がいずれも屈折されることより利用できる。   In FIG. 17, taking incident light with an elevation angle of 60 degrees as an example, the emission light distribution has the same characteristics as those in FIGS. 15 and 16, and most of them can be used because they are refracted. .

図18において、それは、仰角を70度とする入射光を例に挙げると、射出光分布も図15〜図17と同一な特性を有し、実線と点線との比較から分かるように、利用の効率を大量に向上させる。   In FIG. 18, taking incident light with an elevation angle of 70 degrees as an example, the emission light distribution has the same characteristics as in FIGS. 15 to 17, and as can be seen from the comparison between the solid line and the dotted line, Increase efficiency a lot.

図15〜図18の分析から証明できるように、この発明の設計は、異なる仰角の入射光に適応することができ、従って、比較的大きな利用性があり、特定仰角の入射光に制限されない。   As can be demonstrated from the analysis of FIGS. 15-18, the design of the present invention can be adapted to incident light at different elevation angles, and therefore has a relatively large utility and is not limited to incident light at a particular elevation angle.

以上のように、この発明を実施形態により開示したが、もとより、この発明を限定するためのものではなく、当業者であれば容易に理解できるように、この発明の技術思想の範囲内において、適当な変更ならびに修正が当然なされうるものであるから、その特許権保護の範囲は、特許請求の範囲および、それと均等な領域を基準として定めなければならない。   As described above, the present invention has been disclosed by the embodiments. However, the present invention is not intended to limit the present invention, and within the scope of the technical idea of the present invention, as can be easily understood by those skilled in the art, Appropriate changes and modifications can be made, so that the scope of protection of the patent right must be determined on the basis of the scope of claims and the equivalent area.

100 家屋
102 窓
103 太陽光
106 室内光
108 室内光
200 室内
202 窓
204 導光微細構造プレート
210 基材
210a 入射光面
210b 射出光面
212 導光微細構造層
214 曲柱面構造
216 斜柱面構造
216a, 216b 斜面
230 入射光
232 射出光
234 射出光強度分布線
236 入射光経路
250 透光薄膜
300, 302, 304 入射光束
3300, 3302 射出光
100 houses
102 windows
103 sunlight
106 Indoor light
108 room light
200 rooms
202 windows
204 Light guiding microstructure plate
210 Base material
210a Incident light surface
210b Emission light surface
212 Light guiding microstructure layer
214 Curved column structure
216 Oblique columnar structure
216a, 216b slope
230 Incident light
232 Emission light
234 Emission light intensity distribution line
236 Incident light path
250 Translucent thin film
300, 302, 304 Incident light flux
3300, 3302 Emission light

Claims (13)

導光微細構造プレートを提供することと;
前記導光微細構造プレートを利用し、1つの仰角で入射光を受け取り、かつ前記入射光を連続的に分布する角度範囲に射出することとを含むものであって、
そのうち、提供する前記導光微細構造プレートが:
入射光面および射出光面を有し、そのうち、前記射出光面が参考垂直面を有する基材と;
前記入射光面上に配置され、そのうち、突出した複数の光学微細構造を含み、各光学微細構造が頂端で交差連結する曲柱面構造および斜柱面構造を含む、導光微細構造層とを含み、
そのうち、入射光束が前記参考垂直面に1つの入射角で前記複数の光学微細構造に入射する時、前記入射光束の少なくとも一部が前記斜柱面構造へ進入した後、前記曲柱面構造において内部全面反射を発生させた後に屈折されて前記射出光面から射出されるものである、導光方法。
Providing a light guiding microstructure plate;
Using the light guide microstructure plate, receiving incident light at one elevation angle and emitting the incident light into a continuously distributed angular range,
Among them, the light guide microstructure plate to provide is:
A substrate having an incident light surface and an exit light surface, wherein the exit light surface has a reference vertical surface;
A light-guiding microstructure layer disposed on the incident light surface, including a plurality of protruding optical microstructures, each of which includes a curved column surface structure and an oblique column surface structure in which each optical microstructure is cross-connected at the apex. Including
Among them, when an incident light beam enters the plurality of optical microstructures at one incident angle on the reference vertical surface, after at least a part of the incident light beam enters the oblique column surface structure, A light guide method that is refracted after exiting the entire internal surface and exiting from the exit light surface.
前記入射光束が、更にその一部が前記曲柱面構造へ進入し、前記曲柱面構造において屈折を発生させた後、更に前記射出光面において屈折透過するものである請求項1記載の導光方法。   The guide according to claim 1, wherein a part of the incident light beam further enters the curved column surface structure, generates refraction in the curved column surface structure, and further refracts and transmits on the exit light surface. Light way. 前記入射光束が、更にその一部が前記曲柱面構造へ進入し、前記曲柱面構造において屈折を発生または前記曲柱面構造において内部全面反射を発生させた後、前記射出光面において屈折透過するものである請求項1記載の導光方法。   The incident light beam is further refracted at the exit light surface after a part of the incident light beam enters the curved column surface structure to cause refraction in the curved column surface structure or internal total reflection in the curved column surface structure. The light guiding method according to claim 1, wherein the light guiding method is transparent. 提供される前記光学微細構造の前記曲柱面構造が、少なくとも1つの曲面を含む請求項1記載の導光方法。   The light guide method according to claim 1, wherein the curved column surface structure of the optical microstructure provided includes at least one curved surface. 提供される前記光学微細構造の前記斜柱面構造が、少なくとも1つの斜面を含む請求項1記載の導光方法。   The light guide method according to claim 1, wherein the provided oblique surface structure of the optical microstructure includes at least one inclined surface. 前記導光微細構造層が、前記基材の底部幅をPで表示し、前記導光微細構造層の高さをHで表示し、前記斜柱面構造と前記基材との斜角をAとすれば、下記する条件:
H/Pが0.25〜3の範囲と;
Aが30〜90度の範囲と
に適合するものである請求項5記載の導光方法。
The light guide fine structure layer displays the bottom width of the base material as P, the height of the light guide fine structure layer as H, and the oblique angle between the oblique columnar structure and the base material is A. If so, the following conditions:
H / P is in the range of 0.25-3;
The light guiding method according to claim 5, wherein A is suitable for a range of 30 to 90 degrees.
導光微細構造プレートであって、
入射光面および射出光面を有し、そのうち、前記射出光面が参考垂直面を有する基材と;
前記入射光面上に配置され、そのうち、突出した複数の光学微細構造を含み、各光学微細構造が頂端で交差連結する曲柱面構造および斜柱面構造を含む、導光微細構造層とを備え、
そのうち、入射光束が前記参考垂直面に1つの入射角で前記複数の光学微細構造に入射する時、前記入射光束の少なくとも一部が前記斜柱面構造へ進入した後、前記曲柱面構造において内部全面反射を発生させた後に屈折されて前記射出光面から射出されるものである、導光微細構造プレート。
A light guiding microstructure plate,
A substrate having an incident light surface and an exit light surface, wherein the exit light surface has a reference vertical surface;
A light-guiding microstructure layer disposed on the incident light surface, including a plurality of protruding optical microstructures, each of which includes a curved column surface structure and an oblique column surface structure in which each optical microstructure is cross-connected at the apex. Prepared,
Among them, when an incident light beam enters the plurality of optical microstructures at one incident angle on the reference vertical surface, after at least a part of the incident light beam enters the oblique column surface structure, A light-guided microstructure plate that is refracted and emitted from the exit light surface after generating internal overall reflection.
前記入射光束が、更にその一部が前記曲柱面構造へ進入し、前記曲柱面構造において屈折を発生させた後、更に前記射出光面において屈折透過するものである請求項7記載の導光微細構造プレート。   8. The guide according to claim 7, wherein a part of the incident light beam further enters the curved column surface structure, causes refraction in the curved column surface structure, and further refracts and transmits on the exit light surface. Light microstructure plate. 前記入射光束が、更にその一部が前記曲柱面構造へ進入し、前記曲柱面構造において屈折を発生、または前記曲柱面構造において内部全面反射を発生させた後、前記射出光面において屈折透過するものである請求項7記載の導光微細構造プレート。   A part of the incident light beam further enters the curved column surface structure, generates refraction in the curved column surface structure, or generates internal total reflection in the curved column surface structure, and then on the exit light surface. 8. The light guide microstructure plate according to claim 7, wherein the light guide microstructure plate is refracted and transmitted. 前記光学微細構造が、前記入射光を導き、前記射出光面において1つの射出角度で射出されるものであり、そのうち、前記射出角度が1つの角度範囲に連続的に分布する請求項7記載の導光微細構造プレート。   8. The optical microstructure according to claim 7, wherein the optical microstructure guides the incident light and is emitted at one exit angle on the exit light surface, and the exit angles are continuously distributed in one angular range. Light guiding microstructure plate. 前記光学微細構造の前記曲柱面構造が、少なくとも1つの曲面を含む請求項7記載の導光微細構造プレート。   The light guide microstructure plate according to claim 7, wherein the curved column surface structure of the optical microstructure includes at least one curved surface. 前記光学微細構造の前記斜柱面構造が、少なくとも1つの斜面を含む請求項7記載の導光微細構造プレート。   The light guide microstructure plate according to claim 7, wherein the oblique column surface structure of the optical microstructure includes at least one inclined surface. 前記導光微細構造プレートが、前記基材の底部幅をPで表示し、前記導光微細構造層の高さをHで表示し、前記斜柱面構造と前記基材との斜角をAとすれば、下記する条件:
H/Pが0.25〜3の範囲と;
Aが30〜90度の範囲と
に適合するものである請求項7記載の導光微細構造プレート。
The light guide microstructure plate displays the base width of the substrate as P, the height of the light guide microstructure layer as H, and the oblique angle between the oblique column surface structure and the substrate as A. If so, the following conditions:
H / P is in the range of 0.25-3;
The light guide microstructure plate according to claim 7, wherein A is suitable for a range of 30 to 90 degrees.
JP2010204925A 2009-12-08 2010-09-13 Light guiding microstructure plate, light guiding method and application to window structure Active JP5123364B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW98141944A TWI414673B (en) 2009-12-08 2009-12-08 Light guide microstructure plate, light guiding method, and application on window structure
TW098141944 2009-12-08

Publications (2)

Publication Number Publication Date
JP2011123478A true JP2011123478A (en) 2011-06-23
JP5123364B2 JP5123364B2 (en) 2013-01-23

Family

ID=44287368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204925A Active JP5123364B2 (en) 2009-12-08 2010-09-13 Light guiding microstructure plate, light guiding method and application to window structure

Country Status (2)

Country Link
JP (1) JP5123364B2 (en)
TW (1) TWI414673B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044331A (en) * 2012-08-27 2014-03-13 3M Innovative Properties Co Sunlight guide device
WO2014054574A1 (en) * 2012-10-02 2014-04-10 シャープ株式会社 Lighting film, web roll for lighting film, window pane, roll screen, and lighting louver
CN103883981A (en) * 2012-12-19 2014-06-25 奇菱科技股份有限公司 Light guide system and ceiling structure
JP2014116312A (en) * 2012-12-06 2014-06-26 Chi Lin Technology Co Ltd Light guide system and ceiling structure
WO2014196596A1 (en) * 2013-06-07 2014-12-11 シャープ株式会社 Lighting film, window glass, roll screen, and lighting louver
WO2015056736A1 (en) * 2013-10-17 2015-04-23 シャープ株式会社 Lighting member, lighting device, and method for installing lighting member
WO2015076245A1 (en) * 2013-11-25 2015-05-28 シャープ株式会社 Daylighting device and daylighting slat
JP2015111290A (en) * 2015-02-16 2015-06-18 大日本印刷株式会社 Daylighting sheet, daylighting device, and building
WO2015098940A1 (en) * 2013-12-25 2015-07-02 シャープ株式会社 Daylight-admitting member, window glass, shade, and daylight-admitting louver
JP2015135503A (en) * 2015-02-16 2015-07-27 大日本印刷株式会社 Lighting sheet, lighting device, and building
WO2015119071A1 (en) * 2014-02-04 2015-08-13 シャープ株式会社 Daylighting member, daylighting device, and method for installing daylighting member
WO2015174397A1 (en) * 2014-05-13 2015-11-19 シャープ株式会社 Daylighting device
JP2016014887A (en) * 2015-08-20 2016-01-28 大日本印刷株式会社 Manufacturing method for daylighting sheet
JP2016024272A (en) * 2014-07-17 2016-02-08 大日本印刷株式会社 Lighting film
JP2016066551A (en) * 2014-09-25 2016-04-28 大成建設株式会社 Light collection device
WO2016067998A1 (en) * 2014-10-28 2016-05-06 シャープ株式会社 Daylighting device and daylighting system
WO2016084752A1 (en) * 2014-11-25 2016-06-02 大日本印刷株式会社 Natural-light collecting sheet and natural-light collecting laminated body
US9366403B2 (en) 2013-03-21 2016-06-14 Dai Nippon Printing Co., Ltd. Daylighting sheet, daylighting panel, roll-up daylighting screen and method of manufacturing daylighting sheet
WO2016104626A1 (en) * 2014-12-25 2016-06-30 シャープ株式会社 Daylight collection device
JP2016136263A (en) * 2016-02-18 2016-07-28 大日本印刷株式会社 Daylighting sheet, daylighting device and building
JP2016148851A (en) * 2016-02-18 2016-08-18 大日本印刷株式会社 Lighting sheet, lighting device, and building
JP2016170420A (en) * 2016-04-08 2016-09-23 大日本印刷株式会社 Intermediate member
WO2017022792A1 (en) * 2015-08-04 2017-02-09 シャープ株式会社 Daylighting member, daylighting device, and installation method for daylighting member
CN106471397A (en) * 2014-06-30 2017-03-01 夏普株式会社 Daylighting part, lighting equipment, volume screen and shutter
CN109323992A (en) * 2018-09-19 2019-02-12 中国科学院遥感与数字地球研究所 A kind of atmosphere glyoxal remote-sensing monitoring method
CN109581795A (en) * 2018-12-13 2019-04-05 深圳阜时科技有限公司 A kind of optical projection mould group, sensing device and equipment
US10641448B2 (en) 2013-03-21 2020-05-05 Dai Nippon Printing Co., Ltd. Daylighting sheet, daylighting panel and roll-up daylighting screen
US10882223B2 (en) 2016-07-04 2021-01-05 Sharp Kabushiki Kaisha Daylighting device, molding die, and method of manufacturing daylighting film
DE112019002482B4 (en) 2018-05-16 2022-02-17 Yazaki Energy System Corporation CEILING ILLUMINATION WINDOW

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532789B (en) * 2015-04-30 2019-11-19 夏普株式会社 Daylighting lath and lighting equipment
CN107636385B (en) 2015-06-09 2020-03-27 夏普株式会社 Lighting device and lighting system
US10012356B1 (en) 2017-11-22 2018-07-03 LightLouver LLC Light-redirecting optical daylighting system
JPWO2019225498A1 (en) * 2018-05-24 2021-07-15 シャープ株式会社 Daylighting device
CN110926362B (en) * 2019-11-27 2021-07-06 中国科学技术大学 Optical detection method for microstructure with large height-width ratio
CN115654418B (en) * 2022-11-10 2023-11-14 湖南大学 Sunlight redirecting system of light-guiding heat-insulating prism

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583287U (en) * 1992-04-14 1993-11-12 フィグラ株式会社 Transparent laminated plate for lighting
JPH0954274A (en) * 1995-08-18 1997-02-25 Tokyu Constr Co Ltd Lighting method and lighting device
JP2002535690A (en) * 1999-01-14 2002-10-22 ミネソタ マイニング アンド マニュファクチャリング カンパニー Optical sheet suitable for light diffusion
JP2003177475A (en) * 2001-12-12 2003-06-27 Dainippon Printing Co Ltd Fresnel lens sheet and transmission type projection screen
JP2004046076A (en) * 2002-03-15 2004-02-12 Mitsubishi Rayon Co Ltd Optical deflecting element and surface light source unit
JP2004287415A (en) * 2003-03-03 2004-10-14 Mitsubishi Rayon Co Ltd Optical deflection device and light source device
JP2004302329A (en) * 2003-04-01 2004-10-28 Dainippon Printing Co Ltd Optical sheet
JP2006323284A (en) * 2005-05-20 2006-11-30 Tohoku Univ Projection display screen using deflection element, and projection display system
WO2007015826A1 (en) * 2005-07-22 2007-02-08 Rohm And Haas Denmark Finance A/S Turning film having variable pitch
JP2007178704A (en) * 2005-12-28 2007-07-12 Tohoku Univ Prism array having diffusion function of light
JP2008177070A (en) * 2007-01-19 2008-07-31 Sony Corp Optical control element, planar light source device, and liquid crystal display device
JP2009252375A (en) * 2008-04-01 2009-10-29 Nichia Corp Lighting fixture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200839080A (en) * 2007-03-19 2008-10-01 Ind Tech Res Inst Window systems and daylighting structures thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583287U (en) * 1992-04-14 1993-11-12 フィグラ株式会社 Transparent laminated plate for lighting
JPH0954274A (en) * 1995-08-18 1997-02-25 Tokyu Constr Co Ltd Lighting method and lighting device
JP2002535690A (en) * 1999-01-14 2002-10-22 ミネソタ マイニング アンド マニュファクチャリング カンパニー Optical sheet suitable for light diffusion
JP2003177475A (en) * 2001-12-12 2003-06-27 Dainippon Printing Co Ltd Fresnel lens sheet and transmission type projection screen
JP2004046076A (en) * 2002-03-15 2004-02-12 Mitsubishi Rayon Co Ltd Optical deflecting element and surface light source unit
JP2004287415A (en) * 2003-03-03 2004-10-14 Mitsubishi Rayon Co Ltd Optical deflection device and light source device
JP2004302329A (en) * 2003-04-01 2004-10-28 Dainippon Printing Co Ltd Optical sheet
JP2006323284A (en) * 2005-05-20 2006-11-30 Tohoku Univ Projection display screen using deflection element, and projection display system
WO2007015826A1 (en) * 2005-07-22 2007-02-08 Rohm And Haas Denmark Finance A/S Turning film having variable pitch
JP2007178704A (en) * 2005-12-28 2007-07-12 Tohoku Univ Prism array having diffusion function of light
JP2008177070A (en) * 2007-01-19 2008-07-31 Sony Corp Optical control element, planar light source device, and liquid crystal display device
JP2009252375A (en) * 2008-04-01 2009-10-29 Nichia Corp Lighting fixture

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044331A (en) * 2012-08-27 2014-03-13 3M Innovative Properties Co Sunlight guide device
JPWO2014054574A1 (en) * 2012-10-02 2016-08-25 シャープ株式会社 Daylighting film, raw film roll of daylighting film, window glass, roll screen and daylighting louver
WO2014054574A1 (en) * 2012-10-02 2014-04-10 シャープ株式会社 Lighting film, web roll for lighting film, window pane, roll screen, and lighting louver
US9429288B2 (en) 2012-10-02 2016-08-30 Sharp Kabushiki Kaisha Lighting film, web roll for lighting film, window pane, roll screen, and lighting louver
JP2014116312A (en) * 2012-12-06 2014-06-26 Chi Lin Technology Co Ltd Light guide system and ceiling structure
CN103883981A (en) * 2012-12-19 2014-06-25 奇菱科技股份有限公司 Light guide system and ceiling structure
US10641448B2 (en) 2013-03-21 2020-05-05 Dai Nippon Printing Co., Ltd. Daylighting sheet, daylighting panel and roll-up daylighting screen
US9366403B2 (en) 2013-03-21 2016-06-14 Dai Nippon Printing Co., Ltd. Daylighting sheet, daylighting panel, roll-up daylighting screen and method of manufacturing daylighting sheet
US9708847B2 (en) 2013-03-21 2017-07-18 Dai Nippon Printing Co., Ltd. Daylighting sheet, daylighting panel and roll-up daylighting screen
US10100992B2 (en) 2013-03-21 2018-10-16 Dai Nippon Printing Co., Ltd. Daylighting sheet, daylighting panel and roll-up daylighting screen
WO2014196596A1 (en) * 2013-06-07 2014-12-11 シャープ株式会社 Lighting film, window glass, roll screen, and lighting louver
JPWO2014196596A1 (en) * 2013-06-07 2017-02-23 シャープ株式会社 Daylighting film, window glass, roll screen and daylighting louver
US9803818B2 (en) 2013-06-07 2017-10-31 Sharp Kabushiki Kaisha Lighting film, window glass, roll screen, and lighting louver
CN107741610A (en) * 2013-06-07 2018-02-27 夏普株式会社 Daylighting film, glass pane, roller shutter and Lighting shutter
US9885453B2 (en) 2013-10-17 2018-02-06 Sharp Kabushiki Kaisha Lighting member, lighting device, and method for installing lighting member
JPWO2015056736A1 (en) * 2013-10-17 2017-03-09 シャープ株式会社 Daylighting member, daylighting device, and installation method of daylighting member
US10337682B2 (en) 2013-10-17 2019-07-02 Sharp Kabushiki Kaisha Lighting member, lighting device, and method for installing lighting member
WO2015056736A1 (en) * 2013-10-17 2015-04-23 シャープ株式会社 Lighting member, lighting device, and method for installing lighting member
WO2015076245A1 (en) * 2013-11-25 2015-05-28 シャープ株式会社 Daylighting device and daylighting slat
JPWO2015076245A1 (en) * 2013-11-25 2017-03-16 シャープ株式会社 Daylighting device and daylighting slat
WO2015098940A1 (en) * 2013-12-25 2015-07-02 シャープ株式会社 Daylight-admitting member, window glass, shade, and daylight-admitting louver
JPWO2015098940A1 (en) * 2013-12-25 2017-03-23 シャープ株式会社 Daylighting member, window glass, roll screen, daylighting louver
CN105960602A (en) * 2014-02-04 2016-09-21 夏普株式会社 Daylighting member, daylighting device, and method for installing daylighting member
WO2015119071A1 (en) * 2014-02-04 2015-08-13 シャープ株式会社 Daylighting member, daylighting device, and method for installing daylighting member
CN105960602B (en) * 2014-02-04 2018-07-13 夏普株式会社 The setting method of daylighting component, lighting equipment and daylighting component
US9970613B2 (en) 2014-02-04 2018-05-15 Sharp Kabushiki Kaisha Lighting member, lighting device, and method for installing lighting member
JPWO2015119071A1 (en) * 2014-02-04 2017-03-23 シャープ株式会社 Daylighting member, daylighting device, and method for installing daylighting member
WO2015174397A1 (en) * 2014-05-13 2015-11-19 シャープ株式会社 Daylighting device
JPWO2015174397A1 (en) * 2014-05-13 2017-04-20 シャープ株式会社 Daylighting equipment
US10302264B2 (en) 2014-05-13 2019-05-28 Sharp Kabushiki Kaisha Lighting device
RU2666131C2 (en) * 2014-05-13 2018-09-06 Шарп Кабусики Кайся Lighting device
CN106471397A (en) * 2014-06-30 2017-03-01 夏普株式会社 Daylighting part, lighting equipment, volume screen and shutter
JP2016024272A (en) * 2014-07-17 2016-02-08 大日本印刷株式会社 Lighting film
JP2016066551A (en) * 2014-09-25 2016-04-28 大成建設株式会社 Light collection device
WO2016067998A1 (en) * 2014-10-28 2016-05-06 シャープ株式会社 Daylighting device and daylighting system
WO2016084752A1 (en) * 2014-11-25 2016-06-02 大日本印刷株式会社 Natural-light collecting sheet and natural-light collecting laminated body
JPWO2016084752A1 (en) * 2014-11-25 2017-04-27 大日本印刷株式会社 Daylighting sheet and daylighting laminate
WO2016104626A1 (en) * 2014-12-25 2016-06-30 シャープ株式会社 Daylight collection device
JP2015111290A (en) * 2015-02-16 2015-06-18 大日本印刷株式会社 Daylighting sheet, daylighting device, and building
JP2015135503A (en) * 2015-02-16 2015-07-27 大日本印刷株式会社 Lighting sheet, lighting device, and building
JPWO2017022792A1 (en) * 2015-08-04 2018-05-31 シャープ株式会社 Daylighting member, daylighting device, and method for installing daylighting member
WO2017022792A1 (en) * 2015-08-04 2017-02-09 シャープ株式会社 Daylighting member, daylighting device, and installation method for daylighting member
JP2016014887A (en) * 2015-08-20 2016-01-28 大日本印刷株式会社 Manufacturing method for daylighting sheet
JP2016148851A (en) * 2016-02-18 2016-08-18 大日本印刷株式会社 Lighting sheet, lighting device, and building
JP2016136263A (en) * 2016-02-18 2016-07-28 大日本印刷株式会社 Daylighting sheet, daylighting device and building
JP2016170420A (en) * 2016-04-08 2016-09-23 大日本印刷株式会社 Intermediate member
US10882223B2 (en) 2016-07-04 2021-01-05 Sharp Kabushiki Kaisha Daylighting device, molding die, and method of manufacturing daylighting film
DE112019002482B4 (en) 2018-05-16 2022-02-17 Yazaki Energy System Corporation CEILING ILLUMINATION WINDOW
US11300263B2 (en) 2018-05-16 2022-04-12 Yazaki Energy System Corporation Ceiling illumination window
CN109323992A (en) * 2018-09-19 2019-02-12 中国科学院遥感与数字地球研究所 A kind of atmosphere glyoxal remote-sensing monitoring method
CN109323992B (en) * 2018-09-19 2021-03-09 中国科学院遥感与数字地球研究所 Atmospheric glyoxal remote sensing monitoring method
CN109581795A (en) * 2018-12-13 2019-04-05 深圳阜时科技有限公司 A kind of optical projection mould group, sensing device and equipment

Also Published As

Publication number Publication date
JP5123364B2 (en) 2013-01-23
TW201120299A (en) 2011-06-16
TWI414673B (en) 2013-11-11

Similar Documents

Publication Publication Date Title
JP5123364B2 (en) Light guiding microstructure plate, light guiding method and application to window structure
WO2019220656A1 (en) Lighting unit and lighting apparatus
TWI408463B (en) Light source module and illumination apparatus
KR20050020044A (en) A lighting block using solar cell
JP5921489B2 (en) Power generation window set and power generation module thereof
JP2007141546A (en) Optical mixing plate and direct backlight using it
JP2015529380A (en) Lighting device
CN104748066A (en) Optical member and lighting device using the same
JP2018530130A (en) Lighting system and method for generating light output
TW201326890A (en) Lens
CN102563526B (en) Light-equalizing lens
JP2008027905A (en) Light guide plate
US20130272025A1 (en) Lighting device and cove lighting module using the same
CN101713241B (en) Light panel used in building wall lighting and sunshade lighting
TW201422988A (en) Light guiding system and ceiling structure
JP2010074053A (en) Solar cell module
CN103221848A (en) Optical sheet, optical unit and lighting device using the same
KR20200101722A (en) Optical structures for light emitting diode device and light emitting diode device for lighting having the same
US10746355B2 (en) Lighting device
JP5693096B2 (en) Lighting device
CN101493210A (en) Light source structure based on LED
JP2015005453A (en) Solar lighting system
JP6035272B2 (en) Power generation module and light guide plate thereof
CN106838728B (en) LED panel light
CN108562969B (en) Square lamp with high luminous efficiency

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5123364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250