WO2016084752A1 - Natural-light collecting sheet and natural-light collecting laminated body - Google Patents

Natural-light collecting sheet and natural-light collecting laminated body Download PDF

Info

Publication number
WO2016084752A1
WO2016084752A1 PCT/JP2015/082770 JP2015082770W WO2016084752A1 WO 2016084752 A1 WO2016084752 A1 WO 2016084752A1 JP 2015082770 W JP2015082770 W JP 2015082770W WO 2016084752 A1 WO2016084752 A1 WO 2016084752A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
daylighting
angle
upper side
base material
Prior art date
Application number
PCT/JP2015/082770
Other languages
French (fr)
Japanese (ja)
Inventor
喜洋 金井
井手上 正人
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2016561565A priority Critical patent/JP6135889B2/en
Publication of WO2016084752A1 publication Critical patent/WO2016084752A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a daylighting sheet and a daylighting laminate for taking in external light such as sunlight.
  • window glass forms a bright and comfortable indoor space by taking in outside light such as sunlight inside the building.
  • outside light such as sunlight inside the building.
  • the outside light incident on the window glass is taken into the room as it is, there may be a problem such as feeling glare.
  • several techniques for controlling the direct sunlight and adopting the indoor side in a more comfortable manner have been proposed.
  • Patent Documents 1 and 2 disclose a daylighting sheet that suppresses direct sunlight (direct light) and that allows efficient daylighting and allows the outdoor side to be viewed from the indoor side.
  • JP 2014-119737 A Japanese Patent Application Laid-Open No. 2014-119738
  • the present invention balances productivity and daylighting performance, responds to the difference in altitude of the sun depending on the season and time of day, makes the whole room brighter and does not have an unnaturally dark time zone, and offers higher comfort Provide a daylighting sheet and a daylighting laminate.
  • the daylighting sheet according to the present invention is: A light transmitting portion that transmits light from one surface to the other surface; A light deflection unit having a lower refractive index than the light transmission unit inside the plurality of grooves formed in the light transmission unit; Have The light deflection unit has a first side and a second side on one side of the direction in which the light deflection units are arranged, and a third side on the other side, The first side and the second side are connected so as to protrude from the light transmission part side toward the inside of the light deflection part.
  • the daylighting sheet according to the present invention is:
  • the angle formed by the third side and the normal of the one surface of the light transmission part is 1 ° or more and 6 ° or less,
  • the ratio of the length of the normal direction of the light deflection unit to the pitch of the light deflection unit is 2.5 or more and 3.5 or less.
  • the daylighting sheet according to the present invention is: The light transmitting portion of the light that is reflected most strongly among the light reflected by the light deflecting portion with respect to light having an incident angle of 10 ° or more and 60 ° or less that is a normal to the one surface of the light transmitting portion.
  • the angle formed with the normal line on the one surface is not less than 1 ° and not more than 35 °.
  • the daylighting sheet according to the present invention is: An angle between the first side and the normal to the one surface of the light transmitting portion is 10 ° or more and 12.5 ° or less, An angle between the second side and a normal line on the one surface of the light transmission portion is ⁇ 1.5 ° to 2.5 °.
  • the daylighting laminate according to the present invention is: A sheet-like base material layer that transmits light;
  • the daylighting sheet formed on one surface side of the base material layer; It is characterized by providing.
  • the daylighting laminate according to the present invention is: A hard coat layer formed on the other surface side of the base material layer; An adhesive layer formed on the opposite side of the daylighting sheet from the base material layer; It is characterized by providing.
  • the daylighting sheet and daylighting laminate of the present invention it is possible to achieve both productivity and daylighting performance, cope with the altitude difference of the sun according to the season and time, brighten the whole room and darken the time zone unnaturally. Without it, it becomes possible to give higher occupants more comfort.
  • the figure which expanded a part of daylighting sheet 1 is shown.
  • the figure explaining the light to jump up of this embodiment is shown.
  • the example of one optical path of the lighting sheet of this embodiment is shown.
  • the other example of a light path of the lighting sheet of this embodiment is shown.
  • deviation part of the lighting sheet of this embodiment is shown.
  • the layer structure of the lighting laminated body of this embodiment is shown typically.
  • An example of one optical path of the lighting laminated body of this embodiment is shown.
  • the other example of an optical path of the lighting laminated body of this embodiment is shown.
  • the layer structure of the other example of the lighting laminated body of this embodiment is shown typically.
  • the example which applied the lighting sheet of this embodiment to the laminated glass is shown typically.
  • the example which applied the lighting laminated body of this embodiment to the laminated glass is shown typically.
  • FIG. 1 shows an enlarged view of a part of the daylighting sheet 1.
  • the left side of the drawing is the outdoor side
  • the right side of the drawing is the indoor side
  • the upper side is the top side
  • the lower side is the ground side.
  • FIG. 2 is a diagram for explaining the light that jumps up according to the present embodiment.
  • the daylighting sheet 1 has a light transmission part 11 and a light deflection part 12.
  • the light transmission part 11 is a part which transmits light, and both surfaces of the part where the light transmission part 11 is arranged in the daylighting sheet 1 are formed substantially in parallel.
  • the surface may be smooth or non-smooth. If smooth, this makes it easier to see the scenery through the daylighting sheet 1.
  • the indoor side is non-smooth, the contact area with the base material layer can be increased and the adhesion can be improved, the emitted light can be scattered to reduce the diffraction image, and the scenery through the daylighting sheet 1 can be reduced. Becomes difficult to see and privacy is improved. It is preferable that the light transmitting portion 11 transmits light without scattering. This improves the visibility of the scenery on the back side.
  • “transmits without scattering light” means a portion formed without adding a material that intentionally scatters, and inevitably occurs when light passes through the material. Scattering is allowed to occur.
  • the light transmitting portion 11 has a substantially trapezoidal cross section between the two light deflecting portions 12 in the cross section shown in FIG. 1, and has a short upper bottom on the outdoor side and a long lower bottom on the indoor side.
  • Sides forming the interface with the portion 12 are leg portions.
  • the leg portion has a shape that follows the shape of the light deflection portion 12 described later, it is not necessarily a straight line.
  • Examples of the material constituting the light transmitting portion 11 include transparent resins mainly composed of one or more of acrylic, styrene, polycarbonate, polyethylene terephthalate, acrylonitrile, etc., and epoxy acrylate and urethane acrylate reactive resins (ionizing radiation). Curable resin).
  • the refractive index of the material constituting the light transmitting portion 11 is preferably in the range of 1.58 or more and 1.61 or less, more preferably 1.59 or more and 1.60 or less from the versatility of the raw materials. If the refractive index is lower than this, sufficient lighting performance may not be obtained. On the other hand, if the refractive index is higher than this, there may be a problem in adhesion and moldability from the viewpoint of material selection.
  • the light deflection unit 12 is a part formed between two adjacent light transmission units 11. That is, as described above, the light transmission portions 11 are arranged in parallel in the direction along the sheet surface at a predetermined interval, and a concave portion having a predetermined shape is formed between the light transmission portions 11.
  • the concave portion in the present embodiment is a groove having a cross-sectional shape corresponding to the cross-sectional shape of the light deflection unit 12 described later, and the light deflection unit 12 is formed by filling the material constituting the light deflection unit 12 therein. ing. Therefore, the light deflection unit 12 has a cross-sectional shape based on the recess.
  • the light deflecting unit 12 is a layer configured to be able to deflect the light irradiated here by totally reflecting the light. For this reason, the light deflection unit 12 is filled with a material having a lower refractive index than the light transmission unit 11. According to this, if the incident light satisfies the total reflection condition due to the difference in the refractive index between the light deflecting unit 12 and the light transmitting unit 11 and the angle of the light incident on the interface, the light is totally reflected here. Can be reflected and deflected. As will be described in detail later, the direction of the deflected light is changed, and for example, it can be eliminated from direct light that gives glare by irradiating the ceiling.
  • the refractive index of the material forming the light deflection unit 12 is preferably in the range of 1.45 to 1.51, and more preferably 1.46 to 1.49, from the versatility of the raw materials.
  • the refractive index difference between the light transmitting portion 11 and the light deflecting portion 12 at that time is preferably 0.07 or more, and more preferably 0.1 or more.
  • the light deflection unit 12 has the following shape.
  • the light deflection unit 12 has a polygonal shape.
  • the upper side is formed so that the two sides 12a and 12b are continuous in the indoor / outdoor direction and protrude downward. That is, the first upper side 12a is arranged on the outdoor side, and the second upper side 12b is arranged on the indoor side. In other words, it has the first upper side 12a and the second upper side 12b on one side in the direction in which the light deflection units 12 are arranged, the lower side 12d on the other side, and the first upper side 12a and the second upper side 12b It is connected so as to protrude from the 11 side toward the inside of the light deflecting unit 12.
  • the first upper side 12a constitutes the first side
  • the second upper side 12b constitutes the second side
  • the lower side 12d constitutes the third side.
  • the inclination angles ⁇ U1 and ⁇ are different from each other with respect to the horizontal plane (the normal of the sheet surface of the daylighting sheet 1).
  • U2 is equipped.
  • ⁇ U1 and ⁇ U2 are inclined upward toward the outdoor side (sun side), and ⁇ U1 is set to an angle larger than ⁇ U2 .
  • the angle ⁇ U1 and the angle ⁇ U2 are also determined from this viewpoint.
  • the angle of attack ⁇ IN is set to 10 ° to 60 °, and the angle of the light that is most strongly jumped out of the jump angle ⁇ OUT at each angle of attack ⁇ IN is 1 ° to 35 °.
  • the daylighting sheet 1 is formed as described above. Splashed angle theta OUT, light incident from the outside is an angle theta OUT of jumping chamber, as shown in Table 1 below, it is to determine the brightness uniformity of the chamber.
  • a three-dimensional variable angle spectrocolor measurement system GCMS-11 Murakami Color
  • the emitted light L IN of 0 ° to 70 ° is emitted.
  • the brightness is measured at 1 ° intervals. Then, the light having the highest luminance value is the light that most strongly jumps up.
  • indicates that the whole room is uniformly brightened
  • indicates that the whole room is bright but partly dark
  • X indicates that the part that is felt bright is less than half the whole room. .
  • the angle ⁇ U1 of the first upper side 12a is 10 ° to 12.5 ° and the angle ⁇ U2 of the second upper side 12b is ⁇ 1.5 ° to 2.5 °.
  • the angle of the light that jumps up most strongly among the jumping angles ⁇ OUT to the room can be kept within a certain range, It is possible to give the occupants higher comfort without having a time zone in which the entire room is bright and unnaturally darkened.
  • angle ⁇ U2 of the second upper side 12b is smaller than ⁇ 1.5 °, there is a risk that problems may occur in the manufacturing aspects such as mold fabrication and releasability during molding.
  • angle ⁇ U2 of the second upper side 12b is larger than 2.5 °, it is difficult to jump up light having an incident angle of 10 ° or less.
  • the lower side 12d on the lower side opposite to the first upper side 12a and the second upper side 12b has an inclination angle of ⁇ D with respect to the horizontal plane, that is, the normal line on the surface of the transmission part 11. Yes.
  • ⁇ D is preferably set to 1 ° or more and 6 ° or less from the viewpoint of manufacturing.
  • the pitch P in which the light deflection units 12 are arranged is not particularly limited, but is preferably 10 ⁇ m or more and 200 ⁇ m or less. If the pitch P of the light deflection section 12 is too narrow, the shape becomes fine, so that processing becomes difficult during manufacturing. On the other hand, if the pitch P of the light deflection section 12 is too wide, the mold releasability of the material tends to decrease when molding with a mold.
  • the size of the outer side of the cross section of the light deflection unit 12, that is, the opening side of the recess between the light transmission units 11) is not particularly limited, but is preferably 5 ⁇ m or more and 150 ⁇ m or less. If this width is too narrow, it becomes a fine shape, making processing difficult. On the other hand, if this width is too wide, the releasability of the material tends to decrease when molding with a mold.
  • the length of the light deflection unit 12 in the thickness direction is not particularly limited, but is preferably 10 ⁇ m or more and 200 ⁇ m or less. If this is too short, the processing of the light deflection unit 25 itself may be difficult. On the other hand, if this is too long, the production of the mold for forming the light deflection section 25 and the releasability of the material from the mold may be lowered, and the productivity may be deteriorated.
  • the aspect ratio Ra of the light deflection unit 12 which is the length in the normal direction on the surface of the transmission unit 11 with respect to the pitch P of the light deflection unit 12 is preferably 2.5 or more and 3.5 or less. By setting such an aspect ratio Ra, it is possible to achieve both productivity and maximum performance.
  • FIG. 3 shows an example of one optical path of the daylighting sheet 1 of the present embodiment.
  • the light L S1 shown in FIG. 3 is applied to the daylighting sheet 1 at an incident angle (angle formed from a horizontal plane) ⁇ IN1 based on the solar altitude at that time.
  • the light L S1 incident on the daylighting sheet 1 is refracted and incident in the light transmitting portion 11.
  • the light L S1 that has passed through the light transmission part 11 reaches the second upper side 12 b in the interface between the light transmission part 11 and the light deflection part 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. As a result, sunlight is deflected, and light is collected to the back of the room, and direct light that causes glare can be suppressed.
  • FIG. 4 shows another example of the optical path of the daylighting sheet 1 of the present embodiment.
  • the light L S2 shown in FIG. 4 is applied to the daylighting sheet 1 at an incident angle (angle formed from a horizontal plane) ⁇ IN2 based on the solar altitude at that time.
  • the light L S2 incident on the daylighting sheet is refracted and incident in the light transmitting portion 11.
  • the light L S2 that has passed through the light transmission part 11 reaches the first upper side 12 a in the interface between the light transmission part 11 and the light deflection part 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG.
  • the light L S1 totally reflected by the first upper side 12 a is transmitted again through the light transmission unit 11 and reaches the second upper side 12 b in the interface between the light transmission unit 11 and the light deflection unit 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. As a result, sunlight is deflected, and light is collected to the back of the room, and direct light that causes glare can be suppressed.
  • sunlight is totally reflected and deflected twice at the first upper side 12a and the second upper side 12b at the interface between the light transmitting unit 11 and the light deflecting unit 12 to cause glare. Prevents light.
  • the daylighting sheet 1 if the inclination angle ⁇ U1 of the first upper side 12a and the inclination angle ⁇ U2 of the second upper side 12b have a relationship of ⁇ U1 > ⁇ U2 , the light L S1 , Such as L S2 , at least a part of sunlight having different traveling angles can be deflected by total reflection and provided to the indoor side, and at least one of the incident amounts of sunlight into the room can be greatly reduced. It becomes possible to eliminate direct light from the part (so-called direct sunlight). Thereby, a bright and comfortable indoor space can be formed.
  • FIG. 5 shows a modification of the light deflection unit of the daylighting sheet 1 of the present embodiment.
  • the opening side 12 f (side facing the outdoor side in the present embodiment) of the groove formed between the light transmitting portions 11 in the light deflecting portion 12 is formed in a recessed shape. .
  • the interface between the light deflecting unit 12 and the light transmitting unit 11 may be a mat surface that is a surface on which numerous minute irregularities are formed.
  • the lower side 12d is a straight line, but the shape of the lower side is not limited to this, and the lower side 12d is formed by a side having a plurality of angles like the upper side. Also good.
  • FIG. 6 schematically shows the layer structure of the daylighting laminate 2 of the present embodiment.
  • FIG. 6 shows the posture in which the panel surface of the daylighting laminate 2 is vertical.
  • the left side of the drawing is the outdoor side
  • the right side of the drawing is the indoor side
  • the upper side is the top side
  • the lower side is the ground side.
  • the daylighting laminate 2 includes a hard coat layer 21, a base material layer 22, a daylighting sheet 1, and an adhesive layer 23 from the indoor side, and is bonded to the indoor side surface of the panel 3.
  • a hard coat layer 21 a base material layer 22
  • a daylighting sheet 1 a daylighting sheet 1
  • an adhesive layer 23 from the indoor side, and is bonded to the indoor side surface of the panel 3.
  • Panel 3 is a plate-like translucent panel having translucency used for a normal building or vehicle window such as a glass panel or a resin panel. Therefore, a known plate glass or resin plate can be used as a member constituting the panel 3.
  • the hard coat layer 21 is a layer provided on the outermost surface of the daylighting sheet 1 opposite to the panel 3 for the purpose of surface protection.
  • the hard coat layer 21 can be formed as a transparent resin layer, and is preferably formed as a cured resin layer formed by curing a curable resin from the viewpoint of resistance to scratches and surface contamination.
  • ionizing radiation curable resins other known curable resins, and the like may be appropriately employed according to the required performance.
  • examples of the ionizing radiation curable resin include acrylate-based, oxetane-based, and silicone-based resins.
  • acrylate-based ionizing radiation curable resins include monofunctional (meth) acrylate monomers, bifunctional (meth) acrylate monomers, (meth) acrylate monomers such as trifunctional or higher (meth) acrylate monomers, urethane (meta ) Acrylate, epoxy (meth) acrylate, polyester (meth) acrylate and other (meth) acrylate ester oligomers or (meth) acrylate ester prepolymers.
  • tri- or higher functional (meth) acrylate monomers examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and the like.
  • the hard coat layer 21 may be added with a function of improving the stain resistance. This can be achieved, for example, by adding a silicone compound, a fluorine compound, or the like. Further, as other functions, a light scattering function, an antistatic property improvement function, and a water repellency improvement function may be provided.
  • Examples include those containing spherical particles in the layer for imparting a light scattering function.
  • the spherical particles hollow particles such as silica, calcium carbonate, and acrylic, titanium oxide, barium sulfate, magnesium oxide, acrylic beads, urethane beads, and the like can be used. These spherical particles can be formed by appropriately dispersing in a resin.
  • the spherical particles may exhibit a light scattering function due to a difference in refractive index from the cured resin layer within the layer, or may be cueed to exhibit a light scattering function at the air interface.
  • PEDOT-PSS PEDOT (Poly (3,4-ethylenedioxythiophene); 3,4-ethylenedioxythiophene polymer) and PSS (polynesylsulfonate) are used as the electron conduction type.
  • a styrene sulfonic acid polymer)) PEDOT (Poly (3,4-ethylenedioxythiophene); 3,4-ethylenedioxythiophene polymer) and PSS (polynesylsulfonate) are used as the electron conduction type.
  • the ionic conductive type includes lithium salt materials.
  • examples of materials that can be used for improving water repellency include fluorine compounds.
  • the base material layer 22 is a layer serving as a base material for forming the daylighting sheet 1. Therefore, the base material layer 22 has translucency and supports it so that deformation of the daylighting sheet 1 can be prevented. From this point of view, as specific examples of the material constituting the base material layer 22, for example, a transparent resin mainly composed of one or more of acrylic, styrene, polycarbonate, polyethylene terephthalate, acrylonitrile, and the like, epoxy acrylate, urethane acrylate The reactive resin (ionizing radiation curable resin etc.) can be mentioned.
  • the thickness of the base material layer 22 is not particularly limited, but is preferably 25 ⁇ m or more and 300 ⁇ m or less. If the thickness of the base material layer 22 is out of this range, there is a risk of causing problems in workability. For example, if the base material layer 22 is too thin, wrinkles are likely to occur. Moreover, if the base material layer 22 is too thick, winding will become difficult in an intermediate process among the processes which manufacture the daylighting sheet 20. FIG.
  • the refractive index of the base material layer 22 may be the same as or different from the refractive index of the transmission part 11 of the daylighting sheet 1. However, if there is a difference in refractive index between the two, the possibility of light being deflected at the interface increases, so even if they are the same material or different materials, the refractive index difference is small or there is no refractive index difference. It is preferable.
  • the base material layer 22 may be subjected to corona discharge treatment, chromium oxidation treatment, hot air treatment, ozone / ultraviolet treatment method, or the like on one or both sides as desired.
  • a physical or chemical surface treatment such as an oxidation method, a concavo-convex method such as a sand blast method or a solvent treatment method can be applied.
  • the base material layer 22 may be subjected to a treatment such as forming a primer layer for enhancing adhesiveness.
  • the material used for forming the primer layer is not particularly limited, and examples thereof include acrylic resins, vinyl chloride / vinyl acetate copolymer resins, polyester resins, polyurethane resins, chlorinated polypropylene resins, and chlorinated polyethylene resins.
  • the thickness of the primer layer is preferably 1 to 30 um, and more preferably 1 to 10 um.
  • the surface of the base layer 22 on which the light deflection layer is formed may be smooth, or may be a physical or chemical surface treatment such as the above sandblasting method or a roughening method such as a solvent treatment method, or spherical particles in the primer layer, etc. May be non-smooth.
  • the adhesive layer 23 is a layer for adhering the daylighting sheet 1 to the panel 3.
  • the material constituting the adhesive layer 23 is not particularly limited as long as it can adhere the daylighting sheet 1 to the panel 3, and a known pressure-sensitive adhesive, adhesive, photo-curing resin, thermosetting resin, or the like is used. it can.
  • a known pressure-sensitive adhesive, adhesive, photo-curing resin, thermosetting resin, or the like is used. it can.
  • an acrylic pressure-sensitive adhesive can be used as the adhesive layer 23, and more specifically, a pressure-sensitive adhesive in which an acrylic copolymer and an isocyanate compound are combined.
  • the material constituting the adhesive layer 23 is preferably made of a material excellent in translucency and weather resistance due to the properties of the daylighting sheet 1.
  • the thickness of the adhesive layer 23 is not particularly limited, but is preferably 10 ⁇ m or more and 100 ⁇ m or less. If the adhesive layer 23 is too thin, the adhesion between the panel 3 and the daylighting sheet 1 may be reduced. If the adhesive layer 23 is too thick, it is difficult to make the thickness of the adhesive layer 23 uniform.
  • the daylighting sheet 1 may be provided with a configuration for adding another function to any one of the above-described layers.
  • an ultraviolet absorber, a heat ray absorber, or a near infrared absorber may be added to provide an ultraviolet ray absorbing function, a heat ray absorbing function, or a near infrared ray absorbing function.
  • the near-infrared absorbing function can be improved by adding or applying a near-infrared absorber (near-infrared absorbing dye) to one or more of the above layers.
  • a near-infrared absorber near-infrared absorbing dye
  • the near-infrared transmittance in the wavelength region is preferably 20% or less, and more preferably 10% or less.
  • the near-infrared absorbing dye preferably has a sufficient transmittance in the visible light region, that is, in the wavelength region of 380 nm to 780 nm.
  • the ultraviolet absorbing function can be improved by adding or applying an ultraviolet absorber exemplified below to one or more of the above layers.
  • ultraviolet absorbers include benzotriazole ultraviolet absorbers (TINUVINUVP, TINUVIN P FL, TINUVIN 234, TINUVIN 326, TINUVIN 326 FL, TINUVIN 328, TINUVIN 329, TINUVIN 329 FL, all manufactured by BASF Japan Ltd.), and triazine.
  • UV absorbers (TINUVIN 1577 ED, manufactured by BASF Japan Ltd.), benzophenone ultraviolet absorbers (CHIMASSORB 81, CHIMASORB 81 FL, all manufactured by BASF Japan Ltd.), benzoate UV absorbers (TINUVIN 120, BASF Japan Ltd.) Manufactured).
  • the heat ray absorbing function can be improved by adding or applying a heat ray absorbent exemplified below to one or more of the above layers.
  • the heat ray absorbent include metal oxide ultrafine particles such as antimony-doped tin oxide (ATO) or tin-doped indium oxide (ITO) and phthalocyanine compounds.
  • the daylighting laminate 2 described above is manufactured, for example, as follows.
  • the light deflection layer 12 of the daylighting laminate 2 can be formed by a method using a die roll. That is, a mold roll is prepared in which irregularities capable of transferring the light transmitting portion 11 of the light deflection layer 12 are provided on the outer peripheral surface of the cylindrical roll. And the base material used as the base material layer 22 is inserted between a die roll and the nip roll arrange
  • the composition which comprises the light transmissive part 11 is filled in the uneven part of the unevenness
  • the above-mentioned composition is preferable as the composition constituting the light transmission part 11, but more specific examples are as follows. That is, a photocurable resin composition comprising a photocurable prepolymer (P1), a reactive diluent monomer (M1), and a high refractive index material (H1) and a photopolymerization initiator (I1) as necessary. Can be used.
  • a photocurable resin composition comprising a photocurable prepolymer (P1), a reactive diluent monomer (M1), and a high refractive index material (H1) and a photopolymerization initiator (I1) as necessary.
  • P1 photocurable prepolymer
  • M1 reactive diluent monomer
  • H1 high refractive index material
  • I1 photopolymerization initiator
  • Examples of the photocurable prepolymer (P1) include epoxy acrylates such as bisphenol A, bisphenol F, and phenol novolac, urethane acrylates such as hexamethylene diisocyanate, isophorone diisocyanate, polyether acrylates, and polyesters. Examples include acrylate-based and polythiol-based prepolymers.
  • Examples of the reactive dilution monomer (M1) include reactive monomers such as vinyl pyrrolidone, 2-phenoxyethyl acrylate, 2-ethylhexyl acrylate, ⁇ -hydroxy acrylate, and tetrahydrofurfuryl acrylate, and 2-hydroxy-3 -Bifunctional or higher functional monomers such as acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, tetraethylene glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate and the like.
  • reactive monomers such as vinyl pyrrolidone, 2-phenoxyethyl acrylate, 2-ethylhexyl acrylate, ⁇ -hydroxy acrylate, and tetrahydrofurfuryl acrylate
  • 2-hydroxy-3 -Bifunctional or higher functional monomers such as acryloyloxypropyl me
  • Examples of the photopolymerization initiator (I1) include hydroxybenzoyl compounds (2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, benzoin alkyl ether, etc.), benzoyl Formate compounds (such as methylbenzoylformate), thioxanthone compounds (such as isopropylthioxanthone), benzophenones (such as benzophenone), phosphate compounds (1,3,5-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6- Trimethylbenzoyl) -phenylphosphine oxide and the like, and benzyldimethyl ketal and the like.
  • benzoyl Formate compounds such as methylbenzoylformate
  • thioxanthone compounds such as isopropylthioxanthone
  • benzophenones such as benzophenone
  • phosphate compounds (1,3,5-
  • the irradiation device for curing the photocurable resin composition and the curability of the photocurable resin composition can be arbitrarily selected. From the viewpoint of preventing coloring of the light transmitting portion 11, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone and bis (2,4,6-trimethylbenzoyl) are preferable. ) -Phenylphosphine oxide.
  • examples of the high refractive index material (H1) include materials containing aromatics. Examples thereof include o-phenylphenol EO-modified acrylate, paracumylphenol EO-modified acrylate, bisphenol A diacrylate, and materials having a cardo structure. Examples of the material having a cardo structure include Oxol EA-0200 from Osaka Gas Chemical Company.
  • photocurable prepolymer (P1), reactive diluent monomer (M1), high refractive index material (H1), and photopolymerization initiator (I1) are each one type or a combination of two or more types. Can be used.
  • the composition constituting the light transmission part 11 sandwiched between the mold roll and the base material and filled therein is irradiated with light from the base material side by a light irradiation device.
  • the composition which comprises the light transmissive part 11 can be hardened, and the shape can be fixed.
  • molded light transmission part 11 are released from a metal mold
  • the light deflection section 12 can be formed by filling the concave portion of the light transmission section 11 with the composition constituting the light deflection section 12 and curing it. In this way, the light deflection layer 12 can be formed on the base material layer 22.
  • An adhesive is laminated on the light deflection layer 12 thus formed to form an adhesive layer 23, and the hard coat layer 21 is attached to the base material layer 22 with an adhesive or the like, or a film is formed by coating.
  • the film forming method known ones can be used, and gravure coating, bar coating, roll coating, reverse roll coating, comma coating and the like are used.
  • the hard coat layer may be provided before forming the light deflection layer. Thus, the daylighting laminate 2 is obtained.
  • FIG. 7 shows an example of one optical path of the daylighting laminate 2 of the present embodiment.
  • the light L S3 shown in FIG. 7 is applied to the panel 3 based on the solar altitude at that time.
  • the light L S3 passes through the panel 3 and the adhesive layer 23, and enters the daylighting sheet 1 at an incident angle (angle formed from a horizontal plane) ⁇ IN3 .
  • the light L S3 incident on the daylighting sheet 1 is refracted and incident on the light transmitting portion 11.
  • the light L S3 that has passed through the light transmission part 11 reaches the second upper side 12 b in the interface between the light transmission part 11 and the light deflection part 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. Then, the base material layer 22 and the hard coat layer 21 are transmitted. As a result, sunlight is deflected and direct light that causes glare can be suppressed.
  • FIG. 8 shows another example of the optical path of the daylighting laminate 2 of the present embodiment.
  • the light L S4 shown in FIG. 8 is applied to the panel 3 based on the solar altitude at that time.
  • the light L S4 passes through the panel 3 and the adhesive layer 23 and is irradiated onto the daylighting sheet 1 at an incident angle (angle formed from a horizontal plane) ⁇ IN4 .
  • the light L S4 incident on the daylighting sheet is refracted and incident in the light transmission part 11.
  • the light L S4 that has passed through the light transmission part 11 reaches the first upper side 12 a in the interface between the light transmission part 11 and the light deflection part 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG.
  • the light L S1 totally reflected by the first upper side 12 a is transmitted again through the light transmission unit 11 and reaches the second upper side 12 b in the interface between the light transmission unit 11 and the light deflection unit 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. Then, the base material layer 22 and the hard coat layer 21 are transmitted. As a result, sunlight is deflected and direct light that causes glare can be suppressed.
  • sunlight is totally reflected and deflected twice at the first upper side 12a and the second upper side 12b at the interface between the light transmitting unit 11 and the light deflecting unit 12 to cause glare. Prevents light.
  • the daylighting laminate 2 if the inclination angle ⁇ U1 of the first upper side 12a and the inclination angle ⁇ U2 of the second upper side 12b have a relationship of ⁇ U1 > ⁇ U2 , the light L Like S1 and L S2 , at least part of sunlight having different traveling angles can be deflected by total reflection and provided indoors, and at least without significantly reducing the amount of sunlight entering the room, and at least Part of direct light (so-called direct sunlight) can be eliminated. Thereby, a bright and comfortable indoor space can be formed.
  • FIG. 9 schematically shows a layer configuration of another example of the daylighting laminate 2 of the present embodiment. Note that FIG. 9 shows a posture in which the panel surface is vertical, with the left side of FIG. 9 being the outdoor side, the right side of the paper being the indoor side, the upper side of the page being the top side, and the lower side of the page being the ground side.
  • the daylighting laminate 2 shown in FIG. 9 is manufactured by dividing the adhesive layer 23 of the daylighting laminate 2 shown in FIG. 6 into a strong adhesion layer 23a, a base film 23b, and a weak adhesion layer 23c. Further, a protective film 24 may be provided on the opposite side of the hard coat layer 21 from the substrate 22.
  • the strong adhesive layer 23a is preferably made of an acrylic material containing a curing agent such as isocyanate.
  • the weak adhesive layer 23c is preferably made of an acrylic material containing a curing agent such as isocyanate and a UV absorber.
  • the base film 23b may be polyethylene terephthalate (PET) or the like.
  • the protective film 24 may be polyethylene terephthalate (PET) or the like.
  • FIG. 10 schematically shows an example in which the daylighting sheet 1 of this embodiment is applied to a laminated glass G.
  • FIG. 10 shows a posture in which the glass surface is vertical, with the left side of FIG. 10 being the outdoor side, the right side of the paper being the indoor side, the upper side of the paper being the top side, and the lower side of the paper being the ground side.
  • the laminated glass G shown in FIG. 10 is configured by installing the daylighting sheet 1 shown in FIG.
  • the daylighting sheet 1 By applying the daylighting sheet 1 to the laminated glass G, it is possible to obtain a glass G that achieves both productivity and daylighting performance.
  • FIG. 11 schematically shows an example in which the daylighting laminate 2 of this embodiment is applied to a laminated glass G.
  • FIG. 11 shows a posture in which the glass surface is vertical, with the left side of FIG. 11 being the outdoor side, the right side of the paper being the indoor side, the upper side of the paper being the top side, and the lower side of the paper being the ground side.
  • the daylighting laminate 2 as shown in FIG. 6 may be applied to the laminated glass G.
  • the daylighting laminate 2 is installed between the two glasses G.
  • the layered structure of the daylighting laminate 2 may be provided with the base material tank 22, the hard coat layer 21, and the protective layer 25 shown in FIG. 6.
  • the protective layer 25 is provided for the purpose of preventing deterioration due to component transfer between the adhesive layer 23 and the daylighting sheet 1, and may be polyethylene terephthalate (PET) or the like.
  • PET polyethylene terephthalate
  • an adhesive layer 23 may be provided on the outdoor side and the indoor side of the daylighting sheet 1 or the daylighting laminate 2.
  • EVA or PVA is preferably used as the adhesive layer 23, EVA or PVA is preferably used.
  • the daylighting laminate 2 by applying the daylighting laminate 2 to the laminated glass G, it becomes possible to obtain a laminated glass G that achieves both productivity and daylighting performance.
  • a roll-up daylighting screen it is possible to use the daylighting laminate 2 or the laminated glass as one of the double glazings, or to roll and unfold the daylighting sheet 1 as a shaft. It is also possible to use it.
  • the refractive index N of the light transmitting portion 11 used in each example and comparative example is 1.60, and the refractive index of the light deflecting portion 12 is 1.47.
  • Table 2 summarizes the manufacturing aptitude with respect to the angles of the first upper side 12a and the second upper side 12b, the flip-up efficiency, and the incident angle that can be flipped up. In each of the examples and the comparative examples, the angles of the first upper side 12a and the second upper side 12b of the light deflection unit 12 are different.
  • Manufacturability mainly relates to mold manufacturing and mold release during molding.
  • indicates that the mold can be manufactured and the mold releasability at the time of molding is light
  • indicates that the mold can be manufactured and releasable
  • indicates that the mold is difficult to manufacture.
  • the angle of the second upper side 12b is ⁇ 2 °, and it is difficult to manufacture the mold, and the manufacturing suitability is not good.
  • each incident angle is the incident angle ⁇ IN shown in FIGS.
  • the jumping efficiency is a ratio of 1 when all incident light is jumped up.
  • the flip-up efficiency produces an efficiency difference of 0.2 or more with respect to the front and rear angles at an incident angle of 10 °, a change in brightness is felt. Therefore, the comparative example 2 in which the flip-up efficiency is 0.49 when the angle is 40 ° and the flip-up efficiency is 0.45 when the angle is 30 ° and 0.45 when the angle is 50 ° is shown in FIG. It is not included in the examples.
  • the incident angle ⁇ IN is set to 10 ° or more and 60 ° or less. Therefore, as shown in Table 2, Comparative Example 1 in which the maximum incident angle that can be raised is 56 ° cannot be raised at an incident angle ⁇ IN that is larger than 56 °, and thus is included in the example of this embodiment. Absent. Further, Comparative Example 4 in which the minimum incident angle that can be raised is 11 ° cannot be raised at an incident angle ⁇ IN smaller than 11 °, and thus is not included in the example of this embodiment.
  • Table 3 summarizes the lighting performance and productivity with respect to the angle and aspect ratio of the lower side 12d.
  • the angle and the aspect ratio of the lower side 12d of the light deflection unit 12 are different.
  • Manufacturability mainly relates to mold manufacturing and mold release during molding. ⁇ indicates that the mold can be manufactured and the mold releasability at the time of molding is light, ⁇ indicates that the mold can be manufactured and releasable, and ⁇ indicates that the mold is difficult to manufacture.
  • the lighting performance is the sum of the flip-up efficiency at each incident angle described in Table 1.
  • Each incident angle is the incident angle ⁇ IN shown in FIGS.
  • the jumping efficiency is a ratio of 1 when all incident light is jumped up.
  • the lighting performance of each example when the lighting performance of Comparative Example 1 is set to 100.0 is obtained as the lighting performance ratio, and the lighting performance of 85% or more that does not substantially feel the change in brightness cannot be maintained.
  • a comparative example not included in the example of the present embodiment is used.
  • Comparative Example 2 has a lighting performance ratio of 83.4%, which is lower than 85%, and is not included in the example of this embodiment. Moreover, since the lighting performance ratio is 83.0% and is less than 85%, the comparative example 3 is not included in the example of this embodiment.
  • a plurality of grooves are formed on one surface side, the light transmitting portion 11 that transmits light, and the inside of the plurality of grooves of the light transmitting portion 11,
  • a light deflector 12 having a refractive index lower than that of the light transmitting portion 11, and the light deflector 12 has a first upper side 12a and a second upper side 12b on the upper side, and a lower side on the lower side. 12d, and the first upper side 12a and the second upper side 12b are connected so as to protrude downward, so that both productivity and daylighting performance can be achieved and the difference in altitude of the sun depending on the season and time can be accommodated. It is possible to give the occupants higher comfort without having a time zone in which the entire room is bright and unnaturally darkened.
  • the angle formed by the lower side 12d and the normal of the one surface of the light transmission part 11 is 1 ° or more and 6 ° or less, and the light with respect to the pitch P of the light deflection unit 12 Since the ratio of the length D in the direction of the normal line of the deflecting unit 12 is 2.5 or more and 3.5 or less, it is particularly possible to achieve both productivity and daylighting performance.
  • the daylighting laminate 2 of the present embodiment out of the light reflected by the light deflection unit 12 with respect to light having an incident angle of 10 ° or more and 60 ° or less, which is a normal line on one surface of the light transmission unit 11
  • the angle formed by the normal line on one surface of the light transmission part 11 of the light that is most strongly bounced is 1 ° or more and 35 ° or less. It is possible to give higher occupancy to a room occupant without having a time zone during which the room is bright and unnaturally darkened.
  • the angle between the first upper side 12a and the normal line on one surface of the light transmitting portion 11 is 10 ° or more and 12.5 ° or less, and the light of the second upper side 12b. Since the angle formed with the normal line on one surface of the transmission portion 11 is not less than ⁇ 1.5 ° and not more than 2.5 °, it can be easily manufactured with a simple structure.
  • the strength is high. It can be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a natural-light collecting sheet and natural-light collecting laminated body that can, in response to differences in the height of sunlight due to the season and time of day, make an entire room brighter, and give someone in the room an even greater feeling of comfort without allowing there to be a time period when it becomes unnaturally dark. [Solution] A natural-light collecting sheet 1 includes: a light transmitting part 11 in which a plurality of grooves are formed in one surface thereof, and which transmits light; and a light deflecting part 12 which is formed inside of the plurality of grooves of the light transmitting part 11, and which has a refractive index that is lower than that of the light transmitting part 11. The natural-light collecting sheet is characterized by the following: the light deflecting part 12 has a first upper side 12a and a second upper side 12b on the side that forms the upper part of the light deflecting part, and has a lower side 12d on the side that forms the lower part of the light deflecting part; the first upper side 12a and the second upper side 12b are connected so as to protrude downward; the angle that the lower side 12d forms with the normal line of the one surface of the light transmitting part 11 is 1-6 degrees; and the ratio of the length D of the normal-line direction of the light deflecting part 12 to the pitch P of the light deflecting part is 2.5-3.5.

Description

採光シート及び採光積層体Daylighting sheet and daylighting laminate
 本発明は、日光等の外光を採り入れるための採光シート及び採光積層体に関する。 The present invention relates to a daylighting sheet and a daylighting laminate for taking in external light such as sunlight.
 いわゆる窓ガラスにより、建物の内部に日光等の外光を採り入れて明るく快適な室内空間を形成することはよく知られている。しかし一方で当該窓ガラスに入射した外光をそのまま室内に採り入れると、まぶしさを感じる等の不具合を生じることもある。これに対して、直射日光を制御してより快適な態様で室内側に採り入れる技術がいくつか提案されている。 It is well known that so-called window glass forms a bright and comfortable indoor space by taking in outside light such as sunlight inside the building. On the other hand, however, if the outside light incident on the window glass is taken into the room as it is, there may be a problem such as feeling glare. On the other hand, several techniques for controlling the direct sunlight and adopting the indoor side in a more comfortable manner have been proposed.
 特許文献1及び2には、太陽光の直射(直達光)を抑制するとともに効率よく採光でき、室内側から室外側を見ることが可能な採光シートが開示されている。 Patent Documents 1 and 2 disclose a daylighting sheet that suppresses direct sunlight (direct light) and that allows efficient daylighting and allows the outdoor side to be viewed from the indoor side.
特開2014-119737号公報JP 2014-119737 A 特開2014-119738号公報Japanese Patent Application Laid-Open No. 2014-119738
 本発明は、生産性と採光性能を両立させると共に、季節や時刻による太陽の高度差に対応し、室内全体を明るく、且つ、不自然に暗くなる時間帯を持たせないで、より高い快適性を在室者に与える採光シート及び採光積層体を提供する。 The present invention balances productivity and daylighting performance, responds to the difference in altitude of the sun depending on the season and time of day, makes the whole room brighter and does not have an unnaturally dark time zone, and offers higher comfort Provide a daylighting sheet and a daylighting laminate.
 本発明にかかる採光シートは、
 一方の面から他方の面に光を透過する光透過部と、
 前記光透過部に形成された複数の溝の内部に前記光透過部よりも屈折率が低い光偏向部と、
を有し、
 前記光偏向部は、前記光偏向部が並ぶ方向の一方側に第1辺と第2辺を有し、他方側に第3辺を有し、
 前記第1辺と前記第2辺は、前記光透過部側から前記光偏向部の内側に向かって凸となるように接続されている
ことを特徴とする。
The daylighting sheet according to the present invention is:
A light transmitting portion that transmits light from one surface to the other surface;
A light deflection unit having a lower refractive index than the light transmission unit inside the plurality of grooves formed in the light transmission unit;
Have
The light deflection unit has a first side and a second side on one side of the direction in which the light deflection units are arranged, and a third side on the other side,
The first side and the second side are connected so as to protrude from the light transmission part side toward the inside of the light deflection part.
 本発明にかかる採光シートは、
 前記第3辺が前記光透過部の前記一方の面の法線となす角度は、1°以上6°以下であり、
 前記光偏向部のピッチに対する前記光偏向部の前記法線の方向の長さの比率は、2.5以上3.5以下である
ことを特徴とする。
The daylighting sheet according to the present invention is:
The angle formed by the third side and the normal of the one surface of the light transmission part is 1 ° or more and 6 ° or less,
The ratio of the length of the normal direction of the light deflection unit to the pitch of the light deflection unit is 2.5 or more and 3.5 or less.
 本発明にかかる採光シートは、
 前記光透過部の前記一方の面での法線となす入射角が10°以上60°以下の光に対して前記光偏向部が反射する光のうち、最も強く反射する光の前記光透過部の前記一方の面での法線となす角度は、1°以上35°以下である
ことを特徴とする。
The daylighting sheet according to the present invention is:
The light transmitting portion of the light that is reflected most strongly among the light reflected by the light deflecting portion with respect to light having an incident angle of 10 ° or more and 60 ° or less that is a normal to the one surface of the light transmitting portion. The angle formed with the normal line on the one surface is not less than 1 ° and not more than 35 °.
 本発明にかかる採光シートは、
 前記第1辺の前記光透過部の前記一方の面での法線となす角度は、10°以上12.5°以下であり、
 前記第2辺の前記光透過部の前記一方の面での法線となす角度は、-1.5°以上2.5°以下である
ことを特徴とする。
The daylighting sheet according to the present invention is:
An angle between the first side and the normal to the one surface of the light transmitting portion is 10 ° or more and 12.5 ° or less,
An angle between the second side and a normal line on the one surface of the light transmission portion is −1.5 ° to 2.5 °.
 本発明にかかる採光積層体は、
 光を透過するシート状の基材層と、
 前記基材層の一方の面側に形成される前記採光シートと、
を備える
ことを特徴とする。
The daylighting laminate according to the present invention is:
A sheet-like base material layer that transmits light;
The daylighting sheet formed on one surface side of the base material layer;
It is characterized by providing.
 本発明にかかる採光積層体は、
 前記基材層の他方の面側に形成されたハードコート層と、
 前記採光シートの前記基材層とは反対の面側に形成された接着層と、
を備える
ことを特徴とする。
The daylighting laminate according to the present invention is:
A hard coat layer formed on the other surface side of the base material layer;
An adhesive layer formed on the opposite side of the daylighting sheet from the base material layer;
It is characterized by providing.
 本発明の採光シート及び採光積層体によれば、生産性と採光性能を両立させると共に、季節や時刻による太陽の高度差に対応し、室内全体を明るく、且つ、不自然に暗くなる時間帯を持たせないで、より高い快適性を在室者に与えることが可能となる。 According to the daylighting sheet and daylighting laminate of the present invention, it is possible to achieve both productivity and daylighting performance, cope with the altitude difference of the sun according to the season and time, brighten the whole room and darken the time zone unnaturally. Without it, it becomes possible to give higher occupants more comfort.
採光シート1の一部を拡大した図を示す。The figure which expanded a part of daylighting sheet 1 is shown. 本実施形態の跳ね上げる光を説明する図を示す。The figure explaining the light to jump up of this embodiment is shown. 本実施形態の採光シートの1つの光路例を示す。The example of one optical path of the lighting sheet of this embodiment is shown. 本実施形態の採光シートの他の光路例を示す。The other example of a light path of the lighting sheet of this embodiment is shown. 本実施形態の採光シートの光偏向部の変形例を示す。The modification of the light deflection | deviation part of the lighting sheet of this embodiment is shown. 本実施形態の採光積層体の層構成を模式的に示す。The layer structure of the lighting laminated body of this embodiment is shown typically. 本実施形態の採光積層体の1つの光路例を示す。An example of one optical path of the lighting laminated body of this embodiment is shown. 本実施形態の採光積層体の他の光路例を示す。The other example of an optical path of the lighting laminated body of this embodiment is shown. 本実施形態の採光積層体の他の例の層構成を模式的に示す。The layer structure of the other example of the lighting laminated body of this embodiment is shown typically. 本実施形態の採光シートを合わせガラスに適用した例を模式的に示す。The example which applied the lighting sheet of this embodiment to the laminated glass is shown typically. 本実施形態の採光積層体を合わせガラスに適用した例を模式的に示す。The example which applied the lighting laminated body of this embodiment to the laminated glass is shown typically.
 以下、本発明を図面に示す実施形態に基づき説明する。 Hereinafter, the present invention will be described based on embodiments shown in the drawings.
 図1は、採光シート1の一部を拡大した図を示す。なお、図1の紙面左が室外側、紙面右が室内側、紙面上方が天側、紙面下方が地側となる。図2は、本実施形態の跳ね上げる光を説明する図を示す。 FIG. 1 shows an enlarged view of a part of the daylighting sheet 1. In FIG. 1, the left side of the drawing is the outdoor side, the right side of the drawing is the indoor side, the upper side is the top side, and the lower side is the ground side. FIG. 2 is a diagram for explaining the light that jumps up according to the present embodiment.
 採光シート1は、光透過部11と、光偏向部12と、を有する。 The daylighting sheet 1 has a light transmission part 11 and a light deflection part 12.
 光透過部11は、光を透過する部位であり、採光シート1のうち光透過部11が配置された部位における両面は略平行に形成されている。面は平滑であっても、非平滑であってもよい。平滑であればこれによって、採光シート1を通した景色が見やすくなる。また、特に室内側が非平滑であれば基材層との接触面積を増やし密着性を向上することが出来るし、出射光を散乱させ回折像が軽減する、また軽減や採光シート1を通した景色が見えにくくなりプライバシー性が向上する。光透過部11は光を散乱させることなく透過することが好ましい。これにより背面側の景色の見やすさが向上する。また、散乱により反射面への入射角が全反射角から外れることによる採光性能の低下を抑えることができる。ここに「光を散乱させることなく透過する」とは、意図的に散乱させる材料等を添加することなく形成された部位であることを意味し、材料中を光が透過するときに不可避的に散乱が生じることは許容される。 The light transmission part 11 is a part which transmits light, and both surfaces of the part where the light transmission part 11 is arranged in the daylighting sheet 1 are formed substantially in parallel. The surface may be smooth or non-smooth. If smooth, this makes it easier to see the scenery through the daylighting sheet 1. In particular, if the indoor side is non-smooth, the contact area with the base material layer can be increased and the adhesion can be improved, the emitted light can be scattered to reduce the diffraction image, and the scenery through the daylighting sheet 1 can be reduced. Becomes difficult to see and privacy is improved. It is preferable that the light transmitting portion 11 transmits light without scattering. This improves the visibility of the scenery on the back side. Moreover, the fall of the lighting performance by the incident angle to a reflective surface deviating from a total reflection angle by scattering can be suppressed. Here, “transmits without scattering light” means a portion formed without adding a material that intentionally scatters, and inevitably occurs when light passes through the material. Scattering is allowed to occur.
 本実施形態では光透過部11は、図1に示す断面で2つの光偏向部12間において略台形の断面を有しており、室外側が短い上底、室内側が長い下底であり光偏向部12との界面を構成する辺が脚部となっている。ただし、脚部は後述する光偏向部12の形状に沿った形状となるので、必ずしも一直線ではない。 In the present embodiment, the light transmitting portion 11 has a substantially trapezoidal cross section between the two light deflecting portions 12 in the cross section shown in FIG. 1, and has a short upper bottom on the outdoor side and a long lower bottom on the indoor side. Sides forming the interface with the portion 12 are leg portions. However, since the leg portion has a shape that follows the shape of the light deflection portion 12 described later, it is not necessarily a straight line.
 光透過部11を構成する材料としては、例えば、アクリル、スチレン、ポリカーボネート、ポリエチレンテレフタレート、アクリロニトリル等の1つ以上を主成分とする透明樹脂や、エポキシアクリレートやウレタンアクリレート系の反応性樹脂(電離放射線硬化型樹脂等)を挙げることができる。 Examples of the material constituting the light transmitting portion 11 include transparent resins mainly composed of one or more of acrylic, styrene, polycarbonate, polyethylene terephthalate, acrylonitrile, etc., and epoxy acrylate and urethane acrylate reactive resins (ionizing radiation). Curable resin).
 ここで光透過部11を構成する材料の屈折率は、原材料の汎用性から1.58以上1.61以下の範囲が好ましく、1.59以上1.60以下であることがより好ましい。屈折率がこれより低いと、十分な採光性能が得られない可能性がある。また、屈折率がこれより高いと、材料選定の観点から密着性、成型性に問題が生じる恐れがある。 Here, the refractive index of the material constituting the light transmitting portion 11 is preferably in the range of 1.58 or more and 1.61 or less, more preferably 1.59 or more and 1.60 or less from the versatility of the raw materials. If the refractive index is lower than this, sufficient lighting performance may not be obtained. On the other hand, if the refractive index is higher than this, there may be a problem in adhesion and moldability from the viewpoint of material selection.
 光偏向部12は、隣り合う2つの光透過部11間に形成される部位である。すなわち、上記したように光透過部11はシート面に沿った方向に所定の間隔で並列され、光透過部11間には、所定の形状を有する凹部が形成されている。本実施形態における凹部は、後述する光偏向部12の断面形状に応じた断面形状を有する溝であり、ここに光偏向部12を構成する材料が充填されることにより光偏向部12が形成されている。従って光偏向部12は凹部に基づいた断面形状を具備している。 The light deflection unit 12 is a part formed between two adjacent light transmission units 11. That is, as described above, the light transmission portions 11 are arranged in parallel in the direction along the sheet surface at a predetermined interval, and a concave portion having a predetermined shape is formed between the light transmission portions 11. The concave portion in the present embodiment is a groove having a cross-sectional shape corresponding to the cross-sectional shape of the light deflection unit 12 described later, and the light deflection unit 12 is formed by filling the material constituting the light deflection unit 12 therein. ing. Therefore, the light deflection unit 12 has a cross-sectional shape based on the recess.
 光偏向部12は、ここに照射された光を全反射して偏向可能に構成された層である。そのため、光偏向部12は光透過部11よりも屈折率が低い材料が充填されている。これによれば、光偏向部12と光透過部11との屈折率差、及びその界面に入射する光の角度の関係により、該入射した光が全反射条件を満たせばここでその光を全反射して偏向することができる。後で詳しく説明するが、偏向された光は、その向きが変わり、例えば天井に照射されるなどしてまぶしさを与える直達光でなくなることができる。光偏向部12を形成する材料の屈折率は原材料の汎用性から1.45以上1.51以下の範囲が好ましく、1.46以上1.49以下であることがより好ましい。 The light deflecting unit 12 is a layer configured to be able to deflect the light irradiated here by totally reflecting the light. For this reason, the light deflection unit 12 is filled with a material having a lower refractive index than the light transmission unit 11. According to this, if the incident light satisfies the total reflection condition due to the difference in the refractive index between the light deflecting unit 12 and the light transmitting unit 11 and the angle of the light incident on the interface, the light is totally reflected here. Can be reflected and deflected. As will be described in detail later, the direction of the deflected light is changed, and for example, it can be eliminated from direct light that gives glare by irradiating the ceiling. The refractive index of the material forming the light deflection unit 12 is preferably in the range of 1.45 to 1.51, and more preferably 1.46 to 1.49, from the versatility of the raw materials.
 また、そのときにおける光透過部11と光偏向部12との屈折率差は、0.07以上が好ましく、0.1以上がより好ましい。 Further, the refractive index difference between the light transmitting portion 11 and the light deflecting portion 12 at that time is preferably 0.07 or more, and more preferably 0.1 or more.
 さらに、本実施形態では光偏向部12は次のような形状を備えている。 Furthermore, in the present embodiment, the light deflection unit 12 has the following shape.
 光偏向部12は、多角形状を有している。そのうち、上部となる側は2つの辺12a、12bが室内外方向に連続するように配置され下に凸になるように形成されている。すなわち、室外側に第1上辺12a、室内側に第2上辺12bが配置される。言い換えれば、光偏向部12が並ぶ方向の一方側に第1上辺12aと第2上辺12bを有し、他方側に下辺12dを有し、第1上辺12aと第2上辺12bは、光透過部11側から光偏向部12の内側に向かって凸となるように接続されている。なお、第1上辺12aは第1辺を構成し、第2上辺12bは第2辺を構成し、下辺12dは、第3辺を構成する。 The light deflection unit 12 has a polygonal shape. Among them, the upper side is formed so that the two sides 12a and 12b are continuous in the indoor / outdoor direction and protrude downward. That is, the first upper side 12a is arranged on the outdoor side, and the second upper side 12b is arranged on the indoor side. In other words, it has the first upper side 12a and the second upper side 12b on one side in the direction in which the light deflection units 12 are arranged, the lower side 12d on the other side, and the first upper side 12a and the second upper side 12b It is connected so as to protrude from the 11 side toward the inside of the light deflecting unit 12. The first upper side 12a constitutes the first side, the second upper side 12b constitutes the second side, and the lower side 12d constitutes the third side.
 これら第1上辺12a及び第2上辺12bは、図1に表された姿勢とされたとき、その傾斜角が水平面(採光シート1のシート面の法線)に対してそれぞれ異なる角度θU1及びθU2を具備している。ここで、θU1及びθU2は室外側(太陽側)に向けて上となるように傾斜し、θU1はθU2より大きな角度とされる。これにより、季節や時間により異なる太陽の高度を考慮し、太陽光を光透過部11と光偏向部12との界面で全反射して偏向することができる場面を拡大することができる。従って、角度θU1及び角度θU2もかかる観点から決められることが好ましい。 When the first upper side 12a and the second upper side 12b are in the posture shown in FIG. 1, the inclination angles θ U1 and θ are different from each other with respect to the horizontal plane (the normal of the sheet surface of the daylighting sheet 1). U2 is equipped. Here, θ U1 and θ U2 are inclined upward toward the outdoor side (sun side), and θ U1 is set to an angle larger than θ U2 . Thereby, in consideration of the altitude of the sun that varies depending on the season and time, it is possible to expand the scene in which sunlight can be totally reflected and deflected at the interface between the light transmission unit 11 and the light deflection unit 12. Therefore, it is preferable that the angle θ U1 and the angle θ U2 are also determined from this viewpoint.
 本実施形態では、迎角θINを10°以上60°以下に設定し、その時の各迎角θINにおける跳ね上げ角度θOUTのうち最も強く跳ね上げる光の角度が1°以上35°以下となるように採光シート1を形成する。跳ね上げ角度θOUTは、室外から入射した光が室内に跳ね上がる角度θOUTであって、以下の表1に示すように、室内の明るさの均一性を判定するものである。なお、跳ね上げる光の角度は、例えば測定機器として三次元変角分光測色システムGCMS-11(村上色彩)を用いる。そして、図2に示すように、方位角0°として入射角10°~60°の任意の角度からサンプルに入射した入射光LINに対し、出射した0°~70°の出射光LINの輝度を1°間隔で測定する。そして、輝度が最も大きい値の光を最も強く跳ね上げる光とする。
Figure JPOXMLDOC01-appb-T000001
      
ここで、○は室内全体が均一に明るくなっていると感じる場合、△は室内全体が明るくなっているが一部暗いと感じる場合、×は明るいと感じる部分が室内全体半分以下の場合を示す。
In the present embodiment, the angle of attack θ IN is set to 10 ° to 60 °, and the angle of the light that is most strongly jumped out of the jump angle θ OUT at each angle of attack θ IN is 1 ° to 35 °. The daylighting sheet 1 is formed as described above. Splashed angle theta OUT, light incident from the outside is an angle theta OUT of jumping chamber, as shown in Table 1 below, it is to determine the brightness uniformity of the chamber. For the angle of the light to be raised, for example, a three-dimensional variable angle spectrocolor measurement system GCMS-11 (Murakami Color) is used as a measuring instrument. As shown in FIG. 2, with respect to the incident light L IN incident on the sample at an incident angle of 10 ° to 60 ° with an azimuth angle of 0 °, the emitted light L IN of 0 ° to 70 ° is emitted. The brightness is measured at 1 ° intervals. Then, the light having the highest luminance value is the light that most strongly jumps up.
Figure JPOXMLDOC01-appb-T000001

Here, ○ indicates that the whole room is uniformly brightened, △ indicates that the whole room is bright but partly dark, and X indicates that the part that is felt bright is less than half the whole room. .
 本実施形態では、第1上辺12aの角度θU1は10°以上12.5°以下、第2上辺12bの角度θU2は-1.5°以上2.5°以下とする。 In the present embodiment, the angle θ U1 of the first upper side 12a is 10 ° to 12.5 ° and the angle θ U2 of the second upper side 12b is −1.5 ° to 2.5 °.
 このような角度に設定することによって、季節や時刻による太陽の高度差に対応し、室内への跳ね上げ角度θOUTのうち最も強く跳ね上げる光の角度を一定の範囲に保持することができ、室内全体を明るく、且つ、不自然に暗くなる時間帯を持たせないで、より高い快適性を在室者に与えることが可能となる。 By setting to such an angle, it corresponds to the difference in altitude of the sun according to the season and time, the angle of the light that jumps up most strongly among the jumping angles θ OUT to the room can be kept within a certain range, It is possible to give the occupants higher comfort without having a time zone in which the entire room is bright and unnaturally darkened.
 第1上辺12aの角度θU1が10°より小さい場合、高入射角の光を跳ね上げることが困難となる。また、第1上辺12aの角度θU1が12.5°より大きい場合、40°付近に跳ね上げの弱い入射角が存在する。 When the angle θ U1 of the first upper side 12a is smaller than 10 °, it is difficult to jump up light with a high incident angle. In addition, when the angle θ U1 of the first upper side 12a is larger than 12.5 °, an incident angle with a weak jumping up exists in the vicinity of 40 °.
 第2上辺12bの角度θU2が-1.5°より小さい場合、金型の作製や成型時の離型性等の製造面で不具合が生じるおそれがある。また、第2上辺12bの角度θU2が2.5°より大きい場合、入射角10°以下の光を跳ね上げることが困難となる。 If the angle θ U2 of the second upper side 12b is smaller than −1.5 °, there is a risk that problems may occur in the manufacturing aspects such as mold fabrication and releasability during molding. In addition, when the angle θ U2 of the second upper side 12b is larger than 2.5 °, it is difficult to jump up light having an incident angle of 10 ° or less.
 一方、第1上辺12a及び第2上辺12bとは反対側となる下部となる側の下辺12dは、その傾斜角が水平面、すなわち透過部11の表面での法線に対してθDとされている。θDは、製造の観点から1°以上6°以下とすることが好ましい。 On the other hand, the lower side 12d on the lower side opposite to the first upper side 12a and the second upper side 12b has an inclination angle of θ D with respect to the horizontal plane, that is, the normal line on the surface of the transmission part 11. Yes. θ D is preferably set to 1 ° or more and 6 ° or less from the viewpoint of manufacturing.
 光偏向部12が並列されるピッチPは特に限定されないが、10μm以上200μm以下であることが好ましい。光偏向部12のピッチPが狭すぎると微細形状になるので製造の際に加工が困難になる。一方、光偏向部12のピッチPが広すぎると、金型で成形する際に材料の離型性が低下する傾向にある。 The pitch P in which the light deflection units 12 are arranged is not particularly limited, but is preferably 10 μm or more and 200 μm or less. If the pitch P of the light deflection section 12 is too narrow, the shape becomes fine, so that processing becomes difficult during manufacturing. On the other hand, if the pitch P of the light deflection section 12 is too wide, the mold releasability of the material tends to decrease when molding with a mold.
 また、光偏向部12の断面のうち、室外側、すなわち光透過部11間の凹部の開口側)の大きさは特に限定されないが、5μm以上150μm以下であることが好ましい。この幅が狭すぎると微細形状になるので加工が困難になる。一方、この幅が広すぎると金型で成形する際に材料の離型性が低下する傾向にある。 Further, the size of the outer side of the cross section of the light deflection unit 12, that is, the opening side of the recess between the light transmission units 11) is not particularly limited, but is preferably 5 μm or more and 150 μm or less. If this width is too narrow, it becomes a fine shape, making processing difficult. On the other hand, if this width is too wide, the releasability of the material tends to decrease when molding with a mold.
 光偏向部12の厚さ方向の長さ(図1の紙面左右方向)は特に限定されないが、10μm以上200μm以下であることが好ましい。これが短すぎると、光偏向部25の加工自体が困難になる虞がある。一方、これが長すぎると光偏向部25を形成するための金型の製造、及び金型からの材料の離型性が低下し、生産性が悪くなるおそれがある。 The length of the light deflection unit 12 in the thickness direction (the left-right direction in FIG. 1) is not particularly limited, but is preferably 10 μm or more and 200 μm or less. If this is too short, the processing of the light deflection unit 25 itself may be difficult. On the other hand, if this is too long, the production of the mold for forming the light deflection section 25 and the releasability of the material from the mold may be lowered, and the productivity may be deteriorated.
 また、光偏向部12のピッチPに対する透過部11の表面での法線方向の長さである光偏向部12のアスペクト比Raは、2.5以上3.5以下であることが好ましい。このようなアスペクト比Raとすることによって、生産性と最高性能を両立することが可能となる。 Further, the aspect ratio Ra of the light deflection unit 12 which is the length in the normal direction on the surface of the transmission unit 11 with respect to the pitch P of the light deflection unit 12 is preferably 2.5 or more and 3.5 or less. By setting such an aspect ratio Ra, it is possible to achieve both productivity and maximum performance.
 以上説明した採光シート1の主要な光路について説明する。なお、説明に必要な光路例は概念的なものであり、屈折、反射の程度等を厳密に表したものではない。 The main optical path of the daylighting sheet 1 described above will be described. Note that the optical path examples necessary for the description are conceptual, and do not strictly represent the degree of refraction or reflection.
 図3は、本実施形態の採光シート1の1つの光路例を示す。 FIG. 3 shows an example of one optical path of the daylighting sheet 1 of the present embodiment.
 図3に示す光LS1はそのときの太陽高度に基づいて入射角(水平面からなす角)θIN1で採光シート1に照射される。採光シート1に入射した光LS1は、光透過部11内に屈折して入射する。光透過部11を透過した光LS1は、光透過部11と光偏向部12との界面のうち第2上辺12bに達する。このとき、全反射臨界角以上であれば図3のように界面で全反射する。これにより太陽光が偏向されて、室内奥まで光を採光し、また、まぶしさの原因となる直達光を抑制することが可能となる。 The light L S1 shown in FIG. 3 is applied to the daylighting sheet 1 at an incident angle (angle formed from a horizontal plane) θIN1 based on the solar altitude at that time. The light L S1 incident on the daylighting sheet 1 is refracted and incident in the light transmitting portion 11. The light L S1 that has passed through the light transmission part 11 reaches the second upper side 12 b in the interface between the light transmission part 11 and the light deflection part 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. As a result, sunlight is deflected, and light is collected to the back of the room, and direct light that causes glare can be suppressed.
 図4は、本実施形態の採光シート1の他の光路例を示す。 FIG. 4 shows another example of the optical path of the daylighting sheet 1 of the present embodiment.
 図4に示す光LS2はそのときの太陽高度に基づいて入射角(水平面からなす角)θIN2で採光シート1に照射される。採光シートに入射した光LS2は、光透過部11内に屈折して入射する。光透過部11を透過した光LS2は、光透過部11と光偏向部12との界面のうち第1上辺12aに達する。このとき、全反射臨界角以上であれば図4のように界面で全反射する。第1上辺12aで全反射した光LS1は、再び光透過部11を透過し、光透過部11と光偏向部12との界面のうち第2上辺12bに達する。このとき、全反射臨界角以上であれば図3のように界面で全反射する。これにより太陽光が偏向されて、室内奥まで光を採光し、また、まぶしさの原因となる直達光を抑制することが可能となる。 The light L S2 shown in FIG. 4 is applied to the daylighting sheet 1 at an incident angle (angle formed from a horizontal plane) θIN2 based on the solar altitude at that time. The light L S2 incident on the daylighting sheet is refracted and incident in the light transmitting portion 11. The light L S2 that has passed through the light transmission part 11 reaches the first upper side 12 a in the interface between the light transmission part 11 and the light deflection part 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. The light L S1 totally reflected by the first upper side 12 a is transmitted again through the light transmission unit 11 and reaches the second upper side 12 b in the interface between the light transmission unit 11 and the light deflection unit 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. As a result, sunlight is deflected, and light is collected to the back of the room, and direct light that causes glare can be suppressed.
 すなわち、図4に示す例では光透過部11と光偏向部12との界面の第1上辺12aと第2上辺12bで2回太陽光を全反射して偏向し、まぶしさの原因となる直達光を防止している。 That is, in the example shown in FIG. 4, sunlight is totally reflected and deflected twice at the first upper side 12a and the second upper side 12b at the interface between the light transmitting unit 11 and the light deflecting unit 12 to cause glare. Prevents light.
 以上からわかるように、採光シート1によれば、第1上辺12aの傾斜角θU1と第2上辺12bの傾斜角θU2がθU1>θU2の関係を有していれば、光LS1、LS2のように進行角が異なる太陽光の少なくとも一部を全反射で偏向させて室内側に提供することができ、太陽光の室内への入射量を大きく減じることなく、かつ、少なくとも一部の直達光(いわゆる直射日光)をなくすことが可能となる。これにより明るく、快適な室内空間を形成することができる。 As can be seen from the above, according to the daylighting sheet 1, if the inclination angle θ U1 of the first upper side 12a and the inclination angle θ U2 of the second upper side 12b have a relationship of θ U1 > θ U2 , the light L S1 , Such as L S2 , at least a part of sunlight having different traveling angles can be deflected by total reflection and provided to the indoor side, and at least one of the incident amounts of sunlight into the room can be greatly reduced. It becomes possible to eliminate direct light from the part (so-called direct sunlight). Thereby, a bright and comfortable indoor space can be formed.
 図5は、本実施形態の採光シート1の光偏向部の変形例を示す。 FIG. 5 shows a modification of the light deflection unit of the daylighting sheet 1 of the present embodiment.
 図5に示す例では、光偏向部12のうち、光透過部11間に形成される溝の開口側辺12f(本実施形態では室外側に面する辺)が窪んだ形状に形成されている。 In the example shown in FIG. 5, the opening side 12 f (side facing the outdoor side in the present embodiment) of the groove formed between the light transmitting portions 11 in the light deflecting portion 12 is formed in a recessed shape. .
 また、全反射した光を散乱させる観点から光偏向部12と光透過部11との界面を微小な凹凸が無数に形成された面であるマット面としてもよい。 Further, from the viewpoint of scattering the totally reflected light, the interface between the light deflecting unit 12 and the light transmitting unit 11 may be a mat surface that is a surface on which numerous minute irregularities are formed.
 なお、本実施形態では下辺12d側を一直線としたが、下部となる側の辺の形態はこれに限られることなく、上部となる側の辺と同様に複数の角度からなる辺で形成してもよい。 In this embodiment, the lower side 12d is a straight line, but the shape of the lower side is not limited to this, and the lower side 12d is formed by a side having a plurality of angles like the upper side. Also good.
 次に、本実施形態の採光シート1を用いた採光積層体2をパネル3に貼合した例について説明する。 Next, an example in which the daylighting laminate 2 using the daylighting sheet 1 of the present embodiment is bonded to the panel 3 will be described.
 図6は、本実施形態の採光積層体2の層構成を模式的に示す。 FIG. 6 schematically shows the layer structure of the daylighting laminate 2 of the present embodiment.
 図6では採光積層体2のパネル面が鉛直になる姿勢で表されており、図6の紙面左が室外側、紙面右が室内側、紙面上方が天側、紙面下方が地側となる。 6 shows the posture in which the panel surface of the daylighting laminate 2 is vertical. In FIG. 6, the left side of the drawing is the outdoor side, the right side of the drawing is the indoor side, the upper side is the top side, and the lower side is the ground side.
 採光積層体2は、室内側からハードコート層21、基材層22、採光シート1、及び接着層23を備え、パネル3の室内側面に貼合される。以下、これらの各層について説明する。 The daylighting laminate 2 includes a hard coat layer 21, a base material layer 22, a daylighting sheet 1, and an adhesive layer 23 from the indoor side, and is bonded to the indoor side surface of the panel 3. Hereinafter, each of these layers will be described.
 パネル3は、ガラスパネルや樹脂パネル等、通常の建物や乗り物の窓等に用いられる透光性を有する板状の透光パネルである。従って、パネル3を構成する部材としては公知の板ガラスや樹脂板を用いることができる。 Panel 3 is a plate-like translucent panel having translucency used for a normal building or vehicle window such as a glass panel or a resin panel. Therefore, a known plate glass or resin plate can be used as a member constituting the panel 3.
 ハードコート層21は、表面保護を目的として、採光シート1のうちパネル3とは反対側の最表面に設けられる層である。ハードコート層21は透明な樹脂層として形成することができ、擦り傷、表面汚染に対する耐性の観点から、硬化性樹脂が硬化してなる樹脂硬化層として形成することが好ましい。 The hard coat layer 21 is a layer provided on the outermost surface of the daylighting sheet 1 opposite to the panel 3 for the purpose of surface protection. The hard coat layer 21 can be formed as a transparent resin layer, and is preferably formed as a cured resin layer formed by curing a curable resin from the viewpoint of resistance to scratches and surface contamination.
 具体的には電離放射線硬化性樹脂、その他公知の硬化性樹脂等を要求性能に応じて適宜採用すればよい。電離放射線硬化性樹脂としては、アクリレート系、オキセタン系、シリコーン系等が挙げられる。例えば、アクリレート系の電離放射線硬化性樹脂は、単官能(メタ)アクリレートモノマー、2官能(メタ)アクリレートモノマー、3官能以上の(メタ)アクリレートモノマーなどの(メタ)アクリル酸エステルモノマー、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート等の(メタ)アクリル酸エステルオリゴマー乃至は(メタ)アクリル酸エステルプレポリマーなどからなる。さらに3官能以上の(メタ)アクリレートモノマーを例示すれば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等がある。 Specifically, ionizing radiation curable resins, other known curable resins, and the like may be appropriately employed according to the required performance. Examples of the ionizing radiation curable resin include acrylate-based, oxetane-based, and silicone-based resins. For example, acrylate-based ionizing radiation curable resins include monofunctional (meth) acrylate monomers, bifunctional (meth) acrylate monomers, (meth) acrylate monomers such as trifunctional or higher (meth) acrylate monomers, urethane (meta ) Acrylate, epoxy (meth) acrylate, polyester (meth) acrylate and other (meth) acrylate ester oligomers or (meth) acrylate ester prepolymers. Examples of tri- or higher functional (meth) acrylate monomers include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and the like.
 また、ハードコート層21には、耐汚染性向上の機能を追加してもよい。これは例えばシリコーン系化合物、フッ素系化合物などを添加することにより可能となる。さらにその他の機能として光散乱機能、帯電防止性向上、撥水性向上の機能を有するものとしてもよい。 Further, the hard coat layer 21 may be added with a function of improving the stain resistance. This can be achieved, for example, by adding a silicone compound, a fluorine compound, or the like. Further, as other functions, a light scattering function, an antistatic property improvement function, and a water repellency improvement function may be provided.
 光散乱機能付与のために層内に球状粒子を含むものを挙げることができる。球状粒子としては、シリカ、炭酸カルシウム、アクリル等の中空粒子や、酸化チタン、硫酸バリウム、酸化マグネシウム、アクリルビーズ、ウレタンビーズ等を用いることができる。これらの球状粒子を樹脂に適宜分散して形成することができる。球状粒子は層内で樹脂硬化層との屈折率差で光散乱機能を発現しても、頭出しして空気界面で光散乱機能を発現してもよい。可視域の光を効率良く拡散させるために、球状粒子の直径を200nm~50μmの範囲のものを主に用いることが好ましい。 Examples include those containing spherical particles in the layer for imparting a light scattering function. As the spherical particles, hollow particles such as silica, calcium carbonate, and acrylic, titanium oxide, barium sulfate, magnesium oxide, acrylic beads, urethane beads, and the like can be used. These spherical particles can be formed by appropriately dispersing in a resin. The spherical particles may exhibit a light scattering function due to a difference in refractive index from the cured resin layer within the layer, or may be cueed to exhibit a light scattering function at the air interface. In order to efficiently diffuse light in the visible range, it is preferable to mainly use spherical particles having a diameter in the range of 200 nm to 50 μm.
 帯電防止性向上のために用いることができる材料としては、電子伝導タイプではPEDOT-PSS(PEDOT(Poly(3,4-ethylenedioxythiophene);3,4-エチレンジオキシチオフェンポリマー)とPSS(poly(styrenesulfonate);スチレンスルホン酸ポリマー)とを共存)などが挙げられ、イオン導電タイプではリチウム塩系材料等が挙げられる。 As materials that can be used for improving the antistatic property, PEDOT-PSS (PEDOT (Poly (3,4-ethylenedioxythiophene); 3,4-ethylenedioxythiophene polymer) and PSS (polynesylsulfonate) are used as the electron conduction type. ); A styrene sulfonic acid polymer)), and the ionic conductive type includes lithium salt materials.
 また、撥水性向上のために用いることができる材料としては、フッ素系化合物等が挙げられる。 Further, examples of materials that can be used for improving water repellency include fluorine compounds.
 基材層22は、採光シート1を形成するための基材となる層である。従って基材層22は、透光性を有するとともに採光シート1の変形を防止できるように支持する。かかる観点から、基材層22を構成する材料の具体例として例えば、アクリル、スチレン、ポリカーボネート、ポリエチレンテレフタレート、アクリロニトリル等のうちの1つ以上を主成分とする透明樹脂や、エポキシアクリレートやウレタンアクリレート系の反応性樹脂(電離放射線硬化型樹脂等)を挙げることができる。 The base material layer 22 is a layer serving as a base material for forming the daylighting sheet 1. Therefore, the base material layer 22 has translucency and supports it so that deformation of the daylighting sheet 1 can be prevented. From this point of view, as specific examples of the material constituting the base material layer 22, for example, a transparent resin mainly composed of one or more of acrylic, styrene, polycarbonate, polyethylene terephthalate, acrylonitrile, and the like, epoxy acrylate, urethane acrylate The reactive resin (ionizing radiation curable resin etc.) can be mentioned.
 基材層22の厚さは特に限定されないが、25μm以上300μm以下であることが好ましい。基材層22の厚さがこの範囲を外れると、加工性に問題を生じる虞がある。例えば、基材層22が薄過ぎればしわが生じやすくなる。また、基材層22が厚過ぎれば、採光シート20を製造する工程のうち中間工程において巻き取りが困難になる。 The thickness of the base material layer 22 is not particularly limited, but is preferably 25 μm or more and 300 μm or less. If the thickness of the base material layer 22 is out of this range, there is a risk of causing problems in workability. For example, if the base material layer 22 is too thin, wrinkles are likely to occur. Moreover, if the base material layer 22 is too thick, winding will become difficult in an intermediate process among the processes which manufacture the daylighting sheet 20. FIG.
 基材層22の屈折率は、採光シート1の透過部11の屈折率と同じであってもよいし、異なっていてもよい。ただし両者間で屈折率差があるとその界面で光が偏向されてしまう可能性が高まるので、同じ材料であること、又は異なる材料であっても屈折率差が小さい、あるいは屈折率差がないことが好ましい。 The refractive index of the base material layer 22 may be the same as or different from the refractive index of the transmission part 11 of the daylighting sheet 1. However, if there is a difference in refractive index between the two, the possibility of light being deflected at the interface increases, so even if they are the same material or different materials, the refractive index difference is small or there is no refractive index difference. It is preferable.
 基材層22は、その上に設けられる光偏向層12との密着性を向上させるために、所望により、片面または両面にコロナ放電処理、クロム酸化処理、熱風処理、オゾン・紫外線処理法などの酸化法や、サンドブラスト法、溶剤処理法などの凹凸化法といった、物理的または化学的表面処理を施すことができる。また、基材層22は、接着性の強化などのためのプライマー層を形成するなどの処理を施してもよい。プライマー層の形成に用いられる材料としては特に限定されず、アクリル樹脂、塩化ビニル/酢酸ビニル共重合体樹脂、ポリエステル樹脂、ポリウレタン樹脂、塩素化ポリプロピレン樹脂、塩素化ポリエチレン樹脂などが挙げられる。プライマー層の厚みは1~30umが好ましく、1~10umがより好ましい。基材層22の光偏向層形成側表面は平滑であってもよいし、上記サンドブラスト法、溶剤処理法などの凹凸化法といった物理的又は化学的表面処理、またはプライマー層中への球状粒子などの添加により非平滑であってもよい。 In order to improve the adhesiveness with the light deflection layer 12 provided thereon, the base material layer 22 may be subjected to corona discharge treatment, chromium oxidation treatment, hot air treatment, ozone / ultraviolet treatment method, or the like on one or both sides as desired. A physical or chemical surface treatment such as an oxidation method, a concavo-convex method such as a sand blast method or a solvent treatment method can be applied. In addition, the base material layer 22 may be subjected to a treatment such as forming a primer layer for enhancing adhesiveness. The material used for forming the primer layer is not particularly limited, and examples thereof include acrylic resins, vinyl chloride / vinyl acetate copolymer resins, polyester resins, polyurethane resins, chlorinated polypropylene resins, and chlorinated polyethylene resins. The thickness of the primer layer is preferably 1 to 30 um, and more preferably 1 to 10 um. The surface of the base layer 22 on which the light deflection layer is formed may be smooth, or may be a physical or chemical surface treatment such as the above sandblasting method or a roughening method such as a solvent treatment method, or spherical particles in the primer layer, etc. May be non-smooth.
 接着層23は、パネル3に採光シート1を接着するための層である。接着層23を構成する材料としては、パネル3に採光シート1を接着できるものであれば特に限定されず、公知の粘着剤、接着剤、光硬化性樹脂、熱硬化性樹脂等を用いることができる。より具体的な例としては、接着層23として、例えばアクリル系の粘着剤を用いることができ、さらに具体的にはアクリル系共重合体とイソシアネート化合物とを組み合わせた粘着剤を挙げることができる。ただし、接着層23を構成する材料は、採光シート1の性質上、透光性、耐候性に優れた材料によることが好ましい。 The adhesive layer 23 is a layer for adhering the daylighting sheet 1 to the panel 3. The material constituting the adhesive layer 23 is not particularly limited as long as it can adhere the daylighting sheet 1 to the panel 3, and a known pressure-sensitive adhesive, adhesive, photo-curing resin, thermosetting resin, or the like is used. it can. As a more specific example, for example, an acrylic pressure-sensitive adhesive can be used as the adhesive layer 23, and more specifically, a pressure-sensitive adhesive in which an acrylic copolymer and an isocyanate compound are combined. However, the material constituting the adhesive layer 23 is preferably made of a material excellent in translucency and weather resistance due to the properties of the daylighting sheet 1.
 接着層23の厚さは特に限定されないが、10μm以上100μm以下であることが好ましい。接着層23が薄過ぎるとパネル3と採光シート1との密着性が低下する虞がある。また、接着層23が厚過ぎると該接着層23の厚さを均一にすることが困難になる。 The thickness of the adhesive layer 23 is not particularly limited, but is preferably 10 μm or more and 100 μm or less. If the adhesive layer 23 is too thin, the adhesion between the panel 3 and the daylighting sheet 1 may be reduced. If the adhesive layer 23 is too thick, it is difficult to make the thickness of the adhesive layer 23 uniform.
 採光シート1には上記した各層のいずれかに、他の機能を付加させるための構成を備えてもよい。これには例えば、紫外線吸収剤、熱線吸収剤、又は近赤外線吸収剤を添加し、紫外線吸収機能、熱線吸収機能、又は近赤外線吸収機能を備えさせることが考えられる。 The daylighting sheet 1 may be provided with a configuration for adding another function to any one of the above-described layers. For example, an ultraviolet absorber, a heat ray absorber, or a near infrared absorber may be added to provide an ultraviolet ray absorbing function, a heat ray absorbing function, or a near infrared ray absorbing function.
 近赤外線吸収機能は、近赤外線吸収剤(近赤外線吸収色素)を上記した各層の1つ又は複数に添加したり、塗布したりすることにより向上させることができる。近赤外線吸収色素としては、800nm以上1100nm以下の波長領域を吸収するものを用いることが好ましい。該波長領域の近赤外線の透過率が20%以下であることが好ましく、10%以下であることがさらに好ましい。一方で、近赤外線吸収色素は可視光領域、即ち、380nm以上780nm以下の波長領域で、十分な透過率を有することが好ましい。 The near-infrared absorbing function can be improved by adding or applying a near-infrared absorber (near-infrared absorbing dye) to one or more of the above layers. As the near-infrared absorbing dye, it is preferable to use one that absorbs a wavelength region of 800 nm to 1100 nm. The near-infrared transmittance in the wavelength region is preferably 20% or less, and more preferably 10% or less. On the other hand, the near-infrared absorbing dye preferably has a sufficient transmittance in the visible light region, that is, in the wavelength region of 380 nm to 780 nm.
 紫外線吸収機能は、以下に例示する紫外線吸収剤を上記した各層の1つ又は複数に添加したり、塗布したりすることにより向上させることができる。紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤(TINUVIN P、TINUVIN P FL、TINUVIN 234、TINUVIN 326、TINUVIN 326 FL、TINUVIN 328、TINUVIN 329、TINUVIN 329 FL、全てBASFジャパン株式会社製)や、トリアジン系紫外線吸収剤(TINUVIN 1577 ED、BASFジャパン株式会社製)、ベンゾフェノン系紫外線吸収剤(CHIMASSORB 81、CHIMASSORB 81 FL、全てBASFジャパン株式会社製)、ベンゾエート系紫外線吸収剤(TINUVIN 120、BASFジャパン株式会社製)などが挙げられる。 The ultraviolet absorbing function can be improved by adding or applying an ultraviolet absorber exemplified below to one or more of the above layers. Examples of ultraviolet absorbers include benzotriazole ultraviolet absorbers (TINUVINUVP, TINUVIN P FL, TINUVIN 234, TINUVIN 326, TINUVIN 326 FL, TINUVIN 328, TINUVIN 329, TINUVIN 329 FL, all manufactured by BASF Japan Ltd.), and triazine. UV absorbers (TINUVIN 1577 ED, manufactured by BASF Japan Ltd.), benzophenone ultraviolet absorbers (CHIMASSORB 81, CHIMASORB 81 FL, all manufactured by BASF Japan Ltd.), benzoate UV absorbers (TINUVIN 120, BASF Japan Ltd.) Manufactured).
 熱線吸収機能は、以下に例示する熱線吸収剤を上記した各層の1つ又は複数に添加したり、塗布したりすることにより向上させることができる。熱線吸収剤としては、アンチモンドープ酸化スズ(ATO)またはスズドープ酸化インジウム(ITO)、フタロシアニン化合物などの金属酸化物超微粒子などが挙げられる。 The heat ray absorbing function can be improved by adding or applying a heat ray absorbent exemplified below to one or more of the above layers. Examples of the heat ray absorbent include metal oxide ultrafine particles such as antimony-doped tin oxide (ATO) or tin-doped indium oxide (ITO) and phthalocyanine compounds.
 以上説明した採光積層体2は例えば次のように製造する。 The daylighting laminate 2 described above is manufactured, for example, as follows.
 採光積層体2のうち光偏向層12は金型ロールを用いる方法により形成することができる。すなわち、円筒状であるロールの外周面に光偏向層12の光透過部11を転写可能な凹凸が設けられた金型ロールを準備する。そして金型ロールとこれに対向するように配置されたニップロールとの間に、基材層22となる基材を挿入する。そして、基材22のうち一方の面と金型ロールとの間に光透過部11を構成する組成物を供給しながら金型ロール及びニップロールを回転させる。これにより金型ロールの表面に形成された凹凸の凹部内に光透過部11を構成する組成物が充填され、該組成物が金型ロールの凹凸の表面形状に沿ったものとなる。 The light deflection layer 12 of the daylighting laminate 2 can be formed by a method using a die roll. That is, a mold roll is prepared in which irregularities capable of transferring the light transmitting portion 11 of the light deflection layer 12 are provided on the outer peripheral surface of the cylindrical roll. And the base material used as the base material layer 22 is inserted between a die roll and the nip roll arrange | positioned so as to oppose this. And a mold roll and a nip roll are rotated, supplying the composition which comprises the light transmissive part 11 between one side of the base materials 22 and a mold roll. Thereby, the composition which comprises the light transmissive part 11 is filled in the uneven part of the unevenness | corrugation formed in the surface of a metal mold | die roll, and this composition becomes what follows the uneven | corrugated surface shape of a metal mold | die roll.
 ここで、光透過部11を構成する組成物としては、上記したものが好ましいが、さらに具体的な例は次の通りである。すなわち、光硬化型プレポリマー(P1)に、反応性希釈モノマー(M1)に、必要に応じて高屈折率材料(H1)、及び光重合開始剤(I1)を配合した光硬化型樹脂組成物を用いることができる。 Here, the above-mentioned composition is preferable as the composition constituting the light transmission part 11, but more specific examples are as follows. That is, a photocurable resin composition comprising a photocurable prepolymer (P1), a reactive diluent monomer (M1), and a high refractive index material (H1) and a photopolymerization initiator (I1) as necessary. Can be used.
 上記光硬化型プレポリマー(P1)としては、例えば、ビスフェノールA型、ビスフェノールF型、フェノールノボラック型等のエポキシアクリレート系、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等からなるウレタンアクリレート系、ポリエーテルアクリレート系、ポリエステルアクリレート系、ポリチオール系等のプレポリマーを挙げることができる。 Examples of the photocurable prepolymer (P1) include epoxy acrylates such as bisphenol A, bisphenol F, and phenol novolac, urethane acrylates such as hexamethylene diisocyanate, isophorone diisocyanate, polyether acrylates, and polyesters. Examples include acrylate-based and polythiol-based prepolymers.
 また、上記反応性希釈モノマー(M1)としては、例えば、ビニルピロリドン、2-フェノキシエチルアクリレート、2-エチルヘキシルアクリレート、β-ヒドロキシアクリレート、テトラヒドロフルフリルアクリレート等の反応性のモノマー、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ポリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート等の2官能以上のモノマー等を挙げることができる。 Examples of the reactive dilution monomer (M1) include reactive monomers such as vinyl pyrrolidone, 2-phenoxyethyl acrylate, 2-ethylhexyl acrylate, β-hydroxy acrylate, and tetrahydrofurfuryl acrylate, and 2-hydroxy-3 -Bifunctional or higher functional monomers such as acryloyloxypropyl methacrylate, polyethylene glycol diacrylate, tetraethylene glycol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate and the like.
 また、上記光重合開始剤(I1)としては、例えば、ヒドロキシベンゾイル化合物(2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインアルキルエーテル等)、ベンゾイルホルメート化合物(メチルベンゾイルホルメート等)、チオキサントン化合物(イソプロピルチオキサントン等)、ベンゾフェノン(ベンゾフェノン等)、リン酸エステル化合物(1,3,5-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等)、ベンジルジメチルケタール等が挙げられる。これらの中から、光硬化型樹脂組成物を硬化させるための照射装置及び光硬化型樹脂組成物の硬化性から任意に選択することができる。なお、光透過部11の着色防止の観点から好ましいのは、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン及びビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドである。 Examples of the photopolymerization initiator (I1) include hydroxybenzoyl compounds (2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, benzoin alkyl ether, etc.), benzoyl Formate compounds (such as methylbenzoylformate), thioxanthone compounds (such as isopropylthioxanthone), benzophenones (such as benzophenone), phosphate compounds (1,3,5-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6- Trimethylbenzoyl) -phenylphosphine oxide and the like, and benzyldimethyl ketal and the like. Among these, the irradiation device for curing the photocurable resin composition and the curability of the photocurable resin composition can be arbitrarily selected. From the viewpoint of preventing coloring of the light transmitting portion 11, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone and bis (2,4,6-trimethylbenzoyl) are preferable. ) -Phenylphosphine oxide.
 また、上記高屈折率材料(H1)としては、芳香族を含む材料が挙げられる。o-フェニルフェノールEO変性アクリレート、パラクミルフェノールEO変性アクリレート、ビスフェノールAジアクリレート等やカルド構造を有する材料が挙げられる。カルド構造を有する材料としては、大阪ガスケミカル社のオグソールEA-0200等が挙げられる。 Also, examples of the high refractive index material (H1) include materials containing aromatics. Examples thereof include o-phenylphenol EO-modified acrylate, paracumylphenol EO-modified acrylate, bisphenol A diacrylate, and materials having a cardo structure. Examples of the material having a cardo structure include Oxol EA-0200 from Osaka Gas Chemical Company.
 これらの光硬化型プレポリマー(P1)、反応性希釈モノマー(M1)、高屈折率材料(H1)、及び光重合開始剤(I1)は、それぞれ、1種類で、又は2種以上を組み合わせて用いることができる。 These photocurable prepolymer (P1), reactive diluent monomer (M1), high refractive index material (H1), and photopolymerization initiator (I1) are each one type or a combination of two or more types. Can be used.
 金型ロールと基材との間に挟まれ、ここに充填された光透過部11を構成する組成物に対し、基材側から光照射装置により光を照射する。これにより、光透過部11を構成する組成物を硬化させ、その形状を固定させることができる。そして、離型ロールにより金型ロールから基材層22及び成形された光透過部11を離型する。 The composition constituting the light transmission part 11 sandwiched between the mold roll and the base material and filled therein is irradiated with light from the base material side by a light irradiation device. Thereby, the composition which comprises the light transmissive part 11 can be hardened, and the shape can be fixed. And the base material layer 22 and the shape | molded light transmission part 11 are released from a metal mold | die roll with a mold release roll.
 次に、光透過部11の凹部に光偏向部12を構成する組成物を充填して硬化させることによって、光偏向部12を形成することができる。このようにして、基材層22上に光偏向層12を形成することが可能である。 Next, the light deflection section 12 can be formed by filling the concave portion of the light transmission section 11 with the composition constituting the light deflection section 12 and curing it. In this way, the light deflection layer 12 can be formed on the base material layer 22.
 このようにして形成された光偏向層12上に接着剤を積層して接着層23とし、基材層22にハードコート層21を接着剤等により貼り付ける、もしくはコーティングにより成膜する。成膜方法は公知の物が使用でき、グラビアコート、バーコート、ロールコート、リバースロールコート、コンマコートなどが用いられる。なお、ハードコート層は光偏向層形成前に設けられていてもよい。これにより採光積層体2となる。 An adhesive is laminated on the light deflection layer 12 thus formed to form an adhesive layer 23, and the hard coat layer 21 is attached to the base material layer 22 with an adhesive or the like, or a film is formed by coating. As the film forming method, known ones can be used, and gravure coating, bar coating, roll coating, reverse roll coating, comma coating and the like are used. The hard coat layer may be provided before forming the light deflection layer. Thus, the daylighting laminate 2 is obtained.
 図7は、本実施形態の採光積層体2の1つの光路例を示す。 FIG. 7 shows an example of one optical path of the daylighting laminate 2 of the present embodiment.
 図7に示す光LS3はそのときの太陽高度に基づいて、パネル3に照射される。光LS3は、パネル3及び接着層23を透過し、入射角(水平面からなす角)θIN3で採光シート1に入射する。採光シート1に入射した光LS3は、光透過部11内に屈折して入射する。光透過部11を透過した光LS3は、光透過部11と光偏向部12との界面のうち第2上辺12bに達する。このとき、全反射臨界角以上であれば図6のように界面で全反射する。その後、基材層22及びハードコート層21を透過する。これにより太陽光が偏向されて、まぶしさの原因となる直達光を抑制することが可能となる。 The light L S3 shown in FIG. 7 is applied to the panel 3 based on the solar altitude at that time. The light L S3 passes through the panel 3 and the adhesive layer 23, and enters the daylighting sheet 1 at an incident angle (angle formed from a horizontal plane) θIN3 . The light L S3 incident on the daylighting sheet 1 is refracted and incident on the light transmitting portion 11. The light L S3 that has passed through the light transmission part 11 reaches the second upper side 12 b in the interface between the light transmission part 11 and the light deflection part 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. Then, the base material layer 22 and the hard coat layer 21 are transmitted. As a result, sunlight is deflected and direct light that causes glare can be suppressed.
 図8は、本実施形態の採光積層体2の他の光路例を示す。 FIG. 8 shows another example of the optical path of the daylighting laminate 2 of the present embodiment.
 図8に示す光LS4はそのときの太陽高度に基づいて、パネル3に照射される。光LS4は、パネル3及び接着層23を透過し、入射角(水平面からなす角)θIN4で採光シート1に照射される。採光シートに入射した光LS4は、光透過部11内に屈折して入射する。光透過部11を透過した光LS4は、光透過部11と光偏向部12との界面のうち第1上辺12aに達する。このとき、全反射臨界角以上であれば図8のように界面で全反射する。第1上辺12aで全反射した光LS1は、再び光透過部11を透過し、光透過部11と光偏向部12との界面のうち第2上辺12bに達する。このとき、全反射臨界角以上であれば図7のように界面で全反射する。その後、基材層22及びハードコート層21を透過する。これにより太陽光が偏向されて、まぶしさの原因となる直達光を抑制することが可能となる。 The light L S4 shown in FIG. 8 is applied to the panel 3 based on the solar altitude at that time. The light L S4 passes through the panel 3 and the adhesive layer 23 and is irradiated onto the daylighting sheet 1 at an incident angle (angle formed from a horizontal plane) θIN4 . The light L S4 incident on the daylighting sheet is refracted and incident in the light transmission part 11. The light L S4 that has passed through the light transmission part 11 reaches the first upper side 12 a in the interface between the light transmission part 11 and the light deflection part 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. The light L S1 totally reflected by the first upper side 12 a is transmitted again through the light transmission unit 11 and reaches the second upper side 12 b in the interface between the light transmission unit 11 and the light deflection unit 12. At this time, if it is equal to or greater than the total reflection critical angle, it is totally reflected at the interface as shown in FIG. Then, the base material layer 22 and the hard coat layer 21 are transmitted. As a result, sunlight is deflected and direct light that causes glare can be suppressed.
 すなわち、図8に示す例では光透過部11と光偏向部12との界面の第1上辺12aと第2上辺12bで2回太陽光を全反射して偏向し、まぶしさの原因となる直達光を防止している。 That is, in the example shown in FIG. 8, sunlight is totally reflected and deflected twice at the first upper side 12a and the second upper side 12b at the interface between the light transmitting unit 11 and the light deflecting unit 12 to cause glare. Prevents light.
 以上からわかるように、採光積層体2によれば、第1上辺12aの傾斜角θU1と第2上辺12bの傾斜角θU2がθU1>θU2の関係を有していれば、光LS1、LS2のように進行角が異なる太陽光の少なくとも一部を全反射で偏向させて室内側に提供することができ、太陽光の室内への入射量を大きく減じることなく、かつ、少なくとも一部の直達光(いわゆる直射日光)をなくすことが可能となる。これにより明るく、快適な室内空間を形成することができる。 As can be seen from the above, according to the daylighting laminate 2, if the inclination angle θ U1 of the first upper side 12a and the inclination angle θ U2 of the second upper side 12b have a relationship of θ U1 > θ U2 , the light L Like S1 and L S2 , at least part of sunlight having different traveling angles can be deflected by total reflection and provided indoors, and at least without significantly reducing the amount of sunlight entering the room, and at least Part of direct light (so-called direct sunlight) can be eliminated. Thereby, a bright and comfortable indoor space can be formed.
 図9は、本実施形態の採光積層体2の他の例の層構成を模式的に示す。なお、図9は、パネル面が鉛直になる姿勢で表されており、図9の紙面左が室外側、紙面右が室内側、紙面上方が天側、紙面下方が地側となる。 FIG. 9 schematically shows a layer configuration of another example of the daylighting laminate 2 of the present embodiment. Note that FIG. 9 shows a posture in which the panel surface is vertical, with the left side of FIG. 9 being the outdoor side, the right side of the paper being the indoor side, the upper side of the page being the top side, and the lower side of the page being the ground side.
 図9に示す採光積層体2は、図6に示した採光積層体2の接着層23を強粘着層23a、ベースフィルム23b、及び弱粘着層23cに分けて製作する。また、ハードコート層21の基材22とは反対側に保護フィルム24を設けてもよい。 The daylighting laminate 2 shown in FIG. 9 is manufactured by dividing the adhesive layer 23 of the daylighting laminate 2 shown in FIG. 6 into a strong adhesion layer 23a, a base film 23b, and a weak adhesion layer 23c. Further, a protective film 24 may be provided on the opposite side of the hard coat layer 21 from the substrate 22.
 強粘着層23aは、イソシアネート等の硬化剤を含むアクリル系の材料を使用することが好ましい。弱粘着層23cは、イソシアネート等の硬化剤及びUV吸収材を含むアクリル系の材料を使用することが好ましい。ベースフィルム23bは、ポリエチレンテレフタレート(PET)等でよい。 The strong adhesive layer 23a is preferably made of an acrylic material containing a curing agent such as isocyanate. The weak adhesive layer 23c is preferably made of an acrylic material containing a curing agent such as isocyanate and a UV absorber. The base film 23b may be polyethylene terephthalate (PET) or the like.
 接着層23を強粘着層23a、ベースフィルム23b、及び中粘着層23cに分けることによって、パネル3から採光積層体2を剥がす際に、パネル3に採光積層体2の一部が貼り付いたまま残ることを抑制することが可能となる。 By separating the daylighting laminate 2 from the panel 3 by separating the adhesive layer 23 into the strong adhesion layer 23a, the base film 23b, and the middle adhesion layer 23c, a part of the daylighting laminate 2 remains attached to the panel 3 It becomes possible to suppress remaining.
 保護フィルム24は、ポリエチレンテレフタレート(PET)等でよい。 The protective film 24 may be polyethylene terephthalate (PET) or the like.
 図10は、本実施形態の採光シート1を合わせガラスGに適用した例を模式的に示す。なお、図10は、ガラス面が鉛直になる姿勢で表されており、図10の紙面左が室外側、紙面右が室内側、紙面上方が天側、紙面下方が地側となる。 FIG. 10 schematically shows an example in which the daylighting sheet 1 of this embodiment is applied to a laminated glass G. Note that FIG. 10 shows a posture in which the glass surface is vertical, with the left side of FIG. 10 being the outdoor side, the right side of the paper being the indoor side, the upper side of the paper being the top side, and the lower side of the paper being the ground side.
 図10に示す合わせガラスGは、図1に示した採光シート1を2枚のガラスGの間に設置して構成する。このように、採光シート1を合わせガラスGに適用することで、生産性と採光性能を両立させたガラスGとすることが可能となる。 The laminated glass G shown in FIG. 10 is configured by installing the daylighting sheet 1 shown in FIG. Thus, by applying the daylighting sheet 1 to the laminated glass G, it is possible to obtain a glass G that achieves both productivity and daylighting performance.
 図11は、本実施形態の採光積層体2を合わせガラスGに適用した例を模式的に示す。なお、図11は、ガラス面が鉛直になる姿勢で表されており、図11の紙面左が室外側、紙面右が室内側、紙面上方が天側、紙面下方が地側となる。 FIG. 11 schematically shows an example in which the daylighting laminate 2 of this embodiment is applied to a laminated glass G. Note that FIG. 11 shows a posture in which the glass surface is vertical, with the left side of FIG. 11 being the outdoor side, the right side of the paper being the indoor side, the upper side of the paper being the top side, and the lower side of the paper being the ground side.
 図11に示すように、合わせガラスGに、図6に示したような採光積層体2を適用してもよい。 As shown in FIG. 11, the daylighting laminate 2 as shown in FIG. 6 may be applied to the laminated glass G.
 図11に示す合わせガラスGは、2枚のガラスGの間に採光積層体2を設置する。採光積層体2の層構成は、図1に示した採光シート1に加えて、図6に示した基材槽22、及びハードコート層21、さらに保護層25を設けていてもよい。保護層25は接着層23と採光シート1間の成分移行による劣化を阻止する目的で設けられ、ポリエチレンテレフタラート(PET)等でよい。また、採光シート1もしくは採光積層体2の室外側、室内側には接着層23が設けられていてもよい。接着層23としては、EVA、PVAが好適に用いられる。 In the laminated glass G shown in FIG. 11, the daylighting laminate 2 is installed between the two glasses G. In addition to the daylighting sheet 1 shown in FIG. 1, the layered structure of the daylighting laminate 2 may be provided with the base material tank 22, the hard coat layer 21, and the protective layer 25 shown in FIG. 6. The protective layer 25 is provided for the purpose of preventing deterioration due to component transfer between the adhesive layer 23 and the daylighting sheet 1, and may be polyethylene terephthalate (PET) or the like. Further, an adhesive layer 23 may be provided on the outdoor side and the indoor side of the daylighting sheet 1 or the daylighting laminate 2. As the adhesive layer 23, EVA or PVA is preferably used.
 このように、採光積層体2を合わせガラスGに適用することで、生産性と採光性能を両立させた合わせガラスGとすることが可能となる。このほか、採光積層体2や上記合わせガラス化したものを複層ガラスのうちの1枚として用いることや、採光シート1を軸に巻回、及び展開可能に構成することによりロールアップ採光スクリーンとして用いることも可能である。 Thus, by applying the daylighting laminate 2 to the laminated glass G, it becomes possible to obtain a laminated glass G that achieves both productivity and daylighting performance. In addition, as a roll-up daylighting screen, it is possible to use the daylighting laminate 2 or the laminated glass as one of the double glazings, or to roll and unfold the daylighting sheet 1 as a shaft. It is also possible to use it.
 以下に採光シート1の各実施例及び比較例を示す。各実施例及び比較例で用いる光透過部11の屈折率Nは1.60、光偏向部12の屈折率は1.47である。 Examples and comparative examples of the daylighting sheet 1 are shown below. The refractive index N of the light transmitting portion 11 used in each example and comparative example is 1.60, and the refractive index of the light deflecting portion 12 is 1.47.
 表2は、第1上辺12aと第2上辺12bの角度に対する製造適性、跳ね上げ効率、及び跳ね上げ可能な入射角についてまとめたものである。各実施例及び比較例では、光偏向部12の第1上辺12aと第2上辺12bの角度が異なる。
Figure JPOXMLDOC01-appb-T000002
Table 2 summarizes the manufacturing aptitude with respect to the angles of the first upper side 12a and the second upper side 12b, the flip-up efficiency, and the incident angle that can be flipped up. In each of the examples and the comparative examples, the angles of the first upper side 12a and the second upper side 12b of the light deflection unit 12 are different.
Figure JPOXMLDOC01-appb-T000002
 まず、製造適性について説明する。製造適性は主に金型の製造と成型時の離型性に関する。◎は金型の製造が可能で成型時の離型性が軽い場合、○は金型の製造及び離型性が共に可能である場合、×は金型の製造が困難な場合である。 First, the suitability for manufacturing will be explained. Manufacturability mainly relates to mold manufacturing and mold release during molding. ◎ indicates that the mold can be manufactured and the mold releasability at the time of molding is light, ◯ indicates that the mold can be manufactured and releasable, and × indicates that the mold is difficult to manufacture.
 比較例3は、第2上辺12bの角度が-2°であって、金型の製造が困難となり、製造適性が良くないため、×となっている。 In Comparative Example 3, the angle of the second upper side 12b is −2 °, and it is difficult to manufacture the mold, and the manufacturing suitability is not good.
 次に、各入射角における跳ね上げ効率について説明する。各入射角は図2及び図3で示した入射角θINである。そして、跳ね上げ効率とは、入射した光を全て跳ね上げた場合を1とした割合を示す。例えば、本実施形態では、10°毎の入射角において、跳ね上げ効率が前後の角度と0.2以上の効率差を生じる場合、明るさの変化を感じてしまう。したがって、40°の場合に跳ね上げ効率0.24に対して、30°の場合に跳ね上げ効率0.49及び50°の場合に跳ね上げ効率0.45となる比較例2は本実施形態の実施例には含まれない。 Next, the flip-up efficiency at each incident angle will be described. Each incident angle is the incident angle θ IN shown in FIGS. The jumping efficiency is a ratio of 1 when all incident light is jumped up. For example, in this embodiment, when the flip-up efficiency produces an efficiency difference of 0.2 or more with respect to the front and rear angles at an incident angle of 10 °, a change in brightness is felt. Therefore, the comparative example 2 in which the flip-up efficiency is 0.49 when the angle is 40 ° and the flip-up efficiency is 0.45 when the angle is 30 ° and 0.45 when the angle is 50 ° is shown in FIG. It is not included in the examples.
 また、本実施形態では、入射角θINを10°以上60°以下と設定している。したがって、表2に示すように、跳ね上げ可能な最大入射角が56°となる比較例1は、56°より大きい入射角θINでは跳ね上げできないため、本実施形態の実施例には含まれない。また、跳ね上げ可能な最小入射角が11°となる比較例4は、11°より小さい入射角θINでは跳ね上げできないため、本実施形態の実施例には含まれない。 In the present embodiment, the incident angle θ IN is set to 10 ° or more and 60 ° or less. Therefore, as shown in Table 2, Comparative Example 1 in which the maximum incident angle that can be raised is 56 ° cannot be raised at an incident angle θ IN that is larger than 56 °, and thus is included in the example of this embodiment. Absent. Further, Comparative Example 4 in which the minimum incident angle that can be raised is 11 ° cannot be raised at an incident angle θ IN smaller than 11 °, and thus is not included in the example of this embodiment.
 表3は、下辺12dの角度及びアスペクト比に対する採光性能と生産性についてまとめたものである。各実施例及び比較例では、光偏向部12の下辺12dの角度及びアスペクト比が異なる。
Figure JPOXMLDOC01-appb-T000003
Table 3 summarizes the lighting performance and productivity with respect to the angle and aspect ratio of the lower side 12d. In each example and comparative example, the angle and the aspect ratio of the lower side 12d of the light deflection unit 12 are different.
Figure JPOXMLDOC01-appb-T000003
 まず、生産性について説明する。製造適性は主に金型の製造と成型時の離型性に関する。◎は金型の製造が可能で成型時の離型性が軽い場合、○は金型の製造及び離型性が共に可能である場合、×は金型の製造が困難な場合である。 First, productivity will be explained. Manufacturability mainly relates to mold manufacturing and mold release during molding. ◎ indicates that the mold can be manufactured and the mold releasability at the time of molding is light, ◯ indicates that the mold can be manufactured and releasable, and × indicates that the mold is difficult to manufacture.
 比較例1は、下辺角度θDが1°以上6°以下の範囲外なので、金型成形が困難となり、製造適性が良くないため、×となっている。 In Comparative Example 1, since the lower side angle θ D is outside the range of 1 ° or more and 6 ° or less, it is difficult to mold, and the manufacturing suitability is not good, and therefore, X is given.
 次に、採光性能について説明する。採光性能は、表1で説明した各入射角における跳ね上げ効率の和である。各入射角は図2及び図3で示した入射角θINである。そして、跳ね上げ効率とは、入射した光を全て跳ね上げた場合を1とした割合を示す。本実施形態では、比較例1の採光性能を100.0とした場合の各例の採光性能を採光性能比として求め、実質的に明るさの変化を感じない85%以上の採光性能を保持できない場合、本実施形態の実施例には含まれない比較例とする。 Next, the lighting performance will be described. The lighting performance is the sum of the flip-up efficiency at each incident angle described in Table 1. Each incident angle is the incident angle θ IN shown in FIGS. The jumping efficiency is a ratio of 1 when all incident light is jumped up. In this embodiment, the lighting performance of each example when the lighting performance of Comparative Example 1 is set to 100.0 is obtained as the lighting performance ratio, and the lighting performance of 85% or more that does not substantially feel the change in brightness cannot be maintained. In this case, a comparative example not included in the example of the present embodiment is used.
 例えば、比較例2は、採光性能比が83.4%であって、85%を下回るので、本実施形態の実施例には含まれない。また、比較例3は、採光性能比が83.0%であって、85%を下回るので、本実施形態の実施例には含まれない。 For example, Comparative Example 2 has a lighting performance ratio of 83.4%, which is lower than 85%, and is not included in the example of this embodiment. Moreover, since the lighting performance ratio is 83.0% and is less than 85%, the comparative example 3 is not included in the example of this embodiment.
 以上、本実施形態の採光シート1によれば、一方の面側に複数の溝が形成され、光を透過する光透過部11と、光透過部11の前記複数の溝の内部に形成され、光透過部11よりも屈折率が低い光偏向部12と、を有し、光偏向部12は、上部となる側に第1上辺12aと第2上辺12bを有し、下部となる側に下辺12dを有し、第1上辺12aと第2上辺12bは、下に凸となるように接続されているので、生産性と採光性能を両立させると共に、季節や時刻による太陽の高度差に対応し、室内全体を明るく、且つ、不自然に暗くなる時間帯を持たせないで、より高い快適性を在室者に与えることが可能となる。 As described above, according to the daylighting sheet 1 of the present embodiment, a plurality of grooves are formed on one surface side, the light transmitting portion 11 that transmits light, and the inside of the plurality of grooves of the light transmitting portion 11, A light deflector 12 having a refractive index lower than that of the light transmitting portion 11, and the light deflector 12 has a first upper side 12a and a second upper side 12b on the upper side, and a lower side on the lower side. 12d, and the first upper side 12a and the second upper side 12b are connected so as to protrude downward, so that both productivity and daylighting performance can be achieved and the difference in altitude of the sun depending on the season and time can be accommodated. It is possible to give the occupants higher comfort without having a time zone in which the entire room is bright and unnaturally darkened.
 本実施形態の採光積層体2によれば、下辺12dが光透過部11の前記一方の面の法線となす角度は、1°以上6°以下であり、光偏向部12のピッチPに対する光偏向部12の法線の方向の長さDの比率は、2.5以上3.5以下であるので、特に、生産性と採光性能を両立させることが可能となる。 According to the daylighting laminate 2 of the present embodiment, the angle formed by the lower side 12d and the normal of the one surface of the light transmission part 11 is 1 ° or more and 6 ° or less, and the light with respect to the pitch P of the light deflection unit 12 Since the ratio of the length D in the direction of the normal line of the deflecting unit 12 is 2.5 or more and 3.5 or less, it is particularly possible to achieve both productivity and daylighting performance.
 本実施形態の採光積層体2によれば、光透過部11の一方の面での法線となす入射角が10°以上60°以下の光に対して光偏向部12が反射する光のうち、最も強く跳ね上げる光の光透過部11の一方の面での法線となす角度は、1°以上35°以下であるので、特に、季節や時刻による太陽の高度差に対応し、室内全体を明るく、且つ、不自然に暗くなる時間帯を持たせないで、より高い快適性を在室者に与えることが可能となる。 According to the daylighting laminate 2 of the present embodiment, out of the light reflected by the light deflection unit 12 with respect to light having an incident angle of 10 ° or more and 60 ° or less, which is a normal line on one surface of the light transmission unit 11 The angle formed by the normal line on one surface of the light transmission part 11 of the light that is most strongly bounced is 1 ° or more and 35 ° or less. It is possible to give higher occupancy to a room occupant without having a time zone during which the room is bright and unnaturally darkened.
 本実施形態の採光シート1によれば、第1上辺12aの光透過部11の一方の面での法線となす角度は、10°以上12.5°以下であり、第2上辺12bの光透過部11の一方の面での法線となす角度は、-1.5°以上2.5°以下であるので、簡単な構造で、容易に作製することが可能となる。 According to the daylighting sheet 1 of the present embodiment, the angle between the first upper side 12a and the normal line on one surface of the light transmitting portion 11 is 10 ° or more and 12.5 ° or less, and the light of the second upper side 12b. Since the angle formed with the normal line on one surface of the transmission portion 11 is not less than −1.5 ° and not more than 2.5 °, it can be easily manufactured with a simple structure.
 本実施形態の採光積層体2によれば、光を透過するシート状の基材層22と、基材層22の一方の面側に形成される採光シート1と、を備えるので、高強度に作製することが可能となる。 According to the daylighting laminate 2 of the present embodiment, since the sheet-like base material layer 22 that transmits light and the daylighting sheet 1 formed on one surface side of the base material layer 22 are provided, the strength is high. It can be produced.
 本実施形態の採光積層体2によれば、基材層22の他方の面側に形成されたハードコート層21と、採光シート1の基材層22とは反対の面側に形成された接着層23と、を備えるので、ガラス等のパネルに簡単に接着することが可能となる。 According to the daylighting laminate 2 of the present embodiment, the hard coat layer 21 formed on the other surface side of the base material layer 22 and the adhesive formed on the surface side opposite to the base material layer 22 of the daylighting sheet 1. Therefore, it can be easily bonded to a panel such as glass.
 以上、採光シート1及び採光積層体2をいくつかの実施例に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の組み合わせ又は変形が可能である。 As mentioned above, although the lighting sheet 1 and the lighting laminated body 2 have been demonstrated based on some Examples, this invention is not limited to these Examples, Various combinations or deformation | transformation are possible.
1…採光シート
11…光透過部
12…光偏向部
12a…第1上辺(第1辺)
12b…第2上辺(第2辺)
12d…下辺(第3辺)
2…採光積層体
21…ハードコート層
22…基材層
23…接着層
DESCRIPTION OF SYMBOLS 1 ... Daylighting sheet 11 ... Light transmission part 12 ... Light deflection | deviation part 12a ... 1st upper side (1st side)
12b ... Second upper side (second side)
12d ... Lower side (third side)
2 ... Daylighting laminate 21 ... Hard coat layer 22 ... Base material layer 23 ... Adhesive layer

Claims (6)

  1.  一方の面から他方の面に光を透過する光透過部と、
     前記光透過部に形成された複数の溝の内部に前記光透過部よりも屈折率が低い光偏向部と、
    を有し、
     前記光偏向部は、前記光偏向部が並ぶ方向の一方側に第1辺と第2辺を有し、他方側に第3辺を有し、
     前記第1辺と前記第2辺は、前記光透過部側から前記光偏向部の内側に向かって凸となるように接続されている
    ことを特徴とする採光シート。
    A light transmitting portion that transmits light from one surface to the other surface;
    A light deflection unit having a lower refractive index than the light transmission unit inside the plurality of grooves formed in the light transmission unit;
    Have
    The light deflection unit has a first side and a second side on one side of the direction in which the light deflection units are arranged, and a third side on the other side,
    The said 1st edge | side and the said 2nd edge | side are connected so that it may become convex toward the inner side of the said light deflection | deviation part from the said light transmissive part side, The lighting sheet characterized by the above-mentioned.
  2.  前記第3辺が前記光透過部の前記一方の面での法線となす角度は、1°以上6°以下であり、
     前記光偏向部のピッチに対する前記光偏向部の前記法線の方向の長さの比率は、2.5以上3.5以下である
    ことを特徴とする請求項1に記載の採光シート。
    The angle formed by the third side and the normal line on the one surface of the light transmission part is 1 ° or more and 6 ° or less,
    2. The daylighting sheet according to claim 1, wherein a ratio of a length in a direction of the normal line of the light deflection unit to a pitch of the light deflection unit is 2.5 or more and 3.5 or less.
  3.  前記光透過部の前記一方の面での法線となす入射角が10°以上60°以下の光に対して前記光偏向部が反射する光のうち、最も強く反射する光の前記光透過部の前記一方の面での法線となす角度は、1°以上35°以下である
    ことを特徴とする請求項1又は2に記載の採光シート。
    The light transmitting portion of the light that is reflected most strongly among the light reflected by the light deflecting portion with respect to light having an incident angle of 10 ° or more and 60 ° or less that is a normal to the one surface of the light transmitting portion. The daylighting sheet according to claim 1, wherein an angle formed with a normal line on the one surface is 1 ° or more and 35 ° or less.
  4.  前記第1辺の前記光透過部の前記一方の面での法線となす角度は、10°以上12.5°以下であり、
     前記第2辺の前記光透過部の前記一方の面での法線となす角度は、-1.5°以上2.5°以下である
    ことを特徴とする請求項1乃至3のいずれか1項に記載の採光シート。
    An angle between the first side and the normal to the one surface of the light transmitting portion is 10 ° or more and 12.5 ° or less,
    4. The angle formed between the second side and the normal to the one surface of the light transmission portion is −1.5 ° or more and 2.5 ° or less. 5. The daylighting sheet according to item.
  5.  光を透過するシート状の基材層と、
     前記基材層の一方の面に形成される請求項1乃至4のいずれか1項に記載の採光シートと、
    を備える
    ことを特徴とする採光積層体。
    A sheet-like base material layer that transmits light;
    The daylighting sheet according to any one of claims 1 to 4, formed on one surface of the base material layer,
    A daylighting laminate comprising:
  6.  前記基材層の他方の面側に形成されたハードコート層と、
     前記採光シートの前記基材層とは反対の面側に形成された接着層と、
    を備える
    ことを特徴とする請求項5に記載の採光積層体。
    A hard coat layer formed on the other surface side of the base material layer;
    An adhesive layer formed on the opposite side of the daylighting sheet from the base material layer;
    The daylighting laminate according to claim 5, comprising:
PCT/JP2015/082770 2014-11-25 2015-11-20 Natural-light collecting sheet and natural-light collecting laminated body WO2016084752A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561565A JP6135889B2 (en) 2014-11-25 2015-11-20 Daylighting sheet and daylighting laminate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014238061 2014-11-25
JP2014-238062 2014-11-25
JP2014-238061 2014-11-25
JP2014238062 2014-11-25
JP2015025372 2015-02-12
JP2015-025372 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016084752A1 true WO2016084752A1 (en) 2016-06-02

Family

ID=56074313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082770 WO2016084752A1 (en) 2014-11-25 2015-11-20 Natural-light collecting sheet and natural-light collecting laminated body

Country Status (2)

Country Link
JP (1) JP6135889B2 (en)
WO (1) WO2016084752A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037632A1 (en) * 2016-08-22 2018-03-01 パナソニックIpマネジメント株式会社 Optical device and production method for optical device
US10012356B1 (en) 2017-11-22 2018-07-03 LightLouver LLC Light-redirecting optical daylighting system
JP2021033019A (en) * 2019-08-22 2021-03-01 大日本印刷株式会社 Optical member
JP7506066B2 (en) 2019-06-07 2024-06-25 株式会社ソニー・インタラクティブエンタテインメント Fresnel lens and image observation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123478A (en) * 2009-12-08 2011-06-23 Ind Technol Res Inst Light guide fine structure plate, method of guiding light, and application to window structure
JP2012038626A (en) * 2010-08-09 2012-02-23 Sony Corp Optical element, method for manufacturing the same, illumination device, window material, and fitting
JP2014119738A (en) * 2012-12-19 2014-06-30 Dainippon Printing Co Ltd Daylighting sheet, daylighting device and building
JP2014126713A (en) * 2012-12-26 2014-07-07 Dainippon Printing Co Ltd Lighting sheet, lighting device and building

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9603639D0 (en) * 1996-02-21 1996-04-17 Milner Peter J A light-diverting optical component
JP2009139710A (en) * 2007-12-07 2009-06-25 Dainippon Printing Co Ltd Optical sheet and surface light source device
JP5434245B2 (en) * 2009-05-11 2014-03-05 大日本印刷株式会社 Light control sheet and building
JP6346395B2 (en) * 2011-06-10 2018-06-20 大日本印刷株式会社 Daylighting sheet
WO2015098940A1 (en) * 2013-12-25 2015-07-02 シャープ株式会社 Daylight-admitting member, window glass, shade, and daylight-admitting louver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011123478A (en) * 2009-12-08 2011-06-23 Ind Technol Res Inst Light guide fine structure plate, method of guiding light, and application to window structure
JP2012038626A (en) * 2010-08-09 2012-02-23 Sony Corp Optical element, method for manufacturing the same, illumination device, window material, and fitting
JP2014119738A (en) * 2012-12-19 2014-06-30 Dainippon Printing Co Ltd Daylighting sheet, daylighting device and building
JP2014126713A (en) * 2012-12-26 2014-07-07 Dainippon Printing Co Ltd Lighting sheet, lighting device and building

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037632A1 (en) * 2016-08-22 2018-03-01 パナソニックIpマネジメント株式会社 Optical device and production method for optical device
US10012356B1 (en) 2017-11-22 2018-07-03 LightLouver LLC Light-redirecting optical daylighting system
US10119667B1 (en) 2017-11-22 2018-11-06 LightLouver LLC Light-redirecting optical daylighting system
JP7506066B2 (en) 2019-06-07 2024-06-25 株式会社ソニー・インタラクティブエンタテインメント Fresnel lens and image observation device
JP2021033019A (en) * 2019-08-22 2021-03-01 大日本印刷株式会社 Optical member
JP7358840B2 (en) 2019-08-22 2023-10-11 大日本印刷株式会社 optical components

Also Published As

Publication number Publication date
JP6135889B2 (en) 2017-05-31
JPWO2016084752A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5716733B2 (en) Daylighting sheet, daylighting device, and building
JP6135889B2 (en) Daylighting sheet and daylighting laminate
JP6111646B2 (en) Daylighting equipment, buildings
JP5888450B2 (en) Daylighting sheet, daylighting device, and building
JP2014126708A (en) Lighting sheet, lighting device and building
JP5796691B2 (en) Daylighting sheet, daylighting device, and building
JP6089680B2 (en) Daylighting sheet, daylighting device, and building
JP6215376B2 (en) Daylighting sheet, daylighting device, and building
JP6037068B2 (en) Daylighting sheet, daylighting device, and building
JP2014115581A (en) Screen structure
JP6037067B2 (en) Daylighting sheet, daylighting device, and building
JP5888449B2 (en) Daylighting sheet, daylighting device, and building
KR100633293B1 (en) Rear-projection screen
JP5920553B1 (en) Daylighting panel and manufacturing method thereof
JP6530580B2 (en) Daylighting sheet, daylighting device, and building
JP6264424B2 (en) Daylighting sheet, daylighting device, and building
JP6037069B2 (en) Daylighting sheet, daylighting device, and building
JP6215375B2 (en) Daylighting sheet, daylighting device, and building
JP6036872B2 (en) Daylighting sheet, daylighting device, and building
JP6186715B2 (en) Daylighting sheet, daylighting device, and building
JP6089691B2 (en) Daylighting sheet, daylighting device, and building
JP6010912B2 (en) Daylighting sheet, roll-up daylighting screen, and method for manufacturing daylighting sheet
JP2016014887A (en) Manufacturing method for daylighting sheet
JP2016136266A (en) Daylighting sheet, daylighting device and building
JP2016136265A (en) Daylighting sheet, daylighting device and building

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864097

Country of ref document: EP

Kind code of ref document: A1