JP2011122718A - Valve seat processing method, valve body, and fluid control valve - Google Patents

Valve seat processing method, valve body, and fluid control valve Download PDF

Info

Publication number
JP2011122718A
JP2011122718A JP2010168178A JP2010168178A JP2011122718A JP 2011122718 A JP2011122718 A JP 2011122718A JP 2010168178 A JP2010168178 A JP 2010168178A JP 2010168178 A JP2010168178 A JP 2010168178A JP 2011122718 A JP2011122718 A JP 2011122718A
Authority
JP
Japan
Prior art keywords
valve seat
valve
heating member
valve body
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010168178A
Other languages
Japanese (ja)
Other versions
JP5297420B2 (en
Inventor
Shigeru Osugi
滋 大杉
Yoshihiro Kunitachi
善弘 國立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2010168178A priority Critical patent/JP5297420B2/en
Publication of JP2011122718A publication Critical patent/JP2011122718A/en
Application granted granted Critical
Publication of JP5297420B2 publication Critical patent/JP5297420B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Valve Housings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve seat processing method which can secure the flatness of a valve seat so as not to produce particles. <P>SOLUTION: In the valve seat processing method for securing a flatness of a plastic valve seat of a valve body 1, a flat abutting surface 14b of a heated heating member 14 is pressed against a sealing surface of the valve seat. After melting the sealing surface, the flat abutting surface 14b of the heating member 14 is pulled away from the sealing surface of the valve seat. The desirable material of the heating member 14 is the same material as a die used when the valve body 1 is injection molded. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、樹脂製バルブボディに設けられた弁座の平面度を出す弁座加工方法と、その弁座加工方法により加工された弁座を有するバルブボディ及び流体制御弁に関する。   The present invention relates to a valve seat processing method for obtaining flatness of a valve seat provided in a resin valve body, a valve body having a valve seat processed by the valve seat processing method, and a fluid control valve.

例えば、半導体製造ラインに使用されるバルブは、駆動部の駆動力により弁体をバルブボディに設けられた弁座に当接又は離間させ、薬液の供給と遮断を制御する。薬液には塩酸等が含まれるものがあり、バルブボディは、耐腐食性を確保するために接液面が樹脂で設けられている。一般的に、バルブボディは、安価に量産するために、PFA(四フッ化エチレンパーフルオロアルキルビニルエーテル共重合体)やPVDF(ポリフッ化ビニリデン)やPP(ポリプロピレン)などのフッ素樹脂を、分割面を閉じた金型のゲートに射出してキャビティに充填し、金型を冷却した後、金型を分割面で分割して成形品を取り出すことにより、形作られている。   For example, in a valve used in a semiconductor manufacturing line, the valve body is brought into contact with or separated from a valve seat provided in the valve body by the driving force of the driving unit, and the supply and blocking of the chemical solution is controlled. Some chemical solutions contain hydrochloric acid or the like, and the valve body has a liquid contact surface made of resin in order to ensure corrosion resistance. In general, the valve body is divided into parts such as PFA (tetrafluoroethylene perfluoroalkyl vinyl ether copolymer), PVDF (polyvinylidene fluoride) and PP (polypropylene) for mass production at low cost. The mold is formed by injecting into a closed mold gate, filling the cavity, cooling the mold, and then dividing the mold at the dividing surface and taking out the molded product.

バルブボディを形成する金型は、構造を簡単にするために、弁座上に分割面が設けられ、金型から取り出されたバルブボディの弁座のシール面に成形欠陥が発生することがあった。例えば、成形欠陥として弁座のシール面にウエルドラインやバリが発生し、弁座のシール面の平面度が低いと、シール性能を低下させてしまう。そのため、従来より、射出成形されたバルブボディの弁座のシール面に機械加工(例えば、旋盤による切削や研磨等)を施し、ミクロンオーダーで弁座の平面度を向上させていた。   In order to simplify the structure of the mold forming the valve body, a split surface is provided on the valve seat, and a molding defect may occur on the seal surface of the valve seat of the valve body taken out from the mold. It was. For example, if a weld line or a burr occurs on the sealing surface of the valve seat as a molding defect and the flatness of the sealing surface of the valve seat is low, the sealing performance is deteriorated. For this reason, conventionally, the sealing surface of the valve seat of the injection molded valve body is machined (for example, cutting or polishing with a lathe) to improve the flatness of the valve seat on the micron order.

特開2009−002442号公報JP 2009-002442 A

しかしながら、上記のように機械加工により弁座の平面度を向上させると、機械加工面にムシレが発生していた。図16と図18に、機械加工を施した弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)を示し、その電子顕微鏡写真に相当する図を図17、図19に示す。例えば図17及び図19のP31に示すように、弁座のシール面が毛羽立つようにムシレが発生したり、図17及び図19のP32に示すように、弁座のエッジ部が機械加工で掻きむしられて、むしられた部分が弁座側方へ張り出したりする。これらのムシレは、弁閉時に流体漏れを発生させるような大きなものではないが、弁座を通過する流体の流れによって弁座から引き剥がされてパーティクルになる恐れがある。パーティクルは、反応室で膜形成するウエハの歩留まりを低下させる等の問題を引き起こすため、問題である。特に、近年、半導体製造工程では微細加工が進み、高い清浄性を求めており、その一環としてパーティクルを減らすことが強く求められている。   However, when the flatness of the valve seat is improved by machining as described above, mussels are generated on the machined surface. FIGS. 16 and 18 show electron micrographs (magnification: × 1000) obtained by partially photographing the outer edge portion of the machined valve seat, and FIGS. 17 and 19 are diagrams corresponding to the electron micrographs. . For example, as shown at P31 in FIG. 17 and FIG. 19, musiness is generated so that the sealing surface of the valve seat becomes fluffy, or as shown at P32 in FIG. 17 and FIG. 19, the edge portion of the valve seat is scratched by machining. The peeled part protrudes to the side of the valve seat. These mussels are not so large as to cause fluid leakage when the valve is closed, but they may be peeled off from the valve seat by the flow of fluid passing through the valve seat and become particles. Particles are a problem because they cause problems such as lowering the yield of wafers that form films in the reaction chamber. In particular, in recent years, microfabrication has progressed in the semiconductor manufacturing process, and high cleanliness has been demanded. As part of this, reduction of particles has been strongly demanded.

本発明は、上記問題点を解決するためになされたものであり、パーティクルが発生しないように弁座の平面度を出すことができる弁座加工方法、バルブボディ及び流体制御弁を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a valve seat processing method, a valve body, and a fluid control valve that can increase the flatness of a valve seat so that particles are not generated. Objective.

上記課題を解決するために、本発明の一態様に係る弁座加工方法は、バルブボディの樹脂製弁座の平面度を出すための弁座加工方法において、加熱した加熱部材の平坦な当接面を、前記弁座のシール面に押し当てた後、前記加熱部材を前記シール面から離す。
ここで、上記「弁座の平面度」は、ミクロンオーダーの平面度をいう。
In order to solve the above-described problem, a valve seat processing method according to one aspect of the present invention is a valve seat processing method for obtaining flatness of a resin valve seat of a valve body. After the surface is pressed against the sealing surface of the valve seat, the heating member is separated from the sealing surface.
Here, the “flatness of the valve seat” refers to a flatness on the order of microns.

上記構成では、前記当接面に、前記弁座にそった凹部形状の弁座形成凹部が形成されていることが望ましい。   In the above configuration, it is desirable that a recessed valve seat forming recess along the valve seat is formed on the contact surface.

上記構成では、前記加熱部材の材質が、前記バルブボディを射出成形する場合に用いる金型と同一の材質であることが望ましい。   In the above configuration, it is desirable that the material of the heating member is the same material as a mold used when the valve body is injection-molded.

上記構成では、前記加熱部材の加熱温度を、前記弁座を形成する材料が溶融する溶融温度範囲内で制御することが望ましい。   In the above configuration, it is desirable to control the heating temperature of the heating member within a melting temperature range in which the material forming the valve seat melts.

上記構成では、前記加熱部材の当接面に前記弁座を介して前記バルブボディを載置することが望ましい。   In the above configuration, it is desirable that the valve body is placed on the contact surface of the heating member via the valve seat.

また、本発明の一態様に係るバルブボディは、上記弁座加工方法により加工された弁座を有する。
また、本発明の一態様に係る流体制御弁は、上記弁座加工方法により加工された弁座を有するバルブボディと、前記バルブボディに連結され、前記弁座に弁体を当接又は離間させる駆動部とを有する。
Moreover, the valve body which concerns on 1 aspect of this invention has the valve seat processed by the said valve seat processing method.
A fluid control valve according to an aspect of the present invention includes a valve body having a valve seat processed by the valve seat processing method, and is connected to the valve body so that the valve body abuts or separates from the valve seat. And a drive unit.

上記態様の弁座加工方法では、加熱した加熱部材の平坦な当接面を弁座のシール面に押し当てると、シール面が溶融して加熱部材の当接面に倣って平坦になり、成形欠陥を解消する。加熱部材をシール面から離すと、シール面は固化して滑らかな平面になる。このような弁座加工方法では、シール面にムシレが発生しないので、当該弁座加工方法により加工された弁座を有するバルブボディを使った流体制御弁が流体制御を行う場合にシール面のムシレがシール面から引き剥がされてパーティクルになることがない。よって、上記態様の弁座加工方法、バルブボディ及び流体制御弁によれば、パーティクルが発生しないように弁座の平面度を出すことができる。   In the valve seat processing method of the above aspect, when the flat contact surface of the heated heating member is pressed against the seal surface of the valve seat, the seal surface melts and becomes flat following the contact surface of the heating member, and molding Eliminate the defects. When the heating member is separated from the sealing surface, the sealing surface is solidified and becomes a smooth flat surface. In such a valve seat machining method, no squeak is generated on the seal surface. Therefore, when the fluid control valve using the valve body having the valve seat machined by the valve seat machining method performs fluid control, the seal surface mus Is not peeled off from the sealing surface. Therefore, according to the valve seat processing method, the valve body, and the fluid control valve of the above aspect, the flatness of the valve seat can be obtained so that particles are not generated.

上記構成では、当接面に、弁座にそった凹部形状の弁座形成凹部が形成されていることにより、シール面が溶融して加熱部材の当接面に倣って平坦になり、成形欠陥を解消することができる。加熱部材をシール面から離すと、シール面は固化して滑らかな平面になる。そのため、シール面にムシレが発生しない。当該弁座加工方法により加工された弁座を有するバルブボディを使った流体制御弁が、流体制御を行う場合に、シール面のムシレがないため、ムシレがシール面から引き剥がされてパーティクルになることがない。よって、上記態様の弁座加工方法、バルブボディ及び流体制御弁によれば、パーティクルが発生しないように弁座の平面度を出すことができる。
さらに、加熱部材が平坦な場合に弁座の弁座端部に形成されていた微少のバリを無くすことができる。弁座端部の微少のバリを無くすことができることにより、パーティクルをさらに低減させることができる。
また、熱板側の弁座形成凹部の面粗が弁座面に転写される。そのため、弁座面の平滑度を大幅に向上させることができる。
また、弁座形成凹部の寸法によって、弁座部の出来栄えの寸法を管理することができるため、容易かつ安価に寸法精度のよい弁座を有する流体制御弁を提供することができる。
In the above configuration, since the recessed portion of the valve seat forming recess along the valve seat is formed on the contact surface, the sealing surface melts and becomes flat following the contact surface of the heating member, resulting in a molding defect. Can be eliminated. When the heating member is separated from the sealing surface, the sealing surface is solidified and becomes a smooth flat surface. For this reason, no mess is generated on the sealing surface. When a fluid control valve using a valve body having a valve seat machined by the valve seat machining method performs fluid control, there is no mess on the seal surface, so the mess are peeled off from the seal surface and become particles. There is nothing. Therefore, according to the valve seat processing method, the valve body, and the fluid control valve of the above aspect, the flatness of the valve seat can be obtained so that particles are not generated.
Further, when the heating member is flat, it is possible to eliminate a minute burr formed at the valve seat end portion of the valve seat. Particles can be further reduced by eliminating minute burrs at the valve seat end.
Further, the surface roughness of the valve seat forming recess on the hot plate side is transferred to the valve seat surface. Therefore, the smoothness of the valve seat surface can be greatly improved.
In addition, since the size of the valve seat portion can be managed by the size of the valve seat forming recess, a fluid control valve having a valve seat with good dimensional accuracy can be provided easily and inexpensively.

上記構成では、加熱部材の材質が、バルブボディを射出成形する場合に用いる金型と同一の材質であるので、加熱部材で弁座のシール面を加熱する場合に、金型と異なる金属イオンが弁座に注入されない。よって、上記構成によれば、バルブボディを流体制御に使用したときに、金型と異なるイオンが弁座から溶出し、例えば半導体製造プロセスに悪影響を及ぼすことを防止できる。   In the above configuration, since the material of the heating member is the same as the mold used when the valve body is injection-molded, when the sealing surface of the valve seat is heated by the heating member, metal ions different from the mold are generated. Not injected into the valve seat. Therefore, according to the above configuration, when the valve body is used for fluid control, ions different from the mold are eluted from the valve seat and can be prevented from adversely affecting the semiconductor manufacturing process, for example.

上記構成では、加熱部材の加工温度を、弁座を形成する材料の溶融温度範囲内で制御するので、弁座のシール面が加熱部材の当接面から熱を伝達されて流動性を有するように溶融し、成形欠陥を解消して平坦になりやすい。   In the above configuration, the processing temperature of the heating member is controlled within the melting temperature range of the material forming the valve seat, so that the seal surface of the valve seat is fluidized by transferring heat from the contact surface of the heating member. It melts easily and eliminates molding defects and tends to become flat.

上記構成では、加熱部材の当接面に弁座を介してバルブボディを載置し、バルブボディの自重により弁座のシール面を加熱部材の当接面に押し付けるので、弁座のシール面を加熱部材の当接面に押し付ける荷重を安定させ、弁座の平面度を安定して出すことができる。   In the above configuration, the valve body is placed on the contact surface of the heating member via the valve seat, and the seal surface of the valve seat is pressed against the contact surface of the heating member by the weight of the valve body. The load pressed against the contact surface of the heating member can be stabilized, and the flatness of the valve seat can be stably obtained.

本発明の実施形態に係る弁座加工方法を適用されるバルブボディの断面図である。It is sectional drawing of the valve body to which the valve seat processing method which concerns on embodiment of this invention is applied. 流体制御弁の外観図である。It is an external view of a fluid control valve. 弁座加工装置の概略構成図である。It is a schematic block diagram of a valve seat processing apparatus. 加熱部材の概略構成図である。It is a schematic block diagram of a heating member. 弁座加工を施す前の弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)である。この電子顕微鏡写真は、弁座をシール面側から撮影している。It is the electron micrograph (magnification: * 1000) which image | photographed the outer edge part of the valve seat before performing valve seat processing partially. In this electron micrograph, the valve seat is taken from the seal surface side. 図5に示す電子顕微鏡写真に相当する図である。It is a figure equivalent to the electron micrograph shown in FIG. 弁座加工を施した後の弁座外の側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)である。この電子顕微鏡写真は、弁座をシール面側から撮影している。It is the electron micrograph (magnification: x1000) which carried out partial photography of the side edge part outside a valve seat after giving valve seat processing. In this electron micrograph, the valve seat is taken from the seal surface side. 図7に示す電子顕微鏡写真に相当する図である。It is a figure equivalent to the electron micrograph shown in FIG. 耐久試験装置の概略構成図である。It is a schematic block diagram of an durability test apparatus. 金属イオン溶出試験の試験結果を指数表示した図である。It is the figure which displayed the test result of the metal ion elution test as an index. 弁座加工条件を示す図であって、縦軸に時間(sec)を示し、横軸に温度(℃)を示す。It is a figure which shows valve seat processing conditions, Comprising: Time (sec) is shown on a vertical axis | shaft and temperature (degreeC) is shown on a horizontal axis | shaft. 未処置品の弁座状態の部分断面を示すイメージ図である。It is an image figure which shows the partial cross section of the valve seat state of an untreated goods. 弁座加工後に成形欠陥が残っている弁座状態の部分断面を示すイメージ図である。It is an image figure which shows the partial cross section of the valve seat state in which the molding defect remains after valve seat processing. 弁座加工後にエッジ部が溶け出した弁座状態の部分断面を示すイメージ図である。It is an image figure which shows the partial cross section of the valve seat state which the edge part melt | dissolved after valve seat processing. 弁座加工に成功した弁座状態の部分断面を示すイメージ図である。It is an image figure which shows the partial cross section of the valve seat state which succeeded in valve seat processing. 機械加工を施した弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)である。この電子顕微鏡写真は、弁座をシール面側から撮影したものである。It is the electron micrograph (magnification: * 1000) which image | photographed the outer edge part of the valve seat which performed the machining partially. This electron micrograph is a photograph of the valve seat taken from the sealing surface side. 図16に示す電子顕微鏡写真に相当する図である。It is a figure corresponded to the electron micrograph shown in FIG. 機械加工を施した弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)である。この電子顕微鏡写真は、弁座をシール面側から撮影したものである。It is the electron micrograph (magnification: * 1000) which image | photographed the outer edge part of the valve seat which performed the machining partially. This electron micrograph is a photograph of the valve seat taken from the sealing surface side. 図18に示す電子顕微鏡写真に相当する図である。It is a figure equivalent to the electron micrograph shown in FIG. 第2実施形態における加熱部材の当接面の概略構成図である。It is a schematic block diagram of the contact surface of the heating member in 2nd Embodiment. 第2実施形態における弁座加工を施した後の弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)(1)である。この電子顕微鏡写真は、弁座をシール面側から撮影している。It is the electron micrograph (magnification: x1000) (1) which carried out partial photography of the outside edge part of the valve seat after performing valve seat processing in a 2nd embodiment. In this electron micrograph, the valve seat is taken from the seal surface side. 図21に示す電子顕微鏡写真に相当する図である。It is a figure corresponded to the electron micrograph shown in FIG. 第2実施形態における弁座加工を施した後の弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)(2)である。この電子顕微鏡写真は、弁座をシール面側から撮影している。It is the electron micrograph (magnification: x1000) (2) which carried out partial photography of the outside edge part of the valve seat after performing valve seat processing in a 2nd embodiment. In this electron micrograph, the valve seat is taken from the seal surface side. 図23に示す電子顕微鏡写真に相当する図である。It is a figure corresponded to the electron micrograph shown in FIG. 加熱部材の当接面に弁座形成凹部がない状態の概略構成図である。It is a schematic block diagram of the state which does not have a valve seat formation recessed part in the contact surface of a heating member. 図25のうち加熱部材により弁座加工を施した後の弁座の部分拡大図である。It is the elements on larger scale of the valve seat after giving a valve seat process with a heating member among FIG. 第2実施形態における弁座加工を施さない場合の弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)である。この電子顕微鏡写真は、弁座をシール面側から撮影している。It is the electron micrograph (magnification: x1000) which carried out partial photography of the outside edge part of a valve seat when not performing valve seat processing in a 2nd embodiment. In this electron micrograph, the valve seat is taken from the seal surface side. 図27に示す電子顕微鏡写真に相当する図である。It is a figure equivalent to the electron micrograph shown in FIG.

(第1実施形態)
以下に、本発明に係る弁座加工方法、バルブボディ及び流体制御弁の一実施形態について、図面を参照しながら説明する。図1に、本発明の実施形態に係る弁座加工方法を適用されるバルブボディ1の断面図を示す。図2は、流体制御弁8の外観図である。
<バルブボディの構成>
図1に示すバルブボディ1は、例えば図2に示すように、駆動部10が上面に連結されて流体制御弁8を構成し、取付板9を介して半導体製造ラインに組み付けられる。図1に示すバルブボディ1は、接液部がフッ素樹脂で設けられて耐腐食性を有し、駆動部10の駆動力によって図示しない樹脂製ダイアフラム弁体を弁座6に当接又は離間されて、第1及び第2ポート4,5の連通状態が制御される。
(First embodiment)
Hereinafter, an embodiment of a valve seat processing method, a valve body, and a fluid control valve according to the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of a valve body 1 to which a valve seat machining method according to an embodiment of the present invention is applied. FIG. 2 is an external view of the fluid control valve 8.
<Valve body configuration>
As shown in FIG. 2, for example, the valve body 1 shown in FIG. 1 includes a drive unit 10 connected to the upper surface to form a fluid control valve 8, and is assembled to a semiconductor manufacturing line via a mounting plate 9. The valve body 1 shown in FIG. 1 has a wetted part made of fluororesin and has corrosion resistance, and a resin diaphragm valve element (not shown) is brought into contact with or separated from the valve seat 6 by the driving force of the driving part 10. Thus, the communication state of the first and second ports 4 and 5 is controlled.

図1に示すバルブボディ1は、PFA、PVDF、PPなどのフッ素樹脂を金型のゲートに射出してキャビティに充填し、金型を冷却した後、金型を開いてキャビティから取り出すことにより、形作られている。バルブボディ1の上面には、図示しないダイアフラム弁体との間で弁室を形成するための弁室形成孔2が円柱状に開設されている。バルブボディ1は、弁室形成孔2の開口部外周に沿って図示しないダイアフラム弁体の外縁部が装着される装着溝3が形成され、駆動部10との間で図示しないダイアフラム弁体の外縁部を挟持するようになっている。バルブボディ1は、弁孔7が弁室形成孔2と同軸上に設けられ、第1ポート4と第2ポート5が弁孔7と弁室形成孔2を介して連通している。弁室形成孔2の内壁には、弁孔7が開口する開口部の外周に沿って弁座6が突設されている。弁座6は、先端部が平坦に設けられ、図示しないダイアフラム弁体に面接触してシールを行うシール面6aが構成されている。シール面6aは、後述する弁座加工方法により、ミクロンオーダーの平面度が出されている。本実施形態では、シール面6aの平面度は、5μm以上1mm未満の範囲で出されている。   The valve body 1 shown in FIG. 1 is made by injecting fluororesin such as PFA, PVDF, PP, etc. into a mold gate, filling the cavity, cooling the mold, then opening the mold and taking it out of the cavity. It is formed. A valve chamber forming hole 2 for forming a valve chamber with a diaphragm valve body (not shown) is formed in a cylindrical shape on the upper surface of the valve body 1. The valve body 1 has a mounting groove 3 in which an outer edge portion of a diaphragm valve body (not shown) is attached along the outer periphery of the opening portion of the valve chamber forming hole 2, and an outer edge of the diaphragm valve body (not shown) between the valve body 1 and the drive unit 10. The part is sandwiched. In the valve body 1, the valve hole 7 is provided coaxially with the valve chamber forming hole 2, and the first port 4 and the second port 5 communicate with each other via the valve hole 7 and the valve chamber forming hole 2. A valve seat 6 projects from the inner wall of the valve chamber forming hole 2 along the outer periphery of the opening where the valve hole 7 opens. The valve seat 6 is provided with a flat tip, and a sealing surface 6a is provided that seals by contacting a diaphragm valve body (not shown). The sealing surface 6a has a micron order flatness by a valve seat processing method to be described later. In the present embodiment, the flatness of the seal surface 6a is in the range of 5 μm or more and less than 1 mm.

<弁座加工装置の構成>
図3に、弁座加工装置11の概略構成図を示す。
弁座加工装置11は、バルブボディ1の弁座6のシール面6aを加工するものである。弁座加工装置11のガイド12には、ステージ13が図中上下方向へ往復直線運動するように保持されている。ステージ13は、図示しないシリンダにより図中上下方向への駆動力が付与される。加熱部材14は、ステージ13の中央部に形成された貫通孔上に配置され、ステージ13は加熱部材14に対して相対的に上下動する。
<Configuration of valve seat processing device>
In FIG. 3, the schematic block diagram of the valve seat processing apparatus 11 is shown.
The valve seat processing device 11 processes the seal surface 6 a of the valve seat 6 of the valve body 1. A stage 13 is held by a guide 12 of the valve seat processing apparatus 11 so as to reciprocate linearly in the vertical direction in the figure. The stage 13 is given a driving force in the vertical direction in the figure by a cylinder (not shown). The heating member 14 is disposed on a through hole formed in the central portion of the stage 13, and the stage 13 moves up and down relatively with respect to the heating member 14.

図4に、加熱部材14の概略構成図を示す。
加熱部材14は、バルブボディ1を射出成形するときに用いられる金型と同じ材質で設けられている。本実施形態では、加熱部材14及び金型の材質をクロムニッケル合金とする。加熱部材14は、バルブボディ1の弁室形成孔2に挿入でき、且つ、弁座6に当接する当接面14bが弁座6の外形より大きく設けられたブロック形状をなす。棒状のヒータ15は、加熱部材14の中心部に形成されたヒータ挿入孔14aに挿入されて止めネジ16により加熱部材14に固定され、加熱部材14全体を加熱するようになっている。加熱部材14は、当接面14bの近くに熱電対17が取り付けられ、当接面14bの温度を計測している。
In FIG. 4, the schematic block diagram of the heating member 14 is shown.
The heating member 14 is provided with the same material as the mold used when the valve body 1 is injection molded. In the present embodiment, the heating member 14 and the mold are made of a chromium nickel alloy. The heating member 14 can be inserted into the valve chamber forming hole 2 of the valve body 1 and has a block shape in which a contact surface 14 b that contacts the valve seat 6 is provided larger than the outer shape of the valve seat 6. The rod-shaped heater 15 is inserted into a heater insertion hole 14 a formed at the center of the heating member 14 and is fixed to the heating member 14 by a set screw 16 so as to heat the entire heating member 14. The heating member 14 has a thermocouple 17 attached near the contact surface 14b, and measures the temperature of the contact surface 14b.

制御装置18は、周知のマイクロコンピュータである。制御装置18は、ヒータ15と熱電対17に接続され、熱電対17が計測する温度に基づいて加熱部材14をヒータ15で加熱し、加熱部材14の温度を設定温度に制御している。ここで、加熱部材14の設定温度は、バルブボディ1の材質となるフッ素樹脂の溶融温度範囲内で設定することが望ましい。加熱部材14の温度が溶融温度範囲を超える場合には、溶融した樹脂が混ざり合って変質し、加熱部材14の温度が溶融温度範囲未満である場合には、弁座6が硬くて変形させることができないからである。さらには、加熱部材14の設定温度は、「バルブボディ1の材質となるフッ素樹脂の溶融温度範囲の中間値±溶融温度範囲の上限値と下限値の温度差の30%の値」に設定することが望ましい。例えば、バルブボディ1の材質がPFAである場合には、PFAの溶融温度範囲が305〜315℃であるため、加熱部材14の設定温度を溶融温度範囲の中間値である310℃±3℃とすると良い。本実施形態では、PFA製バルブボディ1に対し、加熱部材14の設定温度を310℃とする。尚、制御装置18には、フッ素樹脂の種類別に加熱部材14の設定温度を記憶し、作業者がバルブボディ1の材質に応じて加熱部材14の設定温度を選択できるようにすることが望ましい。作業者がフッ素樹脂の溶融温度範囲を知らない場合でも、加熱部材14の設定温度を設定して弁座加工作業を行えるようにするためである。   The control device 18 is a known microcomputer. The control device 18 is connected to the heater 15 and the thermocouple 17 and heats the heating member 14 with the heater 15 based on the temperature measured by the thermocouple 17 and controls the temperature of the heating member 14 to a set temperature. Here, it is desirable to set the set temperature of the heating member 14 within the melting temperature range of the fluororesin that is the material of the valve body 1. When the temperature of the heating member 14 exceeds the melting temperature range, the melted resin is mixed and deteriorated, and when the temperature of the heating member 14 is less than the melting temperature range, the valve seat 6 is hard and deformed. It is because it is not possible. Furthermore, the set temperature of the heating member 14 is set to “an intermediate value of the melting temperature range of the fluororesin that is the material of the valve body 1 ± 30% of the temperature difference between the upper limit value and the lower limit value of the melting temperature range”. It is desirable. For example, when the material of the valve body 1 is PFA, since the melting temperature range of PFA is 305 to 315 ° C., the set temperature of the heating member 14 is 310 ° C. ± 3 ° C. which is an intermediate value of the melting temperature range. Good. In the present embodiment, the set temperature of the heating member 14 is 310 ° C. with respect to the PFA valve body 1. The controller 18 preferably stores the set temperature of the heating member 14 for each type of fluororesin so that the operator can select the set temperature of the heating member 14 according to the material of the valve body 1. This is because even if the operator does not know the melting temperature range of the fluororesin, the set temperature of the heating member 14 is set so that the valve seat processing operation can be performed.

<弁座加工方法>
射出成形後のバルブボディ1(未処置品)の弁座6は、例えば図6のP11,P12に相当する部分の図5の電子顕微鏡写真に示すような成形欠陥が、シール面6aに発生している。例えば、バルブボディ1を成形するための金型の分割面が弁座6のシール面6a上にある場合には、シール面6aにウエルドラインP11が形成されたり、フッ素樹脂を金型に充填した後に金型を分割して成形品を取り出す場合に、シール面6aのエッジ部に成形バリP12が発生する。成形欠陥P11,P12はシール性能の低下等を引き起こす恐れがあるので、バルブボディ1は、弁座加工装置11を用いて、弁座6のシール面6aが平坦に加工される。
<Valve seat processing method>
In the valve seat 6 of the valve body 1 (untreated product) after injection molding, for example, a molding defect as shown in the electron micrograph of FIG. 5 corresponding to P11 and P12 of FIG. 6 occurs on the seal surface 6a. ing. For example, when the mold dividing surface for molding the valve body 1 is on the seal surface 6a of the valve seat 6, a weld line P11 is formed on the seal surface 6a or the mold is filled with fluororesin. When the mold is later divided and the molded product is taken out, a molding burr P12 is generated at the edge portion of the seal surface 6a. Since the molding defects P11 and P12 may cause a decrease in sealing performance and the like, the valve body 1 is processed so that the seal surface 6a of the valve seat 6 is flat using the valve seat processing apparatus 11.

弁座加工装置11は、通常、ステージ13を上昇させ、ステージ13のバルブボディ1が載置される面を、加熱部材14の当接面14bより高い位置に配置している(このステージ13の位置を、以下「初期位置」という。)。バルブボディ1は、弁座6を下向きにして、初期位置にあるステージ13にセットされる。このとき、弁座6は、加熱部材14の上方に配置されている。弁座加工装置11の図示しない弁座加工開始ボタンを押下すると、図示しないシリンダが駆動して、ステージ13をガイド12に沿って下降させる。ステージ13は、弁座6を加熱部材14に当接させた後、更に下降し続け、弁座6を介してバルブボディ1を加熱部材14に載せてバルブボディ1から離れる弁座加工位置まで移動する。この結果、弁座6は、バルブボディ1の自重によりシール面6aが加熱部材14の当接面14bに押し付けられる。   The valve seat processing apparatus 11 normally raises the stage 13 and arranges the surface of the stage 13 on which the valve body 1 is placed at a position higher than the contact surface 14b of the heating member 14 (of the stage 13). The position is hereinafter referred to as “initial position”). The valve body 1 is set on the stage 13 in the initial position with the valve seat 6 facing downward. At this time, the valve seat 6 is disposed above the heating member 14. When a valve seat processing start button (not shown) of the valve seat processing apparatus 11 is pressed, a cylinder (not shown) is driven to lower the stage 13 along the guide 12. After the valve seat 6 is brought into contact with the heating member 14, the stage 13 continues to descend further, and the valve body 1 is placed on the heating member 14 via the valve seat 6 and moved to the valve seat machining position where the valve body 1 is separated from the valve body 1. To do. As a result, the seal surface 6 a of the valve seat 6 is pressed against the contact surface 14 b of the heating member 14 by the weight of the valve body 1.

加熱部材14は、ヒータ15により設定温度(ここでは310℃)に加熱されている。そのため、当接面14bに押し付けられたシール面6aは、当接面14bから熱伝達されて、表面が溶融する。溶融した樹脂は、流動性を持ち、ウエルドラインP11の窪みに流れ込んでウエルドラインP11を埋め、ウエルドラインP11の発生部分をシール面6aの表面と面一にする。また、シール面6aに発生した成形バリP12は、加熱部材14の熱で軟化し、シール面6aの表面と面一になるように押し潰される。シール面6aの表面も加熱部材14の熱で軟化しているため、成形バリP12の溶融した樹脂やウエルドラインP11に流れ込んだ樹脂は、シール面6aの表面の溶融した樹脂と融合し、他の部分の樹脂との間に境界面を作りにくい。   The heating member 14 is heated to a set temperature (here, 310 ° C.) by the heater 15. Therefore, the seal surface 6a pressed against the contact surface 14b is heat-transferred from the contact surface 14b and the surface is melted. The molten resin has fluidity, flows into the depression of the weld line P11, fills the weld line P11, and makes the generated portion of the weld line P11 flush with the surface of the seal surface 6a. Further, the molding burr P12 generated on the seal surface 6a is softened by the heat of the heating member 14, and is crushed so as to be flush with the surface of the seal surface 6a. Since the surface of the sealing surface 6a is also softened by the heat of the heating member 14, the molten resin of the molding burr P12 and the resin that has flowed into the weld line P11 are fused with the molten resin of the surface of the sealing surface 6a. It is difficult to create a boundary surface between the resin part.

弁座6を加熱部材14に押し付けてから所定時間(ここでは10秒)が経過すると、ステージ13が弁座加工位置から上昇してバルブボディ1に当接し、その後更に上昇して、弁座6を加熱部材14から引き離すようにバルブボディ1を持ち上げる。ステージ13が初期位置に戻ると、バルブボディ1がステージ13から取り除かれる。尚、バルブボディ1をステージ13に載せたり、取り除く作業は、ロボットにより行ってもよいし、作業者の手作業で行っても良い。   When a predetermined time (in this case, 10 seconds) elapses after the valve seat 6 is pressed against the heating member 14, the stage 13 rises from the valve seat processing position and comes into contact with the valve body 1, and then further rises to reach the valve seat 6 The valve body 1 is lifted so as to separate it from the heating member 14. When the stage 13 returns to the initial position, the valve body 1 is removed from the stage 13. The operation of placing or removing the valve body 1 on the stage 13 may be performed by a robot or may be performed manually by an operator.

弁座加工装置11から取り除かれたバルブボディ1は、シール面6aが平らにされた状態で自然冷却されて固化する。弁座6は、例えば図8のP21に相当する部分の図7の電子顕微鏡写真に示すように、図6のP11に相当する部分の図5の電子顕微鏡写真に示されるウエルドラインが樹脂を充填されてシール面6aと面一にされ、また、図8のP22に相当する部分の図7の電子顕微鏡写真に示すように、図6のP12に相当する部分の図5の電子顕微鏡写真に示される成形バリP12が押し潰されてシール面6aと面一にされた状態で、固化している。よって、加熱部材14により弁座加工された弁座6は、図7の電子顕微鏡写真に示すように、シール面6aが成形欠陥P11,P12(図5、図6参照)を解消され、弁座加工前より平面度が向上しており、加工されたシール面6aも樹脂を溶融して固化させたものであるため滑らかで、ムシレが発生していない。   The valve body 1 removed from the valve seat processing apparatus 11 is naturally cooled and solidified in a state where the seal surface 6a is flattened. For example, as shown in the electron micrograph of FIG. 7 corresponding to P21 in FIG. 8, the valve seat 6 is filled with resin in the weld line shown in the electron micrograph of FIG. 5 corresponding to P11 in FIG. As shown in the electron micrograph of FIG. 7 in the portion corresponding to P22 in FIG. 8, the portion corresponding to P12 in FIG. 6 is shown in the electron micrograph in FIG. The molded burr P12 is solidified in a state where it is crushed and flush with the seal surface 6a. Therefore, as shown in the electron micrograph of FIG. 7, the valve seat 6 processed by the heating member 14 has the sealing surface 6a that eliminates the molding defects P11 and P12 (see FIGS. 5 and 6), and the valve seat. The flatness is improved from before the processing, and the processed seal surface 6a is also made by melting and solidifying the resin, so that it is smooth and does not cause stuffiness.

このように弁座加工されたバルブボディ1は、図示しないダイアフラム弁体を駆動部10との間で挟持して流体制御弁8を構成し、流体制御に用いられる。バルブボディ1は、図7及び図8に示すように、弁座6のシール面6aが滑らかな平面で、図16〜図19に示すようなムシレをシール面6aに発生させていないため、シール面6aに図示しないダイアフラム弁体を当接又は離間させて弁開閉動作が繰り返されても、弁座6からパーティクルが発生しない。   The valve body 1 processed in this way forms a fluid control valve 8 by sandwiching a diaphragm valve body (not shown) between the drive unit 10 and is used for fluid control. As shown in FIGS. 7 and 8, the valve body 1 has a smooth flat sealing surface 6a of the valve seat 6 and does not generate burrs on the sealing surface 6a as shown in FIGS. No particles are generated from the valve seat 6 even when the valve opening / closing operation is repeated by bringing a diaphragm valve body (not shown) into contact with or separating from the surface 6a.

<耐久試験>
次に、本実施形態の弁座加工処理がバルブボディの耐久性に与える影響を調べる耐久試験について説明する。図9は、耐久試験装置21の概略構成図である。
耐久試験装置21は、本実施形態の弁座加工を施したバルブボディ1にエアオペレイト式の駆動部10を取り付けた流体制御弁8を、バルブボディ1の第1及び第2ポート4,5を上下に配置するように、アングル22に横向きに固定し、試験液が零れないようにするための配管23を第1ポート4に取り付けて第1ポート4を配管23を介して大気開放する一方、第2ポート5を止め栓24で塞ぐことにより、構成されている。耐久試験は、配管23からバルブボディ1に常温の試験液を大気圧で供給した後、流体制御弁8の駆動部10に操作圧0.5MPaの操作流体を供給・排出し、開弁時間1秒・閉弁時間2秒の動作間隔で流体制御弁8に弁開閉動作を所定回数を行わせ、その後、バルブボディ1を流体制御弁8から取り外して弁座6の表面状態と弁座6への試験液の漏れ状態を調べることにより行った。尚、同様の手順で、本実施形態の弁座加工を施していないバルブボディ(未処置品)20についても、耐久試験を行った。
<Durability test>
Next, an endurance test for examining the influence of the valve seat processing according to the present embodiment on the durability of the valve body will be described. FIG. 9 is a schematic configuration diagram of the durability test apparatus 21.
The endurance test apparatus 21 moves the fluid control valve 8 in which the air-operated driving unit 10 is attached to the valve body 1 subjected to the valve seat processing of the present embodiment, and moves the first and second ports 4 and 5 of the valve body 1 up and down. As shown in FIG. 2, the pipe 23 is fixed to the angle 22 so as to prevent the test liquid from spilling, and the first port 4 is opened to the atmosphere via the pipe 23 while the first port 4 is opened to the atmosphere. It is configured by closing the 2 port 5 with a stopper plug 24. In the durability test, a normal temperature test solution is supplied from the pipe 23 to the valve body 1 at atmospheric pressure, and then an operating fluid having an operating pressure of 0.5 MPa is supplied to and discharged from the drive unit 10 of the fluid control valve 8. The fluid control valve 8 is caused to perform a predetermined number of valve opening / closing operations at an operation interval of 2 seconds / valve closing time, and then the valve body 1 is detached from the fluid control valve 8 to the surface state of the valve seat 6 and the valve seat 6. This was done by examining the leakage state of the test solution. In addition, the durability test was done also about the valve body (untreated goods) 20 which has not performed the valve seat processing of this embodiment in the same procedure.

この耐久試験により、バルブボディ1と未処置品20は、何れも、300万回弁開閉動作が行われても、弁座6の表面状態に変化がなく、弁座6に試験液が浸透しないことを確認できた。このことより、本実施形態の弁座加工処理が施された弁座6は、弁開閉動作を300万回行っても、加熱部材14に加熱されて溶融した部分が、溶融しなかった部分との境界面で剥離せず、耐久性が維持されることが判明した。また、本実施形態の弁座加工処理によって、弁座6の耐久性が未処置品20より低下するものでないことが判明した。よって、上記耐久試験により、加熱部材14を用いた加熱処理による弁座加工がシール性能や耐久性を低下させるものでないことが、裏付けられた。   As a result of this endurance test, the valve body 1 and the untreated product 20 do not change in the surface state of the valve seat 6 and the test liquid does not penetrate into the valve seat 6 even if the valve opening / closing operation is performed 3 million times. I was able to confirm that. From this, the valve seat 6 subjected to the valve seat processing of the present embodiment has a portion that is heated and melted by the heating member 14 even when the valve opening / closing operation is performed 3 million times, It was found that the durability was maintained without peeling at the boundary surface. Further, it has been found that the durability of the valve seat 6 is not lower than that of the untreated product 20 by the valve seat processing of the present embodiment. Therefore, the durability test proved that the valve seat processing by the heat treatment using the heating member 14 does not lower the sealing performance and durability.

<金属イオン溶出試験>
次に、本実施形態の弁座加工処理が流体制御時の金属イオン溶出に与える影響を調べる金属イオン溶出試験について説明する。
金属印溶出試験では、本実施形態の弁座加工処理を施したバルブボディ(処置品)1と、本実施形態の弁座加工処理を施していないバルブボディ(未処置品)20について、弁座6から金属イオンが溶出するか否かを調べた。
<Metal ion dissolution test>
Next, a metal ion elution test for examining the effect of the valve seat processing of this embodiment on metal ion elution during fluid control will be described.
In the metal seal elution test, the valve seat (treated product) 1 subjected to the valve seat processing of the present embodiment and the valve body (untreated product) 20 not subjected to the valve seat processing of the present embodiment are analyzed. Whether or not metal ions eluted from 6 was examined.

金属イオン溶出試験では、処置品(バルブボディ)1と未処置品(バルブボディ)20に超純水を封入して30分間放置し、弁座6から金属イオンを溶出させる。このとき、周囲温度は常温に設定されている。また、試験はクリーンルーム内で行い、バルブボディ外部から超純水に金属イオンが混入しないようにしている。そして、超純水を封入してから所定時間が経過したら、バルブボディ内の超純水が含有する金属イオンを分析する。本試験では、Li(リチウム)、B(ホウ素)、Na(ナトリウム)、Mg(マグネシウム)、Al(アルミニウム)、K(カリウム)、Ca(カルシウム)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Sr(ストロンチウム)、Ba(バリウム)、Pb(鉛)の金属イオンがどのように溶出しているか調べた。図10に、金属イオン溶出試験の結果を指数表示した図を示す。図10には、未処置品のバルブボディ20から溶出する金属イオンの指数合計が100となるように表示している。   In the metal ion elution test, ultrapure water is sealed in the treated product (valve body) 1 and the untreated product (valve body) 20 and left for 30 minutes to elute the metal ions from the valve seat 6. At this time, the ambient temperature is set to room temperature. The test is performed in a clean room so that metal ions are not mixed into the ultrapure water from the outside of the valve body. When a predetermined time elapses after the ultrapure water is sealed, the metal ions contained in the ultrapure water in the valve body are analyzed. In this test, Li (lithium), B (boron), Na (sodium), Mg (magnesium), Al (aluminum), K (potassium), Ca (calcium), Cr (chromium), Mn (manganese), Fe It was examined how metal ions of (iron), Ni (nickel), Cu (copper), Zn (zinc), Sr (strontium), Ba (barium), and Pb (lead) were eluted. FIG. 10 shows an index of the results of the metal ion elution test. In FIG. 10, the index sum of the metal ions eluted from the untreated product valve body 20 is displayed to be 100.

図10に示すように、未処置品(バルブボディ20)の金属イオン溶出指数は、Naの金属イオンが22.0、Mgの金属イオンが5.1、Kの金属イオンが14.5、Caの金属イオンが7.2、Niの金属イオンが1.0、Znの金属イオンが50.2、その他の金属イオンが0であり、指数合計が100であった。
一方、処置品(バルブボディ1)の金属イオン溶出指数は、Naの金属イオンが27.9、Kの金属イオンが24.7、Caの金属イオンが約10.6、Niの金属イオンが1.2、Znの金属イオンが33.1、その他の金属イオンが0であり、指数合計が97.5であった。
As shown in FIG. 10, the metal ion elution index of the untreated product (valve body 20) is 22.0 for Na metal ion, 5.1 for Mg metal ion, 14.5 for K metal ion, and Ca. The metal ion was 7.2, the Ni metal ion was 1.0, the Zn metal ion was 50.2, the other metal ions were 0, and the total index was 100.
On the other hand, the metal ion elution index of the treatment product (valve body 1) is 27.9 for Na metal ion, 24.7 for K metal ion, about 10.6 for Ca metal ion, and 1 for Ni metal ion. The metal ion of Zn was 33.1, the other metal ions were 0, and the index total was 97.5.

この金属イオン溶出試験により、本実施形態の弁座加工処理を施したバルブボディ1は、本実施形態の弁座加工処理を施していないバルブボディ20と比べ、Mgの金属イオンの溶出が確認できなかったことを除き、溶出イオンの種類が同じである。また、バルブボディ1,20に共通して溶出した金属イオン(Na,K,Ca,Ni,Zn)の指数を比較すると、同程度である。よって、バルブボディ1を半導体製造ラインに使用した場合、弁座6から溶出する金属イオンが半導体製造プロセスに与える影響は、従来品と変わらないことが判明した。これは、加熱部材14が、バルブボディ1の射出成形に使用される金型と同一材質であり、シール面6aを金型で加工したのと同等にみなすことができるからと考えられる。   By this metal ion elution test, the valve body 1 subjected to the valve seat processing of the present embodiment can confirm the elution of Mg metal ions compared to the valve body 20 not subjected to the valve seat processing of the present embodiment. The type of eluted ions is the same except that it was not. Further, when the indices of metal ions (Na, K, Ca, Ni, Zn) eluted in common to the valve bodies 1 and 20 are compared, they are comparable. Therefore, when the valve body 1 is used in a semiconductor manufacturing line, it has been found that the influence of metal ions eluted from the valve seat 6 on the semiconductor manufacturing process is the same as that of the conventional product. This is presumably because the heating member 14 is made of the same material as the mold used for injection molding of the valve body 1 and can be regarded as equivalent to processing the seal surface 6a with the mold.

<弁座加工条件と弁座加工状態との関係の調査試験>
次に、弁座加工条件と弁座加工状態との関係の調査試験について説明する。図11に、弁座加工条件を示す。図12に、弁座加工が施されていない未処置品20の弁座状態の部分断面を示すイメージ図を示す。図13及び図14に、弁座加工に失敗した弁座状態の部分断面を示すイメージ図を示す。図15に、弁座加工に成功した弁座状態の部分断面を示すイメージ図を示す。
弁座加工処理では、弁座6を加熱部材14に押し付ける荷重と、加熱部材14の加熱温度と、弁座6を加熱する加熱時間が加工条件になる。弁座6を加熱部材14に押し付ける荷重は、バルブボディ1の自重により決定されるため、設定が必要な加工条件は、加熱部材14の加熱温度と弁座6の加熱時間となる。そこで、PFA製のバルブボディ1の弁座6に、加熱部材14の加熱温度と弁座6の加熱時間を変えて弁座加工を行った場合の弁座6の状態について調べる実験を行った。
<Investigation test of the relationship between valve seat processing conditions and valve seat processing conditions>
Next, an investigation test of the relationship between the valve seat machining conditions and the valve seat machining state will be described. FIG. 11 shows the valve seat machining conditions. In FIG. 12, the image figure which shows the partial cross section of the valve seat state of the untreated goods 20 in which the valve seat process is not given is shown. FIG. 13 and FIG. 14 show an image diagram showing a partial cross-section of the valve seat state in which the valve seat processing has failed. FIG. 15 is an image diagram showing a partial cross section of the valve seat state in which the valve seat processing has been successfully performed.
In the valve seat processing, the load for pressing the valve seat 6 against the heating member 14, the heating temperature of the heating member 14, and the heating time for heating the valve seat 6 are processing conditions. Since the load that presses the valve seat 6 against the heating member 14 is determined by its own weight, the processing conditions that need to be set are the heating temperature of the heating member 14 and the heating time of the valve seat 6. Therefore, an experiment was conducted to examine the state of the valve seat 6 when the valve seat machining was performed on the valve seat 6 of the valve body 1 made of PFA while changing the heating temperature of the heating member 14 and the heating time of the valve seat 6.

図12に示すように、弁座加工を弁座6に施していない未処置品20では、弁座6のシール面6aにウエルドラインP11が形成され、また、弁座6のエッジ部に成形バリP12が発生する等、シール面6aに成形欠陥が生じている。   As shown in FIG. 12, in the untreated product 20 in which the valve seat processing is not performed on the valve seat 6, a weld line P <b> 11 is formed on the seal surface 6 a of the valve seat 6, and a molding burr is formed on the edge portion of the valve seat 6. A molding defect has occurred on the seal surface 6a, such as the occurrence of P12.

先ず、バルブボディ1の自重により弁座6を加熱部材14に押し付けて加熱する加熱時間を8秒間に固定し、加熱部材14の加熱温度を変えて、弁座加工状態を観察することにより、加熱部材14の加熱温度が弁座加工に与える影響を調べた結果について説明する。
図11のY1に示すように、PFAの溶融温度範囲の下限値(305℃)に加熱部材14を加熱して、弁座6を加熱部材14に8秒間押し付けた場合、図13に示すように、ウエルドラインP11を溶融樹脂で完全に埋めることができず、浅くて小さい凹部P11’がシール面6aに残る。また、成形バリP12を十分に軟らかくして押し潰すことができず、小さな凸部P12’がシール面6aのエッジ部に残った。よって、この加工条件では、シール面6aの樹脂を十分な流動性を持たせるように溶融させることができず、成形欠陥P11,P12を解消できない。
一方、図11のY2に示すように、PFAの溶融温度範囲の上限値(315℃)に加熱部材14を加熱して、弁座6を加熱部材14に8秒間押し付けた場合、図14に示すように、P41に示すように、弁座6のエッジ部が溶け出して、シール面6aのシール面積が小さくなり、更には、弁座6の側面に角状の出っ張りができてしまった。これは、弁座6の表面温度が形状を維持できない程に加熱されて、エッジ部の形状を保つことができなかったためと考えられる。シール面積の減少は所望のシール性能が得られなくなり、角状の出っ張りは、流体制御時に弁座6から剥離してパーティクルになる恐れがあるため、問題である。
更に、図11のY3に示すように、PFAの溶融温度範囲の中間値(310℃)に加熱部材14を加熱して、弁座6を加熱部材14に8秒間押し付けた場合、図15に示すように、弁座6が形状を保ちつつ、図12に示す成形欠陥P11,P12を解消できた。
以上の結果より、弁座6を加熱部材14に押し付ける時間を8秒間に固定した場合、加熱部材14の加熱温度を、バルブボディ1の材質であるPFAの溶融温度範囲の中間値に設定すると、成形欠陥を解消して弁座6の平面度を出せることが判明した。
First, the heating time for pressing the valve seat 6 against the heating member 14 by the dead weight of the valve body 1 is fixed to 8 seconds, and the heating temperature of the heating member 14 is changed to observe the valve seat processing state. The results of examining the influence of the heating temperature of the member 14 on the valve seat processing will be described.
As shown in FIG. 13, when the heating member 14 is heated to the lower limit (305 ° C.) of the PFA melting temperature range and the valve seat 6 is pressed against the heating member 14 for 8 seconds as indicated by Y <b> 1 in FIG. 11, The weld line P11 cannot be completely filled with the molten resin, and a shallow and small recess P11 ′ remains on the seal surface 6a. Further, the molding burr P12 was sufficiently soft and could not be crushed, and a small convex portion P12 ′ remained on the edge portion of the seal surface 6a. Therefore, under this processing condition, the resin on the seal surface 6a cannot be melted so as to have sufficient fluidity, and the molding defects P11 and P12 cannot be eliminated.
On the other hand, as shown by Y2 in FIG. 11, when the heating member 14 is heated to the upper limit value (315 ° C.) of the melting temperature range of PFA and the valve seat 6 is pressed against the heating member 14 for 8 seconds, it is shown in FIG. Thus, as shown in P41, the edge portion of the valve seat 6 was melted, the seal area of the seal surface 6a was reduced, and furthermore, a square protrusion was formed on the side surface of the valve seat 6. This is considered to be because the surface temperature of the valve seat 6 was heated to such an extent that the shape could not be maintained, and the shape of the edge portion could not be maintained. Reduction of the seal area is a problem because the desired sealing performance cannot be obtained, and the angular protrusions may be peeled off from the valve seat 6 during fluid control and become particles.
Furthermore, as shown by Y3 in FIG. 11, when the heating member 14 is heated to an intermediate value (310 ° C.) of the melting temperature range of PFA and the valve seat 6 is pressed against the heating member 14 for 8 seconds, it is shown in FIG. Thus, the molding defects P11 and P12 shown in FIG. 12 could be eliminated while the valve seat 6 maintained its shape.
From the above results, when the time for pressing the valve seat 6 against the heating member 14 is fixed to 8 seconds, when the heating temperature of the heating member 14 is set to an intermediate value of the melting temperature range of PFA which is the material of the valve body 1, It has been found that the flatness of the valve seat 6 can be obtained by eliminating the molding defect.

次に、加熱部材14の加熱温度を、PFAの溶融温度範囲の中間値(310℃)に固定し、弁座6を加熱部材14に押し付ける時間を変えて、弁座加工状態を観察することにより、加熱時間が弁座加工に与える影響を調べた結果について説明する。
図11のY4に示すように、弁座6を加熱部材14に15秒間押し付けた場合、図14のP41に示すように、弁座6のエッジ部が溶け出してしまった。これは、弁座6を加熱部材14に押し付ける時間が長すぎて、弁座6の表面温度が形状を維持できない程に加熱され、エッジ部が溶け出してしまったと考えられる。
一方、図11のY5,Y6に示すように、弁座6を加熱部材14に10秒間又は5秒間押し付けた場合、図15に示すように、弁座6が形状を保ちつつ、図12に示す成形欠陥P11,P12を解消できた。
以上の結果より、加熱部材14の加熱温度を、バルブボディ1の材質であるPFAの溶融温度範囲の中間値に固定した場合、弁座6を加熱部材14に押し付けて加熱する加熱時間は、5秒以上10秒以下の範囲が適していることが判明した。
Next, by fixing the heating temperature of the heating member 14 to an intermediate value (310 ° C.) of the melting temperature range of PFA, changing the time for pressing the valve seat 6 against the heating member 14, and observing the valve seat processing state The results of examining the effect of heating time on valve seat processing will be described.
As shown in Y4 of FIG. 11, when the valve seat 6 was pressed against the heating member 14 for 15 seconds, the edge portion of the valve seat 6 was melted as shown in P41 of FIG. It is considered that this is because the time for pressing the valve seat 6 against the heating member 14 is too long, the surface temperature of the valve seat 6 is heated to such an extent that the shape cannot be maintained, and the edge portion has melted.
On the other hand, when the valve seat 6 is pressed against the heating member 14 for 10 seconds or 5 seconds as shown in Y5 and Y6 of FIG. 11, as shown in FIG. The molding defects P11 and P12 could be eliminated.
From the above results, when the heating temperature of the heating member 14 is fixed to an intermediate value in the melting temperature range of PFA that is the material of the valve body 1, the heating time for pressing the valve seat 6 against the heating member 14 to heat is 5 It has been found that a range of not less than 10 seconds and not more than 10 seconds is suitable.

上記試験結果をまとめると、図11に示すように、弁座6のエッジ部が溶け出す境界を示すグラフX1と、成形欠陥が解消される境界を示すグラフX2とが得られる。この試験結果より、弁座加工条件は、バルブボディ1の自重により弁座6を加熱部材14に押し付ける場合、弁座6を加熱する加熱時間を5秒以上10秒以下の範囲で設定し、加熱部材14の加熱温度を、バルブボディ1の材質の溶融温度範囲の中間値±溶融温度範囲の上限値と下限値との温度差の30%の値の範囲内で設定することが好ましいことが、裏付けられた。   When the above test results are summarized, as shown in FIG. 11, a graph X1 indicating the boundary where the edge portion of the valve seat 6 melts and a graph X2 indicating the boundary where the molding defect is eliminated are obtained. From this test result, when the valve seat 6 is pressed against the heating member 14 by its own weight, the valve seat processing conditions are set such that the heating time for heating the valve seat 6 is in the range of 5 seconds to 10 seconds. It is preferable to set the heating temperature of the member 14 within the range of the intermediate value of the melting temperature range of the material of the valve body 1 ± 30% of the temperature difference between the upper limit value and the lower limit value of the melting temperature range. It was supported.

<作用効果>
以上説明したように、上記実施形態の弁座加工方法では、加熱した加熱部材14の平坦な当接面14bを弁座6のシール面6aに押し当てると、シール面6aが溶融して加熱部材14の当接面14bに倣って平坦になり、ウエルドラインP11や成形バリP12などの成形欠陥を解消する。加熱部材14をシール面6aから離すと、シール面6aは固化して滑らかな平面になる。このような弁座加工方法では、シール面6aにムシレを発生しないので、当該弁座加工方法によって加工された弁座6を有するバルブボディ1を使った流体制御弁8が流体制御を行う場合にシール面6aのムシレがシール面6aから引き剥がされてパーティクルになることがない。よって、上記実施形態の弁座加工方法、バルブボディ1及び流体制御弁8によれば、パーティクルが発生しないように弁座6の平面度を出すことができる。
<Effect>
As described above, in the valve seat processing method of the above-described embodiment, when the flat contact surface 14b of the heated heating member 14 is pressed against the seal surface 6a of the valve seat 6, the seal surface 6a is melted to heat the heating member. 14 is flattened along the contact surface 14b, and molding defects such as the weld line P11 and the molding burr P12 are eliminated. When the heating member 14 is separated from the seal surface 6a, the seal surface 6a is solidified and becomes a smooth flat surface. In such a valve seat processing method, no stuffiness is generated on the seal surface 6a. Therefore, when the fluid control valve 8 using the valve body 1 having the valve seat 6 processed by the valve seat processing method performs fluid control. The gusset of the seal surface 6a is not peeled off from the seal surface 6a and becomes particles. Therefore, according to the valve seat processing method, the valve body 1 and the fluid control valve 8 of the above embodiment, the flatness of the valve seat 6 can be obtained so that particles are not generated.

上記実施形態の弁座加工方法では、加熱部材14の材質が、バルブボディ1を射出成形する場合に用いる金型と同一の材質であるので、加熱部材14で弁座6のシール面6aを加熱する場合に、金型と異なる金属イオンが弁座6に注入されない。よって、上記実施形態の弁座加工方法によれば、バルブボディ1を流体制御に使用したときに、金型と異なるイオンが弁座6から溶出し、半導体等の製品製造プロセスに悪影響を及ぼすことを防止できる。   In the valve seat processing method of the above embodiment, since the material of the heating member 14 is the same material as the mold used when the valve body 1 is injection molded, the sealing surface 6a of the valve seat 6 is heated by the heating member 14. In this case, metal ions different from the mold are not injected into the valve seat 6. Therefore, according to the valve seat processing method of the above-described embodiment, when the valve body 1 is used for fluid control, ions different from the mold are eluted from the valve seat 6 and adversely affect the manufacturing process of products such as semiconductors. Can be prevented.

上記実施形態の弁座加工方法では、加熱部材14の加工温度を、弁座6を形成する材料の溶融温度範囲内で制御するので、弁座6のシール面6aが加熱部材14の当接面から熱を伝達されて流動性を有するように溶融し、成形欠陥を解消して平坦になりやすい。   In the valve seat processing method of the above embodiment, since the processing temperature of the heating member 14 is controlled within the melting temperature range of the material forming the valve seat 6, the seal surface 6a of the valve seat 6 is the contact surface of the heating member 14. The heat is transferred from the melt and melted so as to have fluidity, so that the molding defects are easily eliminated and the surface becomes flat.

上記実施形態の弁座加工方法では、加熱部材14の当接面14bに弁座6を介してバルブボディ1を載置し、バルブボディ1の自重により弁座6のシール面6aを加熱部材14の当接面14bに押し付けるので、弁座6のシール面6aを加熱部材14の当接面14bに押し付ける荷重を安定させ、弁座6の平面度を安定して出すことができる。   In the valve seat processing method of the above embodiment, the valve body 1 is placed on the contact surface 14 b of the heating member 14 via the valve seat 6, and the sealing surface 6 a of the valve seat 6 is attached to the heating member 14 by its own weight. Therefore, the load that presses the seal surface 6a of the valve seat 6 against the contact surface 14b of the heating member 14 can be stabilized, and the flatness of the valve seat 6 can be stably brought out.

尚、本発明は、上記実施形態に限定されることなく、色々な応用が可能である。
例えば、上記実施形態では、バルブボディ1を図示しないダイアフラム弁体を備えるエアオペレイト式流体制御弁8に使用したが、ポペット弁やモータ弁、電磁弁、真空弁など他の形式の弁に適用しても良い。
例えば、上記実施形態では、弁座6をバルブボディ1と一体に設けたが、弁座6はバルブボディ1と別体であっても良い。
例えば、上記実施形態では、加熱部材14の内部から棒状ヒータ15で加熱部材14を加熱したが、加熱部材14にヒータベルトを巻いて加熱部材14の外側から加熱部材14を加熱しても良い。
例えば、上記実施形態では、加熱部材14を直方体のブロック形状にしたが、加熱部材の形状は、多面体のブロック形状や板状、棒状など他の形状にしても良い。
In addition, this invention is not limited to the said embodiment, Various application is possible.
For example, in the above embodiment, the valve body 1 is used for the air operated fluid control valve 8 having a diaphragm valve body (not shown). However, the valve body 1 may be applied to other types of valves such as poppet valves, motor valves, electromagnetic valves, and vacuum valves. Also good.
For example, in the above embodiment, the valve seat 6 is provided integrally with the valve body 1, but the valve seat 6 may be separate from the valve body 1.
For example, in the above embodiment, the heating member 14 is heated from the inside of the heating member 14 by the rod heater 15, but the heating member 14 may be heated from the outside of the heating member 14 by winding a heater belt around the heating member 14.
For example, in the above-described embodiment, the heating member 14 has a rectangular parallelepiped block shape, but the heating member may have another shape such as a polyhedral block shape, a plate shape, or a rod shape.

(第2実施形態)
<加熱部材の構成>
第2実施形態においては、加熱部材50のうち、当接面50bにおける弁座形成凹部51が形成されている点で、第1実施形態における加熱部材14と形状が異なる。他方、他の構造については全く異なるところがない。そこで、第1実施形態と異なる当接面50bにおける弁座形成凹部51の構造について図20乃至図27を用いて説明することで、他の構造については、第1実施形態と同様の符号を用いることで説明を割愛する。
(Second Embodiment)
<Configuration of heating member>
In the second embodiment, the shape of the heating member 50 is different from that of the heating member 14 in the first embodiment in that a valve seat forming recess 51 is formed on the contact surface 50b. On the other hand, there is no difference between other structures. Therefore, the structure of the valve seat forming recess 51 on the contact surface 50b different from the first embodiment will be described with reference to FIGS. 20 to 27, and the same reference numerals as those of the first embodiment will be used for the other structures. I will omit the explanation.

図20は、加熱部材50の概略構成図である。
図20に示すように、加熱部材50の当接面50bには、弁座60にそった凹部形状の弁座形成凹部51が形成されている。
具体的には、弁座60の表層面61が、弁体と当接する平らな弁体当接面61bと、弁体当接面61bを頂上に下方向に傾斜したテーパ面61aを有する。弁座当接面61bとテーパ面61aの接合部には、弁座端部61cが形成される。
弁座形成凹部51は、弁体当接面61bと当接する平らな弁体当接形成面51bと、テーパ面61aに当接するテーパ形成面51aと、弁座端部61cに当接する弁座端部形成面51cを有する。
弁座形成凹部51が弁座60にそった凹部形状であることにより、加熱された弁座形成凹部51を弁座60に押し当てることにより樹脂製の弁座60の表層面61の形状は弁座形成凹部51の形状が転写される。そのため弁座60の表層面61の平滑度を大幅に向上させることができる。転写される際には、弁座形成凹部51の面粗が転写されるため、弁座形成凹部51の面粗を平滑に保つことも必要となる。
また、弁座形成凹部51の寸法によって、弁座60の表層面61の出来栄えの寸法を管理することができるため、容易かつ安価に寸法精度のよい弁座60を有する流体制御弁を提供することができる。
FIG. 20 is a schematic configuration diagram of the heating member 50.
As shown in FIG. 20, a recess-shaped valve seat forming recess 51 along the valve seat 60 is formed on the contact surface 50 b of the heating member 50.
Specifically, the surface layer surface 61 of the valve seat 60 has a flat valve body contact surface 61b that contacts the valve body, and a tapered surface 61a that is inclined downward on the valve body contact surface 61b. A valve seat end 61c is formed at the joint between the valve seat contact surface 61b and the tapered surface 61a.
The valve seat formation recess 51 includes a flat valve body contact formation surface 51b that contacts the valve body contact surface 61b, a taper formation surface 51a that contacts the taper surface 61a, and a valve seat end that contacts the valve seat end 61c. It has the part formation surface 51c.
Since the valve seat forming concave portion 51 has a concave shape along the valve seat 60, the shape of the surface layer 61 of the resin valve seat 60 is changed to a valve by pressing the heated valve seat forming concave portion 51 against the valve seat 60. The shape of the seat forming recess 51 is transferred. Therefore, the smoothness of the surface layer 61 of the valve seat 60 can be greatly improved. At the time of transfer, the surface roughness of the valve seat forming recess 51 is transferred, so that it is also necessary to keep the surface roughness of the valve seat forming recess 51 smooth.
In addition, since the size of the surface layer 61 of the valve seat 60 can be managed by the size of the valve seat forming recess 51, a fluid control valve having the valve seat 60 with high dimensional accuracy easily and inexpensively is provided. Can do.

<弁座加工方法>
図25に、第1実施形態における加熱部材14の概略構成図を示す。図26に、図25のうち加熱部材14により弁座加工を施した後の弁座60の部分拡大図を示す。
図27に、第1実施形態における加熱部材14により弁座加工を施した場合の弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)である。この電子顕微鏡写真は、弁座60を表層面61の真上から撮影している。図27は、図26に示す電子顕微鏡写真に相当する図である。
図28に示すように、第1実施形態における加熱部材14により弁座60を加工した後の弁座60の表層面61は、成形バリが押し潰されて弁座当接面61bと面一にされた状態で、固化している。
よって、弁座当接面61bにおいては、面一にされているため、滑らかで、ムシレが発生していない。
<Valve seat processing method>
In FIG. 25, the schematic block diagram of the heating member 14 in 1st Embodiment is shown. FIG. 26 shows a partially enlarged view of the valve seat 60 after the valve seat processing is performed by the heating member 14 in FIG.
FIG. 27 is an electron micrograph (magnification: × 1000) obtained by partially photographing the outer edge portion of the valve seat when the valve seat is processed by the heating member 14 in the first embodiment. In this electron micrograph, the valve seat 60 is taken from directly above the surface layer 61. FIG. 27 is a diagram corresponding to the electron micrograph shown in FIG.
As shown in FIG. 28, the surface layer surface 61 of the valve seat 60 after the valve seat 60 is processed by the heating member 14 in the first embodiment is flush with the valve seat abutting surface 61b by crushing the molding burr. It is solidified.
Therefore, since the valve seat abutting surface 61b is flush with the valve seat abutting surface 61b, the valve seat abutting surface 61b is smooth and has no stuffiness.

しかし、加熱部材14により成型バリは押しつぶされて弁座当接面61bと面一になるが、加熱部材14のように平面改善のみであると、押しつぶされた成型バリが、図26に示すように、弁座端部61cに弁座当接面61bと平行な位置に微少バリP51、P52として残る可能性がある。図26においては、微少バリP51、P52が理解しやすいように見えるように図示したが、実際は顕微鏡等によって確認できる。
その理由は、図25に示すような平面改善の加熱部材14である場合には、弁体当接面61bに対して加熱部材14を垂直方向から押し当てることにより成型バリを押し付けつぶし解消することができる。だが、テーパ部61aに対して加熱部材14は、略直角方向から押し付けることになる。そのため、テーパ部61aに接する弁座端部61cに弁座当接面61bから連続し、弁座当接面14bと平行な微少バリP51、52が生じる可能性があるためである。
微少バリP51、52が残ると、それがめくれパーティクルが発生する恐れがあるため問題となる。
However, although the molding burr is crushed by the heating member 14 and becomes flush with the valve seat abutment surface 61b, the crushing molding burr is as shown in FIG. In addition, there is a possibility that minute burrs P51 and P52 may remain in the valve seat end portion 61c in a position parallel to the valve seat abutment surface 61b. In FIG. 26, the fine burrs P51 and P52 are illustrated so that they can be easily understood, but can be actually confirmed by a microscope or the like.
The reason is that, in the case of the heating member 14 having a flat surface improvement as shown in FIG. 25, the heating burr 14 is pressed against the valve body abutting surface 61b from the vertical direction to eliminate the molding burr. Can do. However, the heating member 14 is pressed against the tapered portion 61a from a substantially perpendicular direction. Therefore, there is a possibility that minute burrs P51 and 52 that are continuous from the valve seat contact surface 61b and parallel to the valve seat contact surface 14b may occur at the valve seat end portion 61c that contacts the taper portion 61a.
If the minute burrs P51 and 52 remain, there is a problem that they may be turned up and generate particles.

第2実施形態においては、図20に示す加熱部材50を下降させ、弁座60に当接させた後、更に下降し続け、弁座60を介してバルブボディ1を加熱部材50に載せてバルブボディ1から離れる弁座加工位置まで移動する。この結果、弁座60は、バルブボディ1の自重により表層面61が加熱部材50の弁座形成凹部51に押し付けられる。   In the second embodiment, after the heating member 50 shown in FIG. 20 is lowered and brought into contact with the valve seat 60, the heating member 50 continues to descend, and the valve body 1 is placed on the heating member 50 via the valve seat 60. Move to the valve seat machining position away from the body 1. As a result, the surface 60 of the valve seat 60 is pressed against the valve seat forming recess 51 of the heating member 50 by the weight of the valve body 1.

加熱部材50は、ヒータ15により設定温度(ここでは310℃)に加熱されている。そのため、弁座形成凹部51に押し付けられた表層面61は、弁座形成凹部51から熱伝達されて、表層面61が溶融する。表層面61が溶融することにより、加熱部材50の弁座形成凹部51に倣って平坦になり、第1実施形態における図6に示すような成形欠陥P12を解消することができる。また、平面改善のみではなく弁座面61全体の改善を行うことができるため図28のような微少バリP51、P52が生じない。
加熱部材50を表層面61から離すと、表層面61の全体は固化して滑らかな平面になる。そのため、表層面61に成型欠陥P12、及び微少バリP51、P52が発生しない。当該弁座加工方法により加工された弁座60を有するバルブボディ1を使った流体制御弁が、流体制御を行う場合に、表層面61のムシレがないため、ムシレが表層面61から引き剥がされてパーティクルになることがない。
よって、上記態様の弁座加工方法、バルブボディ1及び流体制御弁によれば、パーティクルが発生しないように弁座60の平滑度を出すことができる。
The heating member 50 is heated to a set temperature (here, 310 ° C.) by the heater 15. Therefore, the surface layer surface 61 pressed against the valve seat forming recess 51 is transferred with heat from the valve seat forming recess 51, and the surface layer surface 61 is melted. When the surface layer surface 61 is melted, it becomes flat following the valve seat forming recess 51 of the heating member 50, and the molding defect P12 as shown in FIG. 6 in the first embodiment can be eliminated. Further, since not only the plane improvement but also the entire valve seat surface 61 can be improved, the minute burrs P51 and P52 as shown in FIG. 28 do not occur.
When the heating member 50 is separated from the surface layer surface 61, the entire surface layer surface 61 is solidified and becomes a smooth flat surface. Therefore, the molding defect P12 and the minute burrs P51 and P52 do not occur on the surface layer 61. When the fluid control valve using the valve body 1 having the valve seat 60 processed by the valve seat processing method performs fluid control, the surface layer 61 does not have a blur, so that the strip is peeled off from the surface layer 61. And never become particles.
Therefore, according to the valve seat processing method, the valve body 1 and the fluid control valve of the above aspect, the smoothness of the valve seat 60 can be obtained so that particles are not generated.

図21に、弁座加工を施した後の弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)(1)を示す。図22に、図21に示す電子顕微鏡写真に相当する図を示す。図23に、弁座加工を施した後の弁座の外側エッジ部を部分撮影した電子顕微鏡写真(倍率:×1000)(2)を示す。図21及び図23の電子顕微鏡写真は、弁座60を弁座当接面61b側から撮影したものである。図24に、図23に示す電子顕微鏡写真に相当する図を示す。
具体的には、弁座60は、図21に相当する部分の図22の電子顕微鏡写真に示される弁座テーパ部61a、弁座当接面61b、及び弁座端部61cが平滑になっている。また、図23に相当する部分の図24の電子顕微鏡写真に示される弁座テーパ部61a、弁座当接面61b、及び弁座端部61cが平滑になっている。
すなわち、弁座形成凹部51に押し付けられた表層面61は、弁座形成凹部51から熱伝達されて、表層面61が溶融し、加熱部材50の弁座形成凹部51に倣って平坦になるため全体として平滑になる。
このように弁座加工されたバルブボディ1は、図示しないダイアフラム弁体を駆動部10との間で挟持して流体制御弁8を構成し、流体制御に用いられる。バルブボディ1は、図21乃至図24に示すように、弁座60の表層面61が滑らかな平面で、ムシレが発生していないため、ダイアフラム弁体を当接又は離間させて弁開閉動作が繰り返されても、弁座60からパーティクルが発生しない。
FIG. 21 shows an electron micrograph (magnification: × 1000) (1) in which the outer edge portion of the valve seat after the valve seat processing is partially photographed. FIG. 22 shows a view corresponding to the electron micrograph shown in FIG. FIG. 23 shows an electron micrograph (magnification: × 1000) (2) in which the outer edge portion of the valve seat after the valve seat processing is partially photographed. The electron micrographs of FIGS. 21 and 23 are photographs of the valve seat 60 taken from the valve seat contact surface 61b side. FIG. 24 shows a view corresponding to the electron micrograph shown in FIG.
Specifically, in the valve seat 60, the valve seat taper portion 61a, the valve seat contact surface 61b, and the valve seat end portion 61c shown in the electron micrograph of FIG. 22 corresponding to FIG. Yes. Further, the valve seat taper portion 61a, the valve seat contact surface 61b, and the valve seat end portion 61c shown in the electron micrograph of FIG. 24 corresponding to FIG. 23 are smooth.
That is, the surface layer surface 61 pressed against the valve seat forming recess 51 is transferred by heat from the valve seat forming recess 51, so that the surface layer surface 61 melts and becomes flat following the valve seat forming recess 51 of the heating member 50. Smooth as a whole.
The valve body 1 processed in this way forms a fluid control valve 8 by sandwiching a diaphragm valve body (not shown) between the drive unit 10 and is used for fluid control. As shown in FIGS. 21 to 24, the valve body 1 has a smooth surface 61 of the valve seat 60 and no mussels. Therefore, the valve body 1 can be opened or closed by contacting or separating the diaphragm valve body. Even if it is repeated, no particles are generated from the valve seat 60.

1 バルブボディ
6 弁座
6a シール面
8 流体制御弁
14 加熱部材
14b 当接面
1 Valve body 6 Valve seat 6a Seal surface 8 Fluid control valve 14 Heating member 14b Contact surface

Claims (7)

バルブボディの樹脂製弁座の平面度を出すための弁座加工方法において、
加熱した加熱部材の平坦な当接面を、前記弁座のシール面に押し当てた後、前記加熱部材を前記シール面から離す
ことを特徴とする弁座加工方法。
In the valve seat processing method for obtaining the flatness of the resin valve seat of the valve body,
A valve seat machining method, comprising: pressing a flat contact surface of a heated heating member against a seal surface of the valve seat; and then separating the heating member from the seal surface.
請求項1に記載する弁座加工方法において、
前記当接面に、前記弁座にそった凹部形状の弁座形成凹部が形成されていること、
を特徴とする弁座加工方法。
In the valve seat processing method according to claim 1,
A valve seat forming concave portion having a concave shape along the valve seat is formed on the contact surface,
The valve seat processing method characterized by this.
請求項1又は請求項2に記載する弁座加工方法において、
前記加熱部材の材質が、前記バルブボディを射出成形する場合に用いる金型と同一の材質である
ことを特徴とする弁座加工方法。
In the valve seat processing method according to claim 1 or 2,
The valve seat processing method, wherein the heating member is made of the same material as that of a mold used when the valve body is injection-molded.
請求項1乃至請求項3の何れか1つに記載する弁座加工方法において、
前記加熱部材の加熱温度を、前記弁座を形成する材料が溶融する溶融温度範囲内で制御する
ことを特徴とする弁座加工方法。
In the valve seat processing method according to any one of claims 1 to 3,
A valve seat processing method, wherein a heating temperature of the heating member is controlled within a melting temperature range in which a material forming the valve seat is melted.
請求項1乃至請求項4の何れか1つに記載する弁座加工方法において、
前記加熱部材の当接面に前記弁座を介して前記バルブボディを載置する
ことを特徴とする弁座加工方法。
In the valve seat processing method according to any one of claims 1 to 4,
A valve seat processing method, wherein the valve body is placed on a contact surface of the heating member via the valve seat.
請求項1乃至請求項5の何れか一つに記載する弁座加工方法により加工された弁座を有することを特徴とするバルブボディ。   A valve body having a valve seat processed by the valve seat processing method according to any one of claims 1 to 5. 請求項1乃至請求項5の何れか一つに記載する弁座加工方法により加工された弁座を有するバルブボディと、
前記バルブボディに連結され、前記弁座に弁体を当接又は離間させる駆動部とを有することを特徴とする流体制御弁。
A valve body having a valve seat processed by the valve seat processing method according to any one of claims 1 to 5;
A fluid control valve, comprising: a drive unit coupled to the valve body and configured to contact or separate the valve body from the valve seat.
JP2010168178A 2009-11-11 2010-07-27 Valve seat processing method, valve body and fluid control valve Expired - Fee Related JP5297420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168178A JP5297420B2 (en) 2009-11-11 2010-07-27 Valve seat processing method, valve body and fluid control valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009257794 2009-11-11
JP2009257794 2009-11-11
JP2010168178A JP5297420B2 (en) 2009-11-11 2010-07-27 Valve seat processing method, valve body and fluid control valve

Publications (2)

Publication Number Publication Date
JP2011122718A true JP2011122718A (en) 2011-06-23
JP5297420B2 JP5297420B2 (en) 2013-09-25

Family

ID=44286792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168178A Expired - Fee Related JP5297420B2 (en) 2009-11-11 2010-07-27 Valve seat processing method, valve body and fluid control valve

Country Status (1)

Country Link
JP (1) JP5297420B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137096A (en) * 2011-12-02 2013-07-11 Ckd Corp Fluid control valve
KR20160071326A (en) 2014-12-11 2016-06-21 시케이디 가부시키가이샤 Fluid control valve
US10167960B2 (en) 2014-12-11 2019-01-01 Ckd Corporation Fluid control valve
US11118690B2 (en) 2016-06-21 2021-09-14 Ckd Corporation Fluid control valve and fluid control valve manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290540A (en) * 1994-04-28 1995-11-07 Hitachi Ltd Manufacture of plastic molded form
JP2002013657A (en) * 2000-06-30 2002-01-18 Denso Corp Flow control valve
JP2003340838A (en) * 2002-05-24 2003-12-02 Matsushita Electric Works Ltd Deburring method for resin molded product and deburring apparatus
JP2005329644A (en) * 2004-05-20 2005-12-02 Nishikawa Kasei Co Ltd Method for producing injection-molded resin article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290540A (en) * 1994-04-28 1995-11-07 Hitachi Ltd Manufacture of plastic molded form
JP2002013657A (en) * 2000-06-30 2002-01-18 Denso Corp Flow control valve
JP2003340838A (en) * 2002-05-24 2003-12-02 Matsushita Electric Works Ltd Deburring method for resin molded product and deburring apparatus
JP2005329644A (en) * 2004-05-20 2005-12-02 Nishikawa Kasei Co Ltd Method for producing injection-molded resin article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137096A (en) * 2011-12-02 2013-07-11 Ckd Corp Fluid control valve
US9057449B2 (en) 2011-12-02 2015-06-16 Ckd Corporation Fluid control valve
KR20160071326A (en) 2014-12-11 2016-06-21 시케이디 가부시키가이샤 Fluid control valve
CN105697834A (en) * 2014-12-11 2016-06-22 喜开理株式会社 Fluid control valve
US10167960B2 (en) 2014-12-11 2019-01-01 Ckd Corporation Fluid control valve
US11118690B2 (en) 2016-06-21 2021-09-14 Ckd Corporation Fluid control valve and fluid control valve manufacturing method

Also Published As

Publication number Publication date
JP5297420B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5297420B2 (en) Valve seat processing method, valve body and fluid control valve
US10385432B2 (en) Methods of producing wrought products with internal passages
JP3691069B2 (en) Method for manufacturing a valve housing
CN110822164B (en) Diaphragm member and diaphragm valve using same
JP4142674B2 (en) Mold apparatus and method for producing molded body using the same
CN107405671B (en) Molding device
JP6181186B2 (en) Bonded body and bonding method
TWI567913B (en) Device for filling metal
JP2007261197A (en) Mold assembly for injection molding
CN112893808B (en) Method for manufacturing cooling device using heat pipe
TWI418281B (en) Method for manufacturing shell of electronic device
US11867316B2 (en) Flow rate control valve and producing method of flow rate control valve
JP2004001301A (en) Die and its manufacturing process
JP6875092B2 (en) Closing element for vacuum seals with friction stir welding connection
JP2001198659A (en) Method for producing aluminum product
JP5012454B2 (en) Method for machining parting surface of molding apparatus
JP2013154373A (en) Method of melt molding germanium
KR20100050234A (en) Production method for diaphragm valve body
JP4887041B2 (en) High durability heat insulation mold
JP2002346728A (en) Casting method and casting device
Lee On the development of a universal automated fixturing system through encapsulation techniques
CN116460309A (en) Runner powder removing method for 3D printing part
JP2023170492A (en) Fluid controller and manufacturing method thereof
JP2001260139A (en) Mold for molding, molding apparatus, method for molding optical element, and optical element
JP2022168634A (en) Fluororesin molded article, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130614

R150 Certificate of patent or registration of utility model

Ref document number: 5297420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees