JP2011119268A - プラズマ処理方法 - Google Patents

プラズマ処理方法 Download PDF

Info

Publication number
JP2011119268A
JP2011119268A JP2011002823A JP2011002823A JP2011119268A JP 2011119268 A JP2011119268 A JP 2011119268A JP 2011002823 A JP2011002823 A JP 2011002823A JP 2011002823 A JP2011002823 A JP 2011002823A JP 2011119268 A JP2011119268 A JP 2011119268A
Authority
JP
Japan
Prior art keywords
impedance
chamber
high frequency
plasma
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011002823A
Other languages
English (en)
Other versions
JP5100853B2 (ja
Inventor
Hiroshi Ogawa
浩 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2011002823A priority Critical patent/JP5100853B2/ja
Publication of JP2011119268A publication Critical patent/JP2011119268A/ja
Application granted granted Critical
Publication of JP5100853B2 publication Critical patent/JP5100853B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】負荷インピーダンス測定回路の測定誤差や実プロセス中の高周波の波形ひずみ等に起因する負荷インピーダンス測定精度の低下を補償すること。
【解決手段】この整合ポイント補正のためのオートラーニングにおいては、実際の加工対象ではないダミーの半導体ウエハをチャンバ内に搬入し、実プロセスと同じ条件でプラズマプロセスを実行して、基準インピーダンスZsの下で整合器にオートマッチングを行わせ、反射波測定回路で得られた反射波電力の測定値を取り込んでメモリに格納する。そして、ロギング終了後に、メモリに取り込んである全ての反射波電力測定値の中で最小のものを最小値決定処理で決定し、この反射波電力最小値が得られたときの基準インピーダンスを当該実プロセスに対応する整合ポイントとして登録する。
【選択図】 図10

Description

本発明は、被処理基板にプラズマ処理を施すためのプラズマ処理方法に係り、特にプラズマ生成用の高周波電極に可変整合器を介して所要の高周波を給電するシステムの改善に関する。
半導体デバイスやFPD(Flat Panel Display)の製造プロセスには、プラズマを利用してエッチング、堆積、酸化、スパッタリング等の処理を行うプラズマ処理装置が多く使われている。概して、プラズマ処理装置は、処理容器またはチャンバの中または外に高周波電極を配置して高周波給電部より該高周波電極に高周波を給電する。高周波給電部には、高周波を出力する発振器または高周波電源だけでなく、負荷側(電極、プラズマ、チャンバ)のインピーダンスと高周波電源側のインピーダンスとの間で整合(マッチング)をとるための整合器も用いられる。
一般に、この種の整合器は、1個または複数の可変コンデンサまたは可変インダクタンスコイル等の可変リアクタンス素子を含み、ステップモータ等により可変範囲内の各ステップ位置またはポジションを選択することで整合器内のインピーダンスひいては負荷インピーダンスZinを可変調整できる可変整合器として構成されている。そして、プラズマ処理中には、圧力変動などによってプラズマ・インピーダンスが変わると、それら可変リアクタンス素子のインピーダンス・ポジションを可変調整して自動的に負荷インピーダンスZinを補正して整合ポイント(50Ω)に合わせるようになっている。このオートマッチングを行うため、負荷インピーダンスZinを測定する回路や、負荷インピーダンスの測定値を整合ポイント(50Ω)に一致させるようにステップモータを通じて各可変リアクタンス素子のインピーダンス・ポジションを可変制御するコントローラ等が用いられる。
特開平11−61456号公報
上記のように、可変整合器においてオートマッチングを行うときは、負荷インピーダンスZinの測定値が整合ポイントに一致するように可変リアクタンス素子のインピーダンス・ポジションをフィードバック制御で可変制御する。ここで、整合ポイントZMPは高周波電源の出力インピーダンスに等しい純抵抗値の50Ω(ZMP=50+j0)に設定されるのが通例である。
しかしながら、負荷インピーダンス測定回路の測定精度に誤差があると、その負荷インピーダンス測定回路で得られる負荷インピーダンスZinの測定値が見かけ上純抵抗値の50Ω(Zin=50+j0)を示していても、実際には整合ポイント(ZMP=50+j0)に一致していないことがある。また、高周波の波形ひずみが大きいときにも負荷インピーダンス測定回路の測定精度が不安定になり、見かけ上Zin=50+j0の測定値が得られても、整合ポイント(ZMP=50+j0)に一致していないことがある。このような場合に、上記のようなインピーダンスマッチングのためのフィードバック制御を行えば、整合ポイントZMPからずれたインピーダンスに負荷インピーダンスを合わせる結果となり、RF伝送特性が低下してプラズマプロセスに影響を来たすおそれがある。
本発明は、上記のような従来技術の問題点を解決するものであり、負荷インピーダンスの測定精度に誤差があっても、あるいは実プロセス中の高周波の波形ひずみが大きいときでも、可変整合器における負荷インピーダンス測定精度の低下を補償して、プロセスの安定性や再現性を改善するようにしたプラズマ処理方法を提供する。
本発明の第1の観点におけるプラズマ処理方法は、減圧可能なチャンバ内の所定位置にダミーの被処理基板を配置し、所望のプロセスレシピと実質的に同じ条件で前記チャンバ内を所定の真空度に減圧し、前記チャンバ内に所定の処理ガスを供給し、高周波電源より所定周波数の高周波を所定のパワーで所定の高周波電極に可変整合器を介して給電して前記チャンバ内にプラズマを生成し、負荷インピーダンスの測定値が予め選定された複数の基準インピーダンスに一致するように前記可変整合器のインピーダンスを可変制御する第1の工程と、各々の前記基準インピーダンスの下で前記高周波電源側に得られる反射波の電力を測定して測定値を記録する第2の工程と、前記複数の基準インピーダンスの中で前記反射波電力の測定値が最小値または最小値付近になるときの基準インピーダンスを登録する第3の工程と、前記チャンバ内の前記所定位置に正規の被処理基板を配置し、前記プロセスレシピの条件で前記チャンバ内を所定の真空度に減圧し、前記チャンバ内に所定の処理ガスを供給し、前記高周波電源より前記高周波を所定のパワーで前記高周波電極に前記可変整合器を介して給電して前記チャンバ内にプラズマを生成し、負荷インピーダンスの測定値が前記登録された基準インピーダンスに一致するように前記可変整合器のインピーダンスを可変制御して、前記基板にプラズマ処理を施す第4の工程とを有する。
本発明の第2の観点におけるプラズマ処理方法は、減圧可能なチャンバ内の下部電極の上にダミーの被処理基板を配置し、所望のプロセスレシピと実質的に同じ条件で前記チャンバ内を所定の真空度に減圧し、前記チャンバ内に所定の処理ガスを供給し、前記チャンバ内で前記処理ガスを第1の高周波により放電させてプラズマを生成するとともに、高周波電源より第2の周波数の高周波を所定のパワーで前記下部電極に可変整合器を介して給電して前記プラズマ中のイオンを前記基板に引き込み、負荷インピーダンスの測定値が予め選定された複数の基準インピーダンスに一致するように前記可変整合器のインピーダンスを可変制御する第1の工程と、各々の前記基準インピーダンスの下で前記高周波電源側に得られる反射波の電力を測定して測定値を記録する第2の工程と、前記複数の基準インピーダンスの中で前記反射波電力の測定値が最小値または最小値付近になるときの基準インピーダンスを登録する第3の工程と、前記チャンバ内の前記所定位置に正規の被処理基板を配置し、前記プロセスレシピの条件で前記チャンバ内を所定の真空度に減圧し、前記チャンバ内に所定の処理ガスを供給し、前記チャンバ内で前記処理ガスを前記第1の高周波により放電させてプラズマを生成するとともに、前記高周波電源より前記第2の高周波を所定のパワーで前記下部電極に前記可変整合器を介して給電して前記プラズマ中のイオンを前記基板に引き込み、負荷インピーダンスの測定値が前記登録された基準インピーダンスに一致するように前記可変整合器のインピーダンスを可変制御して、前記基板にプラズマ処理を施す第4の工程とを有する。
本発明のプラズマ処理方法においては、ダミーの被処理基板を使用し、実プロセスと実質的に同じ条件でプラズマを生成し、あるいはプラズマ中のイオンを基板に引き込んで、その時の反射波の電力を零または最小にする方向に整合器の整合ポイントを補正する。このオートラーニングによる整合ポイントの補正は、プロセスレシピ毎にプロセス条件を変えて行われるので、プロセスレシピ毎に補正整合ポイントまたは基準インピーダンスが得られる。
本発明の好適な一態様によれば、第1の工程において、負荷インピーダンスの測定値を各々の基準インピーダンスに一致させる操作を行う度毎に、改めて高周波電源からの高周波を高周波電極に給電してプラズマを生成する。
別の好適な一態様によれば、第2の工程では、タイマ機能によりマッチングが確立した頃合いを見計らって反射波電力の測定値を取り込む。
本発明のプラズマ処理方法によれば、上記のような構成および作用により、可変整合器において負荷インピーダンス測定回路の測定誤差や実プロセス中の高周波の波形ひずみ等に起因する負荷インピーダンス測定精度の低下を補償して、プロセスの安定性や再現性を改善することができる。
本発明の一実施形態におけるプラズマ処理方法の適用可能なプラズマエッチング装置の構成を示す縦断面図である。 図1のプラズマエッチング装置における高周波給電部の構成を示す部分拡大断面図である。 第1の技法における高周波給電システムの構成を示すブロック図である。 第1の技法による整合器インピーダンス・ポジションのオフ・プリセット値最適化オートラーニングの手順を示すフローチャート図である。 第1の技法のオートラーニングにおいて可変コンデンサのインピーダンス・ポジションを順次移動させる手順の一例を示す図である。 第1の技法のオートラーニングにおいて可変コンデンサの各インピーダンス・ポジションで得られたVpp測定値のマッピングを示す図である。 第1の技法のオートラーニングで得られるVpp測定値分布の一例を特性曲線で示す図である。 第1の技法におけるプラズマ処理の主要な手順を示すフローチャート図である。 本発明の実施形態における高周波給電システムの構成を示すブロック図である。 実施形態において整合ポイント補正機能のためのオートラーニングの手順を示すフローチャート図である。 実施形態のオートラーニングにおいて基準インピーダンスのポイント(選定値)を順次移動させる手順の一例を示す図である。 実施形態のオートラーニングにおいて基準インピーダンスの各ポイントで得られた測定結果の一例をマッピングで示す図である。 実施形態における主制御部の構成例を示すブロック図である。
以下、添付図を参照して本発明の好適な実施形態を説明する。
図1に、本発明の一実施形態におけるプラズマ処理方法の適用可能なプラズマエッチング装置の構成を示す。このプラズマエッチング装置は、容量結合型平行平板プラズマエッチング装置として構成されており、たとえば表面がアルマイト処理(陽極酸化処理)されたアルミニウムからなる円筒形のチャンバ(処理容器)10を有している。チャンバ10は保安接地されている。
チャンバ10の底部には、セラミックなどの絶縁板12を介して円柱状のサセプタ支持台14が配置され、このサセプタ支持台14の上にたとえばアルミニウムからなるサセプタ16が設けられている。サセプタ16は下部電極を構成し、この上に被処理基板としてたとえば半導体ウエハWが載置される。
サセプタ16の上面には半導体ウエハWを静電吸着力で保持するための静電チャック18が設けられている。この静電チャック18は導電膜からなる電極20を一対の絶縁層または絶縁シートの間に挟み込んだものであり、電極20には直流電源22が電気的に接続されている。直流電源22からの直流電圧により、半導体ウエハWがクーロン力で静電チャック18に吸着保持されるようになっている。静電チャック18の周囲でサセプタ16の上面には、エッチングの均一性を向上させるためのたとえばシリコンからなるフォーカスリング24が配置されている。サセプタ16およびサセプタ支持台14の側面にはたとえば石英からなる円筒状の内壁部材26が貼り付けられている。
サセプタ支持台14の内部には、たとえば円周方向に延在する冷媒室28が設けられている。この冷媒室28には、外付けのチラーユニット(図示せず)より配管30a,30bを介して所定温度の冷媒たとえば冷却水が循環供給される。冷媒の温度によってサセプタ16上の半導体ウエハWの処理温度を制御できる。 さらに、伝熱ガス供給機構(図示せず)からの伝熱ガスたとえばHeガスが、ガス供給ライン32を介して静電チャック18の上面と半導体ウエハWの裏面との間に供給される。
サセプタ16の上方には、このサセプタと平行に対向する上部電極34が設けられている。両電極16,34の間の空間はプラズマ生成空間である。上部電極34は、サセプタ(下部電極)16上の半導体ウエハWと対向してプラズマ生成空間と接する面つまり対向面を形成する。上部電極34は、サセプタ16と所望の間隔を置いて対向配置されているリング形状またはドーナツ形状の外側(outer)上部電極36と、この外側上部電極36の半径方向内側に絶縁して配置されている円板形状の内側(inner)上部電極38とで構成される。これら外側上部電極36と内側上部電極38とは、プラズマ生成に関して、前者(36)が主で、後者(38)が補助の関係を有している。
図2に、このプラズマエッチング装置における上部高周波給電部の構成を示す。図2に明示するように、外側上部電極36と内側上部電極38との間にはたとえば0.25〜2.0mmの環状ギャップ(隙間)が形成され、このギャップにたとえば石英からなる誘電体40が設けられる。また、このギャップにセラミック96を設けることもできる。この誘電体40を挟んで両電極36,38の間にコンデンサが形成される。このコンデンサのキャパシタンスC40は、ギャップのサイズと誘電体40の誘電率に応じて所望の値に選定または調整される。外側上部電極36とチャンバ10の側壁との間には、たとえばアルミナ(Al23)からなるリング形状の絶縁性遮蔽部材42が気密に取り付けられている。
外側上部電極36は、ジュール熱の少ない低抵抗の導電体または半導体たとえばシリコンで構成されるのが好ましい。外側上部電極36には、上部整合器44、上部給電棒46、コネクタ48および給電筒50を介して上部高周波電源52が電気的に接続されている。上部高周波電源52は、13.5MHz以上の周波数たとえばプラズマ生成用の60MHzの高周波を出力する。上部整合器44は、上部高周波電源52の内部(または出力)インピーダンスに負荷インピーダンスを整合させるためのもので、チャンバ10内にプラズマが生成されている時に上部高周波電源50の出力インピーダンスと負荷インピーダンスが見かけ上一致するように機能する。上部整合器44の出力端子は上部給電棒46の上端に接続されている。
給電筒50は、円筒状または円錐状あるいはそれらに近い形状の導電板たとえばアルミニウム板または銅板からなり、下端が周回方向で連続的に外側上部電極36に接続され、上端がコネクタ48によって上部給電棒46の下端部に電気的に接続されている。給電筒50の外側では、チャンバ10の側壁が上部電極34の高さ位置よりも上方に延びて円筒状の接地導体10aを構成している。この円筒状接地導体10aの上端部は筒状の絶縁部材54により上部給電棒46から電気的に絶縁されている。かかる構成においては、コネクタ48からみた負荷回路において、給電筒50および外側上部電極36と円筒状接地導体10aとで前者(36,50)を導波路とする同軸線路が形成される。
再び図1において、内側上部電極38は、多数のガス通気孔56aを有するたとえばSi、SiCなどの半導体材料からなる電極板56と、この電極板56を着脱可能に支持する導電材料たとえば表面がアルマイト処理されたアルミニウムからなる電極支持体58とを有する。電極支持体58の内部には、たとえばOリングからなる環状隔壁部材60で分割された2つのガス導入室つまり中心ガス導入室62と周辺ガス導入室64とが設けられている。中心ガス導入室62とその下面に設けられている多数のガス噴出孔56aとで中心シャワーヘッドが構成され、周辺ガス導入室64とその下面に設けられている多数のガス噴出孔56aとで周辺シャワーヘッドが構成されている。
これらのガス導入室62,64には、共通の処理ガス供給源66からの処理ガスが所望の流量比で供給されるようになっている。より詳細には、処理ガス供給源66からのガス供給管68が途中で2つに分岐してガス導入室62,64に接続され、それぞれの分岐管68a,68bに流量制御弁70a,70bが設けられている。処理ガス供給源66からガス導入室62,64までの流路のコンダクタンスは等しいので、流量制御弁70a,70bの調整により、両ガス導入室62,64に供給する処理ガスの流量比を任意に調整できるようになっている。なお、ガス供給管68にはマスフローコントローラ(MFC)72および開閉バルブ74が設けられている。このように、中心ガス導入室62と周辺ガス導入室64とに導入する処理ガスの流量比を調整することで、中心ガス導入室62に対応する電極中心部のガス通気孔56aつまり中心シャワーヘッドより噴出されるガスの流量FCと周辺ガス導入室64に対応する電極周辺部のガス通気孔56aつまり周辺シャワーヘッドより噴出されるガスの流量FEとの比率(FC/FE)を任意に調整できるようになっている。なお、中心シャワーヘッドおよび周辺シャワーヘッドよりそれぞれ噴出させる処理ガスの単位面積当たりの流量を異ならせることも可能である。さらに、中心シャワーヘッドおよび周辺シャワーヘッドよりそれぞれ噴出させる処理ガスのガス種またはガス混合比を独立または別個に選定することも可能である。
内側上部電極38の電極支持体58には、上部整合器44、上部給電棒46、コネクタ48および下部給電筒76を介して上部高周波電源52が電気的に接続されている。下部給電筒76の途中には、キャパシタンスを可変調整できる可変コンデンサ78が設けられている。
図示省略するが、外側上部電極36および内側上部電極38にも適当な冷媒室または冷却ジャケット(図示せず)を設けて、外部のチラーユニットにより冷媒を介して電極の温度を制御できるように構成してもよい。
チャンバ10の底部には排気口80が設けられ、この排気口80に排気管82を介して排気装置84が接続されている。排気装置84は、ターボ分子ポンプなどの真空ポンプを有しており、チャンバ10内のプラズマ処理空間を所望の真空度まで減圧できるようになっている。また、チャンバ10の側壁には半導体ウエハWの搬入出口を開閉するゲートバルブ86が取り付けられている。
このプラズマエッチング装置では、下部電極であるサセプタ16に下部整合器88を介して下部高周波電源90が電気的に接続されている。この下部高周波電源90は、2〜27MHzの範囲内の周波数たとえばイオン引き込み用の2MHzの高周波を出力する。下部整合器88は、下部高周波電源90の内部または出力インピーダンスに負荷インピーダンスを整合させるためのもので、チャンバ10内にプラズマが生成されている時に下部高周波電源90の出力インピーダンスと負荷インピーダンスが見かけ上一致するように機能する。
内側上部電極38には、上部高周波電源52からの高周波(60MHz)を通さずに下部高周波電源90からの高周波(2MHz)をグランドへ通すためのローパスフィルタ(LPF)92が電気的に接続されている。このローパスフィルタ(LPF)92は、好適にはLRフィルタまたはLCフィルタで構成されてよいが、1本の導線だけでも上部高周波電源52からの高周波(60MHz)に対しては十分大きなリアクタンスを与えることができるので、それで済ますこともできる。一方、サセプタ16には、上部高周波電源52からの高周波(60MHz)をグランドへ通すためのハイパスフィルタ(HPF)94が電気的に接続されている。
主制御部100は、CPUやメモリ等を含むコンピュータシステムからなり、装置内の各部、特に高周波電源52,90、処理ガス供給源66および整合器44,88等の個々の動作と全体の動作(シーケンス)を制御する。主制御部100内の構成は図13につき後に説明する。
このプラズマエッチング装置において、エッチングを行なうには、先ずゲートバルブ86を開状態にして加工対象の半導体ウエハWをチャンバ10内に搬入して、サセプタ16の上に載置する。そして、直流電源22より直流電圧を静電チャック18の電極20に印加して、半導体ウエハWをサセプタ16に固定する。次いで、排気装置84によりチャンバ10内を排気するとともに、処理ガス供給源66よりエッチングガス(一般に混合ガス)を所定の流量および流量比でガス導入室62,64に導入し、排気装置84によりチャンバ10内の圧力つまりエッチング圧力を設定値(たとえば数mTorr)とする。次いで、下部高周波電源90より高周波(2MHz)を所定のパワーでサセプタ16に印加し、続いて上部高周波電源52からも高周波(60MHz)を所定のパワーで上部電極34(36,38)に印加する。内側上部電極38のガス通気孔56aより吐出されたエッチングガスは上部電極34(36,38)とサセプタ16間のグロー放電中でプラズマ化し、このプラズマで生成されるラジカルやイオンによって半導体ウエハWの被処理面がエッチングされる。
上記のように、上部高周波電源52より出力される高周波(60MHz)と下部高周波電源90より出力される高周波(2MHz)との間には、イオン引き込み用の高周波(2MHz)が先入れで下部電極16に給電され、プラズマ生成用の上部高周波(60MHz)が後入れで上部電極34に印加されるという給電開始時間上の前後関係がある。
このプラズマエッチング装置では、上部電極34に対して高い周波数領域(イオンが動けない5〜10MHz以上)の高周波を印加することにより、プラズマを好ましい解離状態で高密度化し、より低圧の条件下でも高密度プラズマを形成することができる。しかも、後に詳述する先入れ側の上部整合器44におけるインピーダンス・ポジションのオフ・プリセット値最適化機能により、プロセスレシピの各種条件(チャンバ内の圧力、上部および下部高周波パワー、ガス流量等)に特別な選定や切り替えを要することなく低圧下でも(あるいはチャンバ内にデポジションが付着していても)プラズマを確実に着火させることができるようになっている。また、プラズマ着火後のオートマッチングでは、負荷インピーダンスのモニタリングに測定誤差があっても、後述する整合ポイント補正機能により、高い精度でマッチング状態を確立できるようになっている。
なお、上述したプラズマエッチング装置は、酸化シリコン(SiO2)膜をエッチングするための装置の例であり、イオン引き込み用の下部高周波(2MHz)が先入れで下部電極16に印加され、プラズマ生成用の上部高周波(60MHz)が後入れで上部電極34に印加されるという順番であった。しかし、たとえばポリシリコン膜をエッチングするためのプラズマエッチング装置は、諸所の事情または条件により上部電極にまず高周波(たとえば60MHz)を印加し、その後下部電極に高周波(たとえば13.56MHz)を印加する順番のケースが多い。因みに、ポリシリコン膜をエッチングするためのプラズマ処理装置は、特にチャンバ内の低圧条件が望まれている。
以下では、便宜的に、ポリシリコン膜をエッチングするためのプラズマ処理装置で多用されている上部電極への高周波先入れ、下部電極への高周波後入れのケースで説明する。
図3に、このプラズマエッチング装置に適用可能な第1の技法による高周波給電システムの構成を示す。上部整合器44は、インピーダンス可変の可変整合器であり、少なくとも1つの可変リアクタンス素子を含む整合回路102と、この整合回路102の各可変リアクタンス素子のインピーダンス・ポジションを個別に可変制御するためのコントローラ104と、整合回路102を含めた負荷インピーダンスZinを測定する機能を有するRFセンサ106とを有している。
図示の例では、整合回路102が2つの可変コンデンサC1,C2と1つのインダクタンスコイルL1とからなるT形回路として構成され、コントローラ104がステップモータ108,110を通じて可変コンデンサ(C1,C2)のインピーダンス・ポジションを可変制御できるようになっている。RFセンサ106は、たとえばその設置位置における伝送線路上のRF電圧およびRF電流をそれぞれ検出する電圧センサおよび電流センサを有し、電圧測定値および電流測定値から負荷インピーダンスZinの測定値を複素数表示で求める。コントローラ104は、たとえばマイクロコンピュータからなり、RFセンサ106より負荷インピーダンスZinの測定値を受け取り、主制御部100からは各種の設定値やコマンドを受け取る。
さらに、この第1の技法では、上部整合器44の出力側で伝送線路または導波路上の高周波電圧の波高値(ピーク対ピーク値)Vppを測定するためのVpp測定回路112も上部整合器44内に設けられている。このVpp測定回路112で得られたVppの測定値は主制御部100に取り込まれる。
図4に、上部整合器44および下部整合器88におけるインピーダンス・ポジションのオフ・プリセット値最適化のために装置稼動前に行われるオートラーニングの手順(特に主制御部100の処理手順)を示す。
以下、上部整合器44に係る上記オートラーニングの手順を説明する。先ず、初期化(ステップA1)では、オートラーニング用の各種設定値を所定のレジスタにセットし、機械的な可動部を初期位置にセットする。次に、排気装置84を作動させてチャンバ10内を所定圧力の真空状態にしてから(ステップA2)、上部高周波電源52をオンにする(ステップA3)。そうすると、上部高周波電源52より伝送線路上に出力された高周波は上部整合器44を通ってチャンバ10内の上部電極34に給電される。ここで、上部高周波電源52の出力は、上部電極34と下部電極16との間で放電が発しない程度の低いパワーに設定される。なお、下部高周波電源90はオフのままにしておく。
上部整合器44においては、両可変コンデンサ(C1,C2)のインピーダンス・ポジションが先の初期化で初期位置にセットされており、Vpp測定回路112はその初期位置の(C1,C2)インピーダンス・ポジションの下で出力側の導波路上に得られる高周波電圧の波高値Vppを測定する。ここで、Vpp測定回路112により測定される導波路上の高周波電圧の波高値Vppは、上部電極34における高周波電圧の波高値と比例関係にある。Vpp測定回路112で得られたVpp測定値は、コントローラ104を介して主制御部100に取り込まれ、主制御部100内のメモリに格納される(ステップA4)。
こうして、初期位置の(C1,C2)インピーダンス・ポジションの下でVppの測定が済むと、次に主制御部100はコントローラ104およびステップモータ110,112を介して可変コンデンサ(C1,C2)のインピーダンス・ポジションを1ステップ移動させ(ステップA5)、移動先のインピーダンス・ポジションの下でVpp測定回路112より得られるVpp測定値を取り込む(ステップA6→A7→A4)。その後も、可変コンデンサ(C1,C2)のインピーダンス・ポジションを次のポジションへ移動させ、その移動先のインピーダンス・ポジションでVpp測定回路112より得られるVpp測定値を取り込むという一連の処理を繰り返す(ステップA5→A6→A7→A4→A5・・)。
図5に、可変コンデンサ(C1,C2)のインピーダンス・ポジションを順次移動させる手順の一例を示す。この例では、可変コンデンサC1の移動ポジションが予め可変範囲(0%〜100%)内で0(0%)からm(100%)までm+1個選定され、可変コンデンサC2の移動ポジションが予め可変範囲(0%〜100%)内で0(0%)からn(100%)までn+1個選定されている。
図5の(A)に示す手順は、最初に可変コンデンサC1のポジションを0に保ったまま、可変コンデンサC2のポジションを0からnまで振って、(C1,C2)=(0,0),(0,1),・・(0,n)の各インピーダンス・ポジションの下でVppを測定してその測定値を記録する。次に、可変コンデンサC1のポジションを1に移し、可変コンデンサC2のポジションを0からnまで振って、(C1,C2)=(1,0),(1,1),・・(1,n)の各インピーダンス・ポジションの下でVppを測定してその測定値を記録する。以下、可変コンデンサC1のポジションを2,3,・・と順次移して上記と同様のVpp測定および記録(ロギング)を繰り返し、最後は(C1,C2)=(m,0),(m,1),・・(m,n)の各インピーダンス・ポジションの下でVppを測定してその測定値を記録する。なお、可変コンデンサC1,C2のポジションを振るピッチは1に限るものではなく、2以上でもよい。
図5の(B)に示す手順は、可変コンデンサC1のポジションが偶数番目(0,2,4,・・)のときは可変コンデンサC2のポジションを昇順(0,1,2,3・・)で移動させ、可変コンデンサC1のポジションが奇数番目(1,3,5,・・)のときは可変コンデンサC2のポジションを降順(n,n−1,n−2,・・)で移動させる点に特徴があり、他は図5の(A)と同じである。図5の(B)の方が、可変コンデンサC1のポジションを1ステップ移動させる度毎に可変コンデンサC2側でステップモータ108の巻き戻しを行わずに済み、効率がよい。
上記のようなロギングの結果として、主制御部100内のメモリ上には、図6のマッピングで示すように、可変コンデンサ(C1,C2)の可変範囲内で選定された(全体的に網羅された)全てのインピーダンス・ポジションに対応するVpp測定値が全部出揃う。
図7に、Vpp測定値分布の一例を特性曲線で示す。この特性曲線は、可変コンデンサC1,C2の可変範囲がそれぞれ0〜1500段階あり、その中でC1のポジションを100ピッチで振り、C2のポジションを75ピッチで振って得られたものである。この例では、(C1,C2)=(1500,1050)のポジションで得られるVpp測定値(約640ボルト)が最大値またはその付近の値であることがわかる。
主制御部100は、ロギング終了後に上部高周波電源52をオフにし(ステップA8)、メモリに取り込んである全てのVpp測定値の中で最大のものを最大値決定処理(比較演算)で決定し(ステップA9)、このVpp最大値に対応する可変コンデンサ(C1,C2)のインピーダンス・ポジションをプラズマ処理のための上部RF投入開始時のポジションつまりプラズマ着火用の最適オフ・プリセット・ポジションとして登録する(ステップA10)。
下部整合器88も上部整合器44と同様の構成または機能を有する可変整合器であり、下部整合器88におけるインピーダンス・ポジションのオフ・プリセット値最適化のためのオートラーニングの手順も基本的には上記した上部整合器44に係るオートラーニングの手順と共通している。ただし、先入れ側の上部整合器44に係るオートラーニングではプラズマ着火に最適なインピーダンス・ポジションのオフ・プリセット値を決定(同定)したのに対して、後入れ側の下部整合器88に係るオートラーニングではその必要はない。むしろ、下部電極16に対する下部高周波の給電を開始した時には既に着火しているプラズマに極力変動を来たさないようなインピーダンス・ポジションのオフ・プリセット値を決定(同定)するのが望ましい。
上記のような観点から、下部整合器88に係るオートラーニングでは、上部整合器44に係るオートラーニングと同じ手順でVppロギング情報を得たうえで(ステップA1〜A8)、全てのVpp測定値の中から最小のものを最小値決定処理(比較演算)で決定し(ステップA9)、このVpp最小値に対応する下部整合器88のインピーダンス・ポジションを下部RF投入開始時のポジションつまり着火後のプラズマに与える影響の最も少ない最適オフ・プリセット・ポジションとして登録する(ステップA10)。
図8に、第1の技法におけるプラズマ処理の主要な手順(特に主制御部100の処理手順)を示す。初期化(ステップB1)では、実プロセスに用いる各種条件の設定値(プロセスレシピの設定値)を所定のレジスタにセットし、機械的な可動部分を初期位置にセットする。その中で、主制御部100は、上部整合器44および下部整合器88を上記オートラーニングで登録してあるインピーダンス・ポジションにセットする。より詳細には、上部整合器44のオフ・プリセット値をVpp最大値に対応する登録インピーダンス・ポジションに合わせ、下部整合器88のオフ・プリセット値をVpp最小値に対応する登録インピーダンス・ポジションに合わせる。
初期化の後に、加工対象の半導体ウエハWをチャンバ10内に搬入し、サセプタ16上に載置する(ステップB2)。そして、直流電源22より直流電圧を静電チャック18の電極20に印加して、半導体ウエハWをサセプタ16に固定する。
次いで、排気装置84によりチャンバ10内を排気し(ステップB3)、処理ガス供給源66よりエッチングガスを所定の流量および流量比でガス導入室62,64に導入し、排気装置84によりチャンバ10内の圧力を設定値(たとえば数mTorr)とする(ステップB4)。
次いで、上部整合器44が上記のようにVpp最大値に対応する登録インピーダンス・ポジションにセットされている初期状態の下で、上部高周波電源52をオンにして予設定のRFパワーで高周波を出力させる(ステップB5)。上部高周波電源52より出力された高周波は上部整合器44を介して上部電極34に給電され、上部電極34と下部電極16との間に高周波の電界が形成される。ここで、上部高周波電源52と負荷との間にインピーダンス整合がとれていなくても、上部電極34のVpp(ひいては電極間の高周波電界)は当該上部RFパワーの下で可能な最大の電圧波高値(ひいては最大電界強度)またはその付近の値になっているため、エッチングガスが速やかに放電を開始して、ガスプラズマが発生する。
次に、主制御部100は、たとえばタイマ機能を用いて、上部RFパワーの投入開始から一定時間後に、上部整合器44に対してオフ・プリセット値を解除し、上部整合器44内のオートマッチングに切り替える(ステップB6)。このオートマッチングでは、コントローラ104が、RFセンサ106より負荷インピーダンスZinの測定値を受け取り、その測定値を整合用の基準インピーダンスまたは整合ポイントZMPに一致させるようにパルスモータ108,110を通じて可変コンデンサ(C1,C2)のインピーダンス・ポジションをフィードバック制御で可変制御する。こうして、上部高周波電源52からの高周波が最大の伝送効率および設定通りのパワーで上部電極34に給電され、高密度のプラズマが生成される。なお、オフ・プリセット値からオートマッチングへの切り替えを制御するために、タイマ機能に代えて、プラズマが着火したことを光学的に確認するセンサを用いることも可能である。
次に、主制御部100は、たとえば上記と同様のタイマ機能によりプラズマが安定する頃合をみて、下部高周波電源90をオンにして予設定の下部RFパワーで高周波を出力させる(ステップB7)。この下部RF投入開始の際に、下部整合器88は上記のようにVpp最小値に対応する登録インピーダンス・ポジションにセットされている。このため、下部高周波に対応する下部電極16のVppは当該下部RFパワーの下で可能な最小の電圧波高値またはその付近の値になり、既発生または生成中のプラズマに与える影響が最小限に抑えられる。そして、たとえば上記と同様のタイマ機能により一定時間後に下部整合器88に対してオフ・プリセット値を解除し、下部整合器88内のオートマッチングに切り替える(ステップB6)。この下部整合器88のオートマッチングでも、図示省略するが、整合器内部のコントローラが、RFセンサより得られる負荷インピーダンスの測定値を整合ポイントに一致させるようにパルスモータを通じて可変リアクタンス素子のインピーダンス・ポジションをフィードバック制御で可変制御する。こうして、下部高周波電源90からの高周波が最大の伝送効率および設定通りのパワーで下部電極16に給電され、プラズマエッチングが行われる(ステップB9)。
そして、所期のプラズマエッチング加工が完了したなら、上部および下部高周波電源52,90をそれぞれオフにし(ステップB10)、処理ガス供給源66にエッチングガスの供給を停止させる(ステップB11)。しかる後、処理済の半導体ウエハWをチャンバ10から搬出する(ステップB12)。
上記の第1の技法においては、プロセスの開始後にプロセス条件(圧力、RFパワー等)の切り替えを一切行うことなく、上部整合器44および下部整合器88におけるインピーダンス・ポジションのオフ・プリセット値または初期値を特定の値(最適値)に設定するだけで、低圧力下でもプラズマを確実に着火させ、かつ安定に維持して、高密度プラズマによる微細なエッチング加工を実施することができる。
なお、上記第1の技法において、主制御部100は、Vpp測定値の取り込み・記憶、Vpp測定値の最大値(最小値)決定処理、オフプリセット値の登録インピーダンス・ポジションへの変更、タイマ機能によるオフ・プリセット値の解除、等を行っている。しかし、これに限らず、たとえばタイマ機能およびタイマ機能によるオフ・プリセット値の解除は、整合器44内にあるコントローラ104が行ってもよく、実際にはその方が好ましいことが多々ある。また、Vpp測定値の取り込み・記憶、Vpp測定値の最大値(最小値)決定処理、オフ・プリセット値の登録インピーダンス・ポジションへの変更等をコントローラ104が行ってもよい。
図9に、本発明の一実施形態における高周波給電システムの構成を示す。この実施形態において上記した第1の技法と異なる構成は2つある。1つは、整合回路102の回路構成をT形からはしご形に変形した点であり、コントローラ104がステップモータ108,110を通じてそれぞれ可変コンデンサC3および可変インダクタンスコイルL2のインピーダンス・ポジションを可変制御するようになっている。なお、後段のコンデンサC4、インダクタンスコイルL3はそれぞれ固定キャパシタンスおよび固定インダクタンスコイルである。このように、整合器内の整合回路102は、1つまたは複数の可変リアクタンス素子を有する任意の可変整合回路で構成することができる。他の特徴的な構成は、高周波電源52,90の出力端子に整合器44,88側から伝送線路上を伝播してくる反射波を受信して反射波の電力を測定する反射波測定回路114,116を備えている点である。
上記第1の技法と同様に、各整合器44,88においてオートマッチングを行うときは、コントローラ104が、RFセンサ106で得られる負荷インピーダンスZinの測定値が整合ポイントZMPに一致するようにパルスモータ108,110を通じて可変コンデンサC3および可変インダクタンスコイルL2のインピーダンス・ポジションをフィードバック制御で可変制御する。ここで、整合ポイントZMPは高周波電源の出力インピーダンスに等しい純抵抗値の50Ω(ZMP=50+j0)に設定されるのが通例である。
しかしながら、RFセンサ106の測定精度に誤差があると、RFセンサ106で得られる負荷インピーダンスZinの測定値が見かけ上純抵抗値の50Ω(Zin=50+j0)を示していても、実際には整合ポイント(ZMP=50+j0)に一致していないことがある。また、高周波の波形ひずみが大きいときにもRFセンサ106の測定精度が不安定になり、見かけ上Zin=50+j0の測定値が得られても、整合ポイント(ZMP=50+j0)に一致していないことがある。このような場合に、上記のようなインピーダンスマッチングのためのフィードバック制御を行えば、整合ポイントZMPからずれたインピーダンスに負荷インピーダンスを合わせる結果となり、RF伝送特性が低下してプラズマプロセスに影響を来たすおそれがある。
この実施形態では、以下に述べるように、RFセンサの測定誤差や実プロセス中の高周波の波形ひずみ等に起因するRFセンサにおける負荷インピーダンス測定精度の低下を補償する整合ポイント補正機能が備わっている。
図10に、この実施形態において整合ポイント補正機能のために装置稼動前に行われるオートラーニングの手順(特に主制御部100の処理手順)を示す。
この整合ポイント補正のためのオートラーニングは、特定の実プロセスと実質的に同一の条件の下で、上部整合器44および下部整合器88について片方ずつの実施も可能であり、あるいは両方同時実施も可能である。
説明の便宜上、上部整合器44におけるオートラーニングの手順を説明する。先ず、初期化(ステップC1)では、特定の実プロセスと同一のプロセスレシピを所定のレジスタにセットし、機械的な可動部を初期位置にセットする。ただし、オートラーニングのために、上部整合器44のオートマッチングにおいて負荷インピーダンスZinの目標点となる基準インピーダンスZs(Zs=R+jX)が標準整合ポイントの50Ω(ZMP=50+j0)を中心として予め多数選定されており、それらの中の1つ(初期値)をセットする。
初期化の後に、実際の加工対象ではないダミーの半導体ウエハWをチャンバ10内に搬入し、サセプタ16上に載置する(ステップC2)。そして、直流電源22より直流電圧を静電チャック18の電極20に印加して、ダミーウエハWをサセプタ16に固定する。
次いで、排気装置84によりチャンバ10内を排気し(ステップC3)、処理ガス供給源66より実プロセスと同じ条件でエッチングガス(一般に混合ガス)を所定の流量および流量比でガス導入室62,64に導入し、排気装置84によりチャンバ10内の圧力を設定値としてから(ステップC4)、上部高周波電源52および下部高周波電源88をそれぞれ予設定のRFパワーでオンにする(ステップC5)。この場合、上記した第1の実施例と同様に上部RFを先入れでオンにし、下部RFを後入れでオンにしてよい。
上部整合器44においては、上部RFについて負荷インピーダンスZinを基準インピーダンスZsに一致させるためのオートマッチングが行われる。より詳細には、コントローラ104が、RFセンサ106で得られる負荷インピーダンスの測定値が基準インピーダンスZs(Zs=R+jX)に一致するようにパルスモータ108,110を通じて可変コンデンサC1および/または可変インダクタンスコイルL1のインピーダンス・ポジションをフィードバック制御で可変制御する。ここで、基準インピーダンスZsは先の初期化(ステップC1)でセットされている初期値である。
主制御部100は、たとえばタイマ機能によりマッチングが確立した頃合を見計らって、反射波測定回路114で得られた反射波電力Prの測定値を取り込んでメモリに格納する(ステップC6)。しかる後、上部高周波電源52をいったんオフにする(ステップC7)。そして、基準インピーダンスZsを次のポイントへ移動させ(ステップC7)、改めて上部高周波電源52をオンにしてRF給電を再開し(ステップC9→C10→C5)、上部整合器44にオートマッチングを行わせ、反射波測定回路114で得られた反射波電力Prの測定値を取り込む(ステップC6)。その後も、基準インピーダンスZsを予設定のポジションへ順次移動させて、各移動先の基準インピーダンスZsの下で反射波測定回路114より得られるPr測定値を取り込む一連の処理を繰り返す(ステップC8→C9→C10→C5→C6・・)。
図11に、基準インピーダンスZs(Zs=R+jX)のポイント(選定値)を順次移動させる手順の一例を示す。この例では、実数部Rが標準の50(Ω)を中心に30(Ω)〜70(Ω)の範囲内に5(Ω)のピッチで複数ポイント選定され、虚数部Xが標準の0(Ω)を中心に−20(Ω)〜20(Ω)の範囲内に5(Ω)のピッチで複数ポイント選定される。
図示の手順は、最初に実数部Rを50(Ω)に固定して、虚数部Xを0(Ω)から20(Ω)まで振り、(R+jX)=(50+j0),(50+j5),・・(50+j20)の各基準インピーダンスZsの下で上部整合器44にオートマッチングを行わせ、Prを測定してその測定値を記録する。次に、実数部Rを50(Ω)に保ったまま、虚数部Xを0(Ω)から−20(Ω)まで振って、(R+jX)=(50−j0),(50−j5),・・(50−j20)の各基準インピーダンスZsの下で上部整合器44にオートマッチングを行わせ、Prを測定してその測定値を記録する。次に、実数部Rを45(Ω)に移動または変更し、上記と同様の仕方で虚数部Xを0(Ω)から20(Ω)まで、および0(Ω)から−20(Ω)まで振って、各基準インピーダンスZsの下で上部整合器44にオートマッチングを行わせ、Prを測定してその測定値を記録する。次に、実数部Rを55(Ω)に移動または変更し、上記と同様の仕方で虚数部Xを0(Ω)から20(Ω)まで、および0(Ω)から−20(Ω)まで振って、各基準インピーダンスZsの下で上部整合器44にオートマッチングを行わせ、Prを測定してその測定値を記録する。以下、上記の要領で基準インピーダンスZsの移動とPr測定および記録(ロギング)とを繰り返す。
上記のようなロギングの結果として、主制御部100内のメモリ上には、実プロセスと同じ条件の下で、予め選定された全ての基準インピーダンスZsに対する上部整合器44のオートマッチングの結果として反射波測定回路116より得られたPr測定値が全部出揃う。実際には、たとえば図12に示すように、基準インピーダンスZsの値によっては、マッチングが全然とれず、反射が大きすぎたり、反射波がハンチングを起こして測定不能となる(インターロックから外れる)場合が多いので、傾向分析からロギングの絞込みを行ってもよい。
主制御部100は、ロギング終了後に処理ガス供給源66をオフにしてエッチングガスの供給を停止し(ステップC11)、メモリに取り込んである全てのPr測定値の中で最小のもの(理想的にはPr=0)を最小値決定処理(比較演算)で決定し(ステップC12)、このPr最小値が得られたときの基準インピーダンスZsを当該実プロセスに対応する整合ポイントZMSとして登録する(ステップC13)。図12の例の場合は、R+jX=60−j10のポイントでPr最小値が得られているので、当該実プロセス用の上部整合器44の整合ポイントZMSはZMS=60−j10と設定される。
下部整合器88における整合ポイント補正のためのオートラーニングも、主制御100と下部整合器88と反射波測定回路116との間で上記と全く同じ手順(図10)で行われてよい。もっとも、下部高周波給電系統と上部高周波給電系統とは周波数やRFパワーだけでなく負荷インピーダンスそのものも異なるので、オートラーニングの結果として得られる補正整合ポイントZMSの値も異なるのが普通である。また、この実施例のオートラーニングは、プロセスレシピ毎にプロセス条件を変えて行われるので、プロセスレシピ毎に独立した補正整合ポイントZMSが得られる。実際のプロセスにおけるオートマッチング(たとえば図8のステップB6,B8)では、当該プロセスレシピに対応した補正整合ポイントZMSが主制御部100よりコントローラ104に与えられる。
この実施形態によれば、上部整合器44のRFセンサ106または下部整合器44のRFセンサ(図示せず)の測定精度に誤差があっても、あるいは実プロセス中の高周波の波形ひずみが大きいときでも、上記のようなオートラーニングによる整合ポイント補正機能により、反射波の電力を零または最小にする方向に整合器44,88のオートマッチングが働くので、プロセスの安定性や再現性を改善できる。
なお、上記実施形態において、主制御部100は、反射波電力Prの取り込み・記憶、Pr測定値の最小値決定処理、ZMSの登録、等を行っている。しかし、上記第1の技法と同様に、これに限られず、上記の機能をコントローラ104が行ってもよい。
図13に、主制御部100の構成例を示す。この構成例の主制御部100は、バス120を介して接続されたプロセッサ(CPU)122、メモリ(RAM)124、プログラム格納装置(HDD)126、フロッピドライブあるいは光ディスクなどのディスクドライブ(DRV)128、キーボードやマウスなどの入力デバイス(KEY)130、表示装置(DIS)132、ネットワーク・インタフェース(COM)134、および周辺インタフェース(I/F)136を有する。
プロセッサ(CPU)122は、ディスクドライブ(DRV)128に装填されたFDあるいは光ディスクなどの記憶媒体138から所要のプログラムのコードを読み取って、HDD126に格納する。あるいは、所要のプログラムをネットワークからネットワーク・インタフェース76を介してダウンロードすることも可能である。そして、プロセッサ(CPU)122は、各段階または各場面で必要なプログラムのコードをHDD126からワーキングメモリ(RAM)124上に展開して各ステップを実行し、所要の演算処理を行って周辺インタフェース78を介して装置内の各部(整合器44,88、高周波電源52,90、処理ガス供給源66、排気装置84等)を制御する。上記第1および第2の実施例で説明したオートラーニングや実プロセスに用いるプログラムは全てこのコンピュータシステムで実行される。
以上、一実施形態について説明したが、本発明の技術思想の範囲内で種々の変形が可能である。たとえば、平行平板型において、高周波を一方の電極だけに給電し、他方の電極には給電しない方式や、あるいは一方の電極に2種類の高周波を同時に給電する方式等も可能であり、いずれの場合でも各高周波電源と各電極との間に接続される可変整合器に本発明を適用することができる。また、整合器内の構成も整合回路102だけでなくRFセンサやコントローラ類も種々の変形が可能であり、Vpp測定回路112を整合器の外に設ける構成も可能である。
上記した実施形態は高周波電極をチャンバの中に設ける容量結合型の平行平板プラズマ処理装置に係るものであったが、本発明は高周波電極をチャンバの外に設けるヘリコン波プラズマ方式やECRプラズマ方式等のプラズマ処理装置にも適用可能である。本発明は、プラズマエッチングに限らず、プラズマCVD、プラズマ酸化、プラズマ窒化、スパッタリングなど種々のプラズマ処理に適用可能である。発明における被処理基板は半導体ウエハに限らず、FPD用の各種基板や、フォトマスク、CD基板、プリント基板等も可能である。
10 チャンバ
16 サセプタ(下部電極)
34 上部電極
44 上部整合器
52 上部高周波電源
66 処理ガス供給源
88 下部整合器
90 下部高周波電源
100 主制御部
102 整合回路
1,C2,C3 可変コンデンサ
1 可変インダクタンスコイル
104 コントローラ
106 RFセンサ
108,110 ステップモータ
112 Vpp 測定回路
114,116 反射波測定回路
122 プロセッサ(CPU)
124 メモリ(RAM)
128 プログラム記憶装置(HDD)
138 記憶媒体

Claims (4)

  1. 減圧可能なチャンバ内の所定位置にダミーの被処理基板を配置し、所望のプロセスレシピと実質的に同じ条件で前記チャンバ内を所定の真空度に減圧し、前記チャンバ内に所定の処理ガスを供給し、高周波電源より所定周波数の高周波を所定のパワーで所定の高周波電極に可変整合器を介して給電して前記チャンバ内にプラズマを生成し、負荷インピーダンスの測定値が予め選定された複数の基準インピーダンスに一致するように前記可変整合器のインピーダンスを可変制御する第1の工程と、
    各々の前記基準インピーダンスの下で前記高周波電源側に得られる反射波の電力を測定して測定値を記録する第2の工程と、
    前記複数の基準インピーダンスの中で前記反射波電力の測定値が最小値または最小値付近になるときの基準インピーダンスを登録する第3の工程と、
    前記チャンバ内の前記所定位置に正規の被処理基板を配置し、前記プロセスレシピの条件で前記チャンバ内を所定の真空度に減圧し、前記チャンバ内に所定の処理ガスを供給し、前記高周波電源より前記高周波を所定のパワーで前記高周波電極に前記可変整合器を介して給電して前記チャンバ内にプラズマを生成し、負荷インピーダンスの測定値が前記登録された基準インピーダンスに一致するように前記可変整合器のインピーダンスを可変制御して、前記基板にプラズマ処理を施す第4の工程と
    を有するプラズマ処理方法。
  2. 減圧可能なチャンバ内の下部電極の上にダミーの被処理基板を配置し、所望のプロセスレシピと実質的に同じ条件で前記チャンバ内を所定の真空度に減圧し、前記チャンバ内に所定の処理ガスを供給し、前記チャンバ内で前記処理ガスを第1の高周波により放電させてプラズマを生成するとともに、高周波電源より第2の周波数の高周波を所定のパワーで前記下部電極に可変整合器を介して給電して前記プラズマ中のイオンを前記基板に引き込み、負荷インピーダンスの測定値が予め選定された複数の基準インピーダンスに一致するように前記可変整合器のインピーダンスを可変制御する第1の工程と、
    各々の前記基準インピーダンスの下で前記高周波電源側に得られる反射波の電力を測定して測定値を記録する第2の工程と、
    前記複数の基準インピーダンスの中で前記反射波電力の測定値が最小値または最小値付近になるときの基準インピーダンスを登録する第3の工程と、
    前記チャンバ内の前記所定位置に正規の被処理基板を配置し、前記プロセスレシピの条件で前記チャンバ内を所定の真空度に減圧し、前記チャンバ内に所定の処理ガスを供給し、前記チャンバ内で前記処理ガスを前記第1の高周波により放電させてプラズマを生成するとともに、前記高周波電源より前記第2の高周波を所定のパワーで前記下部電極に前記可変整合器を介して給電して前記プラズマ中のイオンを前記基板に引き込み、負荷インピーダンスの測定値が前記登録された基準インピーダンスに一致するように前記可変整合器のインピーダンスを可変制御して、前記基板にプラズマ処理を施す第4の工程と
    を有するプラズマ処理方法。
  3. 前記第1の工程では、前記負荷インピーダンスの測定値を各々の前記基準インピーダンスに一致させる操作を行う度毎に、改めて前記高周波電源からの前記高周波を前記高周波電極に給電してプラズマを生成する、請求項1または請求項2記載のプラズマ処理方法。
  4. 前記第2の工程では、タイマ機能によりマッチングが確立した頃合いを見計らって反射波電力の測定値を取り込む、請求項1〜3のいずれか一項に記載のプラズマ処理方法。
JP2011002823A 2011-01-11 2011-01-11 プラズマ処理方法 Active JP5100853B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002823A JP5100853B2 (ja) 2011-01-11 2011-01-11 プラズマ処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002823A JP5100853B2 (ja) 2011-01-11 2011-01-11 プラズマ処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005102586A Division JP4838525B2 (ja) 2005-03-31 2005-03-31 プラズマ処理方法及びプラズマ処理装置及び可変整合器におけるインピーダンスのプリセット値を決定するためのプログラム

Publications (2)

Publication Number Publication Date
JP2011119268A true JP2011119268A (ja) 2011-06-16
JP5100853B2 JP5100853B2 (ja) 2012-12-19

Family

ID=44284311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002823A Active JP5100853B2 (ja) 2011-01-11 2011-01-11 プラズマ処理方法

Country Status (1)

Country Link
JP (1) JP5100853B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062160A (ja) * 2013-08-20 2015-04-02 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法
KR20160046918A (ko) 2014-02-04 2016-04-29 가부시끼가이샤교산세이사꾸쇼 고주파 전원장치 및 플라즈마 착화방법
KR20160131897A (ko) * 2015-05-07 2016-11-16 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치의 처리 조건 생성 방법 및 플라즈마 처리 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210623A (ja) * 1986-03-11 1987-09-16 Hitachi Electronics Eng Co Ltd 気相反応装置用電極
JPH02303029A (ja) * 1989-05-18 1990-12-17 Matsushita Electron Corp プラズマ電極
JP2004152999A (ja) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd プラズマ処理方法およびプラズマ処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210623A (ja) * 1986-03-11 1987-09-16 Hitachi Electronics Eng Co Ltd 気相反応装置用電極
JPH02303029A (ja) * 1989-05-18 1990-12-17 Matsushita Electron Corp プラズマ電極
JP2004152999A (ja) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd プラズマ処理方法およびプラズマ処理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062160A (ja) * 2013-08-20 2015-04-02 パナソニックIpマネジメント株式会社 プラズマ処理装置及びプラズマ処理方法
KR20160046918A (ko) 2014-02-04 2016-04-29 가부시끼가이샤교산세이사꾸쇼 고주파 전원장치 및 플라즈마 착화방법
US9451687B2 (en) 2014-02-04 2016-09-20 Kyosan Electric Mfg. Co., Ltd. High-frequency power supply device, and plasma ignition method
KR20160131897A (ko) * 2015-05-07 2016-11-16 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치의 처리 조건 생성 방법 및 플라즈마 처리 장치
KR102412248B1 (ko) 2015-05-07 2022-06-24 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치의 처리 조건 생성 방법 및 플라즈마 처리 장치

Also Published As

Publication number Publication date
JP5100853B2 (ja) 2012-12-19

Similar Documents

Publication Publication Date Title
JP4838525B2 (ja) プラズマ処理方法及びプラズマ処理装置及び可変整合器におけるインピーダンスのプリセット値を決定するためのプログラム
US7794615B2 (en) Plasma processing method and apparatus, and autorunning program for variable matching unit
KR102506820B1 (ko) 주파수 튜닝 보조된 듀얼-레벨 펄싱 (dual-level pulsing) 을 위한 RF 매칭 네트워크의 보조 회로
US10109462B2 (en) Dual radio-frequency tuner for process control of a plasma process
US8741095B2 (en) Plasma processing apparatus, plasma processing method, and computer readable storage medium
JP6224958B2 (ja) プラズマ処理装置及びプラズマ処理方法
US10615005B2 (en) Plasma generating method
US20180115299A1 (en) Method for impedance matching of plasma processing apparatus
US20120270406A1 (en) Cleaning method of plasma processing apparatus and plasma processing method
KR20140104380A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
US9324600B2 (en) Mounting table structure and plasma film forming apparatus
JP4606944B2 (ja) プラズマ処理装置およびインピーダンス調整方法
KR100710923B1 (ko) 플라즈마 처리장치 및 임피던스 조정방법
US11562887B2 (en) Plasma processing apparatus and etching method
JP7154119B2 (ja) 制御方法及びプラズマ処理装置
US20220037129A1 (en) Plasma processing apparatus and plasma processing method
TW201344742A (zh) 使用具有二維調諧空間之射頻回傳路徑可變阻抗控制器之電漿處理
JP5100853B2 (ja) プラズマ処理方法
US20190318912A1 (en) Plasma processing apparatus
TWI816856B (zh) 基板處理系統與用於操作基板處理系統的方法
KR20210127767A (ko) 기판 프로세싱 챔버들을 위한 척킹 프로세스 및 시스템
JP6999410B2 (ja) 基板処理方法
US10541169B2 (en) Method and system for balancing the electrostatic chucking force on a substrate
US11721525B2 (en) Sensorless RF impedance matching network
US11581168B2 (en) Plasma processing apparatus and method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5100853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250