JP2011122625A - Load-sensitive continuously variable transmission - Google Patents

Load-sensitive continuously variable transmission Download PDF

Info

Publication number
JP2011122625A
JP2011122625A JP2009279138A JP2009279138A JP2011122625A JP 2011122625 A JP2011122625 A JP 2011122625A JP 2009279138 A JP2009279138 A JP 2009279138A JP 2009279138 A JP2009279138 A JP 2009279138A JP 2011122625 A JP2011122625 A JP 2011122625A
Authority
JP
Japan
Prior art keywords
disk
power transmission
output
input
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009279138A
Other languages
Japanese (ja)
Other versions
JP5423368B2 (en
Inventor
Akihiro Kobayashi
聡宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2009279138A priority Critical patent/JP5423368B2/en
Publication of JP2011122625A publication Critical patent/JP2011122625A/en
Application granted granted Critical
Publication of JP5423368B2 publication Critical patent/JP5423368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a load-sensitive continuously variable transmission, capable of automatically and continuously varying speed according to a load by a small-sized, lightweight and inexpensive structure. <P>SOLUTION: The load-sensitive continuously variable transmission includes an input shaft 10; an input disk 11 fixed to the input shaft 10; an output disk 21 disposed oppositely to the input disk 11; an output shaft 20 fixed to the output disk 21; a first power transmission disk 30 and a second power transmission disk 31 which are disposed to sandwich the input disk 11 and the output disk 21 therebetween, and transmits rotation from the input disk 11 to the output disk 21 through friction force; a holding member 40 which rotatably holds the first power transmission disk 30 and the second power transmission disk 31; and a bias mean 50 which biases the holding member 40. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、負荷感応型無段自動変速機に関する。   The present invention relates to a load-sensitive continuously variable automatic transmission.

ばねおよび磁石の作用により、負荷が小さいときには高速側クラッチ出力円板が高速側入力円板に接続され、負荷が大きいときには低速側クラッチ出力円板が低速側入力円板に接続される負荷感応型自動変速機が開示されている(例えば、特許文献1参照。)。   A load-sensitive type in which the high-speed side clutch output disk is connected to the high-speed side input disk when the load is small and the low-speed side clutch output disk is connected to the low-speed side input disk when the load is large due to the action of the spring and magnet. An automatic transmission is disclosed (for example, refer to Patent Document 1).

また、変速子のテーパ面に円筒体が圧接され、負荷に応じて円筒体の縁部とテーパ面との圧接点のなす半径が変化する回転型無段変速機が開示されている(例えば、特許文献2参照。)。   Further, a rotary continuously variable transmission is disclosed in which a cylindrical body is pressed against a tapered surface of a transmission, and a radius formed by a pressure contact between an edge of the cylindrical body and the tapered surface changes according to a load (for example, (See Patent Document 2).

特許第3584396号公報Japanese Patent No. 3584396 特開2002−276759号公報JP 2002-276759 A

しかしながら、特許文献1の負荷感応型自動変速機による減速比の調整範囲は高速低トルクと低速高トルクの二段階であり、連続的に変化する負荷に応じて減速比を無段階に調整することはできない。また、高速側入力円板、低速側入力円板、減速機、高速側クラッチ出力円板、低速側クラッチ出力円板、クラッチ板連結棒、出力円板、磁石、ばね等を備える複雑で部品点数の多い構成となっており、小型化、軽量化、低コスト化が難しい。   However, the adjustment range of the reduction ratio by the load-sensitive automatic transmission of Patent Document 1 is two stages of high speed and low torque and low speed and high torque, and the reduction ratio is adjusted steplessly according to the continuously changing load. I can't. In addition, it has a complex number of parts including a high-speed input disk, a low-speed input disk, a reducer, a high-speed clutch output disk, a low-speed clutch output disk, a clutch plate connecting rod, an output disk, a magnet, a spring, etc. Therefore, it is difficult to reduce the size, weight, and cost.

また、特許文献2の回転型無段変速機では、円筒体の縁部が変速子のテーパ面に圧接される箇所が不安定であるため、大きな負荷をかけるのが困難である。また、遊星ギヤ、テーパ面を備えた変速子、底面に穴が形成された円筒体、穴が形成された円板、球体等を備える複雑で部品点数の多い構成となっており、小型化、軽量化、低コスト化が難しい。   Further, in the rotary continuously variable transmission of Patent Document 2, it is difficult to apply a large load because the portion where the edge of the cylindrical body is pressed against the tapered surface of the transmission is unstable. In addition, it has a complicated configuration with a large number of parts including a planetary gear, a transmission with a tapered surface, a cylindrical body with a hole in the bottom, a disk with a hole, a sphere, etc. It is difficult to reduce weight and cost.

本発明は、上記の問題点に鑑みてなされたものであり、小型軽量かつ低コストな構成で、負荷に応じて自動的に無段階に変速可能な負荷感応型無段自動変速機を提供することを課題とする。   The present invention has been made in view of the above problems, and provides a load-sensitive continuously variable automatic transmission that can automatically and continuously change gears according to a load with a small, lightweight, and low-cost configuration. This is the issue.

本発明の第1の課題解決手段は、負荷感応型無段自動変速機は、入力軸と、前記入力軸に固定される入力円板と、前記入力円板に対向して離間配置される出力円板と、前記出力円板に固定され、前記入力軸と同軸に配置される出力軸と、前記入力円板および前記出力円板を挟持するように対向配置され、前記入力円板から前記出力円板へ摩擦力を介して回転を伝達する第一動力伝達円板および第二動力伝達円板と、前記第一動力伝達円板および前記第二動力伝達円板を回転可能に保持する保持部材と、前記保持部材を付勢する付勢手段とを備えたことである。   According to a first aspect of the present invention, there is provided a load-sensitive continuously variable automatic transmission in which an input shaft, an input disk fixed to the input shaft, and an output spaced apart from the input disk are arranged. A disc, an output shaft fixed to the output disc and arranged coaxially with the input shaft, and opposed to sandwich the input disc and the output disc, and the output from the input disc A first power transmission disk and a second power transmission disk that transmit rotation to the disk via frictional force, and a holding member that rotatably holds the first power transmission disk and the second power transmission disk And urging means for urging the holding member.

本発明の第2の課題解決手段は、前記保持部材は、前記第一動力伝達円板を前記入力軸に垂直で前記第一動力伝達円板に平行な方向に移動可能に保持し、前記第二動力伝達円板を前記入力軸に垂直で前記第二動力伝達円板に平行な方向に移動可能に保持することである。   According to a second problem-solving means of the present invention, the holding member holds the first power transmission disk movably in a direction perpendicular to the input shaft and parallel to the first power transmission disk. The second power transmission disc is held movably in a direction perpendicular to the input shaft and parallel to the second power transmission disc.

本発明の第3の課題解決手段は、前記付勢手段は、前記第一動力伝達円板および前記第二動力伝達円板の少なくともいずれか一方に設けられた湾曲部であることである。   A third problem solving means of the present invention is that the urging means is a curved portion provided on at least one of the first power transmission disk and the second power transmission disk.

本発明によれば、入力円板、第一動力伝達円板、第二動力伝達円板、出力円板等を備えたシンプルな構成で、小型軽量かつ低コストな負荷感応型無段自動変速機となる。この負荷感応型無段自動変速機では、出力側の負荷が増大する際に出力軸が固定された出力円板と第一動力伝達円板および第二動力伝達円板との間に生じる摩擦力により、第一動力伝達円板(又は第二動力伝達円板)の中心から出力円板と第一動力伝達円板(又は第二動力伝達円板)との接点までの距離が短く、第一動力伝達円板(又は第二動力伝達円板)の中心から入力円板と第一動力伝達円板(又は第二動力伝達円板)との接点までの距離が長くなる方向に、第一動力伝達円板および第二動力伝達円板が自動的に移動することで、減速比が増大する。また、負荷が減少する際には、付勢手段による付勢力で、第一動力伝達円板(又は第二動力伝達円板)の中心から出力円板と第一動力伝達円板(又は第二動力伝達円板)との接点までの距離が長く、第一動力伝達円板(又は第二動力伝達円板)の中心から入力円板と第一動力伝達円板(又は第二動力伝達円板)との接点までの距離が短くなる方向に、第一動力伝達円板および第二動力伝達円板が自動的に移動することで、減速比が減少する。   According to the present invention, a load-sensitive continuously variable automatic transmission that has a simple configuration including an input disk, a first power transmission disk, a second power transmission disk, an output disk, and the like, is small, light, and low in cost. It becomes. In this load-sensitive continuously variable automatic transmission, when the load on the output side increases, the frictional force generated between the output disk on which the output shaft is fixed, the first power transmission disk, and the second power transmission disk Due to this, the distance from the center of the first power transmission disk (or the second power transmission disk) to the contact point between the output disk and the first power transmission disk (or the second power transmission disk) is short, In the direction that the distance from the center of the power transmission disk (or the second power transmission disk) to the contact point between the input disk and the first power transmission disk (or the second power transmission disk) becomes longer, the first power The transmission disk and the second power transmission disk automatically move to increase the reduction ratio. Further, when the load decreases, the output disk and the first power transmission disk (or the second power transmission disk) from the center of the first power transmission disk (or the second power transmission disk) by the biasing force of the biasing means. The distance to the contact point with the power transmission disk is long, and the input disk and the first power transmission disk (or the second power transmission disk) from the center of the first power transmission disk (or the second power transmission disk). The first power transmission disk and the second power transmission disk are automatically moved in the direction in which the distance to the contact point becomes shorter, thereby reducing the reduction ratio.

また、第一動力伝達円板は、入力軸に垂直で第一動力伝達円板に平行な方向に移動可能であり、第二動力伝達円板は、入力軸に垂直で第二動力伝達円板に平行な方向に移動可能であるので、よりスムーズに変速を行うことが出来る。   The first power transmission disc is movable in a direction perpendicular to the input shaft and parallel to the first power transmission disc, and the second power transmission disc is perpendicular to the input shaft and the second power transmission disc. Can be shifted more smoothly.

また、付勢手段は、ばね部材を用いても良いが、第一動力伝達円板および第二動力伝達円板の少なくともいずれか一方に湾曲部を設けることにより、付勢手段としてのばね部材や、付勢手段を固定する固定部材を特別に設けなくとも第一動力伝達円板および第二動力伝達円板に付勢力を作用させることができ、部品点数の削減や小型化につながる。   The biasing means may use a spring member, but by providing a curved portion in at least one of the first power transmission disk and the second power transmission disk, a spring member as the biasing means or The urging force can be applied to the first power transmission disk and the second power transmission disk without specially providing a fixing member for fixing the urging means, leading to reduction in the number of parts and miniaturization.

本発明の実施例に係る負荷感応型無段自動変速機を示す概念図である。1 is a conceptual diagram illustrating a load-sensitive continuously variable automatic transmission according to an embodiment of the present invention. 本発明の実施例に係る負荷感応型無段自動変速機の一部を示す斜視図である。1 is a perspective view showing a part of a load-sensitive continuously variable automatic transmission according to an embodiment of the present invention. 第一動力伝達円板を介する入力円板から出力円板への回転の伝達を示す説明図である。It is explanatory drawing which shows transmission of rotation from the input disk to an output disk via a 1st power transmission disk. 第二動力伝達円板を介する入力円板から出力円板への回転の伝達を示す説明図である。It is explanatory drawing which shows transmission of rotation from the input disk to an output disk via a 2nd power transmission disk. 第一動力伝達円板の、第一回転軸の延長線が入力軸および出力軸の延長線と交差しない位置へ第一動力伝達円板が移動した状態を誇張して示す説明図である。It is explanatory drawing which exaggerates and shows the state which the 1st power transmission disc moved to the position where the extension line of the 1st rotating shaft of the 1st power transmission disc does not cross | intersect the extension line of an input shaft and an output shaft. 第二動力伝達円板の、第二回転軸の延長線が入力軸および出力軸の延長線と交差しない位置へ第二動力伝達円板が移動した状態を誇張して示す説明図である。It is explanatory drawing which exaggerates and shows the state which the 2nd power transmission disc moved to the position where the extension line of the 2nd rotating shaft of the 2nd power transmission disc does not cross | intersect the extension line of an input shaft and an output shaft. 保持部材の第一挿通孔が、入力軸に垂直で第一動力伝達円板に平行な方向により長くなった負荷感応型無段自動変速機を示す斜視図である。FIG. 5 is a perspective view showing a load-sensitive continuously variable automatic transmission in which a first insertion hole of a holding member is elongated in a direction perpendicular to an input shaft and parallel to a first power transmission disc. 図7の負荷感応型無段自動変速機を紙面に略垂直な軸について180度回転させた状態を示す斜視図である。It is a perspective view which shows the state which rotated 180 degree | times about the axis | shaft substantially perpendicular | vertical to the paper surface of the load sensitive continuously variable transmission of FIG. 第一動力伝達円板が第一湾曲部を備え第二動力伝達円板が第二湾曲部を備えた負荷感応型無段自動変速機を示す概念図である。It is a conceptual diagram which shows the load-sensitive continuously variable automatic transmission with which the 1st power transmission disc was equipped with the 1st curved part, and the 2nd power transmission disk was equipped with the 2nd curved part.

以下に本発明の実施の形態について、図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例に係る負荷感応型無段自動変速機を示す概念図である。図2は、本発明の実施例に係る負荷感応型無段自動変速機の一部を示す斜視図である。主に、図1を参照して説明する。   FIG. 1 is a conceptual diagram showing a load-sensitive continuously variable automatic transmission according to an embodiment of the present invention. FIG. 2 is a perspective view showing a part of the load-sensitive continuously variable automatic transmission according to the embodiment of the present invention. The description will be given mainly with reference to FIG.

負荷感応型無段自動変速機は、入力軸10と、入力軸10に固定される入力円板11と、入力円板11に対向して離間配置される出力円板21と、出力円板21に固定され前記入力軸と同軸に配置される出力軸20と、入力円板11および出力円板21を挟持するように対向配置され、入力円板11から出力円板21へ摩擦力により回転を伝達する第一動力伝達円板30および第二動力伝達円板31と、第一動力伝達円板30および第二動力伝達円板31を回転可能に保持する保持部材40と、保持部材40を付勢する付勢手段50とを備える。   The load-sensitive continuously variable automatic transmission includes an input shaft 10, an input disk 11 fixed to the input shaft 10, an output disk 21 that is spaced apart from the input disk 11, and an output disk 21. The output shaft 20 fixed to the input shaft and arranged coaxially with the input shaft is disposed so as to sandwich the input disk 11 and the output disk 21, and rotates from the input disk 11 to the output disk 21 by frictional force. A first power transmission disk 30 and a second power transmission disk 31 for transmission, a holding member 40 for rotatably holding the first power transmission disk 30 and the second power transmission disk 31, and a holding member 40 are provided. Biasing means 50 for biasing.

入力軸10の一端は、図示しないモータなどの駆動源に接続され、入力軸10の他端には、入力円板11が固定される。入力円板11は、例えば、金属円板にて構成される。出力軸20は、入力軸10に同軸に配置され、出力軸20の一端には、出力円板21が固定される。出力軸20の他端には、図示しない被駆動装置が接続される。出力円板21は、入力円板11と同様に、例えば、金属円板にて構成される。なお、入力円板11の径と出力円板21の径は等しい。   One end of the input shaft 10 is connected to a drive source such as a motor (not shown), and the input disk 11 is fixed to the other end of the input shaft 10. The input disk 11 is composed of, for example, a metal disk. The output shaft 20 is disposed coaxially with the input shaft 10, and an output disk 21 is fixed to one end of the output shaft 20. A driven device (not shown) is connected to the other end of the output shaft 20. The output disc 21 is configured by, for example, a metal disc, like the input disc 11. The diameter of the input disk 11 and the diameter of the output disk 21 are equal.

第一動力伝達円板30および第二動力伝達円板31は、入力円板11および出力円板21を挟持するように対向配置される。第一動力伝達円板30および第二動力伝達円板31は、例えば、金属円板にて構成される。第一動力伝達円板30には、第一回転軸32が固定され、第二動力伝達円板31には、第二回転軸33が固定される。   The first power transmission disk 30 and the second power transmission disk 31 are arranged to face each other so as to sandwich the input disk 11 and the output disk 21. The 1st power transmission disc 30 and the 2nd power transmission disc 31 are constituted by a metal disc, for example. A first rotary shaft 32 is fixed to the first power transmission disc 30, and a second rotary shaft 33 is fixed to the second power transmission disc 31.

保持部材40は、例えば金属板によって構成され、第一動力伝達円板30の、入力円板11に接する面の反対側の面と、第二動力伝達円板31の、入力円板11に接する面の反対側の面と、(即ち、第一動力伝達円板30および第二動力伝達円板31の互いに対向していない側の面)に沿うように折り曲げられている(図2参照。)。第一動力伝達円板30側に折り曲げられた第一保持面41には、第一挿通孔43が設けられ、第一動力伝達円板30の第一回転軸32が挿通されて回転可能に保持される。第二動力伝達円板31側に折り曲げられた第二保持面42には、第二挿通孔44が設けられ、第二動力伝達円板31の第二回転軸33が挿通されて回転可能に保持される。このとき、第一動力伝達円板30および第二動力伝達円板31は、第一回転軸32および第二回転軸33が同軸に配置され、それらの軸の中心線が入力軸10および出力軸20の中心線と交差するように配置される。   The holding member 40 is made of, for example, a metal plate, and is in contact with the surface of the first power transmission disc 30 opposite to the surface in contact with the input disc 11 and the input disc 11 of the second power transmission disc 31. It is bent along the surface opposite to the surface (that is, the surface of the first power transmission disk 30 and the second power transmission disk 31 that are not opposed to each other) (see FIG. 2). . The first holding surface 41 bent toward the first power transmission disc 30 is provided with a first insertion hole 43, through which the first rotation shaft 32 of the first power transmission disc 30 is inserted and held rotatably. Is done. A second insertion hole 44 is provided in the second holding surface 42 bent to the second power transmission disc 31 side, and the second rotating shaft 33 of the second power transmission disc 31 is inserted and held rotatably. Is done. At this time, in the first power transmission disk 30 and the second power transmission disk 31, the first rotation shaft 32 and the second rotation shaft 33 are arranged coaxially, and the center lines of those axes are the input shaft 10 and the output shaft. It arrange | positions so that 20 centerlines may be crossed.

付勢手段50は、例えばばね等であり、一端が保持部材40に取り付けられる。付勢手段50の他端は、例えばハウジングなどの固定部材60に取り付けられる。付勢手段50は、付勢力による釣り合い位置に保持部材40の初期位置を決定し、保持部材40の移動を入力軸10および出力軸20に平行な方向に規制する。保持部材40の初期位置が決まると、保持部材40に対して回転可能に保持された第一動力伝達円板30および第二動力伝達円板31の、入力円板11および出力円板21に対する位置も決まる。   The biasing means 50 is, for example, a spring or the like, and one end is attached to the holding member 40. The other end of the urging means 50 is attached to a fixing member 60 such as a housing. The biasing means 50 determines an initial position of the holding member 40 at a balance position by the biasing force, and restricts the movement of the holding member 40 in a direction parallel to the input shaft 10 and the output shaft 20. When the initial position of the holding member 40 is determined, the positions of the first power transmission disk 30 and the second power transmission disk 31 held rotatably with respect to the holding member 40 with respect to the input disk 11 and the output disk 21. Is also determined.

上記構成の負荷感応型無段自動変速機の作用を以下に説明する。   The operation of the load-sensitive continuously variable automatic transmission having the above configuration will be described below.

図3は、第一動力伝達円板30を介する入力円板11から出力円板21への回転の伝達を示す説明図である。図3は、図1の上方から見た図で、第一動力伝達円板30の図1の下方向(図3の紙面の表から裏への方向)に入力円板11および出力円板21が配置されている様子を示す。図4は、第二動力伝達円板31を介する入力円板11から出力円板21への回転の伝達を示す説明図である。図4は、図1の上方から見た図で、説明のために第一動力伝達円板30の図示を省略している。   FIG. 3 is an explanatory view showing the transmission of rotation from the input disk 11 to the output disk 21 via the first power transmission disk 30. FIG. 3 is a view from above of FIG. 1, and the input disk 11 and the output disk 21 in the lower direction of FIG. 1 of the first power transmission disk 30 (the direction from the front to the back of FIG. 3). Shows a state where is arranged. FIG. 4 is an explanatory view showing the transmission of rotation from the input disk 11 to the output disk 21 via the second power transmission disk 31. FIG. 4 is a view from above of FIG. 1, and the illustration of the first power transmission disk 30 is omitted for the sake of explanation.

入力軸10から出力軸20への回転の伝達過程について説明する。図2に示すように、入力軸10が図示しないモータなどの駆動源によって、図2の左方向から見て時計方向(図3、図4の矢印B方向)に回転すると、入力軸10に固定された入力円板11が同じ方向(図3、図4の矢印B方向)に一体回転する。入力円板11が回転すると、入力円板11から第一動力伝達円板30へと摩擦伝動で回転が伝達され、第一動力伝達円板30は、第一回転軸32を回転中心として、図2の上方から見て反時計方向(図3の矢印C方向)に回転する。これとともに、入力円板11から第二動力伝達円板31へと摩擦力で回転が伝達され、第二動力伝達円板31は、第二回転軸33を回転中心として、図2の上方から見て時計方向(図4の矢印D方向)に回転する。第一動力伝達円板30および第二動力伝達円板31の回転は、出力円板21へ摩擦力で伝達され、出力円板21は図2の右から見て時計方向(図3、図4の矢印E方向)に回転する。   A process of transmitting rotation from the input shaft 10 to the output shaft 20 will be described. As shown in FIG. 2, when the input shaft 10 is rotated clockwise (in the direction of arrow B in FIGS. 3 and 4) when viewed from the left in FIG. The input disc 11 thus rotated integrally rotates in the same direction (the direction of arrow B in FIGS. 3 and 4). When the input disk 11 rotates, the rotation is transmitted from the input disk 11 to the first power transmission disk 30 by frictional transmission, and the first power transmission disk 30 has the first rotation shaft 32 as the center of rotation. Rotate counterclockwise (in the direction of arrow C in FIG. 3) when viewed from above 2. At the same time, rotation is transmitted from the input disk 11 to the second power transmission disk 31 by frictional force, and the second power transmission disk 31 is viewed from above in FIG. And rotate clockwise (arrow D direction in FIG. 4). The rotation of the first power transmission disk 30 and the second power transmission disk 31 is transmitted to the output disk 21 by frictional force, and the output disk 21 is clockwise when viewed from the right in FIG. 2 (FIGS. 3 and 4). In the direction of arrow E).

図3、図4のように、駆動源から入力円板11に与えられるトルクは、第一動力伝達円板30および第二動力伝達円板31を介して、出力円板21へ伝達される。このとき回転速度は、第一動力伝達円板30の中心から第一動力伝達円板30と入力円板11との接点Xまでの距離a(=第二動力伝達円板31の中心から第二動力伝達円板31と入力円板11との接点Mまでの距離c)、第一動力伝達円板30の中心から第一動力伝達円板30と出力円板21との接点Yまでの距離b(=第二動力伝達円板31の中心から第二動力伝達円板31と出力円板21との接点Nまでの距離d)に応じて変速する。   As shown in FIGS. 3 and 4, the torque applied to the input disk 11 from the drive source is transmitted to the output disk 21 via the first power transmission disk 30 and the second power transmission disk 31. At this time, the rotational speed is the distance a from the center of the first power transmission disk 30 to the contact X between the first power transmission disk 30 and the input disk 11 (= the second power transmission disk 31 to the second center). Distance c) between the power transmission disk 31 and the input disk 11 to the contact point M), distance b from the center of the first power transmission disk 30 to the contact point Y between the first power transmission disk 30 and the output disk 21 (= Distance d from the center of the second power transmission disk 31 to the contact point N between the second power transmission disk 31 and the output disk 21).

入力円板11から出力円板21への回転の伝達に伴う変速比は、次のように求められる。入力円板11によって第一動力伝達円板30および第二動力伝達円板31が一回転するとき、入力円板11は、(2×π×a/(入力円板11の全周の長さ))回転し、出力円板21は、((2×π×b/(出力円板21の全周の長さ))回転する。入力円板11と出力円板21の径は等しく、入力円板11の全周の長さと出力円板21の全周の長さは等しいため、入力円板11が一回転するとき、((2×π×b/(出力円板21の全周の長さ))/(2×π×a/(入力円板11の全周の長さ))=(b/a)となり、出力円板21は(b/a)回転する。このように、出力円板21の回転速度は入力円板11の回転速度の(b/a)倍になる。   The gear ratio accompanying transmission of rotation from the input disk 11 to the output disk 21 is obtained as follows. When the first power transmission disk 30 and the second power transmission disk 31 are rotated once by the input disk 11, the input disk 11 is (2 × π × a / (length of the entire circumference of the input disk 11). )) And the output disc 21 rotates ((2 × π × b / (length of the entire circumference of the output disc 21)). The diameters of the input disc 11 and the output disc 21 are the same, and the input disc 21 is rotated. Since the length of the entire circumference of the disk 11 and the length of the entire circumference of the output disk 21 are equal, when the input disk 11 makes one revolution, ((2 × π × b / (the total circumference of the output disk 21 Length)) / (2 × π × a / (length of the entire circumference of the input disk 11)) = (b / a), and the output disk 21 rotates (b / a). The rotational speed of the output disk 21 is (b / a) times the rotational speed of the input disk 11.

入力円板11の回転により第一動力伝達円板30および第二動力伝達円板31に及ぼされる力をF1とすると、第一動力伝達円板30および第二動力伝達円板31に生じるトルクはF1×aである。第一動力伝達円板30および第二動力伝達円板31の回転により出力円板に及ぼされる力をF2とすると、第一動力伝達円板30および第二動力伝達円板31上の接点Xと接点Y(接点Mと接点N)でのトルクは等しいため、F1×a=F2×bとなり、F2=(a/b)×F1である。つまり、出力円板21には、入力円板11の回転による力のa/b倍の力が及ぼされる。入力円板11の半径をr1とすると、入力円板11のトルクT1はF1×r1、出力円板21の半径をr2とすると、出力円板21のトルクT2はF2×r2であり、入力円板11の半径r1と出力円板21の半径r2とは等しいので、T2/T1=(F2×r2)/(F1×r1)=(a/b)となり、出力円板21のトルクは入力円板11のトルクの(a/b)倍となる。   When the force exerted on the first power transmission disk 30 and the second power transmission disk 31 by the rotation of the input disk 11 is F1, the torque generated in the first power transmission disk 30 and the second power transmission disk 31 is F1 × a. When the force exerted on the output disk by the rotation of the first power transmission disk 30 and the second power transmission disk 31 is F2, the contact X on the first power transmission disk 30 and the second power transmission disk 31 and Since the torque at the contact Y (contact M and contact N) is equal, F1 × a = F2 × b, and F2 = (a / b) × F1. That is, the output disk 21 is subjected to a force a / b times the force generated by the rotation of the input disk 11. If the radius of the input disc 11 is r1, the torque T1 of the input disc 11 is F1 × r1, and if the radius of the output disc 21 is r2, the torque T2 of the output disc 21 is F2 × r2, and the input circle Since the radius r1 of the plate 11 is equal to the radius r2 of the output disc 21, T2 / T1 = (F2 × r2) / (F1 × r1) = (a / b), and the torque of the output disc 21 is the input disc. This is (a / b) times the torque of the plate 11.

ここで、出力軸20に負荷がかかると、出力円板21は第一動力伝達円板30および第二動力伝達円板31に摩擦力を及ぼす。摩擦力の方向は、第一動力伝達円板30および第二動力伝達円板31のそれぞれの回転方向の反対方向で、第一動力伝達円板30については、図3の矢印G方向、第二動力伝達円板31については、図4の矢印H方向である。この摩擦力によって、第一動力伝達円板30は図3の下方向(矢印G方向)へ、第二動力伝達円板31は図4の上方向(矢印H方向)へ、保持部材40への取り付けのガタが許容する分だけ、第一動力伝達円板30の第一回転軸32および第二動力伝達円板31の第二回転軸33の延長線が、入力軸10および出力軸20の延長線と交差しない位置に移動する。第一動力伝達円板30は、図3の下方向へ移動するので、入力円板11との接点Xおよび出力円板21との接点Yは、第一回転軸32の中心より図3の上側となる。第二動力伝達円板31は、図4の上方向へ移動するので、入力円板11との接点Mおよび出力円板21との接点Nは、第二回転軸33の中心より図4の下側となる。   Here, when a load is applied to the output shaft 20, the output disk 21 exerts a frictional force on the first power transmission disk 30 and the second power transmission disk 31. The direction of the frictional force is opposite to the rotational direction of each of the first power transmission disc 30 and the second power transmission disc 31. For the first power transmission disc 30, the direction of the arrow G in FIG. About the power transmission disc 31, it is an arrow H direction of FIG. Due to this frictional force, the first power transmission disc 30 is moved downward (arrow G direction) in FIG. 3, the second power transmission disc 31 is moved upward (arrow H direction) in FIG. The extension lines of the first rotating shaft 32 of the first power transmission disk 30 and the second rotating shaft 33 of the second power transmission disk 31 extend the input shaft 10 and the output shaft 20 as much as the mounting backlash allows. Move to a position that does not intersect the line. Since the first power transmission disk 30 moves downward in FIG. 3, the contact point X with the input disk 11 and the contact point Y with the output disk 21 are above the center of the first rotating shaft 32 in FIG. 3. It becomes. Since the second power transmission disk 31 moves upward in FIG. 4, the contact point M with the input disk 11 and the contact point N with the output disk 21 are below the center of the second rotating shaft 33 in FIG. 4. Become the side.

図5は、第一動力伝達円板30が、第一回転軸32の中心線が入力軸10および出力軸20の中心線と交差しない位置へ移動した状態を誇張して示す説明図である。図6は、第二動力伝達円板31が、第二回転軸33の延長線が入力軸10および出力軸20の延長線と交差しない位置へ移動した状態を誇張して示す説明図である。出力軸20に負荷がかかると、第一動力伝達円板30は出力円板21に、図5の矢印Jの方向の摩擦力を及ぼす。第一動力伝達円板30が出力円板21に及ぼす摩擦力の、入力軸10および出力軸20に平行な方向の成分は、出力円板21を図5の左方向に移動させるように作用するが、出力円板21および出力軸20は入力軸10および出力軸20に平行な方向へ移動出来ないため、出力円板21の図5の左方向に作用する力の反作用力が、第一動力伝達円板30を図5の右方向に移動させるように作用し、第一動力伝達円板30を、入力円板11および出力円板21に対し、図5の右方向へ移動させる。これにより、第一動力伝達円板30の中心から第一動力伝達円板30と入力円板11の接点Xまでの距離aが大きくなり、第一動力伝達円板30の中心から第一動力伝達円板30と出力円板21との接点Yまでの距離bが小さくなる。   FIG. 5 is an explanatory view exaggeratingly showing a state in which the first power transmission disc 30 has moved to a position where the center line of the first rotating shaft 32 does not intersect the center lines of the input shaft 10 and the output shaft 20. FIG. 6 is an explanatory view exaggeratingly showing a state in which the second power transmission disc 31 has moved to a position where the extension line of the second rotating shaft 33 does not intersect the extension lines of the input shaft 10 and the output shaft 20. When a load is applied to the output shaft 20, the first power transmission disk 30 exerts a frictional force in the direction of arrow J in FIG. The component in the direction parallel to the input shaft 10 and the output shaft 20 of the frictional force exerted on the output disc 21 by the first power transmission disc 30 acts to move the output disc 21 leftward in FIG. However, since the output disc 21 and the output shaft 20 cannot move in a direction parallel to the input shaft 10 and the output shaft 20, the reaction force of the force acting on the left side of the output disc 21 in FIG. The transmission disk 30 is operated to move in the right direction in FIG. 5, and the first power transmission disk 30 is moved in the right direction in FIG. 5 with respect to the input disk 11 and the output disk 21. As a result, the distance a from the center of the first power transmission disk 30 to the contact X between the first power transmission disk 30 and the input disk 11 is increased, and the first power transmission from the center of the first power transmission disk 30 is increased. The distance b to the contact point Y between the disc 30 and the output disc 21 is reduced.

同様に、出力軸20に負荷がかかると、第二動力伝達円板31は出力円板21に、図6の矢印Kの方向の摩擦力を及ぼす。第二動力伝達円板31が出力円板21に及ぼす摩擦力の、入力軸10および出力軸20に平行な方向の成分は、出力円板21を図6の左方向に移動させるように作用するが、出力円板21および出力軸20は入力軸10および出力軸20に平行な方向へ移動出来ないため、出力円板21の図6の左方向に作用する力の反作用の力が、第二動力伝達円板31を図6の右方向に移動させるように作用し、第二動力伝達円板31を、入力円板11および出力円板21に対し、図6の右方向へ移動させる。これにより、第二動力伝達円板31の中心から第二動力伝達円板31と入力円板11の接点Mまでの距離cが大きくなり、第二動力伝達円板31の中心から第二動力伝達円板31と出力円板21との接点Nまでの距離dが小さくなる。   Similarly, when a load is applied to the output shaft 20, the second power transmission disk 31 exerts a frictional force in the direction of arrow K in FIG. 6 on the output disk 21. The component in the direction parallel to the input shaft 10 and the output shaft 20 of the frictional force exerted on the output disc 21 by the second power transmission disc 31 acts to move the output disc 21 leftward in FIG. However, since the output disc 21 and the output shaft 20 cannot move in the direction parallel to the input shaft 10 and the output shaft 20, the reaction force of the force acting on the left side of the output disc 21 in FIG. The power transmission disk 31 is moved to the right in FIG. 6, and the second power transmission disk 31 is moved to the right in FIG. 6 with respect to the input disk 11 and the output disk 21. As a result, the distance c from the center of the second power transmission disk 31 to the contact point M between the second power transmission disk 31 and the input disk 11 is increased, and the second power transmission from the center of the second power transmission disk 31 is increased. The distance d to the contact point N between the disk 31 and the output disk 21 is reduced.

なお、第一動力伝達円板30および第二動力伝達円板31は、保持部材40により連結されているため、第一動力伝達円板30および第二動力伝達円板31の移動後、距離aと距離c、距離bと距離dとはそれぞれ等しくなる。また、保持部材40に取り付けられた付勢手段50は、保持部材40が第一動力伝達円板30および第二動力伝達円板31とともに移動するのにともない、付勢力を生じるようになる。   Since the first power transmission disk 30 and the second power transmission disk 31 are connected by the holding member 40, the distance a after the movement of the first power transmission disk 30 and the second power transmission disk 31 is determined. And distance c, and distance b and distance d are equal. Further, the biasing means 50 attached to the holding member 40 generates a biasing force as the holding member 40 moves together with the first power transmission disk 30 and the second power transmission disk 31.

第一動力伝達円板30の中心から第一動力伝達円板30と入力円板11との接点Xまでの距離a(=第二動力伝達円板31の中心から第二動力伝達円板31と入力円板11との接点Mまでの距離c)が大きくなり、第一動力伝達円板30の中心から第一動力伝達円板30と出力円板21との接点Yまでの距離b(=第二動力伝達円板31の中心から第二動力伝達円板31と出力円板21との接点Nまでの距離d)が小さくなることと、入力円板11の回転速度は(b/a)倍になって出力円板21に伝達されることから、入力円板11の回転は、出力軸20に負荷がかかる前と比べてより大きく減速されて出力円板21に伝達される。よって、第一動力伝達円板30および第二動力伝達円板31の移動に伴い、出力円板21の周速と、第一動力伝達円板30と出力円板21との接点Yの第一動力伝達円板30上での周速および第二動力伝達円板31と出力円板21との接点Nの第二動力伝達円板31上での周速との差が小さくなる。そして、出力円板21の周速と、第一動力伝達円板30と出力円板21との接点Yの第一動力伝達円板30上での周速および第二動力伝達円板31と出力円板21との接点Nの第二動力伝達円板31上での周速とが釣り合うところで、第一動力伝達円板30および第二動力伝達円板31の、入力円板11および出力円板21に対する移動が停止する。このとき、上記のように、出力円板21のトルクは入力円板11のトルクの(a/b)倍であり、出力軸20にかかる負荷により、aが大きく、bが小さくなるため、負荷がかかる前と比べて、入力円板11のトルクは出力円板21へ、より大きく増幅されて伝達される。   Distance a from the center of the first power transmission disk 30 to the contact X between the first power transmission disk 30 and the input disk 11 (= the center of the second power transmission disk 31 to the second power transmission disk 31 The distance c) from the center of the first power transmission disk 30 to the contact point Y between the first power transmission disk 30 and the output disk 21 is increased (the distance c from the center of the first power transmission disk 30). The distance d) from the center of the second power transmission disk 31 to the contact point N between the second power transmission disk 31 and the output disk 21 is reduced, and the rotational speed of the input disk 11 is (b / a) times. Therefore, the rotation of the input disk 11 is transmitted to the output disk 21 after being decelerated more than before the load is applied to the output shaft 20. Therefore, as the first power transmission disk 30 and the second power transmission disk 31 move, the peripheral speed of the output disk 21 and the first contact Y between the first power transmission disk 30 and the output disk 21 are increased. The difference between the peripheral speed on the power transmission disk 30 and the peripheral speed on the second power transmission disk 31 at the contact point N between the second power transmission disk 31 and the output disk 21 is reduced. The peripheral speed of the output disk 21, the peripheral speed of the contact Y between the first power transmission disk 30 and the output disk 21 on the first power transmission disk 30, and the second power transmission disk 31 and the output The input disk 11 and the output disk of the first power transmission disk 30 and the second power transmission disk 31 where the peripheral speed on the second power transmission disk 31 of the contact point N with the disk 21 is balanced. The movement with respect to 21 stops. At this time, as described above, the torque of the output disk 21 is (a / b) times the torque of the input disk 11, and a is large and b is small due to the load applied to the output shaft 20, The torque of the input disk 11 is amplified and transmitted to the output disk 21 more greatly than before.

出力軸20にかかっていた負荷が減少すると、第一動力伝達円板30および第二動力伝達円板31は、保持部材40に取り付けられた付勢手段50の付勢力により、入力円板11および出力円板21に対して、図5、図6の左方向に移動する。よって、第一動力伝達円板30の中心から第一動力伝達円板30と入力円板11との接点Xまでの距離a(=第二動力伝達円板31の中心から第二動力伝達円板31と入力円板11との接点Mまでの距離c)が短くなり、第一動力伝達円板30の中心から第一動力伝達円板30と出力円板21との接点Yまでの距離b(=第二動力伝達円板31の中心から第二動力伝達円板31と出力円板21との接点Nまでの距離d)が大きくなることと、入力円板11の回転速度は(b/a)倍になって出力円板21に伝達されることから、入力円板11の回転は、減速がそれまでより小さくなって出力円板21に伝達される。   When the load applied to the output shaft 20 is reduced, the first power transmission disk 30 and the second power transmission disk 31 are moved by the urging force of the urging means 50 attached to the holding member 40 and the input disk 11 and The output disk 21 moves to the left in FIGS. Therefore, the distance a from the center of the first power transmission disk 30 to the contact X between the first power transmission disk 30 and the input disk 11 (= the center of the second power transmission disk 31 to the second power transmission disk 31) The distance c) from the center of the first power transmission disk 30 to the contact Y between the first power transmission disk 30 and the output disk 21 is shortened. = The distance d) from the center of the second power transmission disk 31 to the contact point N between the second power transmission disk 31 and the output disk 21 is increased, and the rotational speed of the input disk 11 is (b / a ) Is doubled and transmitted to the output disk 21, so that the rotation of the input disk 11 is transmitted to the output disk 21 with a smaller deceleration than before.

このように、小型軽量かつ低コストな構成で、出力軸20にかかる負荷に応じて自動的に無段階に変速可能な負荷感応型無段自動変速機が得られる。   Thus, a load-sensitive continuously variable automatic transmission that can automatically and continuously change gears according to the load applied to the output shaft 20 with a small, light and low-cost configuration is obtained.

本実施例の負荷感応型無段自動変速機は、負荷が大きいときには自動的に減速比が大きくなって低速で確実に回転し、負荷が小さいときには自動的に減速比が小さくなって高速に回転するため、安全で使い勝手の良い電動機器を構成出来る。   The load-sensitive continuously variable automatic transmission of the present embodiment automatically increases at a low speed when the load is large and rotates reliably at a low speed, and automatically rotates at a high speed at a low speed when the load is small. Therefore, a safe and easy-to-use electric device can be configured.

本実施例の負荷感応型無段自動変速機は、例えば自動車の電動シートの駆動装置に適用出来る。シートに着座者がないときは負荷が小さくなり、減速比が小さくなるため、高速に移動させることが出来る。シートに着座者があるときは、負荷が大きくなり、減速比が大きくなるため、低速でより安全に移動させることが出来る。また、負荷が大きくなると減速比が大きくなるため、入力側に使用するモータのトルクを小さく抑えることが出来、モータを小型化することが出来る。よって、電動シートの駆動装置の軽量化、小型化、省電力化が可能となる。また、他に動力源や負荷検出器などを用いることなく、負荷に応じた減速比の自動変速が可能となり、電動シートの駆動装置の部品点数削減、小型化、低コスト化が可能となる。   The load-sensitive continuously variable automatic transmission according to the present embodiment can be applied to, for example, an electric seat driving device of an automobile. When there is no seated person on the seat, the load is reduced and the reduction ratio is reduced, so that the seat can be moved at a high speed. When there is a seated person on the seat, the load increases and the reduction ratio increases, so that the seat can be moved more safely at a low speed. Moreover, since the reduction ratio increases as the load increases, the torque of the motor used on the input side can be kept small, and the motor can be downsized. Therefore, the weight reduction, size reduction, and power saving of the drive device for the electric seat can be achieved. Further, automatic transmission with a reduction ratio corresponding to the load can be performed without using any other power source or load detector, and the number of parts of the driving device for the electric seat can be reduced, and the size and cost can be reduced.

図7は、保持部材40の第一挿通孔43が、入力軸10に垂直で第一動力伝達円板30に平行な方向により長くなった負荷感応型無段自動変速機を示す斜視図である。図8は、図7の負荷感応型無段自動変速機を紙面に略垂直な軸について180度回転させた状態を示す斜視図である。上記実施例では、第一動力伝達円板30に固定された第一回転軸32は、保持部材40に設けられた第一挿通孔43に挿通されて回転可能に保持され、第二動力伝達円板31は、保持部材40に設けられた第二挿通孔44に挿通されて回転可能に保持され、出力軸20にかかる負荷により生じる摩擦力を受けて、第一動力伝達円板30および第二動力伝達円板31は、保持部材40への取り付けのガタが許容する分だけ移動する。ここで、保持部材40の第一挿通孔43に第一回転軸32を挿通した状態で、入力軸10に垂直で第一動力伝達円板30に平行な方向により大きなガタが出来るように、第一挿通孔43の、入力軸10に垂直で第一動力伝達円板30に平行な方向をより長くすると、出力軸20にかかる負荷により生じる摩擦力を受けて、第一動力伝達円板30は入力軸10に垂直で第一動力伝達円板30に平行な方向にスムーズに移動する。また、保持部材40の第二挿通孔44に第二回転軸33を挿通した状態で、入力軸10に垂直で第二動力伝達円板31に平行な方向により大きなガタが出来るように、第二挿通孔44の、入力軸10に垂直で第二動力伝達円板31に平行な方向をより長くすると、出力軸20にかかる負荷により生じる摩擦力を受けて、第二動力伝達円板31は入力軸10に垂直で第二動力伝達円板31に平行な方向にスムーズに移動する。よって、よりスムーズな変速が可能である。   FIG. 7 is a perspective view showing a load-sensitive continuously variable automatic transmission in which the first insertion hole 43 of the holding member 40 is longer in the direction perpendicular to the input shaft 10 and parallel to the first power transmission disc 30. . FIG. 8 is a perspective view showing a state in which the load-sensitive continuously variable automatic transmission of FIG. 7 is rotated 180 degrees about an axis substantially perpendicular to the paper surface. In the above embodiment, the first rotating shaft 32 fixed to the first power transmission disc 30 is inserted into the first insertion hole 43 provided in the holding member 40 and is rotatably held, and the second power transmission circle is provided. The plate 31 is inserted into the second insertion hole 44 provided in the holding member 40 and is rotatably held, and receives the frictional force generated by the load applied to the output shaft 20 to receive the first power transmission disc 30 and the second plate 31. The power transmission disc 31 moves as much as the backlash attached to the holding member 40 allows. Here, in a state where the first rotating shaft 32 is inserted into the first insertion hole 43 of the holding member 40, the first play is performed so that a large backlash is generated in a direction perpendicular to the input shaft 10 and parallel to the first power transmission disc 30. When the direction of the insertion hole 43 that is perpendicular to the input shaft 10 and parallel to the first power transmission disk 30 is made longer, the first power transmission disk 30 receives the frictional force generated by the load applied to the output shaft 20. It moves smoothly in a direction perpendicular to the input shaft 10 and parallel to the first power transmission disc 30. Further, the second rotation shaft 33 is inserted into the second insertion hole 44 of the holding member 40, so that a large backlash is generated in a direction perpendicular to the input shaft 10 and parallel to the second power transmission disc 31. When the direction of the insertion hole 44 perpendicular to the input shaft 10 and parallel to the second power transmission disk 31 is made longer, the second power transmission disk 31 receives the frictional force generated by the load applied to the output shaft 20 and the second power transmission disk 31 receives the input. It moves smoothly in a direction perpendicular to the shaft 10 and parallel to the second power transmission disk 31. Therefore, a smoother speed change is possible.

図9は、第一動力伝達円板30が第一湾曲部34を備え第二動力伝達円板31が第二湾曲部35を備えた負荷感応型無段自動変速機を示す概念図である。上記実施例では、第一動力伝達円板30および第二動力伝達円板31を回転可能に保持する保持部材40を付勢するばねなどの付勢手段50(図1)を備えていたが、第一動力伝達円板30の入力円板11および出力円板21に接する面に第一湾曲部34、第二動力伝達円板31の入力円板11および出力円板21に接する面に第二湾曲部35を設けて、付勢手段としても良い。これにより、出力軸20にかかる負荷により生じる摩擦力を受けて、第一動力伝達円板30および第二動力伝達円板31が入力円板11および出力円板21に対して図9の左方向に移動する際、第一動力伝達円板30および第二動力伝達円板31は入力円板11に第一湾曲部34および第二湾曲部35を入力軸10に垂直な方向(図9の上下方向)に押されて弾性変形しながら移動する。よって、出力軸20にかかる負荷が減少すると、第一動力伝達円板30および第二動力伝達円板31は、第一動力伝達円板30および第二動力伝達円板31の弾性力が減少する方向へ移動する。従って、付勢手段としてのばねや、図1の付勢手段50を固定する固定部材60が不要となり、部品点数の削減や小型化につながる。なお、第一動力伝達円板30の第一湾曲部34および第二動力伝達円板31の第二湾曲部35のいずれか一方を設けて他方は平板としても、同様の効果が得られる。   FIG. 9 is a conceptual diagram showing a load-sensitive continuously variable automatic transmission in which the first power transmission disc 30 includes a first curved portion 34 and the second power transmission disc 31 includes a second curved portion 35. In the above-described embodiment, the first power transmission disc 30 and the second power transmission disc 31 are provided with the biasing means 50 (FIG. 1) such as a spring that biases the holding member 40 that rotatably holds the first power transmission disc 30. The first curved portion 34 is in contact with the input disc 11 and the output disc 21 of the first power transmission disc 30, and the second surface is in contact with the input disc 11 and the output disc 21 of the second power transmission disc 31. The bending portion 35 may be provided as an urging means. Accordingly, the first power transmission disk 30 and the second power transmission disk 31 receive the frictional force generated by the load applied to the output shaft 20, and the left direction in FIG. 9 with respect to the input disk 11 and the output disk 21. 9, the first power transmission disc 30 and the second power transmission disc 31 move the first curved portion 34 and the second curved portion 35 to the input disc 11 in a direction perpendicular to the input shaft 10 (in FIG. Direction) and move while elastically deforming. Therefore, when the load applied to the output shaft 20 is reduced, the first power transmission disc 30 and the second power transmission disc 31 are reduced in elastic force of the first power transmission disc 30 and the second power transmission disc 31. Move in the direction. Therefore, the spring as the urging means and the fixing member 60 for fixing the urging means 50 in FIG. 1 are not required, leading to reduction in the number of parts and miniaturization. The same effect can be obtained by providing one of the first curved portion 34 of the first power transmission disc 30 and the second curved portion 35 of the second power transmission disc 31 and the other being a flat plate.

なお、上記実施例では、入力軸20の回転方向を図3の矢印B方向として説明したが、入力軸20の回転が逆方向であっても、同様の効果が得られる。   In the above embodiment, the rotation direction of the input shaft 20 has been described as the arrow B direction in FIG. 3, but the same effect can be obtained even if the rotation of the input shaft 20 is in the reverse direction.

また、本実施例では保持部材40に設けられた第一挿通孔43および第二挿通孔44により、第一動力伝達円板30および第二動力伝達円板31の回転軸を保持する構成としたが、これに限定されない。第一動力伝達円板30および第二動力伝達円板31は、ベアリング等の軸受機構を介して保持部材40に回転可能に保持される構成としてもよい。この場合、軸受機構は保持部材40に固定されてもよいし、保持部材40の第一保持面41および第二保持面42の上を入力軸10および出力軸20と直交する方向にわずかに摺動可能に設置されてもよい。   In this embodiment, the first insertion hole 43 and the second insertion hole 44 provided in the holding member 40 are used to hold the rotation shafts of the first power transmission disk 30 and the second power transmission disk 31. However, it is not limited to this. The first power transmission disc 30 and the second power transmission disc 31 may be configured to be rotatably held by the holding member 40 via a bearing mechanism such as a bearing. In this case, the bearing mechanism may be fixed to the holding member 40, and slightly slides on the first holding surface 41 and the second holding surface 42 of the holding member 40 in a direction orthogonal to the input shaft 10 and the output shaft 20. It may be installed movably.

10 入力軸
11 入力円板
20 出力軸
21 出力円板
30 第一動力伝達円板
31 第二動力伝達円板
34 湾曲部(第1湾曲部)
35 湾曲部(第2湾曲部)
40 保持部材
50 付勢手段
DESCRIPTION OF SYMBOLS 10 Input shaft 11 Input disk 20 Output shaft 21 Output disk 30 1st power transmission disk 31 2nd power transmission disk 34 Bending part (1st bending part)
35 bending portion (second bending portion)
40 holding member 50 biasing means

Claims (3)

入力軸と、
前記入力軸に固定される入力円板と、
前記入力円板に対向して離間配置される出力円板と、
前記出力円板に固定され前記入力軸と同軸に配置される出力軸と、
前記入力円板および前記出力円板を挟持するように対向配置され、前記入力円板から前記出力円板へ摩擦力を介して回転を伝達する第一動力伝達円板および第二動力伝達円板と、
前記第一動力伝達円板および前記第二動力伝達円板を回転可能に保持する保持部材と、
前記保持部材を付勢する付勢手段とを備えたことを特徴とする負荷感応型無段自動変速機。
An input shaft;
An input disk fixed to the input shaft;
An output disc spaced apart from the input disc; and
An output shaft fixed to the output disc and disposed coaxially with the input shaft;
A first power transmission disk and a second power transmission disk, which are arranged so as to sandwich the input disk and the output disk, and transmit rotation from the input disk to the output disk via a frictional force. When,
A holding member for rotatably holding the first power transmission disc and the second power transmission disc;
A load-sensitive continuously variable automatic transmission comprising an urging means for urging the holding member.
前記保持部材は、前記第一動力伝達円板を前記入力軸に垂直で前記第一動力伝達円板に平行な方向に移動可能に保持し、前記第二動力伝達円板を前記入力軸に垂直で前記第二動力伝達円板に平行な方向に移動可能に保持することを特徴とする請求項1に記載の負荷感応型自動変速機。 The holding member holds the first power transmission disc movably in a direction perpendicular to the input shaft and parallel to the first power transmission disc, and the second power transmission disc is perpendicular to the input shaft. The load-sensitive automatic transmission according to claim 1, wherein the load-sensitive automatic transmission is held movably in a direction parallel to the second power transmission disc. 前記付勢手段は、前記第一動力伝達円板および前記第二動力伝達円板の少なくともいずれか一方に設けられた湾曲部であることを特徴とする請求項1又は2に記載の負荷感応型自動変速機。 3. The load-sensitive type according to claim 1, wherein the biasing means is a curved portion provided in at least one of the first power transmission disk and the second power transmission disk. Automatic transmission.
JP2009279138A 2009-12-09 2009-12-09 Load-sensitive continuously variable automatic transmission Expired - Fee Related JP5423368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279138A JP5423368B2 (en) 2009-12-09 2009-12-09 Load-sensitive continuously variable automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279138A JP5423368B2 (en) 2009-12-09 2009-12-09 Load-sensitive continuously variable automatic transmission

Publications (2)

Publication Number Publication Date
JP2011122625A true JP2011122625A (en) 2011-06-23
JP5423368B2 JP5423368B2 (en) 2014-02-19

Family

ID=44286716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279138A Expired - Fee Related JP5423368B2 (en) 2009-12-09 2009-12-09 Load-sensitive continuously variable automatic transmission

Country Status (1)

Country Link
JP (1) JP5423368B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216157A (en) * 1988-02-23 1989-08-30 Sumitomo Heavy Ind Ltd Continuously variable transmission
JPH06123341A (en) * 1991-12-19 1994-05-06 Yoshiyuki Hirose Continuously variable automatic transmission
US5472388A (en) * 1991-12-19 1995-12-05 Lee; Dong H. Rotary to stepless motion converter
JP2002327816A (en) * 2001-04-27 2002-11-15 Kayseven Co Ltd Continuously variable transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216157A (en) * 1988-02-23 1989-08-30 Sumitomo Heavy Ind Ltd Continuously variable transmission
JPH06123341A (en) * 1991-12-19 1994-05-06 Yoshiyuki Hirose Continuously variable automatic transmission
US5472388A (en) * 1991-12-19 1995-12-05 Lee; Dong H. Rotary to stepless motion converter
JP2002327816A (en) * 2001-04-27 2002-11-15 Kayseven Co Ltd Continuously variable transmission

Also Published As

Publication number Publication date
JP5423368B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
TW463018B (en) Continuously variable transmission for motor vehicles
JP2017141869A (en) Planetary gear device
JP2005351386A (en) Planetary roller type continuously variable transmission
JP7470477B2 (en) Planetary gear arrangement with a planetary gear stage, position sensor system with such arrangement, and method for reducing backlash in such arrangement - Patents.com
JP6557067B2 (en) Backlash-less mechanism of planetary gear mechanism
JP2007155039A (en) Traction transmission device
JP2011141035A (en) Planetary gear type reduction gear with magnetic torque limiter
JP5423368B2 (en) Load-sensitive continuously variable automatic transmission
JP5044871B2 (en) Electric drive
WO2019078088A1 (en) Transmission
US20040209730A1 (en) Transmission-roller supporting mechanism on transmission apparatus of wedge roller type
US4520693A (en) High ratio drive
JP6665663B2 (en) Gear reducer
JP2017219148A (en) Drive transmission device
JP2002252365A (en) Solar-light tracking device
KR20020089678A (en) Continuously variable transmission
JP6248056B2 (en) Rotation direction reversing device
US20070278063A1 (en) Unidirectional clutch
JP5441030B2 (en) Automatic transmission
JP2018001937A (en) Steering device
JP2020133719A (en) Traction transmission and actuator
KR100787366B1 (en) Limited slip differential device using centrifugal force
JP2008164065A (en) Reverse input cut-off reduction gear
JPS59226733A (en) Rotation transmitting device
JP2015124817A (en) Belt-type stepless transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

LAPS Cancellation because of no payment of annual fees