JP2012233414A - Method and device for controlling operation of internal combustion engine - Google Patents

Method and device for controlling operation of internal combustion engine Download PDF

Info

Publication number
JP2012233414A
JP2012233414A JP2011100611A JP2011100611A JP2012233414A JP 2012233414 A JP2012233414 A JP 2012233414A JP 2011100611 A JP2011100611 A JP 2011100611A JP 2011100611 A JP2011100611 A JP 2011100611A JP 2012233414 A JP2012233414 A JP 2012233414A
Authority
JP
Japan
Prior art keywords
temperature
cooling water
exhaust
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011100611A
Other languages
Japanese (ja)
Inventor
Yasunari Daigo
康徳 醍醐
Takashi Kobayashi
隆志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2011100611A priority Critical patent/JP2012233414A/en
Publication of JP2012233414A publication Critical patent/JP2012233414A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for controlling operation of an internal combustion engine using both an SCR system and an EGR system in which overheat of the internal combustion engine can be prevented while keeping an NOamount in exhaust gas at or below a reference value.SOLUTION: In the device, there included are cooling water circulation paths 42a, 42b circulating cooling water between a radiator 40 and an engine block 12, and a branch cooling water circulation path 48 branched off from the cooling water circulation path 42b and connected to an EGR cooler 46 provided in an EGR path 44. When temperature t of the cooling water is not more than a threshold value T0, the operation is transitioned to a normal operation control mode by a controller 60. When the temperature t of the cooling water exceeds the threshold value T0 and an SCR catalyst 36 is at an active temperature, an EGR amount is reduced and the operation is transitioned to a first operation control mode to increase an additive amount of urea water. When the temperature t of the cooling water exceeds the threshold value T0 and the SCR catalyst 36 is not at the active temperature, the operation is transitioned to a second operation control mode to reduce engine power.

Description

本発明は、NO浄化装置と排気再循環路を備えた内燃機関において、排気中のNO量を基準値以下に保持しつつ、オーバーヒートを防止可能にした内燃機関の運転制御方法及び運転制御装置に関する。 The present invention relates to an operation control method and operation control for an internal combustion engine capable of preventing overheating while maintaining the amount of NO X in exhaust gas below a reference value in an internal combustion engine having a NO X purification device and an exhaust gas recirculation path. Relates to the device.

トラック、バス等のディーゼル機関を装備した大型車両では、排ガス浄化装置として、排ガス中の窒素酸化物(NOx)を浄化するために、尿素を還元剤として用いたSCR(Selectve Catalytic Reduction)触媒を使用する選択的触媒還元(SCR)方式が実用化されている。SCR触媒を用いた排ガス浄化装置は、排ガスを排出する排気管の途中に、酸素共存下でも選択的に排ガス中の窒素酸化物(NOx)を還元剤と反応させる性質を備えたSCR触媒を設け、排ガス中のNOxを選択的にSCR触媒によって清浄化するものである。   In large vehicles equipped with diesel engines such as trucks and buses, SCR (Selective Catalytic Reduction) catalysts using urea as a reducing agent are used as exhaust gas purifiers to purify nitrogen oxides (NOx) in exhaust gases. A selective catalytic reduction (SCR) system has been put into practical use. An exhaust gas purification apparatus using an SCR catalyst is provided with an SCR catalyst having the property of selectively reacting nitrogen oxide (NOx) in exhaust gas with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe for exhaust gas discharge. , NOx in the exhaust gas is selectively cleaned by the SCR catalyst.

この浄化方法は、SCR触媒上流側の排気路中に尿素水を噴射し、尿素水中の尿素を加水分解し、還元剤であるアンモニアを生成する。生成したアンモニアをSCR触媒に供給し、SCR触媒に吸着したNOxを還元して窒素と水に分解し、外部へ排出させることで、NOxの排出濃度を基準値以下に低減させるようにしている。   In this purification method, urea water is injected into the exhaust passage upstream of the SCR catalyst, and urea in the urea water is hydrolyzed to generate ammonia as a reducing agent. The generated ammonia is supplied to the SCR catalyst, the NOx adsorbed on the SCR catalyst is reduced, decomposed into nitrogen and water, and discharged to the outside, so that the NOx emission concentration is reduced below the reference value.

排気中のNO量を低減する別な手段として、燃焼後の排気の一部を給気路に導入し、再度給気させる排気再循環(EGR)方式がある。これによって、給気の酸素濃度を低減し、燃焼温度を低下させることで、NO発生量を低減している。今後さらに強化される排ガス規制や、他国ですでに施行されている厳しい排ガス規制に対応するためには、SCR方式及びEGR方式を同時実施する必要がある。
特許文献1〜3には、SCR方式とEGR方式とを同時併用した内燃機関が開示されている。
Another means of reducing the amount of NO X in the exhaust gas, is introduced a portion of the exhaust after combustion air supply path, there is an exhaust gas recirculation (EGR) system to supply again. This reduces the oxygen concentration of the air supply, by lowering the combustion temperature, thereby reducing the NO X generation amount. In order to comply with exhaust gas regulations that will be further strengthened in the future and strict exhaust gas regulations already in effect in other countries, it is necessary to simultaneously implement the SCR method and the EGR method.
Patent Documents 1 to 3 disclose an internal combustion engine that uses both the SCR system and the EGR system at the same time.

特開平9−122447号公開公報JP-A-9-122447 特開2003−314254号公開公報JP 2003-314254 A 特開2009−270549号公開公報JP 2009-270549 A

再循環路を流れる排気を冷却水で冷却する冷却器を備えたEGR方式では、冷却水の保有熱をラジエータで放熱している。想定を超える酷暑の中で、車両の高負荷運転を継続し、オーバーヒートしてしまった場合、車両を同じ速度で運行させることが困難になり、内燃機関の出力を制限する必要がある。特に大型車両の場合、速度を落すと、周囲の交通の流れを妨害するおそれがあり、また、オーバーヒートを解消するため、一時停車する場合にも、大型車両は、停車場所の確保も容易ではない。   In the EGR system provided with a cooler that cools the exhaust gas flowing through the recirculation path with cooling water, the heat retained in the cooling water is radiated by the radiator. If the vehicle continues to be heavily loaded and overheated in an intense heat that exceeds expectations, it becomes difficult to operate the vehicle at the same speed, and it is necessary to limit the output of the internal combustion engine. Especially in the case of large vehicles, if the speed is reduced, there is a risk of obstructing the flow of surrounding traffic, and it is not easy to secure a stopping place for large vehicles even when stopping temporarily to eliminate overheating. .

冷却水がラジエータとシリンダブロック及び排気再循環路に設けられた冷却器との間を循環する冷却方式では、冷却水が再循環路を流れる排気から奪う熱量を低減することで、冷却水の温度上昇を防止し、内燃機関のオーバーヒートを防止できる。しかし、この操作を行なうと、EGR方式によって低水準に保持されていたNO量が増加するという問題がある。特許文献1〜3には、かかる問題を解決する解決策は開示されていない。 In the cooling system in which the cooling water circulates between the radiator and the cooler provided in the cylinder block and the exhaust gas recirculation path, the cooling water temperature is reduced by reducing the amount of heat taken from the exhaust gas flowing through the recirculation path. The rise can be prevented and overheating of the internal combustion engine can be prevented. However, when performing this operation, there is a problem that the amount of NO X held in the low level by the EGR system is increased. Patent Documents 1 to 3 do not disclose a solution for solving such a problem.

本発明は、かかる従来技術の課題に鑑み、SCR方式及びEGR方式を併用した内燃機関において、排気中のNO量を基準値以下に保持しながら、内燃機関のオーバーヒートを防止可能にすることを目的とする。 The present invention is, in the conventional view of the art problems, SCR system and EGR system combination with an internal combustion engine, while retaining the amount of NO X in the exhaust gas below the reference value, the enabling preventing overheating of the internal combustion engine Objective.

かかる目的を達成するため、本発明の内燃機関の運転制御方法は、冷却水をラジエータとエンジンブロック及び排気再循環路に設けられた冷却器との間に循環させ、エンジンブロック及び再循環排気を冷却する冷却工程と、エンジンブロックに流入する冷却水の温度を検出する検出工程と、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度であるとき、再循環排気量を内燃機関のオーバーヒート限界値以下に低減し、かつ還元剤添加量を増加する第1運転工程と、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度でないとき、内燃機関の出力を低減する第2運転工程と、からなるものである。   In order to achieve such an object, an operation control method for an internal combustion engine according to the present invention circulates cooling water between a radiator and an engine block and a cooler provided in an exhaust gas recirculation path. A cooling process for cooling, a detection process for detecting the temperature of cooling water flowing into the engine block, and a recirculation exhaust amount when the temperature of the cooling water is higher than a threshold value and the exhaust temperature is the activation temperature of the denitration catalyst When the temperature of the cooling water is higher than the threshold value and the exhaust gas temperature is not the activation temperature of the denitration catalyst. And a second operation step for reducing the output of the engine.

本発明方法では、冷却水温が閾値を超えないとき、通常運転を行なう。即ち、排ガス中NO量を基準値以下に維持しつつ、燃料及び還元剤の消費量が最小限となる運転を行なう。(燃料+尿素水)消費量を最小限とすることで、運行経費を節減する。冷却水温が閾値を超えたとき、排気温度が脱硝触媒の活性温度であれば、排気の再循環量を内燃機関のオーバーヒート限界値以下に抑制することで、内燃機関のオーバーヒートを防止すると共に、還元剤添加量を増加して、前記排気再循環量を抑制したことによるNOx浄化能力の低下を補うように脱硝触媒のNO浄化作用の増大によって、排気中NO量を基準値以下に保持する。 In the method of the present invention, normal operation is performed when the cooling water temperature does not exceed the threshold value. That is, while maintaining below the reference value of the exhaust gas amount of NO X, performs operation the consumption of fuel and the reducing agent is minimized. (Fuel + urea water) Reduce operating costs by minimizing consumption. When the cooling water temperature exceeds the threshold, if the exhaust temperature is the activation temperature of the denitration catalyst, the exhaust gas recirculation amount is suppressed to be equal to or less than the overheat limit value of the internal combustion engine, thereby preventing overheating of the internal combustion engine and reducing agent addition amount is increased, the increase of the NO X purification action of NO x removal catalyst so as to compensate for the decrease in the NOx purification capability due to suppressed the exhaust gas recirculation amount, holds the exhaust amount of NO X to less than the reference value .

冷却水温が閾値を超えたとき、排気温度が脱硝触媒の活性温度に達していなければ、内燃機関の出力を低減し、オーバーヒートを防止する。   If the exhaust water temperature does not reach the activation temperature of the denitration catalyst when the cooling water temperature exceeds the threshold value, the output of the internal combustion engine is reduced and overheating is prevented.

本発明方法の概略を図4により説明する。図4において、冷却水温tが閾値T以下である通常運転時、再循環排気量(EGR量)は、排気中NO量を低減可能なA量に設定される。EGR量は冷却水が再循環排気から持ち去る熱量と一義的に対応する。即ち、EGR量が増加すれば、持ち去り熱量も増加し、EGR量が減少すれば、持ち去り熱量も減少する。EGR量Aに対応して、排気中NO量が基準値以下となるように、SCR触媒を用いた排気ガス浄化装置の尿素水添加量をC量に調節する。 The outline of the method of the present invention will be described with reference to FIG. 4, during normal operation the cooling water temperature t is the threshold value T 0 or less, the recirculation exhaust gas amount (EGR amount) is set to reduce possible A quantity exhaust amount of NO X. The amount of EGR uniquely corresponds to the amount of heat that the cooling water takes away from the recirculated exhaust. That is, if the EGR amount increases, the amount of heat taken away also increases, and if the amount of EGR decreases, the amount of heat removed also decreases. In response to the EGR quantity A, NO X amount in the exhaust gas so that more than the reference value, to adjust the urea water addition amount of the exhaust gas purification apparatus using the SCR catalyst C amount.

冷却水温tが閾値Tを超えたとき、EGR量をB量に低減し、冷却水が再循環排気から持ち去る熱量を減少させて、内燃機関のオーバーヒートを防止する。EGR量をB量に低減すると、排気中NO量が増加するので、尿素水添加量をD量に増加し、排気中NO量を基準値以下に抑えるようにする。
かかる操作を行なうことによって、排気中NO量を基準値以下に保持しながら、内燃機関のオーバーヒートを防止する。
When the cooling water temperature t exceeds the threshold T 0 , the EGR amount is reduced to the B amount, and the amount of heat that the cooling water takes away from the recirculated exhaust gas is reduced to prevent overheating of the internal combustion engine. Reducing the EGR amount to the amount of B, since the amount of NO X in the exhaust gas is increased, increasing the urea water addition amount to the amount of D, and to suppress the exhaust amount of NO X to less than the reference value.
By performing such an operation, while maintaining the exhaust amount of NO X than the reference value, to prevent overheating of the internal combustion engine.

前記本発明方法の実施に直接使用可能な本発明の内燃機関の運転制御装置は、ラジエータとエンジンブロック及び排気再循環路に設けられた冷却器との間に冷却水を循環させる冷却水経路と、エンジンブロックに流入する冷却水の温度を検出する温度センサと、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度であるとき、再循環排気量を内燃機関のオーバーヒート限界値以下に低減し、かつ還元剤添加量を増加すると共に、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度でないとき、内燃機関の出力を低減するコントローラと、を備えている。   The internal combustion engine operation control apparatus of the present invention that can be directly used for carrying out the method of the present invention includes a cooling water path for circulating cooling water between a radiator and an engine block and a cooler provided in an exhaust gas recirculation path. A temperature sensor for detecting the temperature of the cooling water flowing into the engine block; and when the temperature of the cooling water is higher than a threshold value and the exhaust temperature is the activation temperature of the denitration catalyst, the recirculated exhaust amount is overheated in the internal combustion engine. A controller that reduces the output of the internal combustion engine when the temperature of the cooling water is higher than a threshold value and the exhaust gas temperature is not the activation temperature of the denitration catalyst, while reducing below the limit value and increasing the reducing agent addition amount; It has.

本発明装置では、内燃機関入口側の冷却水温を検出し、冷却水温が閾値を超えたとき、排気温度が脱硝触媒の活性温度であれば、排気の再循環量を低減することで、内燃機関のオーバーヒートを防止する。同時に、脱硝触媒のNO浄化作用によって、排気路から排出されるNO量を基準値以下にする。 In the device of the present invention, the internal combustion engine is detected by detecting the cooling water temperature on the inlet side of the internal combustion engine and reducing the exhaust gas recirculation amount if the exhaust water temperature is the activation temperature of the denitration catalyst when the cooling water temperature exceeds a threshold value. Prevent overheating. At the same time, the NO X purification action of the denitration catalyst, the NO X amount exhausted from the exhaust passage to less than the reference value.

また、該冷却水温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度でないとき、内燃機関の出力を低減する。このように、排気の再循環量を抑制することで、冷却水が再循環排気から持ち去る熱量を低減し、内燃機関のオーバーヒートを防止する。また、内燃機関の出力を低減することで、内燃機関のオーバーヒートを防止する。   Further, when the cooling water temperature is higher than the threshold and the exhaust temperature is not the activation temperature of the denitration catalyst, the output of the internal combustion engine is reduced. In this way, by suppressing the recirculation amount of the exhaust, the amount of heat that the cooling water takes away from the recirculation exhaust is reduced, and overheating of the internal combustion engine is prevented. Moreover, the overheating of the internal combustion engine is prevented by reducing the output of the internal combustion engine.

本発明装置において、前記コントローラが、冷却水温が閾値以下であるとき、排気中NO量を基準値以下にしながら、燃料及び還元剤の消費量を最小限にする通常運転制御手段と、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度であるとき、再循環排気量を内燃機関のオーバーヒート限界値以下に低減し、かつ還元剤添加量を増加する第1運転制御手段と、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度でないとき、機関の出力を低減する第2運転制御手段と、を備えているとよい。 In the present invention apparatus, the controller, when the coolant temperature is equal to or less than the threshold, while the exhaust amount of NO X to less than the reference value, a normal operation control means for minimizing the consumption of fuel and reducing agent, cooling water When the temperature of the engine is higher than the threshold value and the exhaust temperature is the activation temperature of the denitration catalyst, the first operation control for reducing the recirculated exhaust amount to be equal to or less than the overheat limit value of the internal combustion engine and increasing the reducing agent addition amount And a second operation control means for reducing the output of the engine when the temperature of the cooling water is higher than the threshold and the exhaust temperature is not the activation temperature of the denitration catalyst.

冷却水温が閾値を超えていない通常運転時、通常運転制御手段に基づいて運転することにより、燃料及び還元剤の消費量を最小限に抑え、これによって、運行経費を最小限に抑えることができる。また、冷却水温が閾値を超えたとき、第1運転制御手段又は第2運転制御手段によって内燃機関を運転する。これによって、排気中NO量を基準値以下に保持しながら、内燃機関のオーバーヒートを防止できる。 During normal operation when the cooling water temperature does not exceed the threshold value, operation based on normal operation control means minimizes fuel and reducing agent consumption, thereby minimizing operating costs. . When the coolant temperature exceeds the threshold value, the internal combustion engine is operated by the first operation control means or the second operation control means. Thus, the exhaust amount of NO X while maintaining below the reference value, it is possible to prevent overheating of the internal combustion engine.

方法発明によれば、内燃機関の排気に還元剤を添加し、該還元剤と脱硝触媒とで排気中NOを浄化するNO浄化工程と、排気の一部を給気路に還流させる排気再循環工程とを行なう内燃機関の運転制御方法において、冷却水をラジエータとエンジンブロック及び排気再循環路に設けられた冷却器との間に循環させ、エンジンブロック及び再循環排気を冷却する冷却工程と、エンジンブロックに流入する冷却水の温度を検出する検出工程と、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度であるとき、再循環排気量を内燃機関のオーバーヒート限界値以下に低減し、かつ還元剤添加量を増加する第1運転工程と、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度でないとき、内燃機関の出力を低減する第2運転工程と、からなるので、排気中NO量を基準値以下に保持しつつ、内燃機関のオーバーヒートを防止できる。そのため、いかなる環境においても、内燃機関の出力を確保し、車両の運行を速やかに継続できる。 According to the method invention, the NO X purification step of adding a reducing agent to the exhaust gas of the internal combustion engine, and purifying NO X in the exhaust gas with the reducing agent and the denitration catalyst, and the exhaust gas for recirculating a part of the exhaust gas to the air supply passage In the internal combustion engine operation control method for performing the recirculation step, the cooling step of circulating the cooling water between the radiator and the engine block and the cooler provided in the exhaust gas recirculation path to cool the engine block and the recirculated exhaust gas. And a detecting step for detecting the temperature of the cooling water flowing into the engine block, and when the temperature of the cooling water is higher than the threshold and the exhaust temperature is the activation temperature of the denitration catalyst, A first operation step in which the temperature is reduced to an overheat limit value and the reducing agent addition amount is increased, and when the temperature of the cooling water is higher than the threshold value and the exhaust temperature is not the activation temperature of the denitration catalyst, A second operation step of reducing the force, since from the exhaust amount of NO X while keeping below the reference value, it is possible to prevent overheating of the internal combustion engine. Therefore, in any environment, the output of the internal combustion engine can be secured and the operation of the vehicle can be continued quickly.

装置発明によれば、内燃機関の排気路に脱硝触媒と該脱硝触媒の上流側排気路に還元剤を添加する還元剤添加装置とからなるNO浄化装置と、排気の一部を給気路に還流させる排気再循環路とを備えた内燃機関の運転制御装置において、ラジエータとエンジンブロック及び排気再循環路に設けられた冷却器との間に冷却水を循環させる冷却水経路と、エンジンブロックに流入する冷却水の温度を検出する温度センサと、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度であるとき、再循環排気量を内燃機関のオーバーヒート限界値以下に低減し、かつ還元剤添加量を増加すると共に、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度でないとき、内燃機関の出力を低減するコントローラと、を備えているので、前述の方法発明と同様の作用効果を得ることができる。 According to the apparatus invention, the NO X purification device consisting of a reducing agent addition device for adding a reducing agent to the upstream side exhaust passage of the denitration catalyst and the denitration catalyst in an exhaust passage of an internal combustion engine, a part of the exhaust air supply passage In an internal combustion engine operation control device comprising an exhaust gas recirculation path for recirculation, a cooling water path for circulating cooling water between a radiator, an engine block and a cooler provided in the exhaust gas recirculation path, and an engine block A temperature sensor that detects the temperature of the cooling water flowing into the engine, and when the cooling water temperature is higher than the threshold value and the exhaust temperature is the activation temperature of the denitration catalyst, the recirculation exhaust amount is less than the overheat limit value of the internal combustion engine A controller for reducing the output of the internal combustion engine when the temperature of the cooling water is higher than a threshold and the exhaust temperature is not the activation temperature of the denitration catalyst, Therefore, the same effects as those of the above-described method invention can be obtained.

本発明の一実施形態に係る内燃機関の系統図である。1 is a system diagram of an internal combustion engine according to an embodiment of the present invention. 前記実施形態の運転制御を示すフローチャートである。It is a flowchart which shows the operation control of the said embodiment. 前記実施形態の運転制御マップを示す線図である。It is a diagram which shows the operation control map of the said embodiment. 本発明の概略を示す説明図である。It is explanatory drawing which shows the outline of this invention.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

本発明方法及び装置の一実施形態を図1〜図3に基づいて説明する。まず、図1により本実施形態のディーゼル機関10の構成を説明する。図1において、複数のシリンダ26が内蔵されたエンジンブロック12に給気マニホールド14及び排気マニホールド16が接続されている。給気マニホールド14には給気管18が接続され、排気マニホールド16には排気管20が接続されている。   An embodiment of the method and apparatus of the present invention will be described with reference to FIGS. First, the configuration of the diesel engine 10 of the present embodiment will be described with reference to FIG. In FIG. 1, an air supply manifold 14 and an exhaust manifold 16 are connected to an engine block 12 in which a plurality of cylinders 26 are built. An air supply pipe 18 is connected to the air supply manifold 14, and an exhaust pipe 20 is connected to the exhaust manifold 16.

給気管18及び排気管20に跨って過給機22が設けられている。過給機22は、給気管18に設けられたコンプレッサ22aと、排気管20に設けられた排気タービン22bと、からなり、コンプレッサ22aと排気タービン22bは軸で一体に結合されている。排気eによって排気タービン22bが回転することで、コンプレッサ22aが回転し、給気aを給気管18に送り込む。   A supercharger 22 is provided across the air supply pipe 18 and the exhaust pipe 20. The supercharger 22 includes a compressor 22a provided in the air supply pipe 18 and an exhaust turbine 22b provided in the exhaust pipe 20, and the compressor 22a and the exhaust turbine 22b are integrally coupled by a shaft. By rotating the exhaust turbine 22b by the exhaust e, the compressor 22a rotates and feeds the air supply a into the air supply pipe 18.

コンプレッサ22aの下流側給気管18にインタークーラ24が設けられ、給気管18は、運転効率を向上させるため、インタークーラ24で冷却され、高密度にされる。インタークーラ24で冷却された給気aは、給気マニホールド14を経て複数のシリンダ26に供給される。シリンダ26で燃料(例えば軽油)と給気aとが混合し、これらが圧縮されて燃焼する。排気eは排気マニホールド16を経て排気管20に排気される。   An intercooler 24 is provided in the air supply pipe 18 on the downstream side of the compressor 22a, and the air supply pipe 18 is cooled by the intercooler 24 to have a high density in order to improve the operation efficiency. The supply air a cooled by the intercooler 24 is supplied to the plurality of cylinders 26 through the supply manifold 14. In the cylinder 26, fuel (for example, light oil) and the supply air a are mixed, and these are compressed and burned. The exhaust e is exhausted to the exhaust pipe 20 through the exhaust manifold 16.

排気タービン22bの下流側排ガス路20には、前段酸化触媒28とDPFフィルタ30とを組み合わせた排ガス浄化装置32が設けられている。この排ガス浄化装置32は、DPFフィルタ30で排気中の粒子状物質を捕捉し、前段酸化触媒28で排気中NOをNOの多い状態にし、NOの強力な酸化作用で捕捉した粒子状物質を燃焼させるものである。 An exhaust gas purification device 32 in which a front-stage oxidation catalyst 28 and a DPF filter 30 are combined is provided in the exhaust gas passage 20 on the downstream side of the exhaust turbine 22b. The exhaust gas purifying apparatus 32 captures particulate matter in exhaust by DPF filter 30, the exhaust NO X in the high state of NO 2 in the upstream side oxidation catalyst 28, particulate was captured by strong oxidizing action of NO 2 It burns substances.

排ガス浄化装置32の下流側には、尿素水噴射ノズル34が設けられ、尿素水噴射ノズル34の下流側にSCR触媒36が設けられている。尿素水供給管35に設けられたポンプ(図示省略)によって、尿素水噴射ノズル34から尿素水nを噴射する。排気eの熱で尿素水中の尿素を加水分解し、還元剤であるアンモニアを生成する。生成したアンモニアをSCR触媒36に供給し、SCR触媒に吸着したNOxを還元して窒素と水に分解し、外部へ排出させる。SCR触媒36の下流側に設けられた後段酸化触媒38は、残存したアンモニア、一酸化炭素、及び炭化水素等を除去する。   A urea water injection nozzle 34 is provided on the downstream side of the exhaust gas purification device 32, and an SCR catalyst 36 is provided on the downstream side of the urea water injection nozzle 34. The urea water n is injected from the urea water injection nozzle 34 by a pump (not shown) provided in the urea water supply pipe 35. The urea in the urea water is hydrolyzed by the heat of the exhaust e to produce ammonia as a reducing agent. The produced ammonia is supplied to the SCR catalyst 36, NOx adsorbed on the SCR catalyst is reduced, decomposed into nitrogen and water, and discharged to the outside. The post-stage oxidation catalyst 38 provided on the downstream side of the SCR catalyst 36 removes remaining ammonia, carbon monoxide, hydrocarbons, and the like.

ラジエータ40とエンジンブロック12との間を接続する冷却水循環路42a及び42bが設けられている。また、排気マニホールド16から分岐し、給気マニホールド14に接続された排気再循環路(EGR路)44が設けられている。EGR路44には、EGRクーラ46が介設されている。EGRクーラ46には、冷却水循環路42bから分岐し、EGRクーラ46に接続され、再び冷却水循環路42bに合流する分岐冷却水循環路48が接続されている。EGR路44を流れる排気e(EGRガス)は、EGRクーラ46で冷却水と熱交換し冷却される。EGR路44には流量調整弁50が設けられている。   Cooling water circulation paths 42 a and 42 b that connect between the radiator 40 and the engine block 12 are provided. Further, an exhaust gas recirculation path (EGR path) 44 branched from the exhaust manifold 16 and connected to the air supply manifold 14 is provided. An EGR cooler 46 is interposed in the EGR path 44. The EGR cooler 46 is connected to a branch cooling water circulation path 48 that branches from the cooling water circulation path 42b, is connected to the EGR cooler 46, and joins the cooling water circulation path 42b again. The exhaust gas e (EGR gas) flowing through the EGR path 44 is cooled by exchanging heat with cooling water in the EGR cooler 46. A flow rate adjustment valve 50 is provided in the EGR path 44.

エンジンブロック12の入口側(ディーゼル機関10のオーバーヒート状態を把握するのに適した位置)で、冷却水循環路42aに温度センサ52が設けられ、エンジンブロック入口側冷却水温tを検出している。また、排ガス浄化装置32の入口側排気管20に温度センサ54が設けられ、SCR触媒36の入口側排気管20に温度センサ56が設けられている。これら温度センサの検出信号は、ディーゼル機関10の運転を制御するECU(エンジン・コントロール・ユニット)60に送られる。   On the inlet side of the engine block 12 (a position suitable for grasping the overheat state of the diesel engine 10), a temperature sensor 52 is provided in the cooling water circulation path 42a to detect the engine block inlet side cooling water temperature t. Further, a temperature sensor 54 is provided in the inlet side exhaust pipe 20 of the exhaust gas purification device 32, and a temperature sensor 56 is provided in the inlet side exhaust pipe 20 of the SCR catalyst 36. Detection signals from these temperature sensors are sent to an ECU (Engine Control Unit) 60 that controls the operation of the diesel engine 10.

ECU60では、これらの検出値に基づいて流量調整弁50の開度を制御し、EGRクーラ46を流れる冷却水量を調整する。また、ECU60は、尿素水供給管35に設けられた流量調整弁58の開度を制御し、尿素水添加量を調整する。ECU60は、記憶部62、通常運転制御手段64、第1運転制御手段66及び第2運転制御手段68を内蔵している。記憶部62は、通常運転制御マップ、第1運転制御マップ及び第2運転制御マップを内蔵している。通常運転制御手段64は、通常運転制御マップに基づいて通常運転制御モードを実行し、第1運転制御手段66は第1運転制御マップに基づいて第1運転制御モードを実行し、第2運転制御手段68は第2運転制御マップに基づいて第2運転制御モードを実行する。   The ECU 60 controls the opening degree of the flow rate adjustment valve 50 based on these detected values and adjusts the amount of cooling water flowing through the EGR cooler 46. Further, the ECU 60 controls the opening degree of the flow rate adjustment valve 58 provided in the urea water supply pipe 35 to adjust the urea water addition amount. The ECU 60 includes a storage unit 62, normal operation control means 64, first operation control means 66, and second operation control means 68. The storage unit 62 incorporates a normal operation control map, a first operation control map, and a second operation control map. The normal operation control means 64 executes the normal operation control mode based on the normal operation control map, the first operation control means 66 executes the first operation control mode based on the first operation control map, and the second operation control. The means 68 executes the second operation control mode based on the second operation control map.

かかる構成において、ディーゼル機関10の運転制御を図2により説明する。図2において、ディーゼル機関10の運転を開始し(S10)、冷却水温tが閾値Tを超えていないとき(S12)、通常運転制御手段64によって、通常運転制御モードに移行する(S14)。図3は運転制御マップを示す。図3中の曲線Eは、排気中NO量と(軽油+尿素水)消費量との関係を示す線図である。走行コストは(軽油+尿素水)消費量と比例する。NO浄化量と該NO浄化量に対応する尿素水消費量とは、NOと尿素水とが化学反応するときの化学反応式で一義的に決まる。 In such a configuration, operation control of the diesel engine 10 will be described with reference to FIG. 2, to start the operation of the diesel engine 10 (S10), when the cooling water temperature t does not exceed the threshold value T 0 (S12), the normal operation control unit 64 shifts to the normal operation control mode (S14). FIG. 3 shows an operation control map. Curve E in FIG. 3 is a graph showing the relationship between the exhaust amount of NO X (the diesel + urea water) consumption. The running cost is proportional to (light oil + urea water) consumption. The NO X purification amount and the urea water consumption amount corresponding to the NO X purification amount are uniquely determined by the chemical reaction equation when the NO X and urea water chemically react.

図3中の曲線Fは、排気中NO量とラジエータ40の放熱量との関係を示す。ラジエータ放熱量は、エンジンブロック12での冷却水の吸熱量及びEGRクーラ46での冷却水の吸熱量の和と同等の熱量に等しい。エンジン出口排気中NO量を低減するため、再循環排気量(EGRガス量)を増加させると、EGRクーラ46での冷却水の吸熱量が増加し、そのため、ラジエータ放熱量が増加する。 Curve F in Figure 3, showing the relationship between the heat radiation amount in the exhaust amount of NO X and the radiator 40. The radiator heat release amount is equal to the heat amount equivalent to the sum of the heat absorption amount of the cooling water in the engine block 12 and the heat absorption amount of the cooling water in the EGR cooler 46. To reduce the engine outlet exhaust gas amount of NO X, increasing the recirculated exhaust amount (EGR gas amount), heat absorption amount of the cooling water in the EGR cooler 46 is increased, therefore, radiator heat radiation amount increases.

排気管20から外部へ排出されるNO量を基準値以下とするために、EGRガス量の増減と尿素水添加量の増減という2つのパラメータを調整したときの(軽油+尿素水)合計コストは、曲線Eに示すように、あるエンジン出口NO量a0のときに最小となる。前述のように、尿素水消費量とは、NOと尿素水とが化学反応するときの化学反応式で一義的に決まり、それに加えて、エンジン出口NO量と燃費との関係から、エンジン出口NOX量は、(軽油+尿素水)合計コストによって決定される。通常運転時は、(軽油+尿素水)合計コストが最小となるように設定される。即ち、この時排気管20の排ガス浄化装置32に入る排ガス中NO量(エンジン出口NOx量)をa0とする。 To the NO X amount exhausted from the exhaust pipe 20 to the outside than the reference value, (diesel + urea water) Total cost when the adjusting two parameters, increasing or decreasing the increase or decrease and the urea water adding amount of the EGR gas amount , as shown by the curve E, becomes minimum when a certain engine outlet the amount of NO X a0. As described above, the urea water consumption is uniquely determined by the chemical reaction formula when the NO X and urea water chemically react, and in addition to that, from the relationship between the engine outlet NO X amount and fuel consumption, The amount of outlet NOX is determined by the total cost of (light oil + urea water). During normal operation, the total cost (light oil + urea water) is set to be minimum. That is, the exhaust gas in the amount of NO X into the exhaust gas purification device 32 at this time the exhaust pipe 20 (the engine outlet NOx amount) and a0.

第1運転制御モードにおいては、EGRガス量を低減するため、エンジン出口NO量がa0からa1に増加する。一方、EGRクーラ46からの持ち去り熱量がRからRに減少する。これによって、ディーゼル機関10のオーバーヒートを回避する。この時、EGRガス量低減に伴い増加するエンジン出口NO量をSCR触媒36で浄化すべく尿素水添加量を増量する。そもそもエンジン出口NO量がa0のとき、(軽油+尿素水)合計コストが最小であったが、第1運転制御モードに移行し、EGRガス量を低減すれば、軽油消費量が減るが、尿素水消費量が増えるため、(軽油+尿素水)合計コストはb0からb1へと悪化する。 In the first operation control mode, for reducing the EGR gas amount, the engine outlet the amount of NO X increases from a0 to a1. On the other hand, carried away heat from the EGR cooler 46 is reduced from R 0 to R 1. Thereby, overheating of the diesel engine 10 is avoided. At this time, the engine outlet the amount of NO X increases with reducing the amount of EGR gas to increasing the urea water addition amount so as to purify the SCR catalyst 36. First place when the engine outlet the amount of NO X is a0, but (light oil + aqueous urea) total cost is the smallest, shifts to the first operation control mode, if reducing the EGR gas amount, but diesel consumption is reduced, Since the urea water consumption increases, the total cost (light oil + urea water) deteriorates from b0 to b1.

図2において、冷却水温tが閾値Tを超えたとき(S12)、排気eがSCR触媒36の活性温度であるなら(S16)、第1運転制御手段66によって、第1運転制御モードに移行する(S18)。図中、TはSCR触媒36の活性温度の下限値であり、Tは、SCR触媒36の活性温度の上限値である。この第1運転制御モードを実行するための第1運転制御マップは、ディーゼル機関10のオーバーヒートを防ぐため、EGR量を低減し、かつ尿素水添加量を増加させるようにする。EGRガス量を低減させることで、冷却水の持ち去り熱量を低減し、これによって、ディーゼル機関10のオーバーヒートを防止する。EGRガス量の低減分を尿素水添加量を増加させることで補い、時排気管20の出口排気中NO量を基準値以下に保持した運転を行なうことができる。 2, when the cooling water temperature t exceeds the threshold value T 0 (S12), if the exhaust e is an active temperature of SCR catalyst 36 (S16), by the first operation control unit 66, shifts to the first operation control mode (S18). In the figure, T 1 is a lower limit value of the activation temperature of the SCR catalyst 36, and T 2 is an upper limit value of the activation temperature of the SCR catalyst 36. The first operation control map for executing the first operation control mode reduces the EGR amount and increases the urea water addition amount in order to prevent overheating of the diesel engine 10. By reducing the amount of EGR gas, the amount of heat taken away from the cooling water is reduced, thereby preventing overheating of the diesel engine 10. Compensate for the amount of decrease in the EGR gas amount by increasing the urea water addition amount, can be performed operation held below the reference value in the outlet exhaust gas amount of NO X in the exhaust pipe 20 when.

図2において、冷却水温tが閾値Tを超えたとき(S12)、排気eがSCR触媒36の活性温度でないなら(S16)、第2運転制御モードに移行する(S20)。この第2運転制御モードは、ディーゼル機関10の出力を低減させるようにしたものである。これによって、ディーゼル機関10の出力を低減し、ディーゼル機関10のオーバーヒートを防止した運転を行なうことができる。 2, when the cooling water temperature t exceeds the threshold value T 0 (S12), if the exhaust e is not active temperature of SCR catalyst 36 (S16), it shifts to the second operation control mode (S20). In the second operation control mode, the output of the diesel engine 10 is reduced. As a result, it is possible to reduce the output of the diesel engine 10 and perform an operation that prevents the diesel engine 10 from overheating.

本実施形態によれば、冷却水温t及びSCR触媒36に進入する排気eの温度に応じて、通常運転制御モード、第1運転制御モード又は第2運転制御モードに移行し、EGR量、尿素水添加量又はエンジン出力を調整するようにしているので、ディーゼル機関10のオーバーヒートを防止し、かつ排気管20の出口NO量を基準値以下に保持した運転を行なうことができる。従って、ディーゼル機関10を装備したバス、トラック等の大型車両のエンジン出力を確保し、運行を支障なく継続できる。 According to this embodiment, the normal operation control mode, the first operation control mode, or the second operation control mode is shifted according to the cooling water temperature t and the temperature of the exhaust e entering the SCR catalyst 36, and the EGR amount, urea water since so as to adjust the amount or the engine output, it is possible to perform the operation to prevent overheating of the diesel engine 10, and was held exit the amount of NO X in the exhaust pipe 20 below the reference value. Therefore, the engine output of large vehicles such as buses and trucks equipped with the diesel engine 10 can be secured and the operation can be continued without any trouble.

本発明によれば、内燃機関のオーバーヒートを防止し、かつ排気中NO量を基準値以下に保持した運転を行なうことができる。そのため、いかなる環境であっても、内燃機関の出力を確保し、車両の運行を継続できる。 According to the present invention, it is possible to perform the operation to prevent overheating of the internal combustion engine, and holding the exhaust amount of NO X to less than the reference value. Therefore, in any environment, the output of the internal combustion engine can be secured and the operation of the vehicle can be continued.

10 ディーゼル機関
12 エンジンブロック
14 給気マニホールド
16 排気マニホールド
18 給気管
20 排気管
22 過給機
22a コンプレッサ
22b 排気タービン
24 インタークーラ
26 シリンダ
28 前段酸化触媒
30 DPFフィルタ
32 排ガス浄化装置
34 尿素水噴射ノズル
36 SCR触媒(脱硝触媒)
38 後段酸化触媒
40 ラジエータ
42a、42b 冷却水循環路
44 EGR路
46 EGRクーラ(冷却器)
48 分岐冷却水循環路
50,58 流量調整弁
52,54,56 温度センサ
60 ECU
62 記憶部
64 通常運転制御手段
66 第1運転制御手段
68 第2運転制御手段
活性温度下限値
活性温度上限値
a 給気
e 排気
n 尿素水
DESCRIPTION OF SYMBOLS 10 Diesel engine 12 Engine block 14 Supply manifold 16 Exhaust manifold 18 Supply pipe 20 Exhaust pipe 22 Supercharger 22a Compressor 22b Exhaust turbine 24 Intercooler 26 Cylinder 28 Pre-stage oxidation catalyst 30 DPF filter 32 Exhaust gas purification device 34 Urea water injection nozzle 36 SCR catalyst (denitration catalyst)
38 Rear-stage oxidation catalyst 40 Radiators 42a, 42b Cooling water circulation path 44 EGR path 46 EGR cooler (cooler)
48 Branch cooling water circulation path 50, 58 Flow rate adjustment valve 52, 54, 56 Temperature sensor 60 ECU
62 storage unit 64 normal operation control means 66 first operation control means 68 second operation control means T 1 lower limit of activation temperature T 2 upper limit of activation temperature a supply air e exhaust n urea water

Claims (3)

内燃機関の排気に還元剤を添加し、該還元剤と脱硝触媒とで排気中NOを浄化するNO浄化工程と、排気の一部を給気路に還流させる排気再循環工程とを行なう内燃機関の運転制御方法において、
冷却水をラジエータとエンジンブロック及び排気再循環路に設けられた冷却器との間に循環させ、エンジンブロック及び再循環排気を冷却する冷却工程と、
エンジンブロックに流入する冷却水の温度を検出する検出工程と、
該冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度であるとき、再循環排気量を内燃機関のオーバーヒート限界値以下に低減し、かつ還元剤添加量を増加する第1運転工程と、
該冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度でないとき、内燃機関の出力を低減する第2運転工程と、からなることを特徴とする内燃機関の運転制御方法。
A NO X purification step of adding a reducing agent to the exhaust gas of the internal combustion engine and purifying NO X in the exhaust gas with the reducing agent and the denitration catalyst, and an exhaust gas recirculation step of returning a part of the exhaust gas to the air supply path In an operation control method for an internal combustion engine,
A cooling step of circulating cooling water between the radiator and the cooler provided in the engine block and the exhaust gas recirculation path to cool the engine block and the recirculated exhaust gas;
A detection step for detecting the temperature of the cooling water flowing into the engine block;
When the temperature of the cooling water is higher than the threshold value and the exhaust temperature is the activation temperature of the denitration catalyst, the recirculation exhaust amount is reduced below the overheat limit value of the internal combustion engine, and the reducing agent addition amount is increased. 1 operation process,
An internal combustion engine operation control method comprising: a second operation step of reducing the output of the internal combustion engine when the temperature of the cooling water is higher than a threshold value and the exhaust gas temperature is not the activation temperature of the denitration catalyst. .
内燃機関の排気路に脱硝触媒と該脱硝触媒の上流側排気路に還元剤を添加する還元剤添加装置とからなるNO浄化装置と、排気の一部を給気路に還流させる排気再循環路とを備えた内燃機関の運転制御装置において、
ラジエータとエンジンブロック及び排気再循環路に設けられた冷却器との間に冷却水を循環させる冷却水経路と、
エンジンブロックに流入する冷却水の温度を検出する温度センサと、
冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度であるとき、再循環排気量を内燃機関のオーバーヒート限界値以下に低減し、かつ還元剤添加量を増加すると共に、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度でないとき、内燃機関の出力を低減するコントローラと、を備えていることを特徴とする内燃機関の運転制御装置。
And NO X purifying device comprising the reducing agent addition device for adding a reducing agent to the upstream side exhaust passage of the denitration catalyst and the denitration catalyst in an exhaust passage of an internal combustion engine, exhaust gas recirculation for recirculating part of exhaust into the air supply path An internal combustion engine operation control device comprising:
A cooling water path for circulating cooling water between the radiator and the cooler provided in the engine block and the exhaust gas recirculation path;
A temperature sensor for detecting the temperature of the cooling water flowing into the engine block;
When the temperature of the cooling water is higher than the threshold value and the exhaust temperature is the activation temperature of the denitration catalyst, the recirculation exhaust amount is reduced below the overheat limit value of the internal combustion engine, and the reducing agent addition amount is increased. And a controller that reduces the output of the internal combustion engine when the temperature of the cooling water is higher than a threshold value and the exhaust temperature is not the activation temperature of the denitration catalyst.
前記コントローラが、冷却水温が閾値以下であるとき、排気中NO量を基準値以下にしながら、燃料及び還元剤の消費量を最小限にする通常運転制御手段と、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度であるとき、再循環排気量を内燃機関のオーバーヒート限界値以下に低減し、かつ還元剤添加量を増加する第1運転制御手段と、冷却水の温度が閾値より高温であり、かつ排気温度が脱硝触媒の活性温度でないとき、内燃機関の出力を低減する第2運転制御手段と、を備えていることを特徴とする請求項2に記載の内燃機関の運転制御装置。 Said controller, when the coolant temperature is equal to or less than the threshold, while the exhaust amount of NO X to less than the reference value, a normal operation control means for minimizing the consumption of fuel and reducing agent, the temperature of the cooling water is the threshold A first operation control means for reducing the recirculation exhaust amount to be equal to or lower than the overheat limit value of the internal combustion engine and increasing the reducing agent addition amount when the exhaust gas temperature is the activation temperature of the denitration catalyst, and the cooling water; And a second operation control means for reducing the output of the internal combustion engine when the temperature of the engine is higher than a threshold value and the exhaust temperature is not the activation temperature of the denitration catalyst. An operation control device for an internal combustion engine.
JP2011100611A 2011-04-28 2011-04-28 Method and device for controlling operation of internal combustion engine Withdrawn JP2012233414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011100611A JP2012233414A (en) 2011-04-28 2011-04-28 Method and device for controlling operation of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011100611A JP2012233414A (en) 2011-04-28 2011-04-28 Method and device for controlling operation of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012233414A true JP2012233414A (en) 2012-11-29

Family

ID=47433962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011100611A Withdrawn JP2012233414A (en) 2011-04-28 2011-04-28 Method and device for controlling operation of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012233414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125870A1 (en) * 2013-02-14 2014-08-21 三菱自動車工業株式会社 Engine exhaust-gas purification device
KR20150096328A (en) * 2014-02-14 2015-08-24 도이츠 악티엔게젤샤프트 Combustion engine
KR101708129B1 (en) * 2015-10-30 2017-02-17 두산엔진주식회사 Power plant with selective catalytic reduction system and control method for the smae

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125870A1 (en) * 2013-02-14 2014-08-21 三菱自動車工業株式会社 Engine exhaust-gas purification device
JP2014156785A (en) * 2013-02-14 2014-08-28 Mitsubishi Motors Corp Exhaust emission control device of engine
KR20150096328A (en) * 2014-02-14 2015-08-24 도이츠 악티엔게젤샤프트 Combustion engine
KR102309229B1 (en) * 2014-02-14 2021-10-05 도이츠 악티엔게젤샤프트 Combustion engine
KR101708129B1 (en) * 2015-10-30 2017-02-17 두산엔진주식회사 Power plant with selective catalytic reduction system and control method for the smae

Similar Documents

Publication Publication Date Title
US10113465B2 (en) Systems and methods to reduce reductant consumption in exhaust aftertreatment systems
JP4485400B2 (en) Exhaust gas purification device for internal combustion engine
KR101648866B1 (en) Arrangement for cooling of recirculating exhaust gases of a combustion engine
US20150240682A1 (en) SYSTEMS AND METHODS TO MITIGATE NOx AND HC EMISSIONS
CN102884290B (en) Exhaust purification device for engine
JP5155718B2 (en) Exhaust purification device
JP2013124610A (en) Exhaust emission control device of internal combustion engine
JP2011111945A (en) Exhaust emission control device
JP5146547B2 (en) Exhaust gas purification device for internal combustion engine
JP2012233414A (en) Method and device for controlling operation of internal combustion engine
ES2369672T3 (en) THERMAL MANAGEMENT OF THE POST-TREATMENT SYSTEM.
JP2013113204A (en) Exhaust emission control system for engine
JP6015198B2 (en) Reducing agent addition system
JP5310166B2 (en) Engine exhaust purification system
JP6112297B2 (en) Engine exhaust purification system
JP2013155644A (en) Exhaust emission control device of internal combustion engine
JP2020045884A (en) Exhaust gas treatment system and vehicle
KR101722840B1 (en) Selective catalytic reduction system of low pressure
JP2019082121A (en) Exhaust-temperature rise mode egr device
JP6090347B2 (en) Exhaust purification device
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
KR102680169B1 (en) Apparatus for managing intake air for improvement of catalytic conversion efficiency of exhaust gas
JP2019152140A (en) Catalyst temperature drop suppression system
JP2006037769A (en) Control method for exhaust emission control device
JP2010090710A (en) Catalyst cooling prevention device for exhaust emission control device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701