JP2011122552A - Exhaust emission control system of internal combustion engine - Google Patents

Exhaust emission control system of internal combustion engine Download PDF

Info

Publication number
JP2011122552A
JP2011122552A JP2009282812A JP2009282812A JP2011122552A JP 2011122552 A JP2011122552 A JP 2011122552A JP 2009282812 A JP2009282812 A JP 2009282812A JP 2009282812 A JP2009282812 A JP 2009282812A JP 2011122552 A JP2011122552 A JP 2011122552A
Authority
JP
Japan
Prior art keywords
nitrous oxide
exhaust gas
ammonia
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009282812A
Other languages
Japanese (ja)
Inventor
Hiroaki Okumura
博昭 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2009282812A priority Critical patent/JP2011122552A/en
Publication of JP2011122552A publication Critical patent/JP2011122552A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the emission of nitrous oxide released into the atmosphere in an exhaust emission control system of an internal combustion engine. <P>SOLUTION: The exhaust emission control system of an internal combustion engine is provided with a nitrogen oxide reducing device in the exhaust path of the internal combustion engine and an ammonia slip prevention catalyst at downstream of the nitrogen oxide reducing device, wherein there are provided an additive supplier for supplying an additive to the nitrogen oxide reducing device, an ammonia detection means for detecting the concentration of ammonia between the nitrogen oxide reducing device and the ammonia slip prevention catalyst, a nitrous oxide detection means for detecting the concentration of nitrous oxide downstream of the ammonia slip prevention catalyst, and an additive amount control means for controlling the amount of the additive supplied from the additive supplier to the nitrogen oxide reducing device according to the concentration of nitrous oxide detected by the nitrous oxide detection means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は内燃機関の排出ガス浄化装置に係り、特に、内燃機関の排出ガス中の亜酸化窒素を低減することができる内燃機関の排出ガス浄化装置に関する。   The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to an exhaust gas purification device for an internal combustion engine that can reduce nitrous oxide in the exhaust gas of the internal combustion engine.

内燃機関の排出ガス浄化装置には、ディーゼルエンジンの排出ガス浄化装置として選択性接触還元(SCR:Selective Catalystic Reduction)触媒を備えた尿素SCR触媒浄化装置、また、ガソリン、ディーゼルエンジンの排出ガス浄化装置としてNOx吸蔵触媒を備えたNOx吸蔵触媒浄化装置が知られている。
これら尿素SCR触媒浄化装置、NOx吸蔵触媒浄化装置などを備えた排出ガス浄化装置は、排出ガスに炭化水素(軽油)、尿素などの還元剤を添加することで、選択性接触還元触媒、NOx吸蔵触媒等の窒素酸化物還元装置を還元性雰囲気としてNOxを還元除去するものである。(特許文献1〜3)
An exhaust gas purification device for an internal combustion engine includes a urea SCR catalyst purification device equipped with a selective catalytic reduction (SCR) catalyst as an exhaust gas purification device for a diesel engine, and an exhaust gas purification device for gasoline and diesel engines. As an example, a NOx storage catalyst purification device including a NOx storage catalyst is known.
The exhaust gas purification device equipped with these urea SCR catalyst purification device, NOx occlusion catalyst purification device, etc., adds a reducing agent such as hydrocarbon (light oil), urea, etc. to the exhaust gas, thereby allowing selective catalytic reduction catalyst, NOx occlusion. NOx is reduced and removed using a nitrogen oxide reducing device such as a catalyst as a reducing atmosphere. (Patent Documents 1 to 3)

特開2004−270565号公報JP 2004-270565 A 特開2001−12231号公報JP 2001-12231 A 特開2000−230414号公報JP 2000-230414 A

ところで、従来の内燃機関の排出ガス浄化装置は、NOxの浄化の過程においてアンモニア(以下、「NH」と記す。)を発生させた場合、温室効果ガスである亜酸化窒素(以下、NO)を多量に生成させる場合がある。NOは、COに比べて310倍の温室効果があるガスであり、NOの生成は地球温暖化を促進させる為、排出量の低減が必要である。
しかし、既存の技術では、NO低減に対する方策が十分にとられていなかった。
By the way, a conventional exhaust gas purifying apparatus for an internal combustion engine generates nitrous oxide (hereinafter referred to as N 2 ) which is a greenhouse gas when ammonia (hereinafter referred to as “NH 3 ”) is generated in the process of purifying NOx. O) may be produced in large quantities. N 2 O is a gas having a greenhouse effect that is 310 times that of CO 2 , and the generation of N 2 O promotes global warming, so that it is necessary to reduce emissions.
However, existing technologies have not taken sufficient measures to reduce N 2 O.


この発明は、内燃機関の排出ガス浄化装置においては、大気中に放出される亜酸化窒素の排出量を低減することを目的とする。
.
An object of the present invention is to reduce the emission amount of nitrous oxide released into the atmosphere in an exhaust gas purification apparatus for an internal combustion engine.

この発明は、内燃機関の排気通路に、窒素酸化物還元装置を設け、前記窒素酸化物還元装置よりも下流側にアンモニアスリップ防止触媒を設けた内燃機関の排出ガス浄化装置において、前記窒素酸化物還元装置に添加物を供給する添加物供給装置を備え、前記窒素酸化物還元装置と前記アンモニアスリップ防止触媒との間にアンモニア濃度を検出するアンモニア検出手段を備え、前記アンモニアスリップ防止触媒の下流側には亜酸化窒素濃度を検出する亜酸化窒素検出手段を備え、前記亜酸化窒素検出手段により検出された亜酸化窒素濃度に応じて、前記窒素酸化物還元装置に添加物供給装置から供給される添加物の量を制御する添加物量制御手段を備えていることを特徴とする。   The present invention provides an exhaust gas purification apparatus for an internal combustion engine in which a nitrogen oxide reduction device is provided in an exhaust passage of the internal combustion engine, and an ammonia slip prevention catalyst is provided downstream of the nitrogen oxide reduction device. An additive supply device for supplying an additive to the reduction device, and an ammonia detection means for detecting an ammonia concentration between the nitrogen oxide reduction device and the ammonia slip prevention catalyst, the downstream side of the ammonia slip prevention catalyst Is provided with a nitrous oxide detecting means for detecting the nitrous oxide concentration, and is supplied from the additive supply device to the nitrogen oxide reducing device according to the nitrous oxide concentration detected by the nitrous oxide detecting means. An additive amount control means for controlling the amount of the additive is provided.

この発明の内燃機関の排出ガス浄化装置は、亜酸化窒素の濃度に応じて、窒素酸化物還元装置に供給する添加物の量を制御することができるので、大気中に放出される亜酸化窒素の排出量を低減することができる。   The exhaust gas purifying device for an internal combustion engine of the present invention can control the amount of additive supplied to the nitrogen oxide reducing device according to the concentration of nitrous oxide, so that nitrous oxide released into the atmosphere Can be reduced.

排出ガス浄化装置の概略構成図である。(実施例1)It is a schematic block diagram of an exhaust gas purification apparatus. Example 1 排出ガス浄化装置のフローチャートである。(実施例1)It is a flowchart of an exhaust gas purification apparatus. Example 1 排出ガス浄化装置のフローチャートである。(実施例1の変形例1)It is a flowchart of an exhaust gas purification apparatus. (Modification 1 of Example 1) 排出ガス浄化装置のフローチャートである。(実施例1の変形例2)It is a flowchart of an exhaust gas purification apparatus. (Modification 2 of Example 1) 排出ガス浄化装置の概略構成図である。(実施例2)It is a schematic block diagram of an exhaust gas purification apparatus. (Example 2) 排出ガス浄化装置のフローチャートである。(実施例2)It is a flowchart of an exhaust gas purification apparatus. (Example 2) 排出ガス浄化装置のフローチャートである。(実施例2の変形例1)It is a flowchart of an exhaust gas purification apparatus. (Modification 1 of Example 2) 排出ガス浄化装置のフローチャートである。(実施例2の変形例2)It is a flowchart of an exhaust gas purification apparatus. (Modification 2 of Example 2) 排出ガス浄化装置の概略構成図である。(実施例2の変形例3)It is a schematic block diagram of an exhaust gas purification apparatus. (Modification 3 of Example 2)

以下、図面に基づいて、この発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1・図2は、この発明の実施例1を示すものである。図1において、1は内燃機関、2は燃焼室、3は吸気管、4は吸気マニホルド、5は吸気通路、6は排気マニホルド、7は排気管、8は排気通路である。内燃機関1は、燃焼室2に燃料を噴射供給する燃料供給装置9を備えている。燃料供給装置9は、燃焼室2に燃料を燃料噴射弁10により噴射する。内燃機関1は、吸気管3と吸気マニホルド4とから構成する吸気通路5を燃焼室2に連通し、吸気通路5により燃焼室2に供給した空気に燃料噴射弁10により燃焼室2に噴射した燃料を混合させて燃焼させ、燃焼後の排出ガスを排気マニホルド6と排気管7とから構成する排気通路8により大気に排出する。
この内燃機関1の排出ガスを浄化する排出ガス浄化装置11は、排気通路8に窒素酸化物還元装置として選択性接触還元(SCR)触媒を備えた尿素SCR浄化装置12を設け、前記尿素SCR触媒浄化装置12よりも下流側の排気通路8にアンモニアスリップ防止触媒13を設けている。尿素SCR浄化装置12は、選択性接触還元触媒に流入する排出ガスの温度を検出する排出ガス温度センサ14を設け、選択性接触還元触媒の温度を検出する選択性接触還元触媒温度センサ15を設けている。アンモニアスリップ防止触媒13は、アンモニアスリップ防止触媒温度センサ16を設けている。
なお、この排出ガス浄化装置11は、前記尿素SCR触媒浄化装置12よりも上流側の排気通路8に酸化触媒を備えたパティキュレートフィルタ17を備えている。パティキュレートフィルタ17は、排出ガス中の粒子状物質を捕集するとともに、捕集した粒子状物質を酸化触媒により酸化分解して捕集機能を再生する。
前記排出ガス浄化装置11は、尿素SCR触媒浄化装置12に添加物を供給する添加物供給装置として尿素供給装置18を備えている。尿素供給装置18は、尿素SCR触媒浄化装置12よりも上流側の排気通路8に還元剤の尿素を尿素噴射弁19により供給する。また、排出ガス浄化装置11は、添加物供給装置として軽油供給装置20を備えている。軽油供給装置20は、尿素SCR触媒浄化装置12よりも上流側の排気通路8に還元剤の軽油を軽油噴射弁21により供給する。
排出ガス浄化装置11は、尿素SCR触媒浄化装置12とアンモニアスリップ防止触媒13との間の排気通路8にアンモニア(NH)濃度を検出するアンモニア検出手段22を備え、アンモニアスリップ防止触媒13の下流側の排気通路8には亜酸化窒素(NO)濃度を検出する亜酸化窒素検出手段23を備えている。亜酸化窒素検出手段23は、例えば、IR(赤外線吸収検出)方式とし、NOに特有の赤外吸収波長の吸光度を測定することにより排出ガス中の亜酸化窒濃度を検出する。
1 and 2 show Embodiment 1 of the present invention. In FIG. 1, 1 is an internal combustion engine, 2 is a combustion chamber, 3 is an intake pipe, 4 is an intake manifold, 5 is an intake passage, 6 is an exhaust manifold, 7 is an exhaust pipe, and 8 is an exhaust passage. The internal combustion engine 1 includes a fuel supply device 9 that injects and supplies fuel to the combustion chamber 2. The fuel supply device 9 injects fuel into the combustion chamber 2 by the fuel injection valve 10. The internal combustion engine 1 communicates an intake passage 5 composed of an intake pipe 3 and an intake manifold 4 to the combustion chamber 2 and injects the air supplied to the combustion chamber 2 through the intake passage 5 into the combustion chamber 2 by the fuel injection valve 10. The fuel is mixed and burned, and the exhaust gas after combustion is discharged to the atmosphere through the exhaust passage 8 constituted by the exhaust manifold 6 and the exhaust pipe 7.
The exhaust gas purifying device 11 for purifying the exhaust gas of the internal combustion engine 1 is provided with a urea SCR purifying device 12 having a selective catalytic reduction (SCR) catalyst as a nitrogen oxide reducing device in the exhaust passage 8, and the urea SCR catalyst. An ammonia slip prevention catalyst 13 is provided in the exhaust passage 8 downstream of the purification device 12. The urea SCR purification device 12 is provided with an exhaust gas temperature sensor 14 for detecting the temperature of exhaust gas flowing into the selective catalytic reduction catalyst, and with a selective catalytic reduction catalyst temperature sensor 15 for detecting the temperature of the selective catalytic reduction catalyst. ing. The ammonia slip prevention catalyst 13 is provided with an ammonia slip prevention catalyst temperature sensor 16.
The exhaust gas purification device 11 includes a particulate filter 17 having an oxidation catalyst in the exhaust passage 8 upstream of the urea SCR catalyst purification device 12. The particulate filter 17 collects the particulate matter in the exhaust gas, and regenerates the collection function by oxidizing and oxidizing the collected particulate matter with an oxidation catalyst.
The exhaust gas purification device 11 includes a urea supply device 18 as an additive supply device for supplying an additive to the urea SCR catalyst purification device 12. The urea supply device 18 supplies the reducing agent urea to the exhaust passage 8 upstream of the urea SCR catalyst purification device 12 by the urea injection valve 19. Further, the exhaust gas purification device 11 includes a light oil supply device 20 as an additive supply device. The light oil supply device 20 supplies light oil of the reducing agent to the exhaust passage 8 upstream of the urea SCR catalyst purification device 12 by the light oil injection valve 21.
The exhaust gas purification device 11 includes ammonia detection means 22 for detecting the ammonia (NH 3 ) concentration in the exhaust passage 8 between the urea SCR catalyst purification device 12 and the ammonia slip prevention catalyst 13, and downstream of the ammonia slip prevention catalyst 13. The exhaust passage 8 on the side is provided with nitrous oxide detection means 23 for detecting the nitrous oxide (N 2 O) concentration. The nitrous oxide detection means 23 uses, for example, an IR (infrared absorption detection) method, and detects the concentration of nitrous oxide in the exhaust gas by measuring the absorbance at the infrared absorption wavelength peculiar to N 2 O.

前記燃料供給装置9と、排出ガス温度センサ14と、選択性接触還元触媒温度センサ15と、アンモニアスリップ防止触媒温度センサ16と、尿素供給装置18と、軽油供給装置20と、アンモニア検出手段22と、亜酸化窒素検出手段23とは、制御手段24に接続している。制御手段24には、内燃機関1の運転状況(エンジン回転速度・エンジン負荷等)を検出する運転状況検出手段25を接続している。
制御手段24は、燃焼室2に燃料供給装置9の燃料噴射弁10から供給される燃料の噴射量を制御する噴射量制御手段26と、尿素SCR触媒浄化装置12に尿素供給装置18の尿素噴射弁19から供給される添加物の尿素量を制御する添加物量制御手段である尿素量制御手段27と、尿素SCR浄化装置12に軽油供給装置20の軽油噴射弁21から供給される添加物の軽油量を制御する添加物量制御手段である軽油量制御手段28とを備えている。
前記内燃機関1は、噴射量制御手段26によって、運転状況検出手段25が検出する運転状況に応じて、燃焼室2に燃料供給装置9から供給される燃料噴射量を制御する。
この内燃機関1の排出ガス浄化装置11は、尿素量制御手段27によって、亜酸化窒素検出手段23により検出された亜酸化窒素濃度に応じて、尿素SCR触媒浄化装置12に尿素供給装置18から供給される尿素量を制御する。また、排出ガス浄化装置11は、アンモニア検出手段22により検出されたアンモニア濃度と、亜酸化窒素検出手段23により検出された亜酸化窒素濃度との両方の濃度が設定値以上であった場合には、尿素量制御手段27により尿素供給装置18による尿素の供給を停止するように制御する。さらに、排出ガス浄化装置11は、アンモニアスリップ防止触媒13の温度が設定温度以下である場合には、亜酸化窒素濃度に応じた尿素量制御手段27による尿素量制御を行わない。
The fuel supply device 9, the exhaust gas temperature sensor 14, the selective catalytic reduction catalyst temperature sensor 15, the ammonia slip prevention catalyst temperature sensor 16, the urea supply device 18, the light oil supply device 20, and the ammonia detection means 22 The nitrous oxide detection means 23 is connected to the control means 24. The control means 24 is connected with an operating condition detecting means 25 for detecting the operating condition (engine speed, engine load, etc.) of the internal combustion engine 1.
The control unit 24 includes an injection amount control unit 26 that controls the injection amount of fuel supplied from the fuel injection valve 10 of the fuel supply device 9 to the combustion chamber 2, and urea injection of the urea supply device 18 to the urea SCR catalyst purification device 12. A urea amount control means 27 which is an additive amount control means for controlling the urea amount of the additive supplied from the valve 19, and an additive light oil supplied from the light oil injection valve 21 of the light oil supply device 20 to the urea SCR purification device 12. And a light oil amount control means 28 which is an additive amount control means for controlling the amount.
In the internal combustion engine 1, the fuel injection amount supplied from the fuel supply device 9 to the combustion chamber 2 is controlled by the injection amount control unit 26 in accordance with the operation state detected by the operation state detection unit 25.
The exhaust gas purification device 11 of the internal combustion engine 1 supplies the urea SCR catalyst purification device 12 from the urea supply device 18 according to the nitrous oxide concentration detected by the nitrous oxide detection means 23 by the urea amount control means 27. Control the amount of urea produced. Further, the exhaust gas purifying apparatus 11 determines that both the ammonia concentration detected by the ammonia detection means 22 and the nitrous oxide concentration detected by the nitrous oxide detection means 23 are equal to or higher than the set value. The urea amount control means 27 controls the urea supply device 18 to stop supplying urea. Further, when the temperature of the ammonia slip prevention catalyst 13 is equal to or lower than the set temperature, the exhaust gas purification device 11 does not perform urea amount control by the urea amount control means 27 according to the nitrous oxide concentration.

次に作用を説明する。
内燃機関1の排出ガス浄化装置11は、内燃機関1の運転時に燃料供給装置9から燃焼室2に燃料を供給し、尿素供給装置18から還元剤としての尿素を尿素SCR触媒浄化装置12の上流側の排気通路8に供給し、また、軽油供給装置19から還元剤としての軽油を供給する。排気通路8に供給された尿素は、加水分解してアンモニアが生成される。生成されたアンモニアと排出ガスとは、尿素SCR触媒浄化装置12に導入され、選択性接触還元触媒にてアンモニアと排出ガスに含まれるNOxとが反応し、Nに還元される。選択性接触還元触媒にて反応に使われなかった余剰のアンモニアは、アンモニアスリップ防止触媒13にて酸化され、Nと水が生成され、排出(アンモニアスリップ)を防止される。
尿素供給装置18から供給される尿素量は、図2に示すように、亜酸化窒素NO濃度に応じて制御される。排出ガス浄化装置11は、プログラムがスタートすると(A01)、排出ガス温度センサ14の検出信号などの各種信号を取り込み(A02)、亜酸化窒素NO濃度が設定値K1(例えば、10ppm)未満(NO<K1)であるかを判断する(A03)。
この判断(A03)がNO(亜酸化窒素発生量が多い)の場合は、尿素の噴射を停止して軽油の噴射量を制御する(A04)。その後、軽油を供給している状態において各種信号を取り込み(A05)、亜酸化窒素NO濃度が設定値K1未満(NO<K1)であるかを判断する(A06)。この判断(A06)がNO(亜酸化窒素発生量が多い)の場合は、軽油の噴射を停止し(A07)、プログラムをエンドにする(A09)。
一方、前記判断(A03)がYES(亜酸化窒素発生量が少ない)の場合、また、前記判断(A06)がYES(亜酸化窒素発生量が少ない)の場合は、亜酸化窒素濃度に応じて尿素の噴射量を制御し(A08)、プログラムをエンドにする(A09)。
このように、内燃機関1の排出ガス浄化装置11は、亜酸化窒素検出手段23により検出された亜酸化窒素濃度に応じて、添加物の尿素の供給を停止し、あるいは制御することにより、尿素SCR触媒触媒浄化装置12に尿素供給装置18から供給される尿素量を適切に制御することができるので、大気中に放出される亜酸化窒素の排出量を低減することができる。
Next, the operation will be described.
The exhaust gas purification device 11 of the internal combustion engine 1 supplies fuel from the fuel supply device 9 to the combustion chamber 2 during operation of the internal combustion engine 1, and urea as a reducing agent from the urea supply device 18 upstream of the urea SCR catalyst purification device 12. Is supplied to the exhaust passage 8 on the side, and light oil as a reducing agent is supplied from the light oil supply device 19. The urea supplied to the exhaust passage 8 is hydrolyzed to generate ammonia. And the exhaust gas generated ammonia is introduced into the urea SCR catalytic purification device 12, and the NOx contained in the ammonia and exhaust gas reacts with selective catalytic reduction catalyst is reduced to N 2. Excess ammonia that has not been used in the reaction by the selective catalytic reduction catalyst is oxidized by the ammonia slip prevention catalyst 13 to generate N 2 and water, thereby preventing discharge (ammonia slip).
The urea amount supplied from the urea supply device 18 is controlled according to the nitrous oxide N 2 O concentration, as shown in FIG. When the program starts (A01), the exhaust gas purification device 11 takes in various signals such as a detection signal of the exhaust gas temperature sensor 14 (A02), and the nitrous oxide N 2 O concentration is less than a set value K1 (for example, 10 ppm). It is determined whether (N 2 O <K1) (A03).
When this determination (A03) is NO (a large amount of nitrous oxide is generated), urea injection is stopped and the light oil injection amount is controlled (A04). Thereafter, various signals are captured in a state where light oil is supplied (A05), and it is determined whether the nitrous oxide N 2 O concentration is less than the set value K1 (N 2 O <K1) (A06). When this determination (A06) is NO (the amount of nitrous oxide generated is large), the injection of light oil is stopped (A07), and the program is ended (A09).
On the other hand, when the determination (A03) is YES (the amount of generated nitrous oxide is small), and when the determination (A06) is YES (the amount of generated nitrous oxide is small), it depends on the concentration of nitrous oxide. The urea injection amount is controlled (A08), and the program is ended (A09).
As described above, the exhaust gas purifying device 11 of the internal combustion engine 1 stops or controls the supply of urea as an additive according to the nitrous oxide concentration detected by the nitrous oxide detecting means 23. Since the urea amount supplied from the urea supply device 18 to the SCR catalyst catalyst purification device 12 can be appropriately controlled, the emission amount of nitrous oxide released into the atmosphere can be reduced.

なお、この実施例1においては、亜酸化窒素濃度に応じて、尿素SCR触媒浄化装置12に供給される尿素量を制御したが、アンモニア濃度及び亜酸化窒素濃度に応じて、尿素SCR触媒浄化装置12に供給される尿素量を制御することもできる。図3は、実施例1の排出ガス浄化装置11の変形例1を示すものである。
図3において、排出ガス浄化装置11は、プログラムがスタートすると(B01)、排出ガス温度センサ14の検出信号などの各種信号を取り込み(B02)、アンモニアNH濃度が設定値K2(例えば、10ppm)未満(NH<K2)であるかを判断する(B03)。
この判断(B03)がNO(アンモニア発生量が多い)の場合は、亜酸化窒素NO濃度が設定値K1(例えば、10ppm)未満(NO<K1)であるかを判断する(B04)。この判断(B04)がNO(亜酸化窒素発生量が多い)の場合は、尿素の噴射を停止し(B05)、プログラムをエンドにする(B07)。なお、ステップ(B05)においては、尿素の噴射停止でなく、軽油の噴射量制御に切り換えてもよい。
一方、前記判断(B03)がYES(アンモニア発生量が少ない)の場合、また、前記判断(B04)がYES(亜酸化窒素発生量が少ない)の場合は、亜酸化窒素濃度に応じて尿素の噴射量を制御し(B06)、プログラムをエンドにする(B07)。
このように、内燃機関1の排出ガス浄化装置11は、アンモニア検出手段22により検出されたアンモニア濃度と、亜酸化窒素検出手段23により検出された亜酸化窒素濃度との両方の濃度が設定値以上であった場合には、尿素量制御手段27により尿素供給装置18による尿素の供給を停止することで、大気中に放出される亜酸化窒素の排出量を低減することができる。
In the first embodiment, the amount of urea supplied to the urea SCR catalyst purification device 12 is controlled according to the nitrous oxide concentration. However, the urea SCR catalyst purification device is controlled according to the ammonia concentration and the nitrous oxide concentration. The amount of urea supplied to 12 can also be controlled. FIG. 3 shows a first modification of the exhaust gas purifying apparatus 11 according to the first embodiment.
In FIG. 3, when the program starts (B01), the exhaust gas purification device 11 takes in various signals such as a detection signal of the exhaust gas temperature sensor 14 (B02), and the ammonia NH 3 concentration is a set value K2 (for example, 10 ppm). It is judged whether it is less than (NH 3 <K2) (B03).
When this determination (B03) is NO (a large amount of ammonia is generated), it is determined whether the nitrous oxide N 2 O concentration is less than a set value K1 (for example, 10 ppm) (N 2 O <K1) (B04). ). If this determination (B04) is NO (a large amount of nitrous oxide is generated), urea injection is stopped (B05), and the program is ended (B07). In step (B05), the injection may be switched to light oil injection amount control instead of urea injection stop.
On the other hand, when the determination (B03) is YES (a small amount of ammonia is generated), and when the determination (B04) is YES (a small amount of nitrous oxide is generated), the urea concentration depends on the nitrous oxide concentration. The injection amount is controlled (B06), and the program is ended (B07).
As described above, the exhaust gas purifying device 11 of the internal combustion engine 1 is such that both the ammonia concentration detected by the ammonia detecting means 22 and the nitrous oxide concentration detected by the nitrous oxide detecting means 23 are equal to or higher than the set value. If this is the case, the urea amount control means 27 stops the urea supply by the urea supply device 18, whereby the amount of nitrous oxide released into the atmosphere can be reduced.

また、上述の変形例1においては、アンモニア濃度と亜酸化窒素濃度との両方が設定値以上であった場合に尿素の供給を停止したが、アンモニアスリップ防止触媒13の温度に基づいて、尿素SCR触媒浄化装置12に供給される尿素量を制御することもできる。図4は、実施例1の排出ガス浄化装置11の変形例2を示すものである。
図4において、排出ガス浄化装置11は、プログラムがスタートすると(C01)、排出ガス温度センサ14の検出信号などの各種信号を取り込み(C02)、アンモニアスリップ防止触媒13の温度TEMP1が設定温度T1(例えば、300℃)を越えて(TEMP1>T1)いるかを判断する(C03)。
この判断(C03)がNO(アンモニアスリップ防止触媒13の温度が低い)の場合は、アンモニアNH濃度が設定値K2(例えば、10ppm)未満(NH<K2)であるかを判断する(C04)。この判断(C04)がNO(アンモニア発生量が多い)の場合は、亜酸化窒素NO濃度が設定値K1(例えば、10ppm)未満(NO<K1)であるかを判断する(C05)。この判断(C05)がNO(亜酸化窒素発生量が多い)の場合は、尿素の噴射を停止し(C06)、プログラムをエンドにする(C08)。
一方、前記判断(C03)がYES(アンモニアスリップ防止触媒13の温度が高い)の場合、前記判断(C04)がYES(アンモニア発生量が少ない)の場合、また、前記判断(C05)がYES(亜酸化窒素発生量が少ない)の場合は、亜酸化窒素濃度に応じて尿素の噴射量を制御し(C07)、プログラムをエンドにする(C08)。
このように、内燃機関1の排出ガス浄化装置11は、アンモニアスリップ防止触媒13の温度が設定温度を越える場合は亜酸化窒素が発生しにくいため、尿素の供給を停止せずに尿素量制御を行い、アンモニアスリップ防止触媒13の温度が設定温度以下である場合には、尿素の供給を停止して亜酸化窒素濃度に応じた尿素量制御手段27による尿素量制御を行わないので、亜酸化窒素濃度に応じた専用の制御を行う必要がなく、適正な制御を行うことができる。
Moreover, in the above-described modified example 1, the supply of urea was stopped when both the ammonia concentration and the nitrous oxide concentration were equal to or higher than the set values. However, based on the temperature of the ammonia slip prevention catalyst 13, the urea SCR The amount of urea supplied to the catalyst purification device 12 can also be controlled. FIG. 4 shows a second modification of the exhaust gas purifying apparatus 11 according to the first embodiment.
In FIG. 4, when the program starts (C01), the exhaust gas purifying device 11 takes in various signals such as the detection signal of the exhaust gas temperature sensor 14 (C02), and the temperature TEMP1 of the ammonia slip prevention catalyst 13 becomes the set temperature T1 ( For example, it is determined whether the temperature exceeds 300 ° C. (TEMP1> T1) (C03).
When this determination (C03) is NO (the temperature of the ammonia slip prevention catalyst 13 is low), it is determined whether the ammonia NH 3 concentration is less than a set value K2 (for example, 10 ppm) (NH 3 <K2) (C04). ). When this determination (C04) is NO (a large amount of ammonia is generated), it is determined whether the nitrous oxide N 2 O concentration is less than a set value K1 (for example, 10 ppm) (N 2 O <K1) (C05 ). If this determination (C05) is NO (a large amount of nitrous oxide is generated), urea injection is stopped (C06) and the program is ended (C08).
On the other hand, when the determination (C03) is YES (the temperature of the ammonia slip prevention catalyst 13 is high), when the determination (C04) is YES (a small amount of ammonia is generated), and when the determination (C05) is YES ( If the amount of nitrous oxide generated is small), the urea injection amount is controlled according to the nitrous oxide concentration (C07), and the program is ended (C08).
As described above, the exhaust gas purifying device 11 of the internal combustion engine 1 does not generate nitrous oxide when the temperature of the ammonia slip prevention catalyst 13 exceeds the set temperature, and therefore controls the urea amount without stopping the supply of urea. If the temperature of the ammonia slip prevention catalyst 13 is equal to or lower than the set temperature, the urea supply is stopped and the urea amount control by the urea amount control means 27 according to the nitrous oxide concentration is not performed. It is not necessary to perform dedicated control according to the concentration, and appropriate control can be performed.

図5・図6は、この発明の実施例2を示すものである。図5において、101は内燃機関、102は燃焼室、103は吸気管、104は吸気マニホルド、105は吸気通路、106は排気マニホルド、107は排気管、108は排気通路である。内燃機関101は、燃焼室102に燃料を噴射供給する燃料供給装置109を備えている。燃料供給装置109は、燃焼室102に燃料を燃料噴射弁110により噴射する。内燃機関101は、吸気管103と吸気マニホルド104とから構成する吸気通路105を燃焼室102に連通し、吸気通路105により燃焼室102に供給した空気に燃料噴射弁110により燃焼室102に噴射した燃料を混合させて燃焼させ、燃焼後の排出ガスを排気マニホルド106と排気管107とから構成する排気通路108により大気に排出する。
この内燃機関101の排出ガスを浄化する排出ガス浄化装置111は、排気通路108に窒素酸化物還元装置としてNOx吸蔵触媒を備えたNOx吸蔵触媒浄化装置112を設け、前記NOx吸蔵触媒浄化装置112よりも下流側の排気通路108にアンモニアスリップ防止触媒113を設けている。NOx吸蔵触媒浄化装置112は、NOx吸蔵触媒に流入する排出ガスの温度を検出する排出ガス温度センサ114を設け、NOx吸蔵触媒の温度を検出するNOx吸蔵触媒温度センサ115を設けている。アンモニアスリップ防止触媒113は、アンモニアスリップ防止触媒温度センサ116を設けている。
なお、この排出ガス浄化装置111は、前記NOx吸蔵触媒浄化装置112よりも上流側の排気通路108に酸化触媒を備えたパティキュレートフィルタ117を備えている。パティキュレートフィルタ117は、排出ガス中の粒子状物質を捕集するとともに、捕集した粒子状物質を酸化触媒により酸化分解して捕集機能を再生する。
前記排出ガス浄化装置111は、NOx吸蔵触媒浄化装置112に添加物を供給する添加物供給装置として尿素供給装置118を備えている。尿素供給装置118は、NOx吸蔵触媒浄化装置112よりも上流側の排気通路108に還元剤の尿素を尿素噴射弁119により供給する。また、排出ガス浄化装置111は、添加物供給装置として軽油供給装置120を備えている。軽油供給装置120は、NOx吸蔵触媒浄化装置112よりも上流側の排気通路108に還元剤の軽油を軽油噴射弁121により供給する。
排出ガス浄化装置111は、NOx吸蔵触媒浄化装置112とアンモニアスリップ防止触媒113との間の排気通路108にアンモニア(NH)濃度を検出するアンモニア検出手段122を備え、アンモニアスリップ防止触媒113の下流側の排気通路108には亜酸化窒素(NO)濃度を検出する亜酸化窒素検出手段123を備えている。亜酸化窒素検出手段123は、例えば、IR(赤外線吸収検出)方式とし、NOに特有の赤外吸収波長の吸光度を測定することにより排出ガス中の亜酸化窒濃度を検出する。
5 and 6 show a second embodiment of the present invention. In FIG. 5, 101 is an internal combustion engine, 102 is a combustion chamber, 103 is an intake pipe, 104 is an intake manifold, 105 is an intake passage, 106 is an exhaust manifold, 107 is an exhaust pipe, and 108 is an exhaust passage. The internal combustion engine 101 includes a fuel supply device 109 that injects and supplies fuel to the combustion chamber 102. The fuel supply device 109 injects fuel into the combustion chamber 102 by the fuel injection valve 110. The internal combustion engine 101 communicates an intake passage 105 including an intake pipe 103 and an intake manifold 104 to the combustion chamber 102, and injects air supplied to the combustion chamber 102 through the intake passage 105 into the combustion chamber 102 by a fuel injection valve 110. The fuel is mixed and burned, and the exhaust gas after combustion is discharged to the atmosphere through an exhaust passage 108 constituted by an exhaust manifold 106 and an exhaust pipe 107.
The exhaust gas purification device 111 for purifying the exhaust gas of the internal combustion engine 101 is provided with a NOx storage catalyst purification device 112 having a NOx storage catalyst as a nitrogen oxide reduction device in the exhaust passage 108, and the NOx storage catalyst purification device 112. In addition, an ammonia slip prevention catalyst 113 is provided in the exhaust passage 108 on the downstream side. The NOx storage catalyst purification device 112 is provided with an exhaust gas temperature sensor 114 that detects the temperature of exhaust gas flowing into the NOx storage catalyst, and is provided with a NOx storage catalyst temperature sensor 115 that detects the temperature of the NOx storage catalyst. The ammonia slip prevention catalyst 113 is provided with an ammonia slip prevention catalyst temperature sensor 116.
The exhaust gas purification device 111 includes a particulate filter 117 having an oxidation catalyst in the exhaust passage 108 upstream of the NOx storage catalyst purification device 112. The particulate filter 117 collects the particulate matter in the exhaust gas, and regenerates the collection function by oxidizing and oxidizing the collected particulate matter with an oxidation catalyst.
The exhaust gas purification device 111 includes a urea supply device 118 as an additive supply device that supplies an additive to the NOx storage catalyst purification device 112. The urea supply device 118 supplies urea, which is a reducing agent, to the exhaust passage 108 upstream of the NOx storage catalyst purification device 112 by the urea injection valve 119. Further, the exhaust gas purification device 111 includes a light oil supply device 120 as an additive supply device. The light oil supply device 120 supplies light oil of the reducing agent to the exhaust passage 108 upstream of the NOx storage catalyst purification device 112 by the light oil injection valve 121.
The exhaust gas purifying device 111 is provided with ammonia detecting means 122 for detecting the ammonia (NH 3 ) concentration in the exhaust passage 108 between the NOx storage catalyst purifying device 112 and the ammonia slip preventing catalyst 113, and downstream of the ammonia slip preventing catalyst 113. the exhaust passage 108 on the side and a nitrous oxide detector 123 for detecting the nitrous oxide (N 2 O) concentration. The nitrous oxide detection means 123 is, for example, an IR (infrared absorption detection) method, and detects the concentration of nitrous oxide in the exhaust gas by measuring the absorbance at the infrared absorption wavelength peculiar to N 2 O.

前記燃料供給装置109と、排出ガス温度センサ114と、NOx吸蔵触媒温度センサ115と、アンモニアスリップ防止触媒温度センサ116と、尿素供給装置118と、軽油供給装置120と、アンモニア検出手段122と、亜酸化窒素検出手段123とは、制御手段124に接続している。制御手段124には、内燃機関101の運転状況(エンジン回転速度・エンジン負荷等)を検出する運転状況検出手段125を接続している。
制御手段124は、燃焼室102に燃料供給装置109の燃料噴射弁110から供給される燃料の噴射量を制御する噴射量制御手段126と、NOx吸蔵触媒浄化装置112に尿素供給装置118の尿素噴射弁119から供給される添加物の尿素量を制御する添加物量制御手段である尿素量制御手段127と、NOx吸蔵触媒浄化装置112に軽油供給装置120の軽油噴射弁121から供給される添加物の軽油量を制御する添加物量制御手段である軽油量制御手段128とを備えている。
前記内燃機関101は、噴射量制御手段126によって、運転状況検出手段125が検出する運転状況に応じて、燃焼室102に燃料供給装置109から供給される燃料噴射量を制御する。
この内燃機関101の排出ガス浄化装置111は、噴射量制御手段126によって、亜酸化窒素検出手段123により検出された亜酸化窒素濃度に応じて、燃焼室102に燃料供給装置109から供給される燃料の噴射量を制御する。また、排出ガス浄化装置111は、アンモニア検出手段122により検出されたアンモニア濃度と、亜酸化窒素検出手段123により検出された亜酸化窒素濃度との両方の濃度が設定値以上であった場合には、噴射量制御手段126により燃料供給装置109による燃料噴射を停止する。さらに、排出ガス浄化装置111は、NOx吸蔵触媒浄化装置112のNOx吸蔵触媒の温度が設定温度以下である場合には、亜酸化窒素濃度に応じた燃料噴射制御手段126による燃料噴射量制御を行わない。
The fuel supply device 109, the exhaust gas temperature sensor 114, the NOx occlusion catalyst temperature sensor 115, the ammonia slip prevention catalyst temperature sensor 116, the urea supply device 118, the light oil supply device 120, the ammonia detection means 122, The nitrogen oxide detection means 123 is connected to the control means 124. The control means 124 is connected with an operating condition detecting means 125 for detecting the operating condition (engine speed, engine load, etc.) of the internal combustion engine 101.
The control means 124 includes an injection amount control means 126 that controls the injection amount of fuel supplied from the fuel injection valve 110 of the fuel supply device 109 to the combustion chamber 102, and urea injection of the urea supply device 118 to the NOx storage catalyst purification device 112. The urea amount control means 127 which is an additive amount control means for controlling the urea amount of the additive supplied from the valve 119, and the additive supplied from the light oil injection valve 121 of the light oil supply device 120 to the NOx storage catalyst purification device 112. And a light oil amount control means 128 which is an additive amount control means for controlling the light oil amount.
In the internal combustion engine 101, the injection amount control unit 126 controls the fuel injection amount supplied from the fuel supply device 109 to the combustion chamber 102 in accordance with the operation state detected by the operation state detection unit 125.
The exhaust gas purifying device 111 of the internal combustion engine 101 has a fuel supplied from the fuel supply device 109 to the combustion chamber 102 according to the nitrous oxide concentration detected by the nitrous oxide detecting means 123 by the injection amount control means 126. The injection amount of the is controlled. Further, the exhaust gas purifying device 111 determines that both the ammonia concentration detected by the ammonia detecting means 122 and the nitrous oxide concentration detected by the nitrous oxide detecting means 123 are equal to or higher than the set value. Then, the fuel injection by the fuel supply device 109 is stopped by the injection amount control means 126. Further, the exhaust gas purification device 111 performs fuel injection amount control by the fuel injection control means 126 according to the nitrous oxide concentration when the temperature of the NOx storage catalyst of the NOx storage catalyst purification device 112 is equal to or lower than the set temperature. Absent.

次に作用を説明する。
内燃機関101の排出ガス浄化装置111は、内燃機関101の運転時に燃料供給装置109から燃焼室102に燃料を供給し、尿素供給装置118から還元剤としての尿素をNOx吸蔵触媒浄化装置112の上流側の排気通路108に供給し、また、軽油供給装置119から還元剤としての軽油を供給する。尿素から生成されたアンモニアと排出ガスとは、NOx吸蔵触媒浄化装置112に導入され、NOx吸蔵触媒にてアンモニアと排出ガスに含まれるNOxとが反応し、Nに還元される。反応に使われなかった余剰のアンモニアは、アンモニアスリップ防止触媒113にて酸化され、Nと水が生成され、排出(アンモニアスリップ)を防止される。
燃料供給装置109から供給される燃料噴射量は、図6に示すように、亜酸化窒素濃度に応じて制御される。排出ガス浄化装置111は、プログラムがスタートすると(D01)、排出ガス温度センサ114の検出信号などの各種信号を取り込み(D02)、亜酸化窒素NO濃度が設定値K1(例えば、10ppm)未満(NO<K1)であるかを判断する(D03)。
この判断(D03)がNO(亜酸化窒素発生量が多い)の場合は、燃料噴射を停止(リッチスパイク停止)し(D04)、プログラムをエンドにする(D06)。この判断(D03)がYES(亜酸化窒素発生量が少ない)の場合は、亜酸化窒素濃度に応じて燃料噴射量の制御(リッチスパイク制御)を行い(D05)、プログラムをエンドにする(D06)。
このように、内燃機関101の排出ガス浄化装置111は、亜酸化窒素検出手段123により検出された亜酸化窒素濃度に応じて、燃料噴射を停止し、あるいは制御することにより、燃焼室102に燃料供給装置109から供給される燃料噴射量を適切に制御することができるので、大気中に放出される亜酸化窒素の排出量を低減することができる。
Next, the operation will be described.
The exhaust gas purification device 111 of the internal combustion engine 101 supplies fuel from the fuel supply device 109 to the combustion chamber 102 during operation of the internal combustion engine 101, and urea as a reducing agent from the urea supply device 118 upstream of the NOx storage catalyst purification device 112. Is supplied to the exhaust passage 108 on the side, and light oil as a reducing agent is supplied from the light oil supply device 119. Ammonia produced from urea and exhaust gas are introduced into the NOx storage catalyst purification device 112, where ammonia and NOx contained in the exhaust gas react with each other and are reduced to N 2 . Excess ammonia that has not been used in the reaction is oxidized by the ammonia slip prevention catalyst 113 to generate N 2 and water, thereby preventing discharge (ammonia slip).
The fuel injection amount supplied from the fuel supply device 109 is controlled according to the nitrous oxide concentration, as shown in FIG. When the program starts (D01), the exhaust gas purification device 111 takes in various signals such as a detection signal of the exhaust gas temperature sensor 114 (D02), and the nitrous oxide N 2 O concentration is less than a set value K1 (for example, 10 ppm). It is determined whether (N 2 O <K1) (D03).
If this determination (D03) is NO (the amount of nitrous oxide generated is large), fuel injection is stopped (rich spike stop) (D04), and the program is ended (D06). If this determination (D03) is YES (the amount of nitrous oxide generated is small), the fuel injection amount is controlled (rich spike control) according to the nitrous oxide concentration (D05), and the program is ended (D06). ).
As described above, the exhaust gas purifying device 111 of the internal combustion engine 101 stops or controls the fuel injection according to the nitrous oxide concentration detected by the nitrous oxide detecting means 123, thereby supplying the fuel to the combustion chamber 102. Since the fuel injection amount supplied from the supply device 109 can be appropriately controlled, the emission amount of nitrous oxide released into the atmosphere can be reduced.

なお、この実施例2においては、亜酸化窒素濃度に応じて、燃焼室102に燃料供給装置109から供給される燃料噴射量を制御したが、アンモニア濃度及び亜酸化窒素濃度に応じて、燃焼室102に供給される燃料噴射量を制御することもできる。図7は、実施例2の排出ガス浄化装置111の変形例1を示すものである。
図7において、排出ガス浄化装置111は、プログラムがスタートすると(E01)、排出ガス温度センサ114の検出信号などの各種信号を取り込み(E02)、アンモニアNH濃度が設定値K2(例えば、10ppm)未満(NH<K2)であるかを判断する(E03)。
この判断(E03)がNO(アンモニア発生量が多い)の場合は、亜酸化窒素NO濃度が設定値K1(例えば、10ppm)未満(NO<K1)であるかを判断する(E04)。この判断(E04)がNO(亜酸化窒素発生量が多い)の場合は、燃料噴射を停止(リッチスパイク停止)し(E05)、プログラムをエンドにする(E07)。
一方、前記判断(E03)がYES(アンモニア発生量が少ない)の場合、また、前記判断(E04)がYES(亜酸化窒素発生量が少ない)の場合は、亜酸化窒素濃度に応じて燃料噴射量を制御(リッチスパイク制御)し(E06)、プログラムをエンドにする(E07)。
このように、内燃機関101の排出ガス浄化装置111は、アンモニア検出手段122により検出されたアンモニア濃度と、亜酸化窒素検出手段123により検出された亜酸化窒素濃度との両方の濃度が設定値以上であった場合には、噴射量制御手段126により、燃料供給装置109による燃料噴射を停止することで、大気中に放出される亜酸化窒素の排出量を低減することができる。
In the second embodiment, the fuel injection amount supplied from the fuel supply device 109 to the combustion chamber 102 is controlled according to the nitrous oxide concentration, but the combustion chamber is controlled according to the ammonia concentration and the nitrous oxide concentration. The fuel injection amount supplied to 102 can also be controlled. FIG. 7 shows a first modification of the exhaust gas purifying device 111 according to the second embodiment.
In FIG. 7, when the program starts (E01), the exhaust gas purification device 111 takes in various signals such as a detection signal of the exhaust gas temperature sensor 114 (E02), and the ammonia NH 3 concentration is a set value K2 (for example, 10 ppm). It is judged whether it is less than (NH 3 <K2) (E03).
When this determination (E03) is NO (a large amount of ammonia is generated), it is determined whether the nitrous oxide N 2 O concentration is less than a set value K1 (for example, 10 ppm) (N 2 O <K1) (E04). ). If this determination (E04) is NO (the amount of nitrous oxide generated is large), the fuel injection is stopped (rich spike stop) (E05), and the program is ended (E07).
On the other hand, when the determination (E03) is YES (the amount of generated ammonia is small) and when the determination (E04) is YES (the amount of generated nitrous oxide is small), fuel injection is performed according to the nitrous oxide concentration. The amount is controlled (rich spike control) (E06), and the program is ended (E07).
Thus, the exhaust gas purifying device 111 of the internal combustion engine 101 is such that both the ammonia concentration detected by the ammonia detection means 122 and the nitrous oxide concentration detected by the nitrous oxide detection means 123 are greater than or equal to the set value. If this is the case, the amount of nitrous oxide released into the atmosphere can be reduced by stopping fuel injection by the fuel supply device 109 by the injection amount control means 126.

また、上述の変形例1においては、アンモニア濃度と亜酸化窒素濃度との両方が設定値以上であった場合に燃料噴射を停止したが、NOx吸蔵触媒浄化装置112の温度に基づいて、燃焼室102に供給される燃料噴射量を制御することもできる。図8は、実施例2の排出ガス浄化装置111の変形例2を示すものである。
図8において、排出ガス浄化装置111は、プログラムがスタートすると(F01)、排出ガス温度センサ114の検出信号などの各種信号を取り込み(F02)、NOx吸蔵触媒浄化装置112のNOx吸蔵触媒の温度TEMP2が設定温度T2(例えば、400℃)を越えて(TEMP2>T2)いるかを判断する(F03)。
この判断(F03)がNO(NOx吸蔵触媒浄化装置112の温度が低い)の場合は、アンモニアNH濃度が設定値K2(例えば、10ppm)未満(NH<K2)であるかを判断する(F04)。この判断(F04)がNO(アンモニア発生量が多い)の場合は、亜酸化窒素NO濃度が設定値K1(例えば、10ppm)未満(NO<K1)であるかを判断する(F05)。この判断(F05)がNO(亜酸化窒素発生量が多い)の場合は、燃料噴射を停止(リッチスパイク停止)し(F06)、プログラムをエンドにする(F08)。
一方、前記判断(F03)がYES(NOx吸蔵触媒浄化装置112の温度が高い)の場合、前記判断(F04)がYES(アンモニア発生量が少ない)の場合、また、前記判断(F05)がYES(亜酸化窒素発生量が少ない)の場合は、亜酸化窒素濃度に応じて燃料噴射量を制御(リッチスパイク制御)し(F07)、プログラムをエンドにする(F08)。
このように、内燃機関101の排出ガス浄化装置111は、NOx吸蔵触媒浄化装置112の温度が設定温度を越える場合は亜酸化窒素NOが発生しにくいため、燃料噴射を停止せずに燃料噴射量制御を行い、NOx吸蔵触媒浄化装置112の温度が設定温度以下である場合には、燃料噴射を停止して亜酸化窒素濃度に応じた噴射量制御手段126による燃料噴射量制御を行わないので、亜酸化窒素濃度に応じた専用の制御を行う必要がなく、適正な制御を行うことができる。
Further, in the above-described modified example 1, the fuel injection is stopped when both the ammonia concentration and the nitrous oxide concentration are equal to or higher than the set values, but based on the temperature of the NOx storage catalyst purification device 112, the combustion chamber The fuel injection amount supplied to 102 can also be controlled. FIG. 8 shows a second modification of the exhaust gas purifying device 111 according to the second embodiment.
In FIG. 8, when the program starts (F01), the exhaust gas purification device 111 takes in various signals such as the detection signal of the exhaust gas temperature sensor 114 (F02), and the temperature TEMP2 of the NOx storage catalyst of the NOx storage catalyst purification device 112. Is over a set temperature T2 (for example, 400 ° C.) (TEMP2> T2) (F03).
This determination (F03) is in the case of NO (low temperature of the NOx storage catalytic purification device 112), ammonia NH 3 concentration set value K2 (e.g., 10 ppm) to determine whether less than (NH 3 <K2) ( F04). When this determination (F04) is NO (a large amount of ammonia is generated), it is determined whether the nitrous oxide N 2 O concentration is less than a set value K1 (for example, 10 ppm) (N 2 O <K1) (F05). ). If this determination (F05) is NO (the amount of nitrous oxide generated is large), the fuel injection is stopped (rich spike stop) (F06), and the program is ended (F08).
On the other hand, when the determination (F03) is YES (the temperature of the NOx storage catalyst purification device 112 is high), the determination (F04) is YES (a small amount of ammonia is generated), and the determination (F05) is YES. In the case of (the amount of nitrous oxide generated is small), the fuel injection amount is controlled (rich spike control) according to the nitrous oxide concentration (F07), and the program is ended (F08).
As described above, the exhaust gas purification device 111 of the internal combustion engine 101 is unlikely to generate nitrous oxide N 2 O when the temperature of the NOx storage catalyst purification device 112 exceeds the set temperature. When the injection amount control is performed and the temperature of the NOx occlusion catalyst purification device 112 is equal to or lower than the set temperature, the fuel injection is stopped and the fuel injection amount control by the injection amount control means 126 according to the nitrous oxide concentration is not performed. Therefore, it is not necessary to perform dedicated control according to the nitrous oxide concentration, and appropriate control can be performed.

なお、前述実施例2においては、NOx吸蔵触媒浄化装置112よりも下流側にアンモニアスリップ防止触媒113を設けたが、図9に示すように、アンモニアスリップ防止触媒を用いない排出ガス浄化装置とすることもできる。図9は、実施例2の排出ガス浄化装置の変形例3を示すものである。図9において、201は内燃機関、202は燃焼室、203は吸気管、204は吸気マニホルド、205は吸気通路、206は排気マニホルド、207は排気管、208は排気通路である。燃焼室202に燃料を噴射供給する燃料供給装置209を備え、燃焼室202に燃料を噴射する燃料噴射弁210を設けている。
この内燃機関201の排出ガス浄化装置211は、排気通路208に窒素酸化物還元装置としてNOx吸蔵触媒を備えたNOx吸蔵触媒浄化装置212を設けている。NOx吸蔵触媒浄化装置212は、NOx吸蔵触媒に流入する排出ガスの温度を検出する排出ガス温度センサ213を設け、NOx吸蔵触媒の温度を検出するNOx吸蔵触媒温度センサ214を設けている。
なお、この排出ガス浄化装置211は、前記NOx吸蔵触媒浄化装置212よりも上流側の排気通路208に酸化触媒を備えたパティキュレートフィルタ215を備えている。パティキュレートフィルタ215は、排出ガス中の粒子状物質を捕集するとともに、捕集した粒子状物質を酸化触媒により酸化分解して捕集機能を再生する。
前記排出ガス浄化装置211は、NOx吸蔵触媒浄化装置212に添加物を供給する添加物供給装置として軽油供給装置216を備えている。軽油供給装置216は、パティキュレートフィルタ215よりも上流側の排気通路208に還元剤の軽油を軽油噴射弁217により供給する。
排出ガス浄化装置211は、NOx吸蔵触媒浄化装置212の上流側の排気通路208にアンモニア(NH)濃度を検出するアンモニア検出手段218を備え、NOx吸蔵触媒浄化装置212の下流側の排気通路208には亜酸化窒素(NO)濃度を検出する亜酸化窒素検出手段219を備えている。亜酸化窒素検出手段219は、例えば、IR(赤外線吸収検出)方式とし、NOに特有の赤外吸収波長の吸光度を測定することにより排出ガス中の亜酸化窒素濃度を検出する。
In the second embodiment, the ammonia slip prevention catalyst 113 is provided on the downstream side of the NOx storage catalyst purification device 112. However, as shown in FIG. 9, the exhaust gas purification device does not use the ammonia slip prevention catalyst. You can also. FIG. 9 shows a third modification of the exhaust gas purifying apparatus according to the second embodiment. 9, 201 is an internal combustion engine, 202 is a combustion chamber, 203 is an intake pipe, 204 is an intake manifold, 205 is an intake passage, 206 is an exhaust manifold, 207 is an exhaust pipe, and 208 is an exhaust passage. A fuel supply device 209 for injecting and supplying fuel to the combustion chamber 202 is provided, and a fuel injection valve 210 for injecting fuel into the combustion chamber 202 is provided.
The exhaust gas purification device 211 of the internal combustion engine 201 is provided with a NOx occlusion catalyst purification device 212 provided with an NOx occlusion catalyst as a nitrogen oxide reduction device in the exhaust passage 208. The NOx storage catalyst purification device 212 is provided with an exhaust gas temperature sensor 213 that detects the temperature of exhaust gas flowing into the NOx storage catalyst, and is provided with a NOx storage catalyst temperature sensor 214 that detects the temperature of the NOx storage catalyst.
The exhaust gas purifying device 211 includes a particulate filter 215 having an oxidation catalyst in the exhaust passage 208 upstream of the NOx storage catalyst purifying device 212. The particulate filter 215 collects the particulate matter in the exhaust gas and regenerates the collection function by oxidizing and oxidizing the collected particulate matter with an oxidation catalyst.
The exhaust gas purification device 211 includes a light oil supply device 216 as an additive supply device that supplies the additive to the NOx storage catalyst purification device 212. The light oil supply device 216 supplies light oil as a reducing agent to the exhaust passage 208 upstream of the particulate filter 215 by the light oil injection valve 217.
The exhaust gas purification device 211 includes ammonia detection means 218 that detects ammonia (NH 3 ) concentration in the exhaust passage 208 upstream of the NOx storage catalyst purification device 212, and the exhaust passage 208 downstream of the NOx storage catalyst purification device 212. Is provided with nitrous oxide detection means 219 for detecting the nitrous oxide (N 2 O) concentration. The nitrous oxide detection means 219 uses, for example, an IR (infrared absorption detection) method, and detects the concentration of nitrous oxide in the exhaust gas by measuring the absorbance of the infrared absorption wavelength peculiar to N 2 O.

前記燃料供給装置209と、排出ガス温度センサ213と、NOx吸蔵触媒温度センサ214と、軽油供給装置216と、アンモニア検出手段218と、亜酸化窒素検出手段219とは、制御手段220に接続している。制御手段220には、内燃機関201の運転状況検出手段221を接続している。制御手段220は、燃焼室202に燃料供給装置209の燃料噴射弁210から供給される燃料の噴射量を制御する噴射量制御手段222と、NOx吸蔵触媒浄化装置212に軽油供給装置216の軽油噴射弁217から供給される添加物の軽油量を制御する添加物量制御手段である軽油量制御手段223とを備えている。
前記内燃機関201は、噴射量制御手段222によって、運転状況検出手段221が検出する運転状況に応じて、燃焼室202に燃料供給装置209から供給される燃料噴射量を制御する。
この内燃機関201の排出ガス浄化装置211は、噴射量制御手段222によって、亜酸化窒素検出手段219により検出された亜酸化窒素濃度に応じて、燃焼室202に燃料供給装置209から供給される燃料の噴射量を制御する。また、排出ガス浄化装置211は、アンモニア検出手段218により検出されたアンモニア濃度と、亜酸化窒素検出手段219により検出された亜酸化窒素濃度との両方の濃度が設定値以上であった場合には、噴射量制御手段222により燃料噴射装置209による燃料噴射を停止する。さらに、排出ガス浄化装置211は、NOx吸蔵触媒浄化装置212のNOx吸蔵触媒の温度が設定温度以下である場合には、亜酸化窒素濃度に応じた燃料噴射制御手段222による燃料噴射量制御を行わない。
The fuel supply device 209, the exhaust gas temperature sensor 213, the NOx storage catalyst temperature sensor 214, the light oil supply device 216, the ammonia detection means 218, and the nitrous oxide detection means 219 are connected to the control means 220. Yes. The control means 220 is connected to the operating condition detection means 221 of the internal combustion engine 201. The control means 220 includes an injection amount control means 222 for controlling the injection amount of fuel supplied from the fuel injection valve 210 of the fuel supply device 209 to the combustion chamber 202, and a light oil injection of the light oil supply device 216 to the NOx storage catalyst purification device 212. And a light oil amount control means 223 which is an additive amount control means for controlling the amount of light oil of the additive supplied from the valve 217.
In the internal combustion engine 201, the fuel injection amount supplied from the fuel supply device 209 to the combustion chamber 202 is controlled by the injection amount control means 222 in accordance with the operating condition detected by the operating condition detecting means 221.
The exhaust gas purifying device 211 of the internal combustion engine 201 is a fuel supplied from the fuel supply device 209 to the combustion chamber 202 in accordance with the nitrous oxide concentration detected by the nitrous oxide detecting means 219 by the injection amount control means 222. The injection amount of the is controlled. Further, the exhaust gas purifying device 211 determines that both the ammonia concentration detected by the ammonia detecting means 218 and the nitrous oxide concentration detected by the nitrous oxide detecting means 219 are equal to or higher than the set value. Then, the fuel injection by the fuel injection device 209 is stopped by the injection amount control means 222. Further, when the temperature of the NOx storage catalyst of the NOx storage catalyst purification device 212 is equal to or lower than the set temperature, the exhaust gas purification device 211 performs fuel injection amount control by the fuel injection control means 222 according to the nitrous oxide concentration. Absent.

図9に示す排出ガス浄化装置211は、NOx吸蔵触媒浄化装置212の下流側にアンモニアスリップ防止触媒を用いないシステムであり、NOx吸蔵触媒浄化装置212の上流側にアンモニア検出手段218、下流側に亜酸化窒素検出手段219を用いている。これにより、この排出ガス浄化装置211は、NOx吸蔵触媒媒浄化装置212だけの場合でも、アンモニア検出手段218及び亜酸化窒素検出手段219の両者を設けることで、より確実な濃度検出ができ、大気中に放出される亜酸化窒素の排出量を低減することができる。なお、アンモニア検出手段218及び亜酸化窒素検出手段219は、一方のみを使用することとしても良い。   The exhaust gas purification device 211 shown in FIG. 9 is a system that does not use an ammonia slip prevention catalyst on the downstream side of the NOx storage catalyst purification device 212. The ammonia detection means 218 is on the upstream side of the NOx storage catalyst purification device 212, and on the downstream side. Nitrous oxide detection means 219 is used. As a result, the exhaust gas purifying device 211 can detect the concentration more reliably by providing both the ammonia detecting means 218 and the nitrous oxide detecting means 219 even in the case of the NOx storage catalyst medium purifying device 212 alone. It is possible to reduce the amount of nitrous oxide released therein. Note that only one of the ammonia detection means 218 and the nitrous oxide detection means 219 may be used.

この発明は、尿素SCR触媒浄化装置、NOx吸蔵触媒浄化装置を備えた排出ガス浄化装置であり、ディーゼルエンジンだげてなく、ガソリンエンジンのリーンバーンやストイキ燃焼での転用も可能である。また、この排出ガス浄化は、装置内燃機関以外の、ボイラー、焼却炉等での排出ガス処理などへの転用も可能である。   The present invention is an exhaust gas purification device provided with a urea SCR catalyst purification device and a NOx occlusion catalyst purification device, and is not limited to a diesel engine, and can be diverted for lean burn or stoichiometric combustion of a gasoline engine. In addition, this exhaust gas purification can be used for exhaust gas treatment in boilers, incinerators, etc. other than the internal combustion engine.

1 内燃機関
2 燃焼室
5 吸気通路
8 排気通路
9 燃料供給装置
10 燃料噴射弁
11 排出ガス浄化装置
12 尿素SCR浄化装置
13 アンモニアスリップ防止触媒
14 排出ガス温度センサ
15 アンモニアスリップ防止触媒温度センサ
18 尿素供給装置
19 尿素噴射弁
20 軽油供給装置
21 軽油噴射弁
22 アンモニア検出手段
23 亜酸化窒素検出手段
24 制御手段
25 運転状況検出手段
26 噴射量制御手段
27 尿素量制御手段
28 軽油量制御手段
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Combustion chamber 5 Intake passage 8 Exhaust passage 9 Fuel supply device 10 Fuel injection valve 11 Exhaust gas purification device 12 Urea SCR purification device 13 Ammonia slip prevention catalyst 14 Exhaust gas temperature sensor 15 Ammonia slip prevention catalyst temperature sensor 18 Urea supply Device 19 Urea injection valve 20 Light oil supply device 21 Light oil injection valve 22 Ammonia detection means 23 Nitrous oxide detection means 24 Control means 25 Operating condition detection means 26 Injection amount control means 27 Urea amount control means 28 Light oil amount control means

Claims (4)

内燃機関の排気通路に、窒素酸化物還元装置を設け、
前記窒素酸化物還元装置よりも下流側にアンモニアスリップ防止触媒を設けた内燃機関の排出ガス浄化装置において、
前記窒素酸化物還元装置に添加物を供給する添加物供給装置を備え、
前記窒素酸化物還元装置と前記アンモニアスリップ防止触媒との間にアンモニア濃度を検出するアンモニア検出手段を備え、
前記アンモニアスリップ防止触媒の下流側には亜酸化窒素濃度を検出する亜酸化窒素検出手段を備え、
前記亜酸化窒素検出手段により検出された亜酸化窒素濃度に応じて、前記窒素酸化物還元装置に添加物供給装置から供給される添加物の量を制御する添加物量制御手段を備えていることを特徴とする内燃機関の排出ガス浄化装置。
A nitrogen oxide reduction device is provided in the exhaust passage of the internal combustion engine,
In the exhaust gas purifying device for an internal combustion engine provided with an ammonia slip prevention catalyst downstream of the nitrogen oxide reducing device,
An additive supply device for supplying an additive to the nitrogen oxide reduction device;
Ammonia detection means for detecting the ammonia concentration between the nitrogen oxide reduction device and the ammonia slip prevention catalyst,
Nitrous oxide detection means for detecting the nitrous oxide concentration downstream of the ammonia slip prevention catalyst,
In accordance with the nitrous oxide concentration detected by the nitrous oxide detection means, the nitrogen oxide reduction device is provided with additive amount control means for controlling the amount of additive supplied from the additive supply device. An exhaust gas purification apparatus for an internal combustion engine characterized by the above.
内燃機関の排気通路に、窒素酸化物還元装置を設け、
前記窒素酸化物還元装置よりも下流側にアンモニアスリップ防止触媒を設けた内燃機関の排出ガス浄化装置において、
前記内燃機関の燃焼室に燃料を噴射供給する燃料供給装置を備え、
前記窒素酸化物還元装置と前記アンモニアスリップ防止触媒との間にアンモニア濃度を検出するアンモニア検出手段を備え、
前記アンモニアスリップ防止触媒の下流側には亜酸化窒素濃度を検出する亜酸化窒素検出手段を備え、
前記亜酸化窒素検出手段により検出された亜酸化窒素濃度に応じて、前記燃焼室に燃料供給装置から供給される燃料の噴射量を制御する噴射量制御手段を備えていることを特徴とする内燃機関の排出ガス浄化装置。
A nitrogen oxide reduction device is provided in the exhaust passage of the internal combustion engine,
In the exhaust gas purifying device for an internal combustion engine provided with an ammonia slip prevention catalyst downstream of the nitrogen oxide reducing device,
A fuel supply device for injecting and supplying fuel to the combustion chamber of the internal combustion engine;
Ammonia detection means for detecting the ammonia concentration between the nitrogen oxide reduction device and the ammonia slip prevention catalyst,
Nitrous oxide detection means for detecting the nitrous oxide concentration downstream of the ammonia slip prevention catalyst,
An internal combustion engine comprising: an injection amount control unit that controls an injection amount of fuel supplied from a fuel supply device to the combustion chamber according to a nitrous oxide concentration detected by the nitrous oxide detection unit. Engine exhaust gas purification device.
前記アンモニア検出手段により検出されたアンモニア濃度と、前記亜酸化窒素検出手段により検出された亜酸化窒素濃度との両方の濃度が設定値以上であった場合には、前記添加物量制御手段により添加物の供給を停止する、あるいは前記噴射量制御手段により燃料噴射を停止することを特徴とする請求項1又は請求項2に記載の内燃機関の排出ガス浄化装置。   If both the ammonia concentration detected by the ammonia detection means and the nitrous oxide concentration detected by the nitrous oxide detection means are equal to or higher than a set value, the additive amount control means The exhaust gas purifying device for an internal combustion engine according to claim 1 or 2, wherein the fuel injection is stopped by the injection amount control means. 前記アンモニアスリップ防止触媒の温度が設定温度以下である場合には、前記亜酸化窒素濃度に応じた添加物量制御手段による添加物量制御を行わないこと、あるいは前記窒素酸化物還元装置の温度が設定温度以下である場合には、前記亜酸化窒素濃度に応じた噴射量制御手段による燃料噴射量制御を行わないことを特徴とする請求項1又は請求項2に記載の内燃機関の排出ガス浄化装置。   When the temperature of the ammonia slip prevention catalyst is equal to or lower than the set temperature, the additive amount control by the additive amount control means according to the nitrous oxide concentration is not performed, or the temperature of the nitrogen oxide reducing device is the set temperature. 3. The exhaust gas purifying device for an internal combustion engine according to claim 1, wherein the fuel injection amount control by the injection amount control means according to the nitrous oxide concentration is not performed in the following cases.
JP2009282812A 2009-12-14 2009-12-14 Exhaust emission control system of internal combustion engine Pending JP2011122552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282812A JP2011122552A (en) 2009-12-14 2009-12-14 Exhaust emission control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282812A JP2011122552A (en) 2009-12-14 2009-12-14 Exhaust emission control system of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011122552A true JP2011122552A (en) 2011-06-23

Family

ID=44286666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282812A Pending JP2011122552A (en) 2009-12-14 2009-12-14 Exhaust emission control system of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011122552A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015931A (en) * 2012-07-05 2014-01-30 Robert Bosch Gmbh Method and device for cleaning the exhaust gas of an internal combustion engine
JP2021050702A (en) * 2019-09-26 2021-04-01 いすゞ自動車株式会社 Method and device for controlling vehicle including exhaust emission control system
CN114704356A (en) * 2021-04-25 2022-07-05 长城汽车股份有限公司 Reduction of N in tail gas2O method, O device, electronic equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211676A (en) * 2002-11-11 2004-07-29 Toyota Motor Corp Exhaust gas cleaner for internal combustion engine
JP2008255899A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Method of estimating amount of n2o generated in ammonia oxidation catalyst and exhaust emission control system of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211676A (en) * 2002-11-11 2004-07-29 Toyota Motor Corp Exhaust gas cleaner for internal combustion engine
JP2008255899A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Method of estimating amount of n2o generated in ammonia oxidation catalyst and exhaust emission control system of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015931A (en) * 2012-07-05 2014-01-30 Robert Bosch Gmbh Method and device for cleaning the exhaust gas of an internal combustion engine
JP2021050702A (en) * 2019-09-26 2021-04-01 いすゞ自動車株式会社 Method and device for controlling vehicle including exhaust emission control system
CN114704356A (en) * 2021-04-25 2022-07-05 长城汽车股份有限公司 Reduction of N in tail gas2O method, O device, electronic equipment and storage medium
CN114704356B (en) * 2021-04-25 2024-02-27 长城汽车股份有限公司 Reducing N in tail gas 2 O method, device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
JP5301291B2 (en) Exhaust gas aftertreatment system and exhaust gas cleaning method
JP6135198B2 (en) Control method of exhaust gas aftertreatment device
JP2004316658A (en) Temperature control of exhaust system
US7673446B2 (en) Dual path exhaust emission control system
KR20130087146A (en) Apparatus and controlling method of urea-scr system
US9562452B2 (en) System and method for controlling regeneration within an after-treatment component of a compression-ignition engine
JP2006207512A (en) Exhaust emission control device and exhaust emission control method for internal combustion engine
JP2010180861A (en) Exhaust emission control device
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP2011220158A (en) Exhaust emission control device for engine
JP2004346794A (en) Exhaust emission control device for internal combustion engine
JP2010209783A (en) Exhaust emission control device
JP2011122552A (en) Exhaust emission control system of internal combustion engine
KR20130057843A (en) Exhaust gas processing device and control method thereof
JP2010038034A (en) Control method of exhaust emission control device
KR102518598B1 (en) Method of calculationg soot amount trapped in gasoline particulate filter after regeration and method and system of regenerating gasoline particulate filter using the same
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2011179461A (en) Exhaust gas control device
JP2005299474A (en) Exhaust gas purification system
KR20130035077A (en) System and method for regenerating soot of gasoline engine
US10443465B2 (en) Engine exhaust system and control system for an engine exhaust system
JP2015151894A (en) Exhaust gas purification device mounted with exhaust gas temperature increase device
JP2013092075A (en) Exhaust emission control device of internal combustion engine
JP2012233414A (en) Method and device for controlling operation of internal combustion engine
JP2011252452A (en) Engine exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140424