JP2011121352A - Prescription and manufacturing method of lightweight plastic shoe-shape - Google Patents
Prescription and manufacturing method of lightweight plastic shoe-shape Download PDFInfo
- Publication number
- JP2011121352A JP2011121352A JP2010086927A JP2010086927A JP2011121352A JP 2011121352 A JP2011121352 A JP 2011121352A JP 2010086927 A JP2010086927 A JP 2010086927A JP 2010086927 A JP2010086927 A JP 2010086927A JP 2011121352 A JP2011121352 A JP 2011121352A
- Authority
- JP
- Japan
- Prior art keywords
- plastic shoe
- weight
- mold
- lightweight plastic
- shoe mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920003023 plastic Polymers 0.000 title claims abstract description 46
- 239000004033 plastic Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 229920001903 high density polyethylene Polymers 0.000 claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 41
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 38
- 159000000003 magnesium salts Chemical class 0.000 claims abstract description 21
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000013078 crystal Substances 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims description 23
- 239000007822 coupling agent Substances 0.000 claims description 13
- 239000011573 trace mineral Substances 0.000 claims description 11
- 235000013619 trace mineral Nutrition 0.000 claims description 11
- ZVFDTKUVRCTHQE-UHFFFAOYSA-N Diisodecyl phthalate Chemical compound CC(C)CCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC(C)C ZVFDTKUVRCTHQE-UHFFFAOYSA-N 0.000 claims description 9
- 238000001746 injection moulding Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 238000009472 formulation Methods 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 239000012190 activator Substances 0.000 claims description 6
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 claims description 5
- 239000000498 cooling water Substances 0.000 claims description 5
- 239000004088 foaming agent Substances 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 239000004597 plastic additive Substances 0.000 claims description 4
- 230000006837 decompression Effects 0.000 claims description 3
- 239000012860 organic pigment Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- NPSJHQMIVNJLNN-UHFFFAOYSA-N 2-ethylhexyl 4-nitrobenzoate Chemical compound CCCCC(CC)COC(=O)C1=CC=C([N+]([O-])=O)C=C1 NPSJHQMIVNJLNN-UHFFFAOYSA-N 0.000 claims description 2
- 239000004808 2-ethylhexylester Substances 0.000 claims description 2
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 claims description 2
- 239000003365 glass fiber Substances 0.000 claims description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 2
- 239000000347 magnesium hydroxide Substances 0.000 claims description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 2
- 239000000049 pigment Substances 0.000 claims description 2
- 102000004169 proteins and genes Human genes 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 claims description 2
- 239000004575 stone Substances 0.000 claims description 2
- 239000013585 weight reducing agent Substances 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims 2
- 229920000388 Polyphosphate Polymers 0.000 claims 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims 1
- 235000019359 magnesium stearate Nutrition 0.000 claims 1
- 239000001205 polyphosphate Substances 0.000 claims 1
- 235000011176 polyphosphates Nutrition 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 7
- 238000012360 testing method Methods 0.000 description 16
- 239000012756 surface treatment agent Substances 0.000 description 14
- 238000005187 foaming Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 7
- 238000004381 surface treatment Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 239000002131 composite material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000006261 foam material Substances 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000013012 foaming technology Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002984 plastic foam Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Molding Of Porous Articles (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
本発明は、軽量化プラスチック靴型の処方とその製造方法に関する。 The present invention relates to a lightweight plastic shoe mold formulation and a method for manufacturing the same.
従来技術は、他の線状鎖低密度ポリエテン(LL−DPE)やエチレンプロピレンゴム(EPDMとも称される)などを添加して、発泡効果を向上せず、純高密度ポリエテン(以下、HDPEとも称される)だけで、発泡するものが、殆どなく、また、既存の技術では、純HDPE微発泡成形技術に対して、気泡口径の大きさを安定的に制御することが困難であり、それは、HDPEの融点が、比較的に高いため、融点により制限が厳しくなり、また、融成物の強度が極めて低いため、加工性が悪くなり、靴型用軽量発泡材料として使用することが非常に難しい。 The prior art does not improve the foaming effect by adding other linear chain low density polyethene (LL-DPE), ethylene propylene rubber (also called EPDM), etc., and pure high density polyethene (hereinafter also referred to as HDPE). In the existing technology, it is difficult to stably control the bubble size with respect to the pure HDPE micro-foaming molding technology. Since the melting point of HDPE is relatively high, the limit becomes severe due to the melting point, and the strength of the melt is extremely low, so the processability is poor and it is very useful as a lightweight foam material for shoe molds. difficult.
既存のHDPE+EVA発泡材料やEPDM或いはLL−DPEは、一次発泡法や二次発泡法によって、微発泡材料を生産するが、上記のように、材料物性が、靴を製造することに必要とする靴型に適合しないだけでなく、それとともに、下記の問題点が残される。 Existing HDPE + EVA foam material, EPDM or LL-DPE produce fine foam material by primary foaming method or secondary foaming method, but as mentioned above, the material properties need to produce shoes Not only does it not fit the mold, but it also leaves the following problems.
1、二次閉鎖装置を必要するため、設備コストが高い。 1. Since a secondary closing device is required, the equipment cost is high.
2、殆ど、マスターバッチを製造することが必要とし、また、射出機のネジ杆の中段から、発泡剤を添加するため、生産工程が多くなるだけでなく、生産操作が複雑になり、産出量が低下され、工程時間が長くなる。 2. Mostly, it is necessary to manufacture a masterbatch, and since the foaming agent is added from the middle stage of the screw thread of the injection machine, not only the production process increases, but also the production operation becomes complicated, and the output amount Is reduced, and the process time is increased.
3、金型の変換や発泡割合で二次金型のサイズを算出するため、操作が複雑になり、品質が不安定である。一次発泡法や二次発泡法は、気泡口径をマイクロメートル気泡のサイズ範囲内に制御すること、即ち、口径を10μm〜50μmの範囲内、泡孔密度が、109〜1012個/cm3に制御することができないため、完成品の品質安定度が悪くなる。 3. Since the size of the secondary mold is calculated based on the mold conversion and the foaming ratio, the operation becomes complicated and the quality is unstable. In the primary foaming method and the secondary foaming method, the bubble diameter is controlled within the micrometer bubble size range, that is, the pore diameter is within a range of 10 μm to 50 μm, and the bubble pore density is controlled to 109 to 1012 / cm 3 . The quality stability of the finished product deteriorates because it cannot be done.
4、マイクロメートル級泡沫プラスチック微粒子から、軽質微発泡HDPEに作成する場合、そのような微粒子が、融点が高かい高分子で、空気を被覆し、HDPEと混合して添加され、高分子膜の融点が、HDPEより高いため、溶融断裂されず、軽量化の目的が実現されるが、価格が高く、格別のエンジニアリング樹脂以外、一般の汎用型製品に適用すると、コストが高くなる。 4. When making from micrometer-class foam plastic fine particles to light micro-foamed HDPE, such fine particles are a polymer having a high melting point, coated with air, mixed with HDPE, and added to the polymer film. The melting point is higher than that of HDPE, so that the purpose of weight reduction is realized without melting and tearing. However, the cost is high when applied to general general-purpose products other than special engineering resins.
本発明者は、上記欠点を解消するため、慎重に研究し、また、学理を活用して、有効に上記欠点を解消でき、設計が合理である本発明を提案する。 The present inventor proposes the present invention in which the above-mentioned drawbacks are solved by careful research, and the above-mentioned drawbacks can be effectively eliminated by utilizing science, and the design is rational.
本発明の主な目的は、完成品に、均一に分布した微細穴を有させ、品質安定度を有し、材料を研磨加工した後でも、表面平滑性が維持される軽量化プラスチック靴型の処方とその製造方法を提供する。 The main object of the present invention is to provide a weight-reduced plastic shoe mold that has uniformly distributed fine holes in the finished product, has quality stability, and maintains surface smoothness even after polishing the material. Provides a prescription and a method for its manufacture.
本発明の他の目的は、材料を節約し、工程を短縮でき、従来のHDPE治具が軽くなり、省力化でき、生産能力が向上され、また、リサイクルできる軽量化プラスチック靴型の処方とその製造方法を提供する。 Another object of the present invention is to save weight, to shorten the process, to make the conventional HDPE jig lighter, to save labor, to improve production capacity, and to recycle a lightweight plastic shoe mold and its A manufacturing method is provided.
本発明の更に他の目的は、高密度ポリエテン(HDPE)で、微発泡押出し型により、軽量化プラスチックHDPE靴型材料を生産でき、また、大幅に、既存のHDPE靴型と材料のコストを低減できる軽量化プラスチック靴型の処方とその製造方法を提供する。 Yet another object of the present invention is high density polyethene (HDPE), which can produce light weight plastic HDPE shoe material by micro-foaming extrusion and significantly reduce the cost of existing HDPE shoe material and material. A lightweight plastic shoe mold formulation and a method for manufacturing the same are provided.
本発明は、上記の目的を達成するために、80乃至85重量%の高密度ポリエテンと、5乃至7.4重量%の炭酸カルシウムと、5乃至7.4重量%のマグネシウム塩ひげ結晶と、微量元素と、が含有されることを特徴とする軽量化プラスチック靴型の処方を提供する。 In order to achieve the above object, the present invention provides a high-density polyethene of 80 to 85% by weight, a calcium carbonate of 5 to 7.4% by weight, and a magnesium salt beard crystal of 5 to 7.4% by weight, The present invention provides a lightweight plastic shoe-shaped prescription characterized by containing trace elements.
また、本発明は、無機ナノやマイクロメートル充填材料を活性化し、高密度ポリエテンと活性化剤を添加してから、一回目高速混合を行う『充填材料用意』ステップと、一回目高速混合された後、有機顔料を添加してから、二回目高速混合を行い、高速混合された後の混合材料を、減圧装置付きのストック反応槽内に仕入れる『顔料添加』ステップと、型締めの後、射出成形機で、温度設定を行い、射出圧力を維持しながら、混合材料を上記金型内に注入して、射出成形を行う『型締めの金型内に注入する』ステップと、循環する冷却水で金型内の成形待ち品を冷却する『冷却』ステップと、上記金型の型開きを行って、成形品を取り出す『型開き』ステップと、上記成形品に対して、表面加工処理を行う『表面加工処理』ステップと、が含有されることを特徴とする請求項1に記載の軽量化プラスチック靴型の製造方法を提供する。
In addition, the present invention includes a “filling material preparation” step in which inorganic nano and micrometer filling materials are activated, high-density polyethene and an activator are added, and first high-speed mixing is performed, and first high-speed mixing is performed. Then, after adding the organic pigment, the second high-speed mixing is performed, and the mixed material after the high-speed mixing is placed in a stock reactor equipped with a decompression device. In the molding machine, set the temperature, maintain the injection pressure, inject the mixed material into the mold and perform injection molding, “Inject into mold clamping mold” step, and circulating cooling water The “cooling” step for cooling the molding waiting product in the mold, the “mold opening” step for removing the molded product by opening the mold, and the surface treatment for the molded product. "Surface treatment" step It is the to provide a method of manufacturing a lightweight plastic shoe according to
以下、図面を参照しながら、本発明の特徴や技術内容について、詳しく説明するが、それらの図面等は、参考や説明のためであり、本発明は、それによって制限されることが無い。 Hereinafter, the features and technical contents of the present invention will be described in detail with reference to the drawings. However, the drawings and the like are for reference and explanation, and the present invention is not limited thereby.
本明細書において、特別に説明する場合以外、プラスチック靴型に含まれる成分は、全てが、上記プラスチック靴型の処方の総重量を基準とし、また、重量パーセント(wt%)により、表示される。 In this specification, unless otherwise specified, all components contained in the plastic shoe mold are based on the total weight of the plastic shoe mold formulation and are expressed in weight percent (wt%). .
本発明に係る軽量化プラスチック靴型の処方は、80乃至85重量%の高密度ポリエテン(以下、HDPEとも称される)と、5乃至7.4重量%の炭酸カルシウム(CaCO3)と、5乃至7.4重量%のマグネシウム塩ひげ結晶(MgSO4.5Mg(OH)2.3H2O)と、微量元素と、が含有される。 The weight-reducing plastic shoe mold formulation according to the present invention comprises 80 to 85% by weight high density polyethene (hereinafter also referred to as HDPE), 5 to 7.4% by weight calcium carbonate (CaCO 3 ), 5 To 7.4% by weight of magnesium salt whiskers (MgSO 4 .5Mg (OH) 2 .3H 2 O) and trace elements.
また、上記高密度ポリエテンの含量は、83乃至85重量%である。 The content of the high density polyethene is 83 to 85% by weight.
また、上記炭酸カルシウムの含量は、6乃至7重量%である。 The calcium carbonate content is 6 to 7% by weight.
また、上記マグネシウム塩ひげ結晶の含量は、6乃至7重量%である。 The content of the magnesium salt whiskers is 6 to 7% by weight.
また、上記微量元素は、10〜20CCのフタル酸ジイソデシル(DIDPとも称される)が含まれている。 The trace element contains 10-20 CC diisodecyl phthalate (also referred to as DIDP).
また、上記微量元素は、0.001乃至0.01重量%の1、1’-アゾビスホルムアミド(ADCとも称される)が含まれている。 The trace element contains 0.001 to 0.01% by weight of 1,1'-azobisformamide (also referred to as ADC).
また、上記微量元素は、0.0001乃至0.0005重量%の色粉が含まれている。 Further, the trace element contains 0.0001 to 0.0005% by weight of colored powder.
従来の高含量の炭酸カルシウムやマグネシウム塩ひげ結晶(ともに、6wt%以上)に、高密度ポリエテンが添加される場合、微視的に、高密度ポリエテンで、微発泡押出し型により、軽量化プラスチックHDPE靴型材料を生産することが、簡単になり、また、大幅に、既存の高密度ポリエテン靴型の材料コストを低減でき、必要とする物性よりも、純高密度ポリエテン材料の物性が、大幅に向上され、また、製品の競争力が、向上され、従来のプラスチック材料の諸欠点を解消でき、量産や応用に、大きい利点が得られる。 When high-density polyethene is added to conventional high-content calcium carbonate or magnesium salt whiskers (both 6 wt% or more), it is microscopically made of high-density polyethene and reduced in weight by plastic foam extrusion mold. It is easier to produce shoe-type materials, and can greatly reduce the material cost of existing high-density polyethene shoe molds, and the physical properties of pure high-density polyethene materials are significantly higher than the required physical properties. It is improved, and the competitiveness of the product is improved, so that the disadvantages of the conventional plastic material can be solved, and great advantages are obtained for mass production and application.
また、本発明に係る軽量化プラスチック靴型の処方によれば、発泡された後の材料は、その重量が、元のソリッドコア材料より、少なくとも20%以上に低減でき、軽量化を実現できる。そのため、本発明に係るプラスチック靴型処方によると、製造に有利である。 In addition, according to the prescription of the lightweight plastic shoe mold according to the present invention, the weight of the foamed material can be reduced to at least 20% or more than the original solid core material, and the weight can be reduced. Therefore, the plastic shoe mold prescription according to the present invention is advantageous for manufacturing.
図1は、本発明に係るプラスチック靴型の工程であり、本発明は、軽量化プラスチック靴型の製造方法で、無機ナノやマイクロメートル充填材料を活性化し、高密度ポリエテンと活性化剤を添加してから、一回目高速混合を行う『充填材料用意』ステップと、一回目高速混合された後、有機顔料を添加してから、二回目高速混合を行い、高速混合された後の混合材料を、減圧装置付きのストック反応槽内に仕入れる『顔料添加』ステップと、型締めの後、射出成形機で、温度設定を行い、射出圧力を維持しながら、混合材料を上記金型内に注入して、射出成形を行う『型締めの金型内に注入する』ステップと、循環する冷却水で金型内の成形待ち品を冷却する『冷却』ステップと、上記金型の型開きを行って、成形品を取り出す『型開き』ステップと、上記成形品に対して、表面加工処理を行う『表面加工処理』ステップと、が含有される。 FIG. 1 shows a plastic shoe mold process according to the present invention, which is a light weight plastic shoe mold manufacturing method for activating inorganic nano and micrometer filling materials and adding high-density polyethene and an activator. After that, the “filling material preparation” step that performs the first high-speed mixing, the organic pigment is added after the first high-speed mixing, the second high-speed mixing is performed, and the mixed material after the high-speed mixing is added. After the “pigment addition” step to be put into a stock reactor equipped with a decompression device and clamping, the temperature is set with an injection molding machine, and the mixed material is injected into the mold while maintaining the injection pressure. The steps of `` injecting into the mold for mold clamping '' for injection molding, `` cooling '' for cooling the molding waiting product in the mold with circulating cooling water, and opening the mold are performed. , Take out the molded product And-up, with respect to the molded article, and "surface treatment" step of performing a surface treatment, is contained.
また、上記活性化剤は、チタン系カップリング剤やアルミニウム系カップリング剤、単体カップリング剤、シラン類カップリング剤或いはジイポリリン酸2-エチルヘキシルエステルステアリン酸マグネシウムである。 The activator is a titanium coupling agent, an aluminum coupling agent, a simple coupling agent, a silane coupling agent, or magnesium didipolyphosphate 2-ethylhexyl ester stearate.
また、一回目高速混合において、高速混合する時、適当に、プラスチック添加物を添加しても良い。本発明の高速混合は、三次元立体高速混合機で、十分に、塑性材料HDPEと充填材料を混合し、ここで、活性化剤は、無機充填ナノやマイクロメートル粒子とHDPEの界面において、架橋作用を機能して、緊密に結合してから、更に、約0.5%の塑性助剤、即ち、可塑剤であるフタル酸ジイソデシル(DIDP)を添加する。これにより、完全に塑化される。この工程の前に、双ネジ杆や単ネジ杆の押出し機と押出し造粒機を直列してマスターバッチを作製しても良く、その効果が、よくなり、より均一的に混合することができるが、この方法は、コスト問題のため、三次元立体高速混合筒と改造された射出機だけの射出装置で、靴型に対する材質の要求標準に満足できる。 Further, in the first high-speed mixing, a plastic additive may be appropriately added when mixing at a high speed. The high speed mixing of the present invention is a three-dimensional three-dimensional high speed mixer, which sufficiently mixes the plastic material HDPE and the filling material, where the activator is crosslinked at the interface between the inorganic filled nano- or micrometer particles and the HDPE. After the action is functioning and intimately bonded, about 0.5% of a plastic auxiliary, i.e., the plasticizer diisodecyl phthalate (DIDP) is added. Thereby, it is completely plasticized. Before this step, a master batch may be prepared by serially connecting an extruder and an extruder granulator of twin screw or single screw, the effect is improved, and more uniform mixing is possible. However, because of this cost problem, this method can satisfy the required standard of material for the shoe mold with only a three-dimensional three-dimensional high-speed mixing cylinder and a modified injection machine.
また、上記プラスチック添加物は、フタル酸ジイソデシルである。 The plastic additive is diisodecyl phthalate.
また、二回目高速混合において高速混合する時、適当に発泡剤を添加しても良い。 In addition, when the high speed mixing is performed in the second high speed mixing, a foaming agent may be appropriately added.
また、上記発泡剤は、1、1’-アゾビスホルムアミドである。 The foaming agent is 1,1'-azobisformamide.
また、上記の『冷却』ステップは、冷却水の温度が、8〜13℃の範囲内に保持される。 In the “cooling” step, the temperature of the cooling water is maintained within the range of 8 to 13 ° C.
また、上記射出成形機は、温度が、150〜180℃の範囲内に設定される。 Moreover, as for the said injection molding machine, temperature is set in the range of 150-180 degreeC.
また、上記射出成形機は、射出圧力が、約100〜130kg/m2である。 Further, the injection molding machine, injection pressure is about 100~130kg / m 2.
また、上記充填材料は、炭酸カルシウムや酸化亜鉛、蛋白石、滑石粉、微結晶粉末、水酸化マグネシウム、ガラス繊維或いは粉末マグネシウム塩ひげ結晶である。 The filling material is calcium carbonate, zinc oxide, protein stone, talc powder, microcrystalline powder, magnesium hydroxide, glass fiber, or powdered magnesium salt whiskers.
実施例において、本発明に係る軽量化プラスチック靴型の処方は、80乃至85重量%の高密度ポリエテン(HDPEとも称される)と、5乃至7.4重量%の炭酸カルシウム(CaCO3)と、5乃至7.4重量%のマグネシウム塩ひげ結晶(MgSO4.5Mg(OH)2.3H2O)と、微量元素と、含有される。 In an example, a lightweight plastic shoe mold formulation according to the present invention comprises 80 to 85% by weight high density polyethene (also referred to as HDPE) and 5 to 7.4% by weight calcium carbonate (CaCO 3 ). , and 5 to 7.4% by weight of the magnesium salt whiskers (MgSO 4 .5Mg (OH) 2 .3H 2 O), and trace elements, is contained.
以下、実施例を用いて、本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
このより良い実施例において、本発明に係るプラスチック靴型の成分(単位が、重量パーセント)は、
高密度ポリエテン:約84.8%、
炭酸カルシウム:約6.7%、
マグネシウム塩ひげ結晶:約6.7%、
微量元素は、
フタル酸ジイソデシルDIDPが、約15ccで、
1、1’-アゾビスホルムアミドADCが、約0.006%で、
色粉が、約0.0003%である。
In this better embodiment, the components of the plastic shoe mold according to the present invention (unit: weight percent) are:
High density polyethene: about 84.8%
Calcium carbonate: about 6.7%,
Magnesium salt whisker crystal: about 6.7%,
Trace elements are
Diisodecyl phthalate DIDP is about 15cc,
1,1′-azobisformamide ADC is about 0.006%,
Color powder is about 0.0003%.
また、本発明のより良い実施例の処方や工程により作成されたプラスチック靴型は、試験を通して、衝撃強度や湾曲強度、張力と断裂引張伸びの向上が確認されている。 In addition, it has been confirmed through tests that the plastic shoe mold produced by the formulation and process of the better embodiment of the present invention has improved impact strength, bending strength, tension and tear elongation.
また、図2乃至図7は、本発明により作製されたプラスチック靴型に対して行った試験であり、衝撃強度試験は、図2のように、衝撃強度が、炭酸カルシウム含量によって影響されることが分かり、また、ステアリン酸表面処理された後の耐衝撃強度と比較することを行った。上記の図から分かるように、ステアリン酸表面処理された後の耐衝撃強度は、表面処理される前より、良くなり、これにより、本発明の耐衝撃強度は、従来のものより良いと確認できる。 FIGS. 2 to 7 are tests performed on a plastic shoe mold made according to the present invention. In the impact strength test, as shown in FIG. 2, the impact strength is affected by the calcium carbonate content. In addition, the impact strength after the stearic acid surface treatment was compared. As can be seen from the above figure, the impact strength after the stearic acid surface treatment is better than before the surface treatment, so that the impact strength of the present invention can be confirmed to be better than the conventional one. .
図3を参照しながら、表面処理剤(SMA1000+チタン系カップリング剤)含量について、耐衝撃強度試験を行い、上記SMA1000(大分子カップリング剤)とチタン系カップリング剤とを、混合して使用するため、無機充填物は、これらの助剤により、架橋作用が起こり、そのため、無機充填材料とHDPEとが、緊密に結合し、複合物は、全体として、靭性や衝撃強度、硬度、分散性及び複合物の溶融流動性等の物理性質が向上される。また、試験基材の処方比率は、HDPE:84%、CaCO3:8%、マグネシウム塩ひげ結晶:8%である。 With reference to FIG. 3, impact strength test was conducted for the content of the surface treatment agent (SMA1000 + titanium coupling agent), and the SMA1000 (macromolecular coupling agent) and titanium coupling agent were mixed and used. Therefore, the inorganic filler has a crosslinking action due to these auxiliary agents. Therefore, the inorganic filler and HDPE are closely bonded, and the composite as a whole has toughness, impact strength, hardness, dispersibility. And physical properties such as melt flowability of the composite are improved. The prescription ratio of the test substrate is HDPE: 84%, CaCO 3 : 8%, and magnesium salt whisker crystal: 8%.
また、本発明による完成品に対して、湾曲強度試験を行い、図4のように、HDPEの湾曲強度は、29.89MPAであり、その表面処理剤(SMA1000+チタン系カップリング剤)が2%で、HDPEにある炭酸カルシウム含量を変化して、湾曲強度テストを行い、確実に本発明の所定の湾曲強度に達することを確認した。 Further, a bending strength test was performed on the finished product according to the present invention, and as shown in FIG. 4, the bending strength of HDPE was 29.89 MPa, and its surface treatment agent (SMA1000 + titanium coupling agent) was 2%. Then, the bending strength test was performed by changing the calcium carbonate content in HDPE, and it was confirmed that the predetermined bending strength of the present invention was surely reached.
また、本発明による完成品に対して、引張強度試験を行い、図5のように、本発明によるHDPEの引張強度は、22.8MPAであり、HDPE+CaCO3 と HDPE+CaCO3+表面処理剤(2%)とは、異なる炭酸カルシウム含量において、それぞれの引張強度を比較することができ、その中、
A段がHDPE + CaCO3で、
B段がHDPE + CaCO3 + 表面処理剤(2%)である。
Further, a tensile strength test was performed on the finished product according to the present invention, and as shown in FIG. 5, the tensile strength of HDPE according to the present invention was 22.8 MPa, and HDPE + CaCO 3 and HDPE + CaCO 3 + surface treatment agent (2% ) Can compare the tensile strength of different calcium carbonate contents,
Stage A is HDPE + CaCO 3 ,
Stage B is HDPE + CaCO 3 + surface treatment agent (2%).
2%の表面処理剤を添加することにより、引張強度が向上されることが分かり、本発明の予期効果が実現されている。 It was found that the tensile strength was improved by adding 2% of the surface treatment agent, and the expected effect of the present invention was realized.
また、図6は、HDPE+マグネシウム塩ひげ結晶+表面処理剤(2%)と、HDPE + CaCO3 + 表面処理剤(2%)と、HDPE:84%+(マグネシウム塩ひげ結晶+CaCO3)16% +表面処理剤(2%)とについて、異なる含量の充填物(マグネシウム塩ひげ結晶、CaCO3、マグネシウム塩ひげ結晶+CaCO3)の場合において、引張強度を比較するものであり、その中、
A段がHDPE+マグネシウム塩ひげ結晶+表面処理剤(2%)で、
B段がHDPE+CaCO3+表面処理剤(2%)で、
C段がHDPE:84%+(マグネシウム塩ひげ結晶+CaCO3)16%+表面処理剤(2%)である。
FIG. 6 shows HDPE + magnesium salt whisker crystal + surface treatment agent (2%), HDPE + CaCO 3 + surface treatment agent (2%), HDPE: 84% + (magnesium salt whisker crystal + CaCO 3 ) 16% + In the case of a filler (magnesium salt whisker crystal, CaCO 3 , magnesium salt whisker crystal + CaCO 3 ) with different contents for the surface treatment agent (2%), the tensile strength is compared,
Stage A is HDPE + magnesium salt whiskers + surface treatment agent (2%)
Stage B is HDPE + CaCO 3 + surface treatment agent (2%)
Stage C is HDPE: 84% + (magnesium salt whiskers + CaCO 3 ) 16% + surface treatment agent (2%).
図7は、本発明による完成品に対する断裂引張伸び試験であり、図から分かるように、HDPEの断裂伸長率は、28.5%であるが、マグネシウム塩ひげ結晶(16%)によって処理された後のHDPEは、その断裂伸長率が、23.9%になり、また、異なる剤量の表面処理剤(SMA1000+チタン系カップリング剤)により、断裂伸長率に対する影響は、上記図のようであり、その中、
A段は、CaCO3:16%+HDPE:84%で、異なる重量パーセントの表面処理剤(SMA1000+チタン系カップリング剤)が、断裂伸長率に対する影響であり、
B段は、CaCO3:8% +マグネシウム塩ひげ結晶:8% + HDPE:84%で、異なる重量パーセントの表面処理剤(SMA1000+チタン系カップリング剤)が、断裂伸長率に対する影響である。
FIG. 7 is a tear tensile elongation test on the finished product according to the present invention. As can be seen, the fracture elongation of HDPE was 28.5%, but it was treated with magnesium salt whisker crystals (16%). The later HDPE has a tear elongation rate of 23.9%, and the effect of the surface treatment agent (SMA1000 + titanium coupling agent) on the amount of different agents on the tear elongation rate is as shown above. Of which
Stage A is CaCO 3 : 16% + HDPE: 84%, and different weight percent of surface treatment agent (SMA1000 + titanium coupling agent) is the effect on the tear elongation rate,
Stage B is CaCO 3 : 8% + magnesium salt whisker crystal: 8% + HDPE: 84%, and different weight percent of the surface treatment agent (SMA1000 + titanium coupling agent) has an effect on the elongation at break.
本発明は、上記の各種類の試験から分かるように、靴型材質の要求を満足するため、充填材料として、炭酸カルシウム(CaCO3)とマグネシウム塩ひげ結晶とを、各50%の割合で、混合して使用し、それは、炭酸カルシウムが、高剛性で、微細穴発泡HDPE材料の硬度が、気泡の密度が高くなるほど、低下するため、炭酸カルシウムを充填することにより、微細穴発泡HDPE材料の硬度が強化されるが、炭酸カルシウム含量の増加とともに、微細穴発泡HDPE材料の湾曲強度や引張強度及び断裂伸長率が、低下し、特に、断裂伸長率の低下が激しく、また、マグネシウム塩ひげ結晶により、微細穴発泡HDPEの引張強度等の諸欠点を解消すれば、炭酸カルシウムである充填材料による欠点が解消され、そのため、確実に、本発明の予期の効果や目的が実現されることができる。 As can be seen from the above-mentioned various types of tests, the present invention satisfies the requirements for shoe-shaped materials, and as a filling material, calcium carbonate (CaCO 3 ) and magnesium salt whiskers are used in a ratio of 50%, It is used as a mixture, because calcium carbonate is highly rigid and the hardness of the microporous foam HDPE material decreases as the density of the bubbles increases, so by filling the calcium carbonate, Hardness is strengthened, but as the calcium carbonate content increases, the bending strength, tensile strength and tear elongation rate of the micro-hole foam HDPE material decrease, especially the tear elongation rate decreases drastically. By eliminating various defects such as the tensile strength of the micro-hole foamed HDPE, the defects due to the filling material which is calcium carbonate can be eliminated. It is possible to effect or purpose of Ming expected to be realized.
以上のように、本発明に係る処方や工程設計によれば、確実に、下記の利点が得られる。 As described above, according to the prescription and the process design according to the present invention, the following advantages are surely obtained.
1、HDPEで、微発泡押出し型により、軽量化プラスチックHDPE靴型材料を生産でき、また、大幅に、既存のHDPE靴型と材料のコストを低減できる。 1. With HDPE, a lightweight plastic HDPE shoe material can be produced by a microfoaming extrusion mold, and the cost of existing HDPE shoe molds and materials can be greatly reduced.
2、HDPE微発泡複合材料物性を実現でき、その一部の物性が、純HDPE材料の物性より小さいか等しくなるが、必要とする物性は、大幅に、純HDPE材料の物性を超え、製品の競争力が向上される。 2. Physical properties of HDPE micro-foamed composite materials can be realized, and some of the physical properties are smaller than or equal to those of pure HDPE materials, but the required physical properties greatly exceed those of pure HDPE materials. Competitiveness is improved.
3、工程を短縮して生産でき、設備や生産コストは、大幅に低下される。 3. The production process can be shortened, and the equipment and production costs are greatly reduced.
4、完成品は、均一に分布する微細穴を有し、材料を研磨した後、依然として、表面の平滑性を維持することができる。 4. The finished product has uniformly distributed fine holes and can still maintain the smoothness of the surface after polishing the material.
5、ナノ材料改質技術とHDPE軽量化の微細穴発泡技術とを結合して、十分に、HDPE微細穴発泡が、HDPEの高融点によって制限されることと、融成物強度がひくいことと、微細穴発泡に加工することが難しいことなどの欠点を解消でき、また、材料節約や工程短縮及びコストダウンを実現でき、従来のHDPE治具を軽量化でき、また、省力化でき、工場の産出量が向上され、リサイクルでき、そして、製品の特性要求にもよるが、重量が、約20%〜50%を低減できる。 5. Combining nanomaterial modification technology and HDPE lightweight micropore foaming technology, HDPE microhole foaming is sufficiently limited by the high melting point of HDPE, and the melt strength is low. It is possible to eliminate defects such as difficulty in processing into fine hole foaming, to save materials, to shorten processes and to reduce costs, to reduce the weight of conventional HDPE jigs, and to save labor, The yield is improved, can be recycled, and the weight can be reduced by about 20% to 50%, depending on the product characteristic requirements.
本発明に係る靴型の処方とその製造方法によれば、軽量の材料を生産でき、そのため、操作が簡単になり、人力を節約でき、産出量が、更に向上されることができ、また、当該材料に、良い放熱性を有し、生産工程が短いため、有効に、製品の歩留まりが向上され、完成品の品質が安定になり、そして、材料を節約でき、有効に、生産コストを低減でき、強大の競争力が得られる。そのため、本発明は、より進歩的かつより実用的で、法に従って特許請求を出願する。 According to the shoe-shaped prescription and the manufacturing method thereof according to the present invention, a lightweight material can be produced, so that the operation is simplified, manpower can be saved, and the output can be further improved. Because the material has good heat dissipation and the production process is short, the yield of the product is effectively improved, the quality of the finished product is stabilized, and the material can be saved, effectively reducing the production cost Yes, it can be very competitive. As such, the present invention is more progressive and more practical, and claims are filed according to law.
以上は、ただ、本発明のより良い実施例であり、本発明は、それによって制限されることが無く、本発明に係わる特許請求の範囲や明細書の内容に基づいて行った等価の変更や修正は、全てが、本発明の特許請求の範囲内に含まれる。 The above is merely a better embodiment of the present invention, and the present invention is not limited thereby, and equivalent changes made based on the scope of the claims and the description of the present invention. All modifications are within the scope of the claims of the present invention.
Claims (17)
5乃至7.4重量%の炭酸カルシウムと、
5乃至7.4重量%のマグネシウム塩ひげ結晶と、
微量元素と、
が含有される、
ことを特徴とする軽量化プラスチック靴型の処方。 80 to 85% by weight of high density polyethene,
5 to 7.4% by weight of calcium carbonate;
5 to 7.4% by weight of magnesium salt whisker crystals;
Trace elements,
Contains,
A lightweight plastic shoe type prescription.
無機ナノやマイクロメートル充填材料を活性化し、高密度ポリエテンと活性化剤を添加してから、一回目高速混合を行う『充填材料用意』ステップと、
一回目高速混合された後、有機顔料を添加してから、二回目高速混合を行い、高速混合された後の混合材料を、減圧装置付きのストック反応槽内に仕入れる『顔料添加』ステップと、
型締めの後、射出成形機で、温度設定を行い、射出圧力を維持しながら、混合材料を上記金型内に注入して、射出成形を行う『型締めの金型内に注入する』ステップと、
循環する冷却水で金型内の成形待ち品を冷却する『冷却』ステップと、
上記金型の型開きを行って、成形品を取り出す『型開き』ステップと、
上記成形品に対して、表面加工処理を行う『表面加工処理』ステップと、
が含有される、
ことを特徴とする軽量化プラスチック靴型の製造方法。 A weight-reducing plastic shoe mold manufacturing method for manufacturing a light-weight plastic shoe mold according to the prescription of the light-weight plastic shoe mold according to claim 1,
Activating inorganic nano and micrometer filling materials, adding high-density polyethene and activator, and then “filling material preparation” step of first high speed mixing,
After the first high-speed mixing, the organic pigment is added, then the second high-speed mixing is performed, and the mixed material after the high-speed mixing is placed in a stock reaction tank equipped with a decompression device, and a `` pigment addition ''step;
After mold clamping, set the temperature with an injection molding machine, and while maintaining the injection pressure, inject the mixed material into the mold and perform injection molding “Inject into mold clamping mold” step When,
"Cooling" step to cool the molding waiting product in the mold with circulating cooling water,
"Opening" step to open the mold and take out the molded product,
"Surface processing" step for performing surface processing on the molded product,
Contains,
A method for producing a lightweight plastic shoe mold.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098141971 | 2009-12-09 | ||
TW98141971A TW201120120A (en) | 2009-12-09 | 2009-12-09 | Formula of light weighted plastic shoe last and production method thereof. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011121352A true JP2011121352A (en) | 2011-06-23 |
JP5126629B2 JP5126629B2 (en) | 2013-01-23 |
Family
ID=44285730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010086927A Expired - Fee Related JP5126629B2 (en) | 2009-12-09 | 2010-04-05 | Prescription of light weight plastic shoe mold and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5126629B2 (en) |
TW (1) | TW201120120A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105778211A (en) * | 2016-03-21 | 2016-07-20 | 苏州越湖海绵复合厂 | Antiskid and anti-aging shoe material and production method thereof |
CN116535776A (en) * | 2023-04-27 | 2023-08-04 | 陕西云鹏新材料科技有限公司 | Preparation method of PP/PE/YPnm alloy material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101690730B1 (en) * | 2015-04-13 | 2016-12-28 | 한국신발피혁연구원 | Manufacturing method of light weight last and light weight last using the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53143442A (en) * | 1977-05-20 | 1978-12-13 | Seitetsu Kagaku Co Ltd | Shoe mold and method of forming same |
JP2009160733A (en) * | 2007-12-28 | 2009-07-23 | Japan Polypropylene Corp | Sandwich injection-molded article and its manufacturing method |
JP3153502U (en) * | 2009-03-24 | 2009-09-10 | ヤン ルシモンYan Luximon | Shoe type |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69528941T2 (en) * | 1994-09-19 | 2003-09-18 | Sentinel Products Corp., Hyannis | Cross-linked foam structures of mainly linear polyolefins and manufacturing processes |
CN101033317A (en) * | 2006-05-24 | 2007-09-12 | 卓玉国 | Preparation of multifunctional wood-plastic composite material |
-
2009
- 2009-12-09 TW TW98141971A patent/TW201120120A/en unknown
-
2010
- 2010-04-05 JP JP2010086927A patent/JP5126629B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53143442A (en) * | 1977-05-20 | 1978-12-13 | Seitetsu Kagaku Co Ltd | Shoe mold and method of forming same |
JP2009160733A (en) * | 2007-12-28 | 2009-07-23 | Japan Polypropylene Corp | Sandwich injection-molded article and its manufacturing method |
JP3153502U (en) * | 2009-03-24 | 2009-09-10 | ヤン ルシモンYan Luximon | Shoe type |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105778211A (en) * | 2016-03-21 | 2016-07-20 | 苏州越湖海绵复合厂 | Antiskid and anti-aging shoe material and production method thereof |
CN116535776A (en) * | 2023-04-27 | 2023-08-04 | 陕西云鹏新材料科技有限公司 | Preparation method of PP/PE/YPnm alloy material |
Also Published As
Publication number | Publication date |
---|---|
TW201120120A (en) | 2011-06-16 |
JP5126629B2 (en) | 2013-01-23 |
TWI381013B (en) | 2013-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Altan | Thermoplastic foams: Processing, manufacturing, and characterization | |
CN103087361A (en) | Blown rubber for thick product and variable temperature mould pressing preparation method thereof | |
CN110982173B (en) | Preparation method of soft-touch polypropylene composite material | |
CN86102385A (en) | With the polypropylene is the resin combination of base-material | |
CN104327296B (en) | Mixed polyurethane foam material and preparation method thereof | |
CN104059293A (en) | LFT-D (Long-Fiber Reinforce Thermoplastic Direct) forming method of building template filled with calcium carbonate | |
JP5126629B2 (en) | Prescription of light weight plastic shoe mold and manufacturing method thereof | |
CN113652029A (en) | Micro-foaming polypropylene composition and preparation method and application thereof | |
CN112029190A (en) | Micro-foaming polypropylene material and preparation method thereof | |
CN108285578A (en) | A kind of preparation method of PP/ABS micro-foaming materials | |
JP3374356B2 (en) | Method for producing foam molded article and foam molded article | |
CN105694206B (en) | A kind of method for making foaming agent production long glass fiber-reinforced polypropylene foaming injection product with water | |
CN111286117B (en) | Method for forming open-cell polymer foam material by micropore injection molding and product | |
KR20130057505A (en) | Manufacturing method of undercover with glass bubble using in-line compounding process | |
CN115873295B (en) | Recycled polystyrene foam profile with high nail holding power and preparation method thereof | |
CN110549707B (en) | Foamed polypropylene composite sheet and preparation method thereof | |
CN109265825B (en) | Polypropylene or polypropylene compound foamed product and preparation method thereof | |
CN109467806A (en) | A kind of preparation method of compound micro-foaming material | |
KR101282820B1 (en) | Lightweight wood-plastic composite and method for manufacturing the same | |
CN102115556B (en) | Formula and manufacturing method for light plastic last | |
CN110819004A (en) | Preparation method of thin-wall injection-molded reinforced polypropylene composite material | |
CN111205520A (en) | Micro-foaming ball for pet and manufacturing method thereof | |
JP2008068408A (en) | Manufacturing method of extrusion-molded product | |
CN108340532B (en) | Method for forming PP/PC micro-foaming material product | |
RU2483087C1 (en) | Method of producing filled chemically cross-linked foamed polyolefin and composition of filled chemically cross-linked foamed polyolefin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121003 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5126629 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |