JP2011115717A - Ultrasonic cleaner - Google Patents

Ultrasonic cleaner Download PDF

Info

Publication number
JP2011115717A
JP2011115717A JP2009275151A JP2009275151A JP2011115717A JP 2011115717 A JP2011115717 A JP 2011115717A JP 2009275151 A JP2009275151 A JP 2009275151A JP 2009275151 A JP2009275151 A JP 2009275151A JP 2011115717 A JP2011115717 A JP 2011115717A
Authority
JP
Japan
Prior art keywords
ultrasonic
vibration
cleaned
cleaning liquid
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009275151A
Other languages
Japanese (ja)
Other versions
JP5453582B2 (en
Inventor
Hiroki Takahashi
広毅 高橋
Katsuhiro Ota
勝啓 太田
Maki Okawa
真樹 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Denki Engineering Co Ltd
Original Assignee
Hitachi Kokusai Denki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Denki Engineering Co Ltd filed Critical Hitachi Kokusai Denki Engineering Co Ltd
Priority to JP2009275151A priority Critical patent/JP5453582B2/en
Publication of JP2011115717A publication Critical patent/JP2011115717A/en
Application granted granted Critical
Publication of JP5453582B2 publication Critical patent/JP5453582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic cleaner for performing treatment by bringing an ultrasonic oscillating plane close to the surface of the object to be cleaned which improves the uniformity of intensity of ultrasound irradiated to an object to be cleaned, prevents unstable action of an oscillator due to the influence of reflected waves from the object to be cleaned, and suppresses generation of standing waves between a vibrating plane and the object to be cleaned, thereby suppressing the damage of the object to be cleaned and obtaining stable and high cleaning performance. <P>SOLUTION: The ultrasonic cleaner includes a vibration element 120, an ultrasonic wave oscillator 110, a vibration transmitting material 130, and cleaning liquid supply piping 140. In the vibration transmitting material 130, one end thereof is disposed with the vibration element 120 and the other end thereof is disposed with the vibrating plane 131 facing the object W to be cleaned. The vibrating plane 131 is provided with at least two recessed and projected portions, such as minute projections 132, so as to face the object W to be cleaned. The vibrating plane 131 having the recessed and projected portions is brought into contact with cleaning liquid 141 to generate ultrasound. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、洗浄装置に関し、特に、例えば半導体集積装置用基板、表示装置用ガラス基板、フォトマスク装置用基板、光ディスク用基板、磁気ディスク用基板、フィルム基板等に対して、超音波振動を照射した液体を用いて洗浄処理を行う超音波洗浄装置に適用して有効な技術に関する。   The present invention relates to a cleaning apparatus, and in particular, irradiates ultrasonic vibration to, for example, a substrate for a semiconductor integrated device, a glass substrate for a display device, a substrate for a photomask device, a substrate for an optical disk, a substrate for a magnetic disk, a film substrate, etc. The present invention relates to a technique that is effective when applied to an ultrasonic cleaning apparatus that performs a cleaning process using a prepared liquid.

半導体集積装置の製造工程における洗浄方法は、バッチ式洗浄と枚葉式洗浄とに大別される。バッチ式洗浄とは、洗浄液を貯留した処理槽の中に、複数枚の被洗浄物を同時に浸漬して処理する洗浄方法である。一方、枚葉式洗浄とは、被洗浄物に対して洗浄液をかけながら1枚ずつ処理する洗浄方法である。近年、製造に用いられるシリコンウェハ基板の大型化に伴い、被洗浄物間の汚染転写防止の重要性が高まっている背景から、枚葉式洗浄が主流になりつつある。   Cleaning methods in the manufacturing process of a semiconductor integrated device are roughly classified into batch cleaning and single wafer cleaning. Batch cleaning is a cleaning method in which a plurality of objects to be cleaned are simultaneously immersed in a processing tank in which a cleaning liquid is stored. On the other hand, the single wafer cleaning is a cleaning method in which an object to be cleaned is processed one by one while applying a cleaning liquid. In recent years, with the increase in the size of silicon wafer substrates used for manufacturing, the importance of preventing contamination transfer between objects to be cleaned is increasing, and single wafer cleaning is becoming mainstream.

図2は、従来の枚葉式の超音波洗浄装置の全体構成の一例である。超音波洗浄装置は、超音波発振器10と、振動素子20と、振動伝達材30と、洗浄液供給配管40とを備える。振動素子ケース21は、振動素子20を覆うように装着されている。ケーブル22は、振動素子ケース21の端部に通され、一端で振動素子20に接続し、他端で超音波発振器10に接続している。棒状ホーン形状の振動伝達材30は、一端を斜めに切断して振動面31を形成し、他端で振動素子20に接続している。振動面31は、被洗浄物Wに対向して微小間隔を保つように配置されている。洗浄液供給配管40は、振動面31の側部から洗浄液41を流入する。   FIG. 2 shows an example of the overall configuration of a conventional single wafer ultrasonic cleaning apparatus. The ultrasonic cleaning apparatus includes an ultrasonic oscillator 10, a vibration element 20, a vibration transmission material 30, and a cleaning liquid supply pipe 40. The vibration element case 21 is mounted so as to cover the vibration element 20. The cable 22 is passed through the end of the vibration element case 21, connected to the vibration element 20 at one end, and connected to the ultrasonic oscillator 10 at the other end. The rod-shaped horn-shaped vibration transmission material 30 has one end cut obliquely to form a vibration surface 31 and the other end connected to the vibration element 20. The vibration surface 31 is disposed so as to be opposed to the object to be cleaned W and keep a minute interval. The cleaning liquid supply pipe 40 flows in the cleaning liquid 41 from the side of the vibration surface 31.

振動面31は、超音波強度の均一性を上げるため、振動素子20で発生した超音波振動が振動伝達材30の中で収束する焦点位置32より遠い位置に形成されている。また、振動面31は、振動素子20が被洗浄物Wからの反射波の影響を受け、超音波発振器10の動作が不安定になるのを防止するため、振動素子20との接続面に対して斜めに配置されている。   The vibration surface 31 is formed at a position farther from the focal position 32 where the ultrasonic vibration generated by the vibration element 20 converges in the vibration transmitting material 30 in order to increase the uniformity of the ultrasonic intensity. In addition, the vibration surface 31 is connected to the connection surface with the vibration element 20 in order to prevent the vibration element 20 from being affected by a reflected wave from the object to be cleaned W and the operation of the ultrasonic oscillator 10 to become unstable. Are arranged diagonally.

特開2004‐249212号公報JP 2004-249212 A

しかし、前述のような構造の超音波洗浄装置も、被洗浄物Wに照射される超音波強度の均一性は不十分である。従って、被洗浄物Wの配線パターンの破壊(ダメージ)を防ぐには、振動面31において超音波強度が最大となる箇所の超音波強度をある所定値以下に抑える必要がある。その場合、振動面31における残りの大部分の超音波強度が不十分になるため、洗浄性能が低下してしまう。さらに、振動面31と被洗浄物Wとの間で定在波が発生し、その距離によって定在波の挙動がばらつくため、洗浄性能が安定しないという問題も発生する。   However, the ultrasonic cleaning apparatus having the above-described structure is also insufficient in the uniformity of the ultrasonic intensity applied to the workpiece W. Therefore, in order to prevent the destruction (damage) of the wiring pattern of the article W to be cleaned, it is necessary to suppress the ultrasonic intensity at a position where the ultrasonic intensity is maximum on the vibration surface 31 to a predetermined value or less. In that case, since most of the remaining ultrasonic intensity on the vibration surface 31 becomes insufficient, the cleaning performance deteriorates. Furthermore, since a standing wave is generated between the vibration surface 31 and the workpiece W and the behavior of the standing wave varies depending on the distance, there arises a problem that the cleaning performance is not stable.

本発明は、前述のような超音波振動面を被洗浄物表面に近づけて処理する超音波洗浄装置で、被洗浄物に照射される超音波強度の均一性を上げ、かつ被洗浄物からの反射波の影響による発振器の不安定動作を防止し、さらに振動面−被洗浄物間での定在波の発生を抑えることで、被洗浄物のダメージを抑制し、安定かつ高い洗浄性能を得ることを目的とする。   The present invention is an ultrasonic cleaning apparatus that processes the ultrasonic vibration surface as described above close to the surface of the object to be cleaned, and improves the uniformity of the ultrasonic intensity irradiated to the object to be cleaned and from the object to be cleaned. Prevents unstable operation of the oscillator due to the influence of reflected waves, and further suppresses the occurrence of standing waves between the vibration surface and the object to be cleaned, thereby suppressing damage to the object to be cleaned and obtaining stable and high cleaning performance. For the purpose.

本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。   Of the inventions disclosed in the present application, the outline of typical ones will be briefly described as follows.

すなわち、代表的なものの概要は、超音波洗浄装置において、振動素子(超音波振動素子)と、超音波発振器と、振動伝達材と、洗浄液供給手段とを備える。特に、振動伝達材は、一端に振動素子を配置し、他端に被洗浄物に対向する振動面を配置し、かつ振動面は被洗浄物に向かって少なくとも2個以上の凹凸部(突起)を備える。そして、洗浄液に凹凸部を有する振動面を接触させて超音波を発生させる。   That is, the outline of a typical one is an ultrasonic cleaning apparatus including a vibration element (ultrasonic vibration element), an ultrasonic oscillator, a vibration transmission material, and a cleaning liquid supply unit. In particular, the vibration transmitting material has a vibration element at one end, a vibration surface facing the object to be cleaned at the other end, and the vibration surface has at least two uneven portions (projections) toward the object to be cleaned. Is provided. Then, an ultrasonic wave is generated by bringing the vibration surface having an uneven portion into contact with the cleaning liquid.

本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。   Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.

すなわち、代表的なものによって得られる効果は、超音波洗浄装置において、振動素子(超音波振動素子)から振動面へ伝播した超音波は、凹凸部(突起)で拡散され、被洗浄物へ均一に放射される。その結果、被洗浄物のダメージを抑制し、かつ高い洗浄性能が得られる。また、被洗浄物で反射して振動面へ到達した超音波は、凹凸部で拡散され、振動伝達材または洗浄液の中で互いに干渉し合いながら減衰する。その結果、発振器の動作が安定し、かつ定在波の発生が抑えられるため、洗浄性能も安定する。   In other words, the effect obtained by a typical device is that in an ultrasonic cleaning apparatus, ultrasonic waves propagated from a vibration element (ultrasonic vibration element) to a vibration surface are diffused by uneven portions (protrusions) and are uniformly distributed on an object to be cleaned. Is emitted. As a result, damage to the object to be cleaned is suppressed, and high cleaning performance is obtained. Also, the ultrasonic waves reflected by the object to be cleaned and reaching the vibration surface are diffused by the concavo-convex portions and attenuated while interfering with each other in the vibration transmitting material or the cleaning liquid. As a result, the operation of the oscillator is stabilized and the generation of standing waves is suppressed, so that the cleaning performance is also stabilized.

本発明の第1の実施の形態に係る超音波洗浄装置の全体構成を示す図である。It is a figure showing the whole ultrasonic cleaning device composition concerning a 1st embodiment of the present invention. 従来の超音波洗浄装置の全体構成を示す図である。It is a figure which shows the whole structure of the conventional ultrasonic cleaning apparatus. 本発明の第1の実施の形態における微小突起の配置の一例を示す斜視図である。It is a perspective view which shows an example of arrangement | positioning of the microprotrusion in the 1st Embodiment of this invention. 本発明の第1の実施の形態における微小突起の配置の他の例を示す斜視図である。It is a perspective view which shows the other example of arrangement | positioning of the microprotrusion in the 1st Embodiment of this invention. 本発明の第1の実施の形態において、被洗浄物へ超音波が照射される過程を示す断面図である。It is sectional drawing which shows the process in which the ultrasonic wave is irradiated to to-be-cleaned object in the 1st Embodiment of this invention. 本発明の第1の実施の形態において、被洗浄物へ照射される超音波の音圧分布を示すグラフである。In the 1st Embodiment of this invention, it is a graph which shows the sound pressure distribution of the ultrasonic wave irradiated to a to-be-cleaned object. 本発明の第1の実施の形態において、超音波が反射する過程を示す断面図である。FIG. 4 is a cross-sectional view showing a process of reflecting ultrasonic waves in the first embodiment of the present invention. 本発明の第2の実施の形態に係る超音波洗浄装置の全体構成を示す図である。It is a figure which shows the whole structure of the ultrasonic cleaning apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態において、被洗浄物へ超音波が照射される過程を示す断面図である。In 2nd Embodiment of this invention, it is sectional drawing which shows the process in which an ultrasonic wave is irradiated to a to-be-cleaned object. 本発明の第2の実施の形態において、被洗浄物へ照射される超音波の音圧分布を示すグラフである。In the 2nd Embodiment of this invention, it is a graph which shows the sound pressure distribution of the ultrasonic wave irradiated to a to-be-cleaned object. 本発明の第2の実施の形態において、超音波が反射する過程を示す断面図である。In the 2nd Embodiment of this invention, it is sectional drawing which shows the process in which an ultrasonic wave reflects. 本発明の第3の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。It is an expanded sectional view showing an important section of an ultrasonic cleaning device concerning a 3rd embodiment of the present invention. 本発明の第4の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the ultrasonic cleaning apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。It is an expanded sectional view showing an important section of an ultrasonic cleaning device concerning a 5th embodiment of the present invention. 本発明の第6の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。It is an expanded sectional view showing an important section of an ultrasonic cleaning device concerning a 6th embodiment of the present invention. 本発明の第7の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the ultrasonic cleaning apparatus which concerns on the 7th Embodiment of this invention. 本発明の第8の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the ultrasonic cleaning apparatus which concerns on the 8th Embodiment of this invention. 本発明の第9の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of the ultrasonic cleaning apparatus which concerns on the 9th Embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.

<第1の実施の形態>
本発明の第1の実施の形態に係る超音波洗浄装置について、図1及び図3乃至図7を用いて説明する。
<First Embodiment>
An ultrasonic cleaning apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 3 to 7.

図1は、本発明の第1の実施の形態に係る超音波洗浄装置の全体構成を示す図である。超音波洗浄装置は、超音波発振器110と、振動素子(超音波振動素子)120と、振動伝達材130と、洗浄液供給手段である洗浄液供給配管140とを備える。   FIG. 1 is a diagram showing an overall configuration of an ultrasonic cleaning apparatus according to the first embodiment of the present invention. The ultrasonic cleaning apparatus includes an ultrasonic oscillator 110, a vibration element (ultrasonic vibration element) 120, a vibration transmission material 130, and a cleaning liquid supply pipe 140 that is a cleaning liquid supply unit.

超音波発振器110は、振動素子120に所定の周波数を供給して振動させるものであり、例えば周波数20kHz以上で、かつ所定の振幅の電気信号(高周波電力)を振動素子120に付与する。被洗浄物Wが配線幅100nm未満の微細な配線パターンを有する場合、周波数は0.5MHz乃至3MHzが最適である。   The ultrasonic oscillator 110 supplies a predetermined frequency to the vibration element 120 to vibrate. For example, the ultrasonic oscillator 110 applies an electric signal (high frequency power) having a frequency of 20 kHz or more and a predetermined amplitude to the vibration element 120. When the object to be cleaned W has a fine wiring pattern with a wiring width of less than 100 nm, the optimal frequency is 0.5 MHz to 3 MHz.

振動素子120は、振動素子ケース121に覆われている。ケーブル122は、振動素子ケース121の端部に通され、一端で振動素子120に接続し、他端で超音波発振器110に接続している。振動素子120は、超音波発振器110から高周波電力を付与されると伸縮振動し、その伸縮振動を振動伝達材130に伝播する。   The vibration element 120 is covered with the vibration element case 121. The cable 122 is passed through the end of the vibration element case 121, connected to the vibration element 120 at one end, and connected to the ultrasonic oscillator 110 at the other end. The vibration element 120 expands and contracts when high frequency power is applied from the ultrasonic oscillator 110 and propagates the expansion and contraction vibration to the vibration transmitting material 130.

振動伝達材130は、振動素子120の振動を伝達するものであり、例えば超音波の伝搬性が高く、使用劣化による発塵の恐れがなく、金属成分が溶出しない材質で構成されるのが望ましい。本実施の形態では石英ガラスとする。振動伝達材130の形状は板状で、その厚さtは(1)式に従って決められている。   The vibration transmission material 130 transmits vibration of the vibration element 120, and is preferably made of a material that has high ultrasonic wave propagation properties, does not cause dust generation due to use deterioration, and does not elute metal components. . In this embodiment mode, quartz glass is used. The shape of the vibration transmitting material 130 is a plate shape, and the thickness t is determined according to the equation (1).

t[m]=nλ/2 (1)
n:自然数[‐]
λ:石英ガラス中での超音波の波長[m]
例えば、周波数が1MHzの場合、波長λは約6mmであるため、厚さtを約3mmの自然数倍とすればよい。振動伝達材130の上面には振動素子120が接続され、下面には振動面131が形成されている。この時、振動伝達材130は、振動素子120の振動に対して共振するため、効率良く超音波を伝播することができる。
t [m] = nλ Q / 2 (1)
n: Natural number [-]
λ Q : Wavelength of ultrasonic wave in quartz glass [m]
For example, when the frequency is 1 MHz, the wavelength λ Q is about 6 mm, so the thickness t may be a natural number multiple of about 3 mm. The vibration element 120 is connected to the upper surface of the vibration transmitting material 130, and the vibration surface 131 is formed on the lower surface. At this time, since the vibration transmitting material 130 resonates with respect to the vibration of the vibration element 120, the ultrasonic wave can be efficiently propagated.

振動面131は、被洗浄物Wに対向して数mm程度の微小間隔を保つように配置されている。さらに、振動面131には、被洗浄物Wに向かって少なくとも2個以上備える凹凸部として、被洗浄物Wに向かって突出した曲面状の微小突起132が等ピッチで形成されている。   The vibration surface 131 is disposed so as to face the object to be cleaned W and keep a minute interval of about several mm. Further, on the vibration surface 131, curved minute protrusions 132 protruding toward the object to be cleaned W are formed at equal pitches as uneven portions provided at least two toward the object to be cleaned W.

図3は、微小突起132の配置の一例を示す斜視図である。微小突起132は、図中のy方向に沿って線状に配置されている。図中のy方向は、被洗浄物Wの搬送方向に対して平行になっているのが望ましい。これによって、被洗浄物Wを搬送した際、微小突起132間のスペース(凹部)に一定方向の水流が発生し、付着した気泡が効率良く排出されるからである。   FIG. 3 is a perspective view showing an example of the arrangement of the fine protrusions 132. The microprotrusions 132 are linearly arranged along the y direction in the figure. The y direction in the figure is preferably parallel to the transport direction of the article W to be cleaned. This is because when the object to be cleaned W is conveyed, a water flow in a certain direction is generated in the space (concave portion) between the fine protrusions 132, and the attached bubbles are efficiently discharged.

図4は、微小突起132の配置の他の例を示す斜視図である。微小突起132は、図中のxy平面から見て点状かつ規則的に配置されている。この場合、図中のx方向もしくはy方向が、被洗浄物Wの搬送方向に対して平行になっているのが望ましい。   FIG. 4 is a perspective view showing another example of the arrangement of the minute protrusions 132. The microprotrusions 132 are arranged in a dotted and regular manner as viewed from the xy plane in the drawing. In this case, it is desirable that the x direction or the y direction in the drawing is parallel to the conveyance direction of the article W to be cleaned.

微小突起132の寸法は、(2)式乃至(4)式に従って決められるのが望ましい。   The dimensions of the microprojections 132 are preferably determined according to the equations (2) to (4).

{a−(λ/2)}/λ≦h (2)
b=(2n−1)λ/4 (3)
s≦2a (4)
a:微小突起132の幅(2a)の半値[m]
λ:洗浄液141中での超音波の波長[m]
h:微小突起132の先端部から被洗浄物Wまでの距離[m]
b:微小突起132の高さ[m]
n:自然数[‐]
s:微小突起132間のスペース[m]
(2)式は、微小突起132から洗浄液141へ入射する超音波に対し、被洗浄物Wの位置が遠距離音場領域にあり、超音波の拡散を促進する条件である。(3)式は、被洗浄物Wから振動面131側へ向かって垂直に反射する超音波と、振動面131側から垂直に入射する超音波とが効率良く干渉する条件である。これによって、振動伝達材130を介して振動素子120へ反射する超音波の強度をある程度弱くすることができる。(4)式は、微小突起132間のスペース(凹部)から被洗浄物Wへ向かって垂直に入射する超音波と、微小突起132から拡散される超音波とが効率良く干渉する条件である。例えば、周波数が1MHz、洗浄液141が超純水、距離hが3mmの場合、微小突起132の幅2aは4.5mm以下、高さbは0.375mmの奇数倍、スペースsは4.5mm以下である。
{A 2 − (λ L / 2) 2 } / λ L ≦ h (2)
b = (2n−1) λ L / 4 (3)
s ≦ 2a (4)
a: Half value [m] of width (2a) of minute protrusion 132
λ L : Wavelength of ultrasonic wave [m] in the cleaning liquid 141
h: Distance from the tip of the microprojection 132 to the workpiece W [m]
b: Height of minute protrusion 132 [m]
n: Natural number [-]
s: space between microprojections 132 [m]
Equation (2) is a condition that promotes the diffusion of ultrasonic waves because the position of the object to be cleaned W is in the far field with respect to the ultrasonic waves that enter the cleaning liquid 141 from the minute protrusions 132. The expression (3) is a condition in which the ultrasonic wave that is vertically reflected from the workpiece W toward the vibration surface 131 side and the ultrasonic wave that is incident vertically from the vibration surface 131 side efficiently interfere with each other. Thereby, the intensity of the ultrasonic wave reflected to the vibration element 120 via the vibration transmitting material 130 can be reduced to some extent. Equation (4) is a condition in which the ultrasonic waves that are perpendicularly incident on the object to be cleaned W from the space (concave portion) between the micro protrusions 132 and the ultrasonic waves that are diffused from the micro protrusions 132 interfere efficiently. For example, when the frequency is 1 MHz, the cleaning liquid 141 is ultrapure water, and the distance h is 3 mm, the width 2a of the microprojection 132 is 4.5 mm or less, the height b is an odd multiple of 0.375 mm, and the space s is 4.5 mm or less. It is.

図3乃至図4と、(2)式乃至(4)式に従って決められる微小突起132の配置と寸法は、後述する第2乃至第9の実施の形態における微小突起もしくは微小ディンプルに対しても適用可能である。   The arrangement and dimensions of the microprojections 132 determined according to FIGS. 3 to 4 and formulas (2) to (4) are also applied to microprojections or microdimples in second to ninth embodiments described later. Is possible.

洗浄液供給配管140は、振動面131と被洗浄物Wとの間の微小間隔が満たされるように洗浄液141を供給する。洗浄液141には、飽和溶解量程度の気体(ガス)が溶解していることが望ましい。本実施の形態では、洗浄液141は超純水であり、その中に約20ppmの窒素ガスのみが溶解している。洗浄液141へ超音波が入射すると、洗浄液141に溶解しているガスの一部が気泡化することで、被洗浄物Wに対する洗浄効果が発現する。   The cleaning liquid supply pipe 140 supplies the cleaning liquid 141 so that the minute gap between the vibration surface 131 and the workpiece W is satisfied. It is desirable that a gas (gas) of about the saturated dissolution amount is dissolved in the cleaning liquid 141. In the present embodiment, the cleaning liquid 141 is ultrapure water, in which only about 20 ppm of nitrogen gas is dissolved. When ultrasonic waves are incident on the cleaning liquid 141, a part of the gas dissolved in the cleaning liquid 141 is bubbled, so that a cleaning effect for the cleaning target W is exhibited.

図5は、第1の実施の形態において、振動伝達材130から被洗浄物Wへ超音波が照射される過程を示す断面図である。振動素子120から振動面131へ鉛直方向に伝播した超音波の大部分は、微小突起132で屈折して、洗浄液141へ入射する。そのため、洗浄液141の中に入射した超音波の大部分は、鉛直方向に対して斜めに進行する。即ち、超音波は、微小突起132を起点に拡散して、洗浄液141の中を進行する。拡散した超音波は、洗浄液141の中で互いに干渉し合いながら減衰する。以上の過程を経て、洗浄液141から被洗浄物Wへ超音波が照射される際、被洗浄物Wの表面における超音波強度の均一性が向上する。   FIG. 5 is a cross-sectional view showing a process in which ultrasonic waves are irradiated from the vibration transmitting material 130 to the object to be cleaned W in the first embodiment. Most of the ultrasonic waves propagating from the vibration element 120 to the vibration surface 131 in the vertical direction are refracted by the minute protrusions 132 and enter the cleaning liquid 141. Therefore, most of the ultrasonic waves incident on the cleaning liquid 141 travel obliquely with respect to the vertical direction. That is, the ultrasonic wave diffuses from the minute protrusion 132 and travels in the cleaning liquid 141. The diffused ultrasonic waves are attenuated while interfering with each other in the cleaning liquid 141. Through the above process, when ultrasonic waves are applied from the cleaning liquid 141 to the cleaning object W, the uniformity of the ultrasonic intensity on the surface of the cleaning object W is improved.

図6は、第1の実施の形態において、被洗浄物Wに照射される超音波の音圧Pを示すグラフである。音圧Pとは、超音波の照射によって媒質(ここでは洗浄液141)の圧力が変化する量(圧力振幅)を示し、理論的に(5)式で表される。   FIG. 6 is a graph showing the sound pressure P of the ultrasonic wave irradiated to the cleaning object W in the first embodiment. The sound pressure P indicates the amount (pressure amplitude) by which the pressure of the medium (in this case, the cleaning liquid 141) changes due to the irradiation of ultrasonic waves, and is theoretically expressed by equation (5).

P[Pa]=(ρI)1/2 (5)
ρ:洗浄液141の密度(=1000kg/m
:洗浄液141中での超音波の伝播速度(=1500m/s)
I:超音波強度[W/m
即ち、音圧分布を測定することで、超音波強度の均一性を評価できる。グラフの横軸は、被洗浄物Wの表面において、図5のx方向に沿った位置を示し、縦軸は、その位置における音圧Pを示している。音圧分布は、分布曲線P1(実線)で表される。尚、微小突起132を有さない場合を比較例として、その音圧分布を分布曲線P0(点線)で示す。
P [Pa] = (ρ L c L I) 1/2 (5)
ρ L : density of the cleaning liquid 141 (= 1000 kg / m 3 )
c L : Propagation speed of ultrasonic waves in the cleaning liquid 141 (= 1500 m / s)
I: Ultrasonic intensity [W / m 2 ]
That is, the uniformity of ultrasonic intensity can be evaluated by measuring the sound pressure distribution. The horizontal axis of the graph indicates the position along the x direction in FIG. 5 on the surface of the workpiece W, and the vertical axis indicates the sound pressure P at that position. The sound pressure distribution is represented by a distribution curve P1 (solid line). The sound pressure distribution is indicated by a distribution curve P0 (dotted line) as a comparative example in which the microprojections 132 are not provided.

第1の実施の形態による音圧の分布曲線P1は、比較例による音圧の分布曲線P0よりも平坦である。第1の実施の形態では、超音波が拡散して洗浄液141の中で互いに干渉し合うため、均一性が向上する。一方、比較例では、超音波が拡散せずに鉛直方向に進行するため、振動素子120の振動のばらつきに起因して不均一となる。   The sound pressure distribution curve P1 according to the first embodiment is flatter than the sound pressure distribution curve P0 according to the comparative example. In the first embodiment, since the ultrasonic waves diffuse and interfere with each other in the cleaning liquid 141, the uniformity is improved. On the other hand, in the comparative example, since the ultrasonic wave travels in the vertical direction without diffusing, it becomes non-uniform due to variation in vibration of the vibration element 120.

図7は、第1の実施の形態において、超音波が反射する過程を示す断面図である。超音波の大部分は、鉛直方向に対して斜めに進行して被洗浄物Wへ入射する。そのため、被洗浄物Wから洗浄液141へ反射する超音波の大部分も鉛直方向に対して斜めに進行する。従って、入射波と反射波とが同一直線上にないため、定在波の発生が抑えられる。さらに、この反射波の一部は、微小突起132で反射及び拡散し、振動伝達材130もしくは洗浄液141の中で互いに干渉し合いながら減衰する。これにより、振動素子120へ反射する超音波の強度が弱くなり、超音波発振器110の動作に影響を及ぼさなくなる。   FIG. 7 is a cross-sectional view showing a process in which ultrasonic waves are reflected in the first embodiment. Most of the ultrasonic waves travel obliquely with respect to the vertical direction and enter the cleaning object W. Therefore, most of the ultrasonic waves reflected from the cleaning object W to the cleaning liquid 141 also proceed obliquely with respect to the vertical direction. Therefore, since the incident wave and the reflected wave are not on the same straight line, the occurrence of a standing wave can be suppressed. Further, a part of the reflected wave is reflected and diffused by the minute protrusion 132 and attenuates while interfering with each other in the vibration transmitting material 130 or the cleaning liquid 141. As a result, the intensity of the ultrasonic wave reflected to the vibration element 120 becomes weak, and the operation of the ultrasonic oscillator 110 is not affected.

以上に説明した第1の実施の形態によれば、振動素子120から振動面131へ伝播した超音波は、微小突起132で拡散され、被洗浄物Wへ均一に放射されるので、被洗浄物Wのダメージを抑制し、かつ高い洗浄性能が得られる。また、被洗浄物Wで反射して振動面131へ到達した超音波は、微小突起132で拡散され、振動伝達材130または洗浄液141の中で互いに干渉し合いながら減衰するので、超音波発振器110の動作が安定し、かつ定在波の発生が抑えられるため、洗浄性能も安定する。   According to the first embodiment described above, the ultrasonic wave propagated from the vibration element 120 to the vibration surface 131 is diffused by the fine protrusions 132 and is uniformly emitted to the object to be cleaned W. W damage can be suppressed and high cleaning performance can be obtained. Further, since the ultrasonic waves reflected by the object to be cleaned W and reaching the vibration surface 131 are diffused by the minute protrusions 132 and attenuated while interfering with each other in the vibration transmitting material 130 or the cleaning liquid 141, the ultrasonic oscillator 110. Since the operation of this is stable and the occurrence of standing waves is suppressed, the cleaning performance is also stable.

<第2の実施の形態>
本発明の第2の実施の形態に係る超音波洗浄装置について、図8乃至図11を用いて説明する。
<Second Embodiment>
An ultrasonic cleaning apparatus according to the second embodiment of the present invention will be described with reference to FIGS.

図8は、本発明の第2の実施の形態に係る超音波洗浄装置の全体構成を示す図である。超音波洗浄装置は、第1の実施の形態と同様の、超音波発振器110と、振動素子120と、振動素子ケース121と、ケーブル122と、洗浄液供給配管140とを備える。また、洗浄液141は超純水であり、その中に約20ppmの窒素ガスのみが溶解している。   FIG. 8 is a diagram showing an overall configuration of an ultrasonic cleaning apparatus according to the second embodiment of the present invention. The ultrasonic cleaning apparatus includes the ultrasonic oscillator 110, the vibration element 120, the vibration element case 121, the cable 122, and the cleaning liquid supply pipe 140, which are the same as those in the first embodiment. The cleaning liquid 141 is ultrapure water in which only about 20 ppm of nitrogen gas is dissolved.

振動伝達材130は、板状の石英ガラスで構成され、厚さtは(1)式に従って決められている。振動伝達材130の上面には振動素子120が接続され、下面には振動面131が形成されている。振動面131は、被洗浄物Wに対向して数mm程度の微小間隔を保つように配置されている。振動面131には、振動素子120に向かって陥没した曲面状の微小ディンプル133が等ピッチで形成されている。   The vibration transmitting material 130 is made of plate-like quartz glass, and the thickness t is determined according to the equation (1). The vibration element 120 is connected to the upper surface of the vibration transmitting material 130, and the vibration surface 131 is formed on the lower surface. The vibration surface 131 is disposed so as to face the object to be cleaned W and keep a minute interval of about several mm. On the vibration surface 131, curved fine dimples 133 that are depressed toward the vibration element 120 are formed at an equal pitch.

微小ディンプル133は、図3と同様に線状に配置もしくは図4と同様に点状に配置されている。また、微小ディンプル133の寸法は、(2)式乃至(4)式に従って決められるのが望ましい。この場合、式中のaは微小ディンプル133の幅の半値、hは微小ディンプル133間のスペース(凸部)から被洗浄物Wまでの距離、bは微小ディンプル133の深さ、sは微小ディンプル133間のスペースに置き換えられる。   The minute dimples 133 are arranged in a linear manner as in FIG. 3 or in a dotted manner as in FIG. Further, it is desirable that the size of the minute dimple 133 is determined according to the equations (2) to (4). In this case, a in the equation is a half value of the width of the minute dimple 133, h is a distance from the space (convex portion) between the minute dimples 133 to the object to be cleaned W, b is a depth of the minute dimple 133, and s is a minute dimple. It is replaced with a space between 133.

図9は、第2の実施の形態において、振動伝達材130から被洗浄物Wへ超音波が照射される過程を示す断面図である。振動素子120から振動面131へ鉛直方向に伝播した超音波の大部分は、微小ディンプル133で屈折して、洗浄液141へ入射する。第1の実施の形態とは対照的に、超音波の大部分は、微小ディンプル133の中心軸上に収束しながら、洗浄液141の中を進行する。   FIG. 9 is a cross-sectional view showing a process in which ultrasonic waves are irradiated from the vibration transmitting material 130 to the object to be cleaned W in the second embodiment. Most of the ultrasonic waves propagated in the vertical direction from the vibration element 120 to the vibration surface 131 are refracted by the fine dimples 133 and enter the cleaning liquid 141. In contrast to the first embodiment, most of the ultrasonic waves travel through the cleaning liquid 141 while converging on the central axis of the fine dimples 133.

図10は、第2の実施の形態において、被洗浄物Wに照射される超音波の音圧Pを示すグラフである。グラフの横軸は、被洗浄物Wの表面において、図9のx方向に沿った位置を示し、縦軸は、その位置における音圧Pを示している。音圧分布は、分布曲線P2(実線)で表される。尚、微小ディンプル133を有さない場合を比較例として、その音圧分布を分布曲線P0(点線)で示す。   FIG. 10 is a graph showing the sound pressure P of the ultrasonic wave irradiated to the cleaning object W in the second embodiment. The horizontal axis of the graph indicates the position along the x direction in FIG. 9 on the surface of the workpiece W, and the vertical axis indicates the sound pressure P at that position. The sound pressure distribution is represented by a distribution curve P2 (solid line). Note that the sound pressure distribution is shown by a distribution curve P0 (dotted line) in the case of not having the minute dimples 133 as a comparative example.

第2の実施の形態による音圧の分布曲線P2は、等ピッチで極大点を有する。極大となる横軸の座標は、前述の微小ディンプル133の中心軸上の位置に対応する。一方、比較例では、超音波が収束せずに鉛直方向に進行するため、振動素子120の振動のばらつきに起因した分布となる。   The sound pressure distribution curve P2 according to the second embodiment has maximum points at equal pitches. The coordinate of the horizontal axis that becomes the maximum corresponds to the position on the central axis of the fine dimple 133 described above. On the other hand, in the comparative example, since the ultrasonic wave travels in the vertical direction without converging, the distribution is caused by variation in vibration of the vibration element 120.

図11は、第2の実施の形態において、超音波が反射する過程を示す断面図である。超音波の大部分は、微小ディンプル133の中心軸上に収束するため、鉛直方向に対して斜めに進行して被洗浄物Wへ入射する。そのため、被洗浄物Wから洗浄液141へ反射する超音波の大部分も鉛直方向に対して斜めに進行する。従って、入射波と反射波とが同一直線上にないため、定在波の発生が抑えられる。さらに、この反射波の一部は、微小ディンプル133で反射して、前述の中心軸上に収束する。これにより、振動素子120へ反射する超音波の強度は弱くなり、超音波発振器110の動作に影響を及ぼさなくなる。   FIG. 11 is a cross-sectional view showing a process in which ultrasonic waves are reflected in the second embodiment. Since most of the ultrasonic waves converge on the central axis of the minute dimples 133, the ultrasonic waves travel obliquely with respect to the vertical direction and enter the cleaning object W. Therefore, most of the ultrasonic waves reflected from the cleaning object W to the cleaning liquid 141 also proceed obliquely with respect to the vertical direction. Therefore, since the incident wave and the reflected wave are not on the same straight line, the occurrence of a standing wave can be suppressed. Further, a part of this reflected wave is reflected by the minute dimple 133 and converges on the above-mentioned central axis. As a result, the intensity of the ultrasonic wave reflected to the vibration element 120 becomes weak and does not affect the operation of the ultrasonic oscillator 110.

第2の実施の形態は、微細な配線パターンを有さない被洗浄物Wに対して、安定かつ高い洗浄性能を得る必要がある場合に適用される。この場合、振動面131の面方向、すなわち図9のx方向に沿って、振動伝達材130と被洗浄物Wの少なくとも一方を走査させることが望ましい。走査させることによって、図10で示した音圧分布曲線P2の極大点が、被洗浄物Wの全面を均等に通過する効果がある。   The second embodiment is applied when it is necessary to obtain a stable and high cleaning performance for an object to be cleaned W that does not have a fine wiring pattern. In this case, it is desirable to scan at least one of the vibration transmitting material 130 and the object W to be cleaned along the surface direction of the vibration surface 131, that is, the x direction in FIG. By scanning, there is an effect that the maximum point of the sound pressure distribution curve P2 shown in FIG.

以下の第3乃至第9の実施の形態においては、第1の実施の形態に示した微小突起132、第2の実施の形態に示した微小ディンプル133の種々の変形例について説明する。第3乃至第9の実施の形態においても、第1乃至第2の実施の形態と同様の効果を得ることができる。   In the following third to ninth embodiments, various modifications of the minute protrusion 132 shown in the first embodiment and the minute dimple 133 shown in the second embodiment will be described. Also in the third to ninth embodiments, the same effect as in the first to second embodiments can be obtained.

<第3の実施の形態>
図12は、本発明の第3の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。第1の実施の形態と同様に、振動面131には、被洗浄物Wに向かって突出した微小突起132が等ピッチで形成されている。第1の実施の形態との違いは、微小突起132が曲面状ではなく鋭利な頂点を有することである。この微小突起132は、被洗浄物Wに向かって突出した角錐状もしくは円錐状の突起である。
<Third Embodiment>
FIG. 12 is an enlarged cross-sectional view showing a main part of an ultrasonic cleaning apparatus according to the third embodiment of the present invention. Similar to the first embodiment, on the vibration surface 131, minute protrusions 132 that protrude toward the article to be cleaned W are formed at an equal pitch. The difference from the first embodiment is that the fine protrusion 132 has a sharp apex instead of a curved surface. The minute protrusions 132 are pyramid-shaped or conical protrusions that protrude toward the object to be cleaned W.

また他方で、この振動面131には、振動素子120に向かって陥没した微小ディンプル133を有し、このディンプルの最深点が平坦面134を有する形状となっている。   On the other hand, the vibration surface 131 has a minute dimple 133 that is depressed toward the vibration element 120, and the deepest point of the dimple has a flat surface 134.

<第4の実施の形態>
図13は、本発明の第4の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。第2の実施の形態と同様に、振動面131には、振動素子120に向かって陥没した微小ディンプル133が等ピッチで形成されている。第2の実施の形態との違いは、微小ディンプル133が曲面状ではなく鋭利な最深点を有することである。この微小ディンプル133は、振動素子120に向かって陥没した角錐状もしくは円錐状のディンプルである。
<Fourth embodiment>
FIG. 13: is an expanded sectional view which shows the principal part of the ultrasonic cleaning apparatus concerning the 4th Embodiment of this invention. Similar to the second embodiment, minute dimples 133 that are depressed toward the vibration element 120 are formed on the vibration surface 131 at an equal pitch. The difference from the second embodiment is that the minute dimples 133 are not curved but have a sharpest deepest point. The minute dimples 133 are pyramid-shaped or conical dimples that are depressed toward the vibration element 120.

また他方で、この振動面131には、被洗浄物Wに向かって突出した微小突起132を有し、この突起の頂点が平坦面134を有する形状となっている。   On the other hand, the vibration surface 131 has a minute protrusion 132 protruding toward the object W to be cleaned, and the apex of the protrusion has a flat surface 134.

<第5の実施の形態>
図14は、本発明の第5の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。第1の実施の形態と同様に、振動面131には、被洗浄物Wに向かって突出した曲面状の微小突起132が等ピッチで形成されている。第1の実施の形態との違いは、微小突起132間のスペース(凹部)が小さく、鋭利な最深点も同時に有することである。
<Fifth embodiment>
FIG. 14 is an enlarged cross-sectional view showing a main part of an ultrasonic cleaning apparatus according to the fifth embodiment of the present invention. Similar to the first embodiment, curved fine protrusions 132 protruding toward the article W to be cleaned are formed on the vibration surface 131 at an equal pitch. The difference from the first embodiment is that the space (concave portion) between the minute projections 132 is small and has a sharpest deepest point at the same time.

<第6の実施の形態>
図15は、本発明の第6の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。第2の実施の形態と同様に、振動面131には、振動素子120に向かって陥没した微小ディンプル133が等ピッチで形成されている。第2の実施の形態との違いは、微小ディンプル133間のスペース(凸部)が小さく、鋭利な頂点も同時に有することである。
<Sixth Embodiment>
FIG. 15 is an enlarged cross-sectional view showing a main part of an ultrasonic cleaning apparatus according to the sixth embodiment of the present invention. Similar to the second embodiment, minute dimples 133 that are depressed toward the vibration element 120 are formed on the vibration surface 131 at an equal pitch. The difference from the second embodiment is that the space (convex portion) between the minute dimples 133 is small and has a sharp apex at the same time.

<第7の実施の形態>
図16は、本発明の第7の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。第3の実施の形態と同様に、振動面131には、鋭利な頂点を有する微小突起132が等ピッチで形成されている。第3の実施の形態との違いは、微小突起132間のスペース(凹部)が小さく、鋭利な最深点も同時に有することである。
<Seventh embodiment>
FIG. 16: is an expanded sectional view which shows the principal part of the ultrasonic cleaning apparatus concerning the 7th Embodiment of this invention. Similar to the third embodiment, fine protrusions 132 having sharp vertices are formed on the vibration surface 131 at an equal pitch. The difference from the third embodiment is that the space (concave portion) between the microprojections 132 is small and has a sharpest deepest point at the same time.

<第8の実施の形態>
図17は、本発明の第8の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。第1の実施の形態と同様の微小突起132と、第2の実施の形態と同様の微小ディンプル133とを同時に有する。
<Eighth Embodiment>
FIG. 17 is an enlarged cross-sectional view showing a main part of the ultrasonic cleaning apparatus according to the eighth embodiment of the present invention. A microprojection 132 similar to that of the first embodiment and a micro dimple 133 similar to that of the second embodiment are simultaneously provided.

<第9の実施の形態>
図18は、本発明の第9の実施の形態に係る超音波洗浄装置の要部を示す拡大断面図である。第1の実施の形態と同様に、振動面131には、被洗浄物Wに向かって突出した微小突起132が等ピッチで形成されている。第1の実施の形態との違いは、微小突起132及びそのスペース(凹部)ともに、平坦面を有することである。
<Ninth embodiment>
FIG. 18 is an enlarged cross-sectional view showing a main part of an ultrasonic cleaning apparatus according to the ninth embodiment of the present invention. Similar to the first embodiment, on the vibration surface 131, minute protrusions 132 that protrude toward the article to be cleaned W are formed at an equal pitch. The difference from the first embodiment is that both the fine protrusion 132 and its space (concave portion) have a flat surface.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

本発明の洗浄装置は、例えば半導体集積装置用基板、表示装置用ガラス基板、フォトマスク装置用基板、光ディスク用基板、磁気ディスク用基板、フィルム基板等に対して、超音波振動を照射した液体を用いて洗浄処理を行う超音波洗浄装置に適用して有効である。   The cleaning apparatus of the present invention, for example, applies a liquid irradiated with ultrasonic vibrations to a substrate for a semiconductor integrated device, a glass substrate for a display device, a substrate for a photomask device, a substrate for an optical disk, a substrate for a magnetic disk, a film substrate, etc. It is effective when applied to an ultrasonic cleaning apparatus that performs a cleaning process.

10…超音波発振器、20…振動素子、21…振動素子ケース、22…ケーブル、30…振動伝達材、31…振動面、32…焦点位置、40…洗浄液供給配管、41…洗浄液、110…超音波発振器、120…振動素子、121…振動素子ケース、122…ケーブル、130…振動伝達材、131…振動面、132…微小突起、133…微小ディンプル、134…平坦面、140…洗浄液供給配管、141…洗浄液、W…被洗浄物、
P0…比較例による音圧の分布曲線、P1…第1の実施の形態による音圧の分布曲線、P2…第2の実施の形態による音圧の分布曲線。
DESCRIPTION OF SYMBOLS 10 ... Ultrasonic oscillator, 20 ... Vibration element, 21 ... Vibration element case, 22 ... Cable, 30 ... Vibration transmission material, 31 ... Vibrating surface, 32 ... Focus position, 40 ... Cleaning liquid supply piping, 41 ... Cleaning liquid, 110 ... Super Sound wave oscillator, 120 ... vibration element, 121 ... vibration element case, 122 ... cable, 130 ... vibration transmitting material, 131 ... vibration surface, 132 ... minute projection, 133 ... minute dimple, 134 ... flat surface, 140 ... cleaning liquid supply pipe, 141 ... cleaning liquid, W ... object to be cleaned,
P0: Sound pressure distribution curve according to the comparative example, P1: Sound pressure distribution curve according to the first embodiment, P2: Sound pressure distribution curve according to the second embodiment.

Claims (2)

振動素子と、
前記振動素子に高周波電力を付与して振動させる超音波発振器と、
一端に前記振動素子を配置し、他端に被洗浄物に対向する振動面を配置した振動伝達材と、
前記被洗浄物の表面に洗浄液を供給する洗浄液供給手段と、を備える超音波洗浄装置であって、
前記振動面は、前記被洗浄物に向かって少なくとも2個以上の凹凸部を備え、
前記被洗浄物の表面に供給された洗浄液に前記凹凸部を有する振動面を接触させて超音波を発生させることを特徴とする超音波洗浄装置。
A vibrating element;
An ultrasonic oscillator for applying high-frequency power to the vibrating element to vibrate;
A vibration transmitting material in which the vibration element is disposed at one end and a vibration surface facing the object to be cleaned is disposed at the other end;
A cleaning liquid supply means for supplying a cleaning liquid to the surface of the object to be cleaned, and an ultrasonic cleaning apparatus comprising:
The vibration surface includes at least two uneven portions toward the object to be cleaned,
An ultrasonic cleaning apparatus, wherein an ultrasonic wave is generated by bringing a vibration surface having the uneven portion into contact with a cleaning liquid supplied to a surface of the object to be cleaned.
超音波振動素子と、該超音波振動素子に所定の周波数を供給して振動させる超音波発振器と、前記超音波振動素子の振動を伝達する振動伝達材と、被洗浄物に洗浄液を供給する洗浄液供給手段を有する超音波洗浄装置において、
前記洗浄液に振動を照射する前記振動伝達材の振動面は、複数の突起で構成していることを特徴とする超音波洗浄装置。

An ultrasonic vibration element, an ultrasonic oscillator that supplies a predetermined frequency to the ultrasonic vibration element, vibrates, a vibration transmission material that transmits vibration of the ultrasonic vibration element, and a cleaning liquid that supplies a cleaning liquid to an object to be cleaned In an ultrasonic cleaning apparatus having a supply means,
The ultrasonic cleaning apparatus according to claim 1, wherein a vibration surface of the vibration transmitting material that irradiates vibration to the cleaning liquid is configured by a plurality of protrusions.

JP2009275151A 2009-12-03 2009-12-03 Ultrasonic cleaning equipment Active JP5453582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009275151A JP5453582B2 (en) 2009-12-03 2009-12-03 Ultrasonic cleaning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009275151A JP5453582B2 (en) 2009-12-03 2009-12-03 Ultrasonic cleaning equipment

Publications (2)

Publication Number Publication Date
JP2011115717A true JP2011115717A (en) 2011-06-16
JP5453582B2 JP5453582B2 (en) 2014-03-26

Family

ID=44281697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009275151A Active JP5453582B2 (en) 2009-12-03 2009-12-03 Ultrasonic cleaning equipment

Country Status (1)

Country Link
JP (1) JP5453582B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024503A (en) * 2013-07-24 2015-02-05 凸版印刷株式会社 Printer, printing method and printed matter
KR101551271B1 (en) 2013-10-16 2015-09-09 한국기계연구원 An ultrasonic cleaning apparatus and ultrasonic cleaning system using the same
JP2016214520A (en) * 2015-05-19 2016-12-22 秀俊 西尾 Oral cavity cleaning equipment and oral cavity cleaning method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327656A (en) * 1996-06-10 1997-12-22 Satako Eng:Kk Device for generating convergent ultrasonic
JP2004356592A (en) * 2003-05-30 2004-12-16 Honda Electronic Co Ltd Ultrasonic substrate cleaning equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327656A (en) * 1996-06-10 1997-12-22 Satako Eng:Kk Device for generating convergent ultrasonic
JP2004356592A (en) * 2003-05-30 2004-12-16 Honda Electronic Co Ltd Ultrasonic substrate cleaning equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024503A (en) * 2013-07-24 2015-02-05 凸版印刷株式会社 Printer, printing method and printed matter
KR101551271B1 (en) 2013-10-16 2015-09-09 한국기계연구원 An ultrasonic cleaning apparatus and ultrasonic cleaning system using the same
JP2016214520A (en) * 2015-05-19 2016-12-22 秀俊 西尾 Oral cavity cleaning equipment and oral cavity cleaning method

Also Published As

Publication number Publication date
JP5453582B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP4934739B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
KR101226071B1 (en) Apparatus for generating acoustic energy and method of constructing the same
JP6673527B2 (en) Ultrasonic cleaning device and ultrasonic cleaning method
JP2009055024A (en) Substrate cleaning apparatus and substrate cleaning method
JP5453582B2 (en) Ultrasonic cleaning equipment
JP2007044662A (en) Ultrasonic cleaner
JP4800146B2 (en) Ultrasonic cleaning equipment
JP4324653B2 (en) Ultrasonic cleaning equipment
JP4533406B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP5592734B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP2012217876A (en) Noncontact cleaning method using ultrasonic wave
JP2008238004A (en) Ultrasonic irradiation apparatus
JP2001358108A (en) Substrate-processing apparatus
US20060272685A1 (en) Ultrasonic washing apparatus
Suzuki et al. Novel ultrasonic cleaning equipment using waveguide mode
KR101033815B1 (en) Ultra-sonic vibrator and cleansing device using ultra-sonic and cleansing method thereof
JP2009208005A (en) Ultrasonic washing apparatus
JP2008227300A (en) Ultrasonic cleaner
JP3133847U (en) Ultrasonic cleaning equipment
JP2789178B2 (en) Ultrasonic cleaning equipment
US20130118536A1 (en) Ultrasonic precision cleaning apparatus
JP2009136726A (en) Ultrasonic cleaning device
KR20130142662A (en) Apparatus of megasonic cleaner
JP3783174B2 (en) Flowing water type ultrasonic cleaning equipment
JPH09122611A (en) Ultrasonic cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5453582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250