JP2011114860A - Oscillation circuit system - Google Patents

Oscillation circuit system Download PDF

Info

Publication number
JP2011114860A
JP2011114860A JP2010043462A JP2010043462A JP2011114860A JP 2011114860 A JP2011114860 A JP 2011114860A JP 2010043462 A JP2010043462 A JP 2010043462A JP 2010043462 A JP2010043462 A JP 2010043462A JP 2011114860 A JP2011114860 A JP 2011114860A
Authority
JP
Japan
Prior art keywords
temperature
frequency
information
oscillation
piezoelectric vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010043462A
Other languages
Japanese (ja)
Inventor
Kensaku Isohata
健作 磯畑
Masayuki Ishikawa
匡亨 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010043462A priority Critical patent/JP2011114860A/en
Publication of JP2011114860A publication Critical patent/JP2011114860A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillation circuit system capable of reducing the influence of a hysteresis characteristic of an oscillation frequency of a piezoelectric vibrator and oscillating the vibrator at a stable oscillation frequency. <P>SOLUTION: The oscillation circuit system includes: a piezoelectric oscillator 10 provided with the piezoelectric vibrator 12 having a frequency temperature characteristic with the hysteresis characteristic, an oscillation circuit 14 for oscillating the piezoelectric vibrator 12 and outputting an oscillation signal 58, a temperature sensor 16 for outputting a detection voltage 66 corresponding to the ambient temperature of the piezoelectric vibrator 12, and a storage circuit 20 for outputting frequency temperature information 76 indicating the temperature characteristic of the oscillation frequency of the piezoelectric vibrator 12; and a temperature compensation circuit 40 provided with a CPU 44 for calculating a temperature compensation quantity 80 using the frequency temperature information 76 and the detection voltage 66, and a frequency correction circuit 42 for executing the temperature compensation of the oscillation signal 58 on the basis of the temperature compensation quantity 80. The frequency temperature information 76 indicates the frequency temperature characteristic in an area surrounded by two frequency temperature characteristics (an elevated-temperature frequency temperature characteristic 77a and a lowered-temperature frequency temperature characteristic 77b) of the oscillation signal appearing under the influence of the hysteresis characteristic. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、GPS(Grobal Positioning System)衛星からの測位信号に基づいて位置計測を行う圧電発振器の温度補償に係り、特に温度補償機能を外部に委ねる圧電発振器であるTSXO(Temperature Sensor Xtal Oscillator)に搭載され、外部の温度補償回路に供される圧電発振器の温度補償に関する。   The present invention relates to temperature compensation of a piezoelectric oscillator that performs position measurement based on a positioning signal from a GPS (Global Positioning System) satellite. The present invention relates to temperature compensation of a piezoelectric oscillator that is mounted and used for an external temperature compensation circuit.

GPS機能を備えた携帯電話機等の受信装置、及びGPS受信機能を備えた携帯電話器等は、複数のGPS衛星から送信される測位信号を復調・解析して現在位置を測定するものである。これらの受信装置に使用される基準発振器としては、温度による周波数変化の小さい温度補償型圧電発振器TCXO(Temperature Compensated Xtal Oscilalator)が、広く使用されている。その理由は、受信装置に内蔵された発振器の周波数精度が高いほど、GPS衛星から送信される測位信号を捕捉するためのサーチ範囲を狭めることができ、結果的にサーチ時間を短縮して、すなわちGPS衛星の測位信号を捕捉する時間を短縮して、短時間で測位を行うことができる。   A receiving device such as a mobile phone equipped with a GPS function, a mobile phone equipped with a GPS receiving function, and the like measure a current position by demodulating and analyzing positioning signals transmitted from a plurality of GPS satellites. As a reference oscillator used in these receiving apparatuses, a temperature compensated piezoelectric oscillator TCXO (Temperature Compensated Xtal Oscillator) having a small frequency change due to temperature is widely used. The reason is that the higher the frequency accuracy of the oscillator built in the receiving device, the narrower the search range for capturing the positioning signal transmitted from the GPS satellite, resulting in shortening the search time, that is, Positioning can be performed in a short time by shortening the time for capturing the positioning signal of the GPS satellite.

一方、上述の受信装置等は装置の電源投入時等の立ち上げ時において、装置全体で温度が短時間に上昇したり、携帯電話等においては屋外から屋内、屋内から屋外に移動したときに温度が急激に変動するため、発振器内での温度が安定するまで温度補償が不安定になる問題があった。この問題を解決するため、ユーザー側で温度変化に対して高速で応答できる温度補償回路を独自に構築し、発振器側から発振器に搭載された圧電振動子の温度情報を取得して、これにより温度補償を適切に行なう要請がなされている。よって、これに対応するため、発振回路側として温度補償回路を不要とするTSXOが適用され、TSXOは、搭載された圧電振動子の温度をユーザー側に出力する温度センサーと、搭載された圧電振動子の周波数温度情報(温度係数)を記憶し、ユーザー側に周波数温度情報を出力する記憶回路を搭載している(特許文献1参照)。   On the other hand, the temperature of the above-mentioned receiving device etc. rises in a short time when the device is turned on, or when the mobile phone etc. moves from outdoor to indoor, or from indoor to outdoor. Has a problem that the temperature compensation becomes unstable until the temperature in the oscillator is stabilized. In order to solve this problem, a temperature compensation circuit that can respond to temperature changes at high speed on the user side is uniquely constructed, and temperature information of the piezoelectric vibrator mounted on the oscillator is obtained from the oscillator side. There has been a demand for appropriate compensation. Therefore, in order to cope with this, TSXO that does not require a temperature compensation circuit is applied on the oscillation circuit side. The TSXO includes a temperature sensor that outputs the temperature of the mounted piezoelectric vibrator to the user side, and a mounted piezoelectric vibration. A memory circuit that stores the frequency temperature information (temperature coefficient) of the child and outputs the frequency temperature information to the user side is mounted (see Patent Document 1).

厚みすべり振動を利用した水晶振動子を使用する場合、発振器から出力される発振信号は、正の3次曲線を描く温度依存性を有するが、上述のTSXOを搭載しユーザー側でTSXOに接続した温度補償回路を有するGPSシステム等においては、温度センサーから得た温度情報と、記憶回路から得た周波数温度情報をもとに、どの温度においても周波数が一定となるように温度補償回路において温度補償量を算出して周波数補正を掛けている。   When using a crystal resonator using thickness shear vibration, the oscillation signal output from the oscillator has a temperature dependency that draws a positive cubic curve. However, the above-described TSXO is mounted and connected to the TSXO on the user side. In a GPS system or the like having a temperature compensation circuit, temperature compensation is performed in the temperature compensation circuit so that the frequency is constant at any temperature based on the temperature information obtained from the temperature sensor and the frequency temperature information obtained from the storage circuit. The amount is calculated and frequency correction is applied.

ここで、記憶回路に記憶している周波数温度情報は製造検査工程時に取得したものであるため、製造時のスループットの観点から、温度上昇時、または温度下降時のいずれか一方の温度変化した際の周波数温度情報を取得し、記憶回路に記憶するのが一般的である。   Here, since the frequency temperature information stored in the memory circuit is acquired at the time of the manufacturing inspection process, from the viewpoint of the throughput at the time of manufacturing, when one of the temperature changes at the time of temperature rise or temperature fall In general, the frequency temperature information is acquired and stored in a storage circuit.

特開2003−324318号公報JP 2003-324318 A

ところで、水晶振動子の周波数温度特性は、ヒステリシス特性を有している。ヒステリシス特性を有するとは、温度上昇時と下降時において水晶振動子の温度依存性が異なることを意味する。この原因は、温度変化に対する水晶振動子の歪み応力の変化が実際の温度変化に追従できないことや、発振器中の支持構造・接着剤・溶着合金・電極等の熱歪変化等によるもので、水晶振動子を小型化するほど顕著に現れる。   By the way, the frequency-temperature characteristic of the crystal resonator has a hysteresis characteristic. Having a hysteresis characteristic means that the temperature dependence of the crystal resonator is different when the temperature rises and when it falls. This is due to the fact that the change in strain stress of the crystal resonator with respect to the temperature change cannot follow the actual temperature change, and the thermal strain change of the support structure, adhesive, welding alloy, electrode, etc. in the oscillator. It becomes more prominent as the size of the vibrator becomes smaller.

ところで、上述のGPS機能を搭載した携帯電話端末などの高精度の電子機器の分野においては、周波数偏差(Δf/f)の許容範囲が非常に狭く、例えば、−30℃〜85℃の温度範囲では周波数偏差(Δf/f)は±0.5ppm以内であることが要求される。 By the way, in the field of high-precision electronic devices such as mobile phone terminals equipped with the GPS function described above, the allowable range of frequency deviation (Δf / f 0 ) is very narrow, for example, a temperature of −30 ° C. to 85 ° C. In the range, the frequency deviation (Δf / f 0 ) is required to be within ± 0.5 ppm.

そのため、従来のように、温度上昇時、または温度下降時のどちらか一方に温度変化した際の周波数温度情報を取得して、記憶回路に記憶する方法では、一方向の周波数温度情報しか保存されていないため、周波数温度情報を取得する際と逆方向に温度が変化した場合、システムとして周波数補正をかけてもヒステリシス特性に起因する発振周波数の差分についてはそのまま補正誤差として残ることになる。したがって、これが原因となって、測位にかかる時間が長くなり、結果的に測位誤差が生じたり、GPS衛星との同調が不調となる虞がある、といった問題があった。   Therefore, the conventional method of acquiring frequency temperature information at the time of temperature change at the time of temperature rise or at the time of temperature fall and storing it in the storage circuit stores only frequency temperature information in one direction. Therefore, if the temperature changes in the opposite direction to when acquiring the frequency temperature information, the difference in oscillation frequency resulting from the hysteresis characteristic remains as a correction error even if frequency correction is performed as a system. Therefore, due to this, there has been a problem that it takes a long time for positioning, resulting in a positioning error or a malfunction in synchronization with the GPS satellite.

そこで本発明は、上記問題点に着目し、圧電振動子の発振周波数のヒステリシス特性の影響を小さくして、安定した発振周波数で発振可能な発振回路システムを提供することを目的とする。   Accordingly, the present invention focuses on the above-described problems, and an object thereof is to provide an oscillation circuit system capable of oscillating at a stable oscillation frequency by reducing the influence of hysteresis characteristics of the oscillation frequency of a piezoelectric vibrator.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態及び適用例として実現することが可能である。
第1の形態に係る発振回路システムは、周波数温度特性にヒステリシス特性を有する圧電振動子と、前記圧電振動子を発振させて発振信号を出力する発振回路と、前記圧電振動子の周囲温度に対応した検出電圧を出力する温度検出手段と、前記圧電振動子の発振周波数の温度特性を示す周波数温度情報を出力する記憶回路と、を有する圧電発振器と、前記周波数温度情報と前記検出電圧とを用いて温度補償量を算出するCPUと、前記温度補償量に基づいて前記発振周波数の温度補償を行う周波数補正回路と、を有する温度補償回路と、を備えた発振回路システムであって、前記周波数温度情報は、前記ヒステリシス特性の影響を受けて表れた前記発振信号の2つの周波数温度特性に囲まれた領域にある周波数温度特性を示すものであることを特徴とする発振回路システム。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms and application examples.
An oscillation circuit system according to a first embodiment corresponds to a piezoelectric vibrator having a hysteresis characteristic in frequency temperature characteristics, an oscillation circuit that oscillates the piezoelectric vibrator and outputs an oscillation signal, and an ambient temperature of the piezoelectric vibrator A piezoelectric oscillator having a temperature detection means for outputting the detected voltage and a storage circuit for outputting frequency temperature information indicating a temperature characteristic of the oscillation frequency of the piezoelectric vibrator, and using the frequency temperature information and the detection voltage. An oscillation circuit system comprising: a CPU that calculates a temperature compensation amount; and a temperature compensation circuit that includes a frequency correction circuit that performs temperature compensation of the oscillation frequency based on the temperature compensation amount, wherein the frequency temperature The information indicates the frequency temperature characteristic in the region surrounded by the two frequency temperature characteristics of the oscillation signal that appears under the influence of the hysteresis characteristic. Oscillation circuit system comprising.

2つの周波数温度特性とは、圧電振動子の温度上昇時の周波数温度特性と、温度下降時の周波数温度特性とを言う。上記構成において、温度補償回路においては、圧電振動子の2つの周波数温度特性に囲まれた領域にある周波数温度情報と、圧電振動子の発振時の圧電振動子の温度情報とを用いて基準周波数からの周波数偏差を算出し、これにより温度補償量を算出することになる。よって、周囲温度が上昇している場合でも、下降している場合でも圧電振動子のヒステリシス特性に起因する補正誤差を一定の範囲に抑制することが可能な発振回路システムとなる。さらに記憶回路には昇温周波数温度情報、降温周波数温度情報、またはこれらから抽出した温度情報を格納する必要はないので記憶回路の容量負担の増大を回避することができる。   The two frequency temperature characteristics are a frequency temperature characteristic when the temperature of the piezoelectric vibrator is increased and a frequency temperature characteristic when the temperature is decreased. In the above configuration, the temperature compensation circuit uses the frequency temperature information in the region surrounded by the two frequency temperature characteristics of the piezoelectric vibrator and the temperature information of the piezoelectric vibrator at the time of oscillation of the piezoelectric vibrator, as a reference frequency. Thus, the temperature compensation amount is calculated. Therefore, the oscillation circuit system can suppress the correction error caused by the hysteresis characteristic of the piezoelectric vibrator to a certain range regardless of whether the ambient temperature is rising or falling. Furthermore, since it is not necessary to store the temperature rise frequency temperature information, the temperature fall frequency temperature information, or the temperature information extracted from these in the memory circuit, an increase in the capacity burden on the memory circuit can be avoided.

[適用例1]周波数温度特性にヒステリシス特性を有する圧電振動子と、前記圧電振動子を発振させて発振信号を出力する発振回路と、を備え、前記圧電振動子の発振周波数の温度特性を示す周波数温度情報と、前記発振信号の発振時の前記圧電振動子の温度情報と、を用いて温度補償量を算出可能な温度補償回路に、前記発振信号と前記周波数温度情報を出力する圧電発振器の温度補償方法であって、前記圧電振動子の周囲温度を上昇させた場合に生成される前記圧電振動子の昇温周波数温度情報と、前記周囲温度を下降させた場合に生成される前記圧電振動子の降温周波数温度情報と、の中間値を前記周波数温度情報として算出することを特徴とする圧電発振器の温度補償方法。   [Application Example 1] A piezoelectric vibrator having a hysteresis characteristic in frequency temperature characteristics, and an oscillation circuit that oscillates the piezoelectric vibrator and outputs an oscillation signal, and shows temperature characteristics of the oscillation frequency of the piezoelectric vibrator. A piezoelectric oscillator that outputs the oscillation signal and the frequency temperature information to a temperature compensation circuit capable of calculating a temperature compensation amount using frequency temperature information and temperature information of the piezoelectric vibrator at the time of oscillation of the oscillation signal. A temperature compensation method, wherein the temperature rise frequency temperature information of the piezoelectric vibrator generated when the ambient temperature of the piezoelectric vibrator is increased, and the piezoelectric vibration generated when the ambient temperature is lowered A temperature compensation method for a piezoelectric oscillator, wherein an intermediate value between the temperature drop frequency temperature information of the child is calculated as the frequency temperature information.

上記方法により、温度補償回路においては、圧電振動子の周囲温度を上昇させた場合に生成される昇温周波数温度情報と、周囲温度を下降させた場合の降温周波数温度情報との中間値となる周波数温度情報が入力され、周波数温度情報と圧電振動子の発振時の圧電振動子の温度情報とを用いて基準周波数からの周波数偏差を算出し、これにより温度補償量を算出することになる。よって、周囲温度が上昇している場合でも、下降している場合でも圧電振動子のヒステリシス特性に起因する補正誤差を一定の範囲に抑制することができる。   By the above method, in the temperature compensation circuit, an intermediate value between the temperature increase frequency temperature information generated when the ambient temperature of the piezoelectric vibrator is increased and the temperature decrease frequency temperature information when the ambient temperature is decreased is obtained. Frequency temperature information is input, and a frequency deviation from the reference frequency is calculated using the frequency temperature information and the temperature information of the piezoelectric vibrator at the time of oscillation of the piezoelectric vibrator, thereby calculating a temperature compensation amount. Therefore, the correction error caused by the hysteresis characteristic of the piezoelectric vibrator can be suppressed to a certain range regardless of whether the ambient temperature is rising or falling.

[適用例2]前記周波数温度情報を、前記昇温周波数温度情報から算出され、前記発振周波数の連続的な温度特性を示す第1の近似曲線情報と、前記降温周波数温度情報から算出され、前記発振周波数の連続的な温度特性を示す第2の近似曲線情報と、の中間値として算出された第3の近似曲線情報から抽出することを特徴とする適用例1に記載の圧電発振器の温度補償方法。   Application Example 2 The frequency temperature information is calculated from the temperature rising frequency temperature information, calculated from first approximate curve information indicating a continuous temperature characteristic of the oscillation frequency, and the temperature decreasing frequency temperature information, The temperature compensation of the piezoelectric oscillator according to Application Example 1, wherein the temperature information is extracted from second approximate curve information indicating a continuous temperature characteristic of the oscillation frequency and third approximate curve information calculated as an intermediate value. Method.

上記方法により、周波数温度情報は温度変化に対して連続的に変化する中間近似曲線情報から抽出する。一方、温度補償回路では周波数温度情報を元に温度変化に対して連続的に変化する発振周波数の近似曲線を形成している。したがって温度補償回路で算出される近似曲線は第3の近似曲線となるので、温度補償を高精度に行うことができる。また、昇温周波数温度情報と降温周波数情報は同一の温度位置で測定する必要はないので、周波数温度情報の生成の歩留を高め、コストを抑制することができる。   By the above method, the frequency temperature information is extracted from the intermediate approximate curve information that continuously changes with respect to the temperature change. On the other hand, the temperature compensation circuit forms an approximate curve of the oscillation frequency that continuously changes with respect to the temperature change based on the frequency temperature information. Accordingly, since the approximate curve calculated by the temperature compensation circuit is the third approximate curve, temperature compensation can be performed with high accuracy. Further, since it is not necessary to measure the temperature rising frequency temperature information and the temperature falling frequency information at the same temperature position, it is possible to increase the yield of generating the frequency temperature information and to suppress the cost.

[適用例3]前記周波数温度情報を、温度情報と、前記温度情報に対応した発振周波数の情報、若しくは前記温度情報に対応した基準周波数からの周波数偏差の情報により生成することを特徴とする適用例1または2に記載の圧電発振器の温度補償方法。   Application Example 3 The frequency temperature information is generated from temperature information and oscillation frequency information corresponding to the temperature information or frequency deviation information from a reference frequency corresponding to the temperature information. A temperature compensation method for a piezoelectric oscillator according to Example 1 or 2.

これにより、圧電発振器側で温度係数を生成する演算が不要となるため圧電発振器形成時の作業負担を抑制してコストを抑制することができる。この場合、ユーザー側で温度情報のプロットに重なるべき級数の温度係数を演算して温度補償量を算出することになるが、ユーザー側で独自に正確な温度係数を演算することができる。   This eliminates the need to generate a temperature coefficient on the piezoelectric oscillator side, thereby reducing the work burden when forming the piezoelectric oscillator and reducing the cost. In this case, the temperature compensation amount is calculated by calculating the temperature coefficient of the series that should overlap the temperature information plot on the user side, but the user can calculate the exact temperature coefficient independently.

[適用例4]前記周波数温度情報を、前記第3の近似曲線情報から抽出される温度係数の情報により生成することを特徴とする適用例2に記載の圧電発振器の温度補償方法。   [Application Example 4] The temperature compensation method for a piezoelectric oscillator according to Application Example 2, wherein the frequency temperature information is generated based on temperature coefficient information extracted from the third approximate curve information.

これにより、温度補償回路においては温度係数を算出するための演算が不要となるため、ユーザー側の負担を軽減して圧電発振器を搭載したシステムの構築を容易に行うことができる。   This eliminates the need for calculation for calculating the temperature coefficient in the temperature compensation circuit, thereby reducing the burden on the user side and easily constructing a system equipped with a piezoelectric oscillator.

[適用例5]前記昇温周波数温度情報を、前記降温周波数温度情報と前記周囲温度を基準温度領域に上昇させて測定した温度と周波数の情報と、を用いて近似的に算出することを特徴とする適用例1乃至4のいずれか1例に記載の圧電発振器の温度補償方法。   Application Example 5 The temperature increase frequency temperature information is approximately calculated using the temperature decrease frequency temperature information and temperature and frequency information measured by raising the ambient temperature to a reference temperature region. The temperature compensation method for a piezoelectric oscillator according to any one of Application Examples 1 to 4.

昇温周波数温度情報と降温周波数温度情報との周波数成分の差分をとると基準温度領域において差分が最も大きくなり、基準温度から離れるほど小さくなる。よって昇温周波数温度情報は、降温周波数温度情報と、圧電振動子の周囲温度を基準温度領域に上昇させて測定した温度と周波数の情報と、を用いて近似的に算出することができる。したがって、温度上昇時の温度と周波数との情報は基準温度領域のみ取得すればよく、基準温度より高い高温領域まで温度を上昇させる工程が不要になる。したがって昇温周波数温度情報の取得時間を短縮することができるため、作業負担を削減してコストを抑制することができる。   When the difference between the frequency components of the temperature increase frequency temperature information and the temperature decrease frequency temperature information is taken, the difference becomes the largest in the reference temperature region, and decreases as the distance from the reference temperature increases. Therefore, the temperature increase frequency temperature information can be approximately calculated using the temperature decrease frequency temperature information and the temperature and frequency information measured by raising the ambient temperature of the piezoelectric vibrator to the reference temperature region. Therefore, information on the temperature and frequency at the time of temperature rise need only be acquired in the reference temperature region, and a step of raising the temperature to a high temperature region higher than the reference temperature becomes unnecessary. Therefore, since the acquisition time of temperature rising frequency temperature information can be shortened, the work burden can be reduced and the cost can be suppressed.

[適用例6]前記降温周波数温度情報を、前記昇温周波数温度情報と前記周囲温度を基準温度領域に下降させて測定した温度と周波数の情報と、を用いて近似的に算出することを特徴とする適用例1乃至4のいずれか1例に記載の圧電発振器の温度補償方法。   Application Example 6 The temperature drop frequency temperature information is approximately calculated using the temperature rise frequency temperature information and temperature and frequency information measured by lowering the ambient temperature to a reference temperature region. The temperature compensation method for a piezoelectric oscillator according to any one of Application Examples 1 to 4.

適用例5と同様の理由により、降温周波数温度情報は昇温周波数温度情報と圧電振動子の周囲温度を基準温度領域に下降させて測定した温度と周波数の情報とを用いて近似的に算出することができる。さらに温度下降時は基準温度領域を測定すればよく、基準温度より低い低温領域を測定する必要はない。したがって降温周波数温度情報の取得時間を短縮することができるため、作業負担を削減してコストを抑制することができる。   For the same reason as in application example 5, the temperature decrease frequency temperature information is approximately calculated using the temperature increase frequency temperature information and the temperature and frequency information measured by lowering the ambient temperature of the piezoelectric vibrator to the reference temperature region. be able to. Further, it is only necessary to measure the reference temperature region when the temperature falls, and it is not necessary to measure a low temperature region lower than the reference temperature. Therefore, since the acquisition time of temperature fall frequency temperature information can be shortened, a work burden can be reduced and cost can be suppressed.

[適用例7]前記周囲温度に対応した検出電圧を出力する温度検出手段を前記圧電振動子に隣接して配設し、前記昇温周波数温度情報及び前記降温周波数温度情報を、前記検出電圧の関数として生成し、前記周波数温度情報を、前記昇温周波数温度情報及び前記降温周波数温度情報に基づいて算出し、前記周波数温度情報と前記検出電圧とに基づいて温度補償量を算出可能な温度補償回路に前記発振信号を出力し、前記温度検出手段から前記温度補償回路に前記検出電圧を出力することを特徴とする適用例1乃至6のいずれか1例に記載の圧電発振器の温度補償方法。   Application Example 7 A temperature detection unit that outputs a detection voltage corresponding to the ambient temperature is disposed adjacent to the piezoelectric vibrator, and the temperature increase frequency temperature information and the temperature decrease frequency temperature information are stored in the detection voltage. Temperature compensation that is generated as a function, and the frequency temperature information is calculated based on the temperature rising frequency temperature information and the temperature falling frequency temperature information, and a temperature compensation amount can be calculated based on the frequency temperature information and the detected voltage The temperature compensation method for a piezoelectric oscillator according to any one of Application Examples 1 to 6, wherein the oscillation signal is output to a circuit, and the detection voltage is output from the temperature detection unit to the temperature compensation circuit.

上記方法により、温度検出手段は圧電振動子の周囲温度を測定誤差を抑制して測定することができるので、昇温周波数温度情報及び降温周波数温度情報を高精度に生成して、周波数温度情報を高精度に算出することができる。さらに圧電振動子の温度情報をリアルタイムでかつ高精度に測定できるので、温度補償回路における補正誤差を抑制して、温度補償を高精度に行なうことができる。   By the above method, the temperature detecting means can measure the ambient temperature of the piezoelectric vibrator while suppressing measurement error, so that the temperature temperature information and the temperature decreasing frequency temperature information are generated with high accuracy, and the frequency temperature information is obtained. It can be calculated with high accuracy. Furthermore, since temperature information of the piezoelectric vibrator can be measured in real time and with high accuracy, correction errors in the temperature compensation circuit can be suppressed and temperature compensation can be performed with high accuracy.

[適用例8]周波数温度特性にヒステリシス特性を有する圧電振動子と、前記圧電振動子を発振させて発振信号を出力する発振回路と、記憶回路と、を有し、前記記憶回路には、前記ヒステリシス特性の影響を受けて表れた前記発振信号の2つの周波数温度特性に囲まれた領域にある周波数温度特性を示す周波数温度情報が記憶されていることを特徴とする圧電発振器。   Application Example 8 A piezoelectric vibrator having hysteresis characteristics in frequency temperature characteristics, an oscillation circuit that oscillates the piezoelectric vibrator and outputs an oscillation signal, and a storage circuit, and the storage circuit includes A piezoelectric oscillator characterized by storing frequency temperature information indicating a frequency temperature characteristic in a region surrounded by two frequency temperature characteristics of the oscillation signal that appears under the influence of a hysteresis characteristic.

2つの周波数温度特性とは、圧電振動子の温度上昇時の周波数温度特性と、温度下降時の周波数温度特性とを言う。上記構成において、圧電発振器を温度補償回路に接続した場合、温度補償回路においては、圧電振動子の2つの周波数温度特性に囲まれた領域にある周波数温度情報と、圧電振動子の発振時の圧電振動子の温度情報とを用いて基準周波数からの周波数偏差を算出し、これにより温度補償量を算出することになる。よって、周囲温度が上昇している場合でも、下降している場合でも圧電振動子のヒステリシス特性に起因する補正誤差を一定の範囲に抑制することが可能な圧電発振器となる。さらに記憶回路には昇温周波数温度情報、降温周波数温度情報、またはこれらから抽出した温度情報を格納する必要はないので記憶回路の容量負担の増大を回避することができる。   The two frequency temperature characteristics are a frequency temperature characteristic when the temperature of the piezoelectric vibrator is increased and a frequency temperature characteristic when the temperature is decreased. In the above configuration, when the piezoelectric oscillator is connected to the temperature compensation circuit, the temperature compensation circuit uses the frequency temperature information in the region surrounded by the two frequency temperature characteristics of the piezoelectric vibrator and the piezoelectric at the time of oscillation of the piezoelectric vibrator. The frequency deviation from the reference frequency is calculated using the temperature information of the vibrator, thereby calculating the temperature compensation amount. Therefore, it becomes a piezoelectric oscillator capable of suppressing the correction error caused by the hysteresis characteristic of the piezoelectric vibrator to a certain range regardless of whether the ambient temperature is rising or falling. Furthermore, since it is not necessary to store the temperature rise frequency temperature information, the temperature fall frequency temperature information, or the temperature information extracted from these in the memory circuit, an increase in the capacity burden on the memory circuit can be avoided.

[適用例9]前記周波数温度情報は、温度情報と、前記温度情報に対応した発振周波数の情報、若しくは前記温度情報に対応した基準周波数からの周波数偏差の情報により生成したものであることを特徴とする適用例8に記載の圧電発振器。   Application Example 9 The frequency temperature information is generated from temperature information and oscillation frequency information corresponding to the temperature information or frequency deviation information from a reference frequency corresponding to the temperature information. The piezoelectric oscillator according to Application Example 8.

これにより、圧電発振器側で温度係数を生成する演算が不要となるため圧電発振器形成時の作業負担を抑制してコストを抑制することが可能な圧電発振器となる。特に周波数偏差を記憶する場合は、桁が小さくなるためデータの容量を小さくすることが可能であり、記憶回路を小型化してコストを抑制することができる。   This eliminates the need for a calculation to generate a temperature coefficient on the piezoelectric oscillator side, so that the work load at the time of forming the piezoelectric oscillator can be suppressed and the piezoelectric oscillator can be reduced in cost. In particular, when the frequency deviation is stored, since the digit becomes small, the data capacity can be reduced, and the memory circuit can be reduced in size and the cost can be reduced.

[適用例10]前記周波数温度情報は、前記周波数温度特性に対応したべき級数による近似曲線情報から抽出した温度係数であることを特徴とする適用例8に記載の圧電発振器。   [Application Example 10] The piezoelectric oscillator according to Application Example 8, wherein the frequency temperature information is a temperature coefficient extracted from approximate curve information by a power series corresponding to the frequency temperature characteristic.

これにより、圧電発振器を温度補償回路に接続した場合、温度補償回路においては温度係数を生成する演算が不要となるため、ユーザー側の負担を軽減して発振回路を搭載したシステムの構築を容易に行うことが可能な圧電発振器となる。   As a result, when a piezoelectric oscillator is connected to a temperature compensation circuit, the temperature compensation circuit does not require computation to generate a temperature coefficient, thus reducing the burden on the user and making it easy to build a system with an oscillation circuit. It becomes a piezoelectric oscillator that can be performed.

[適用例11]前記周囲温度に対応した検出電圧を出力する温度検出手段が前記圧電振動子に隣接して設けられるとともに、前記周波数温度情報は、前記検出電圧の関数として表された前記昇温周波数温度情報及び前記降温周波数温度情報に基づいて算出して前記記憶回路に記憶され、前記発振回路は、前記周波数温度情報と前記検出電圧を用いて温度補償量を算出する温度補償回路に発振信号を出力し、前記温度検出手段は、前記温度補償回路に前記検出電圧を出力することを特徴とする適用例8乃至10のいずれか1例に記載の圧電発振器。   Application Example 11 A temperature detection unit that outputs a detection voltage corresponding to the ambient temperature is provided adjacent to the piezoelectric vibrator, and the frequency temperature information is expressed as a function of the detection voltage. Based on the frequency temperature information and the temperature decrease frequency temperature information and calculated and stored in the storage circuit, the oscillation circuit generates an oscillation signal to a temperature compensation circuit that calculates a temperature compensation amount using the frequency temperature information and the detected voltage. The piezoelectric oscillator according to any one of Application Examples 8 to 10, wherein the temperature detection unit outputs the detection voltage to the temperature compensation circuit.

上記構成により、温度検出手段は圧電振動子の周囲温度を測定誤差を抑制して測定することができるので、昇温周波数温度情報及び降温周波数温度情報を高精度に算出して、周波数温度情報を高精度に得ることができる。さらに圧電振動子の温度情報をリアルタイムでかつ高精度に測定できるので、温度補償回路における補正誤差を抑制して、温度補償を高精度に行なうことが可能な圧電発振器となる。   With the above configuration, the temperature detecting unit can measure the ambient temperature of the piezoelectric vibrator while suppressing measurement errors, and therefore, the temperature temperature information is calculated with high accuracy by calculating the temperature rise frequency temperature information and the temperature fall frequency temperature information. It can be obtained with high accuracy. Furthermore, since temperature information of the piezoelectric vibrator can be measured in real time and with high accuracy, a piezoelectric oscillator capable of performing temperature compensation with high accuracy by suppressing a correction error in the temperature compensation circuit.

温度補償回路に接続された本実施形態の圧電発振器の模式図である。It is a schematic diagram of the piezoelectric oscillator of this embodiment connected to the temperature compensation circuit. 本実施形態の圧電発振器と測定器との接続図である。It is a connection diagram of the piezoelectric oscillator of this embodiment and a measuring instrument. 本実施形態の圧電振動子の発振周波数のヒステリシス特性を示す図である。It is a figure which shows the hysteresis characteristic of the oscillation frequency of the piezoelectric vibrator of this embodiment. 温度上昇時、及び温度下降時にそれぞれ測定された温度係数を用いて温度補償を行った場合の周波数偏差を示す図である。It is a figure which shows the frequency deviation at the time of performing temperature compensation using the temperature coefficient measured at the time of temperature rise and temperature fall, respectively. 本実施形態に係る温度係数を用いて温度補償を行った場合の周波数偏差を示す図である。It is a figure which shows the frequency deviation at the time of performing temperature compensation using the temperature coefficient which concerns on this embodiment. 本実施形態の降温周波数温度情報の近似的な算出方法を示す図である。It is a figure which shows the approximate calculation method of the temperature fall frequency temperature information of this embodiment. 記憶回路に記憶する周波数温度情報の容量を比較する表である。It is a table | surface which compares the capacity | capacitance of the frequency temperature information memorize | stored in a memory | storage circuit.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .

図1に発振回路システムであり、温度補償回路に接続された本実施形態に係る圧電発振器を示す。本実施形態に係る圧電発振器10は、周波数温度特性にヒステリシス特性を有する圧電振動子12と、前記圧電振動子12を発振させて発振信号58を出力する発振回路14と、記憶回路20と、を有し、前記記憶回路20には、前記ヒステリシス特性の影響を受けて表れた前記発振信号の2つの周波数温度特性に囲まれた領域にある周波数温度特性を示す周波数温度情報76が記憶されたものである。ここで、2つの周波数温度特性とは、圧電振動子12の温度上昇時の周波数温度特性と温度下降時の周波数温度特性とを言い、基準温度を中心として2つの特性曲線に囲まれた領域が現れる。また圧電発振器10は動作時には温度補償回路40に接続される。   FIG. 1 shows an oscillation circuit system and a piezoelectric oscillator according to this embodiment connected to a temperature compensation circuit. The piezoelectric oscillator 10 according to this embodiment includes a piezoelectric vibrator 12 having a hysteresis characteristic in frequency temperature characteristics, an oscillation circuit 14 that oscillates the piezoelectric vibrator 12 and outputs an oscillation signal 58, and a storage circuit 20. The memory circuit 20 stores frequency temperature information 76 indicating frequency temperature characteristics in a region surrounded by two frequency temperature characteristics of the oscillation signal that appears under the influence of the hysteresis characteristics. It is. Here, the two frequency temperature characteristics are a frequency temperature characteristic when the temperature of the piezoelectric vibrator 12 is increased and a frequency temperature characteristic when the temperature is decreased, and a region surrounded by two characteristic curves centering on the reference temperature. appear. The piezoelectric oscillator 10 is connected to the temperature compensation circuit 40 during operation.

よって、本実施形態にかかる圧電発振器10を、より詳細に述べると、周波数温度特性にヒステリシス特性を有する圧電振動子12と、前記圧電振動子12を発振させて発振信号58を出力し、前記圧電振動子12の発振周波数の温度特性を示す周波数温度情報76と、前記発振信号58の発振時の前記圧電振動子12の温度情報と、を用いて温度補償量80を算出可能な温度補償回路40に前記発振信号58を出力する発振回路14と、前記圧電振動子12の周囲温度を上昇させた場合に生成される前記圧電振動子12の昇温周波数温度情報77aと、前記周囲温度を下降させた場合に生成される前記圧電振動子12の降温周波数温度情報77bと、の中間値を前記周波数温度情報76として記憶し前記温度補償回路40に前記周波数温度情報76を出力する記憶回路20と、を有するものである。   Accordingly, the piezoelectric oscillator 10 according to the present embodiment will be described in more detail. The piezoelectric vibrator 12 having a hysteresis characteristic in frequency temperature characteristics, the piezoelectric vibrator 12 is oscillated and the oscillation signal 58 is output, and the piezoelectric oscillator A temperature compensation circuit 40 capable of calculating a temperature compensation amount 80 using frequency temperature information 76 indicating temperature characteristics of the oscillation frequency of the vibrator 12 and temperature information of the piezoelectric vibrator 12 when the oscillation signal 58 is oscillated. The oscillation circuit 14 that outputs the oscillation signal 58 at the same time, the temperature rise frequency temperature information 77a of the piezoelectric vibrator 12 that is generated when the ambient temperature of the piezoelectric vibrator 12 is raised, and the ambient temperature is lowered. An intermediate value between the temperature drop frequency temperature information 77b of the piezoelectric vibrator 12 generated in the case of the piezoelectric vibrator 12 is stored as the frequency temperature information 76, and the frequency temperature is stored in the temperature compensation circuit 40. A storage circuit 20 for outputting a broadcast 76, and has a.

さらに、前記周囲温度に対応した検出電圧66を出力する温度検出手段(温度センサー16)が前記圧電振動子12に隣接して設けられるとともに、前記周波数温度情報76は、前記検出電圧66の関数として表された昇温周波数温度情報77a及び降温周波数温度情報77bに基づいて算出して前記記憶回路20に記憶され、前記発振回路14は、前記周波数温度情報76と前記検出電圧66を用いて温度補償量80を算出する温度補償回路40に発振信号58を出力し、前記温度検出手段は、前記温度補償回路40に前記検出電圧66を出力するものである。   Further, temperature detecting means (temperature sensor 16) for outputting a detection voltage 66 corresponding to the ambient temperature is provided adjacent to the piezoelectric vibrator 12, and the frequency temperature information 76 is a function of the detection voltage 66. Based on the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b represented and stored in the storage circuit 20, the oscillation circuit 14 uses the frequency temperature information 76 and the detection voltage 66 to compensate the temperature. The oscillation signal 58 is output to the temperature compensation circuit 40 that calculates the amount 80, and the temperature detection means outputs the detection voltage 66 to the temperature compensation circuit 40.

したがって上記構成を用いた圧電発振器10の温度補償方法は、周波数温度特性にヒステリシス特性を有する圧電振動子12と、前記圧電振動子12を発振させて発振信号58を出力する発振回路14と、を備え、前記圧電振動子12の発振周波数の温度特性を示す周波数温度情報76と、前記発振信号58の発振時の前記圧電振動子12の温度情報と、を用いて温度補償量80を算出可能な温度補償回路40に、前記発振信号58と前記周波数温度情報76を出力する圧電発振器10の温度補償方法であって、前記圧電振動子12の周囲温度を上昇させた場合に生成される前記圧電振動子12の昇温周波数温度情報77aと、前記周囲温度を下降させた場合に生成される前記圧電振動子12の降温周波数温度情報77bと、の中間値を前記周波数温度情報76として算出するものである。   Therefore, the temperature compensation method of the piezoelectric oscillator 10 using the above configuration includes the piezoelectric vibrator 12 having a hysteresis characteristic in frequency temperature characteristics, and the oscillation circuit 14 that oscillates the piezoelectric vibrator 12 and outputs an oscillation signal 58. A temperature compensation amount 80 can be calculated using frequency temperature information 76 indicating temperature characteristics of the oscillation frequency of the piezoelectric vibrator 12 and temperature information of the piezoelectric vibrator 12 when the oscillation signal 58 is oscillated. A temperature compensation method of the piezoelectric oscillator 10 that outputs the oscillation signal 58 and the frequency temperature information 76 to the temperature compensation circuit 40, and the piezoelectric vibration generated when the ambient temperature of the piezoelectric vibrator 12 is raised. An intermediate value between the temperature increase frequency temperature information 77a of the child 12 and the temperature decrease frequency temperature information 77b of the piezoelectric vibrator 12 generated when the ambient temperature is decreased is the intermediate value. And it calculates a wavenumber temperature information 76.

さらに、前記周囲温度に対応した検出電圧66を出力する温度検出手段(温度センサー16)を前記圧電振動子12に隣接して配設し、前記昇温周波数温度情報77a及び前記降温周波数温度情報77bを、前記検出電圧66の関数として生成し、前記周波数温度情報76を、前記昇温周波数温度情報77a及び前記降温周波数温度情報77bに基づいて算出し、前記周波数温度情報76と前記検出電圧66とに基づいて温度補償量80を算出可能な温度補償回路40に前記発振信号58を出力し、前記温度検出手段から前記温度補償回路40に前記検出電圧66を出力するものである。   Further, a temperature detecting means (temperature sensor 16) for outputting a detection voltage 66 corresponding to the ambient temperature is disposed adjacent to the piezoelectric vibrator 12, and the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b are disposed. Is generated as a function of the detection voltage 66, the frequency temperature information 76 is calculated based on the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b, and the frequency temperature information 76 and the detection voltage 66 are calculated. The oscillation signal 58 is output to the temperature compensation circuit 40 that can calculate the temperature compensation amount 80 based on the above, and the detection voltage 66 is output from the temperature detection means to the temperature compensation circuit 40.

本実施形態の圧電発振器の構成を説明する前に本実施形態の圧電発振器10の温度補償の仕方について図を用いて説明する。周波数温度情報76は、発振回路14の発振信号58にヒステリシス特性を伴い現れる2つの周波数温度特性の中間値の周波数温度特性に関わるデータである。すなわち、図5は周波数温度情報76について説明した図である。   Before describing the configuration of the piezoelectric oscillator according to the present embodiment, a method for temperature compensation of the piezoelectric oscillator 10 according to the present embodiment will be described with reference to the drawings. The frequency temperature information 76 is data related to a frequency temperature characteristic that is an intermediate value between two frequency temperature characteristics that appear in the oscillation signal 58 of the oscillation circuit 14 with a hysteresis characteristic. That is, FIG. 5 is a diagram for explaining the frequency temperature information 76.

図5に示す昇温周波数温度情報77aは、ATカット水晶振動子である圧電振動子12の周囲温度を圧電振動子12の基準温度(例えば25℃)を跨ぐように−30℃から+85℃へと上昇させた間における所定温度ごとの発振回路14の発振信号58の周波数のプロットである。また降温周波数温度情報77bは、圧電振動子12の周囲温度を+85℃から−30℃へと下降させた間における所定温度ごとの発振回路14の発振信号58の周波数のプロットである。   The temperature increase frequency temperature information 77a shown in FIG. 5 is from −30 ° C. to + 85 ° C. so that the ambient temperature of the piezoelectric vibrator 12 that is an AT-cut crystal vibrator straddles the reference temperature (for example, 25 ° C.) of the piezoelectric vibrator 12. Is a plot of the frequency of the oscillation signal 58 of the oscillation circuit 14 for each predetermined temperature during the increase. The temperature decrease frequency temperature information 77b is a plot of the frequency of the oscillation signal 58 of the oscillation circuit 14 for each predetermined temperature while the ambient temperature of the piezoelectric vibrator 12 is lowered from + 85 ° C. to −30 ° C.

第1の近似曲線情報70は、昇温周波数温度情報77aに対応して後述の数式1の温度係数を算出して生成されたものであり、温度変化に対して連続的に周波数が算出可能となる曲線である。第2の近似曲線情報72は、降温周波数温度情報77bに対応して後述の数式1の温度係数を算出して生成されたものであり、温度変化に対して連続的に周波数が算出可能となる曲線である。第3の近似曲線情報74は、第1の近似曲線情報70と第2の近似曲線情報72との中間値として生成されたものである。よって第3の近似曲線情報74から周波数温度情報76で必要となる温度情報及び前記温度情報における周波数を抽出することにより、周波数温度情報76を生成することができる。ここで、中間値とは、2つの周波数温度特性、すなわち第1の近似曲線情報70、第2の近似曲線情報72(昇温周波数温度情報77a、降温周波数温度情報77b)の一の温度位置において、加算平均等して得られる周波数方向の中間の値のみならず、ヒステリシス特性によって囲まれた領域内において周波数方向に変位した値も含むものとする。
このようにして生成された周波数温度情報76は、後述する温度補償用の多項式(数式1)のパラメータ(係数)を近似計算して求める際に利用される。
The first approximate curve information 70 is generated by calculating a temperature coefficient of Equation 1 described later corresponding to the temperature increase frequency temperature information 77a, and the frequency can be calculated continuously with respect to the temperature change. It is a curve. The second approximate curve information 72 is generated by calculating a temperature coefficient of Equation 1 described later corresponding to the temperature decrease frequency temperature information 77b, and the frequency can be continuously calculated with respect to the temperature change. It is a curve. The third approximate curve information 74 is generated as an intermediate value between the first approximate curve information 70 and the second approximate curve information 72. Therefore, the frequency temperature information 76 can be generated by extracting the temperature information necessary for the frequency temperature information 76 and the frequency in the temperature information from the third approximate curve information 74. Here, the intermediate value is at one temperature position of two frequency temperature characteristics, that is, first approximate curve information 70 and second approximate curve information 72 (temperature increase frequency temperature information 77a, temperature decrease frequency temperature information 77b). In addition to the intermediate value in the frequency direction obtained by addition averaging or the like, the value displaced in the frequency direction within the region surrounded by the hysteresis characteristic is also included.
The frequency temperature information 76 generated in this way is used when an approximate calculation of a parameter (coefficient) of a temperature compensation polynomial (formula 1) described later is obtained.

温度補償回路40は、周波数温度情報76を使った近似計算により周波数温度補償用の多項式形成に必要な係数を算出し、周波数温度補償用の多項式を決定する。そして更に温度補償回路40は、発振回路14の発振信号58の発振周波数に対して周波数温度補償用の多項式と温度センサー16によって検出された温度の情報(検出電圧66)を用いて決定された温度補償量80(周波数補正量)に応じた周波数の補正を行い温度補償された発振信号68を出力する。   The temperature compensation circuit 40 calculates a coefficient necessary for forming a polynomial for frequency temperature compensation by an approximate calculation using the frequency temperature information 76, and determines a polynomial for frequency temperature compensation. Further, the temperature compensation circuit 40 uses the frequency temperature compensation polynomial and the temperature information detected by the temperature sensor 16 (detection voltage 66) for the oscillation frequency of the oscillation signal 58 of the oscillation circuit 14 to determine the temperature. The frequency is corrected according to the compensation amount 80 (frequency correction amount), and the temperature-compensated oscillation signal 68 is output.

したがって、本実施形態に係る圧電発振器10を備えた発振回路システムの温度補償方法においては、周波数温度情報76に基づいて温度変化に対して連続的周波数温度特性を有する周波数温度特性の情報またはこれを補正する周波数温度補償用の多項式(第3の近似曲線情報74)に必要な係数を算出する。そして前記周波数温度特性の情報または係数によって決定される多項式と温度センサー16により検出された温度の情報(検出電圧66)を用いて温度補償量80を算出して得られた情報に基づき発振回路14からの発振信号58に分周などの周波数制御を行い温度補償が行なわれた発振信号68を出力する。そしてこのような温度補償方法を実現するため、圧電発振器10においては少なくとも圧電振動子12と、発振回路14と、温度センサー16と、記憶回路20を備える必要がある。   Therefore, in the temperature compensation method of the oscillation circuit system including the piezoelectric oscillator 10 according to the present embodiment, the frequency temperature characteristic information having continuous frequency temperature characteristics with respect to the temperature change based on the frequency temperature information 76 or the frequency temperature characteristic information is obtained. A coefficient necessary for the frequency temperature compensation polynomial to be corrected (third approximated curve information 74) is calculated. Based on the information obtained by calculating the temperature compensation amount 80 using the polynomial determined by the frequency temperature characteristic information or coefficient and the temperature information detected by the temperature sensor 16 (detection voltage 66), the oscillation circuit 14 The oscillation signal 58 is subjected to frequency control such as frequency division, and an oscillation signal 68 subjected to temperature compensation is output. In order to realize such a temperature compensation method, the piezoelectric oscillator 10 needs to include at least the piezoelectric vibrator 12, the oscillation circuit 14, the temperature sensor 16, and the storage circuit 20.

次に、昇温周波数温度情報77aと降温周波数温度情報77bの生成プロセスについて説明する。
本実施形態の圧電発振器10(圧電振動子12)を、例えば温度設定可能なチャンバー(不図示)内に収めた後、圧電発振器10(圧電振動子12)の周囲温度を低温から高温へ向かって変化させるとともに、温度変化の途中で複数の温度点における発振回路14の発振信号58の周波数を測定する第1の温度試験を行なう。
Next, a generation process of the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b will be described.
For example, after the piezoelectric oscillator 10 (piezoelectric vibrator 12) of the present embodiment is housed in a chamber (not shown) in which temperature can be set, the ambient temperature of the piezoelectric oscillator 10 (piezoelectric vibrator 12) is changed from a low temperature to a high temperature. A first temperature test is performed in which the frequency of the oscillation signal 58 of the oscillation circuit 14 at a plurality of temperature points is measured during the temperature change.

すなわち、第1の温度試験において、圧電振動子12がATカット水晶振動子の場合を例に説明すると、圧電振動子12の周囲温度を例えば−30℃から+85℃に向かって上昇させるとともに、この間において複数の温度点における発振回路14の発振信号58の周波数を測定することにより昇温周波数温度情報77aを生成する。複数の温度点として例えば、図5(a)に示す例では、設定温度範囲の端の温度になる−30℃(設定最低温度)、+85℃(設定最高温度)及び周波数温度特性の曲線の情報(第3の近似曲線情報74と同様)の変曲点近くの+25℃(基準温度)の他に、前記曲線の極大値または極小値の発生する付近の温度点またはこの極値と端の温度の間や極値と基準温度の間の温度点などからなる7つの温度点(昇温周波数温度情報77a)としている。ここで昇温周波数温度情報77aは、圧電発振器10の設定温度(或いは測定温度)の情報と、その設定温度(或いは測定温度)における発振回路14の発振信号58の周波数の情報とから構成されている。   That is, in the first temperature test, the case where the piezoelectric vibrator 12 is an AT-cut crystal vibrator will be described as an example. The ambient temperature of the piezoelectric vibrator 12 is increased from, for example, −30 ° C. to + 85 ° C. The temperature rise frequency temperature information 77a is generated by measuring the frequency of the oscillation signal 58 of the oscillation circuit 14 at a plurality of temperature points. For example, in the example shown in FIG. 5A, as the plurality of temperature points, information on a curve of −30 ° C. (minimum set temperature), + 85 ° C. (maximum set temperature) and frequency temperature characteristics, which is the temperature at the end of the set temperature range. In addition to + 25 ° C. (reference temperature) near the inflection point (similar to the third approximate curve information 74), a temperature point near the maximum or minimum value of the curve or the temperature between the extreme value and the end And seven temperature points (temperature increase frequency temperature information 77a) including temperature points between the extreme values and the reference temperature. Here, the temperature rising frequency temperature information 77a is composed of information on the set temperature (or measurement temperature) of the piezoelectric oscillator 10 and information on the frequency of the oscillation signal 58 of the oscillation circuit 14 at the set temperature (or measurement temperature). Yes.

第1の温度試験の後、この試験とは逆方向の温度変化傾向となるよう圧電発振器10(圧電振動子12)の周囲温度を高温から低温に向かって変化させるとともに、温度変化の途中で複数の温度点における発振回路14の発振信号58の周波数を測定する第2の温度試験を行なう。   After the first temperature test, the ambient temperature of the piezoelectric oscillator 10 (piezoelectric vibrator 12) is changed from a high temperature to a low temperature so that the temperature changes in a direction opposite to the test, and a plurality of temperature changes occur during the temperature change. A second temperature test is performed to measure the frequency of the oscillation signal 58 of the oscillation circuit 14 at the temperature point.

第2の温度試験においても、圧電振動子12がATカット水晶振動子の場合を例に説明すると、圧電発振器10(圧電振動子12)の周囲温度を+85℃から−35℃へ向かって下降させるとともに、この間において複数の温度点における発振回路14の発振信号58の周波数を測定することによって降温周波数温度情報77bを生成する。   In the second temperature test as well, the case where the piezoelectric vibrator 12 is an AT-cut crystal vibrator will be described as an example. The ambient temperature of the piezoelectric oscillator 10 (piezoelectric vibrator 12) is lowered from + 85 ° C. to −35 ° C. At the same time, the temperature drop frequency temperature information 77b is generated by measuring the frequency of the oscillation signal 58 of the oscillation circuit 14 at a plurality of temperature points.

複数の温度点として例えば、図5(a)に示す例では、可変温度範囲の端の温度になる−30℃(設定最低温度)、+85℃(設定最高温度)及び周波数温度特性の情報の曲線(第3の近似曲線情報74と同様)の変曲点近くの+25℃(基準温度)の他に、前記曲線の極大値または極小値の発生する付近の温度点またはこの極値と端の温度の間や極値と基準温度の間の温度点などからなる7つの温度点(降温周波数温度情報77b)としている。ここで降温周波数温度情報77bは、圧電発振器10の設定温度(或いは測定温度)の情報と、その設定温度(或いは測定温度)における発振回路14の発振信号58の周波数の情報とから構成されている。   As the plurality of temperature points, for example, in the example shown in FIG. 5A, the temperature of the end of the variable temperature range is −30 ° C. (set minimum temperature), + 85 ° C. (set maximum temperature), and frequency temperature characteristic information curves. In addition to + 25 ° C. (reference temperature) near the inflection point (similar to the third approximate curve information 74), a temperature point near the maximum or minimum value of the curve or the temperature between the extreme value and the end And seven temperature points (temperature-decreasing frequency temperature information 77b) including temperature points between the extreme values and the reference temperature. Here, the temperature-decreasing frequency temperature information 77b includes information on the set temperature (or measurement temperature) of the piezoelectric oscillator 10 and information on the frequency of the oscillation signal 58 of the oscillation circuit 14 at the set temperature (or measurement temperature). .

そして昇温周波数温度情報77aに対応した第1の近似曲線情報70、及び降温周波数温度情報77bに対応した第2の近似曲線情報72を算出し、第1の近似曲線情報70と第2の近似曲線情報72の各温度係数の加算平均等により生成された中間値となる温度係数により第3の近似曲線情報74を生成する。そして第3の近似曲線情報74から周波数温度情報76が要求する温度の情報と、温度の情報に対応する周波数を抽出することにより周波数温度情報76を生成する。そしてこのように得られた周波数温度情報76を記憶回路20に記憶する。   Then, first approximate curve information 70 corresponding to the temperature increase frequency temperature information 77a and second approximate curve information 72 corresponding to the temperature decrease frequency temperature information 77b are calculated, and the first approximate curve information 70 and the second approximation curve information are calculated. The third approximate curve information 74 is generated by the temperature coefficient that is an intermediate value generated by the addition average of the temperature coefficients of the curve information 72 or the like. The frequency temperature information 76 is generated by extracting the temperature information required by the frequency temperature information 76 and the frequency corresponding to the temperature information from the third approximate curve information 74. The frequency temperature information 76 obtained in this way is stored in the storage circuit 20.

このとき図5(a)に示す例において、周波数温度情報76が示す温度点としては、可変温度範囲の端の温度になる−35℃、+85℃、第1の近似曲線情報70及び第2の近似曲線情報72の変曲点近くの+25℃(基準温度)、第1の近似曲線情報70及び第2の近似曲線情報72の極大値または極小値となる極値付近の温度点、またはこの極値と端の温度との間や極値と基準温度の間の温度点などからなる7つの温度点としている。   In this case, in the example shown in FIG. 5A, the temperature point indicated by the frequency temperature information 76 is −35 ° C., + 85 ° C., which is the temperature at the end of the variable temperature range, the first approximate curve information 70 and the second + 25 ° C. (reference temperature) near the inflection point of the approximate curve information 72, the temperature point near the extreme value that becomes the maximum value or minimum value of the first approximate curve information 70 and the second approximate curve information 72, or this extreme point Seven temperature points including a temperature point between the value and the end temperature or between the extreme value and the reference temperature are set.

また設定最低温度と設定最高温度の設定値については、少なくとも圧電発振器10に求められる動作可能な温度範囲から決定すればよく、測定点となる温度点においても周波数温度特性の情報である曲線を近似計算にて求められるような周波数情報が得られる位置であればよい。   The set minimum temperature and the set maximum temperature may be determined from at least the operable temperature range required for the piezoelectric oscillator 10, and a curve that is information on frequency temperature characteristics is also approximated at a temperature point that is a measurement point. Any position where frequency information that can be obtained by calculation can be obtained.

また、可変温度範囲の端の温度点など、昇温周波数温度情報77aと降温周波数温度情報77bが示す周波数の値が比較的近いような温度点では、周波数温度情報76の周波数に関わる情報と昇温周波数温度情報77aまたは降温周波数温度情報77bの周波数に関わる情報とが一致しても構わない。すなわち、上述の温度点においては、周波数温度情報76の周波数の情報として、昇温周波数温度情報77aまたは降温周波数温度情報77bの周波数の情報をそのまま取り入れてもよい。   Further, at a temperature point where the frequency values indicated by the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b are relatively close, such as a temperature point at the end of the variable temperature range, information related to the frequency of the frequency temperature information 76 is increased. The information related to the frequency of the temperature frequency temperature information 77a or the temperature decrease frequency temperature information 77b may be the same. That is, at the above-described temperature point, the frequency information of the temperature increase frequency temperature information 77a or the temperature decrease frequency temperature information 77b may be taken in as it is as the frequency information of the frequency temperature information 76.

次に本実施形態の具体的構成について説明する。本実施形態の圧電発振器10の具体的構成は、シリコン基板(不図示)上にパターニングにより、発振回路14、温度センサー16、バッファー18、記憶回路20、シリアルインターフェース回路22、電源端子36、グランド端子38等の各端子が形成された半導体回路基板を備え、発振回路14と圧電振動子12が接続された構造を有している。さらに図1に示すように、圧電発振器10の接続対象となる温度補償回路40は、周波数補正回路42、演算処理回路であるCPU44、記憶装置であるメモリ46、アナログ/デジタル変換器であるA/D変換器48を有し、上述したシリコン基板上またはこれとは別のシリコン基板上に集積回路構成されている。また周波数温度情報76を算出する際には図2に示すように、圧電発振器10は測定器50に接続され、測定器50は、周波数カウンタ52、PC(パーソナルコンピューター)54、電圧マルチメータ56を有する。   Next, a specific configuration of the present embodiment will be described. The specific configuration of the piezoelectric oscillator 10 according to the present embodiment includes an oscillation circuit 14, a temperature sensor 16, a buffer 18, a storage circuit 20, a serial interface circuit 22, a power supply terminal 36, a ground terminal by patterning on a silicon substrate (not shown). The semiconductor circuit board is formed with terminals such as 38, and the oscillation circuit 14 and the piezoelectric vibrator 12 are connected to each other. Further, as shown in FIG. 1, the temperature compensation circuit 40 to be connected to the piezoelectric oscillator 10 includes a frequency correction circuit 42, a CPU 44 as an arithmetic processing circuit, a memory 46 as a storage device, and an A / A as an analog / digital converter. The D converter 48 is included, and an integrated circuit is formed on the above-described silicon substrate or another silicon substrate. When calculating the frequency temperature information 76, as shown in FIG. 2, the piezoelectric oscillator 10 is connected to a measuring device 50. The measuring device 50 includes a frequency counter 52, a PC (personal computer) 54, and a voltage multimeter 56. Have.

圧電振動子12は、水晶、ニオブ酸リチウム、タンタル酸リチウム等の圧電材料から形成されるが、比較的周波数温度特性に優れ、周波数の温度補償量を抑制可能なATカット水晶振動子を用いることが好適である。このATカットによる厚みすべり振動を用いた圧電振動子の共振周波数は、基準温度(25℃)を中心として正の3次曲線、または図5(a)に示すように基準温度よりも低温側に極大値、高温側に極小値を有する多項式関数にて表される温度依存性を有している。   The piezoelectric vibrator 12 is made of a piezoelectric material such as quartz, lithium niobate, lithium tantalate, etc., and uses an AT-cut quartz vibrator that has relatively excellent frequency temperature characteristics and can suppress the temperature compensation amount of the frequency. Is preferred. The resonance frequency of the piezoelectric vibrator using the thickness shear vibration by the AT cut is a positive cubic curve centering on the reference temperature (25 ° C.), or lower than the reference temperature as shown in FIG. It has temperature dependence represented by a polynomial function having a maximum value and a minimum value on the high temperature side.

発振回路14は、圧電振動子12を発振源とする例えばコルピッツ型の発振回路であり、発振周波数出力端子24を介して温度補償回路40、または測定器50に発振信号58を出力する。   The oscillation circuit 14 is, for example, a Colpitts oscillation circuit using the piezoelectric vibrator 12 as an oscillation source, and outputs an oscillation signal 58 to the temperature compensation circuit 40 or the measuring device 50 via the oscillation frequency output terminal 24.

温度センサー16は、ダイオード構造を有しており、順方向電流を流し、温度によって変化するダイオードの端子間電位である検出電圧66を、バッファー18を介して温度センサー電圧出力端子34から温度補償回路40または測定器50に出力するものである。また温度センサー16は電源電圧(VDD)から電力が供給される限り常時検出電圧66を出力するものとする。ここで検出電圧66は温度上昇とともに1次関数的に減少し、出力される検出電圧66は測定される温度に対応したものとなっている。なお、温度センサー16は圧電振動子12に隣接して配置することが望ましい、これにより圧電振動子12の周囲温度を正確に測定することができ、後述の昇温周波数温度情報77a、降温周波数温度情報77b、第1の近似曲線情報70、第2の近似曲線情報72、第3の近似曲線情報74、周波数温度情報76において、温度と周波数、若しくは周波数偏差との対応を正確に行なうことができる。 The temperature sensor 16 has a diode structure, allows a forward current to flow, and detects a detection voltage 66 that is a potential between the terminals of the diode that varies depending on the temperature from the temperature sensor voltage output terminal 34 via the buffer 18. 40 or the measuring device 50. The temperature sensor 16 always outputs the detection voltage 66 as long as power is supplied from the power supply voltage (V DD ). Here, the detection voltage 66 decreases in a linear function as the temperature rises, and the output detection voltage 66 corresponds to the measured temperature. It is desirable that the temperature sensor 16 be disposed adjacent to the piezoelectric vibrator 12, so that the ambient temperature of the piezoelectric vibrator 12 can be accurately measured. In the information 77b, the first approximate curve information 70, the second approximate curve information 72, the third approximate curve information 74, and the frequency temperature information 76, the correspondence between temperature and frequency or frequency deviation can be accurately performed. .

シリアルインターフェース回路22は、外部からの指令を受けて記憶回路20に周波数温度情報76を記憶したり、記憶回路20に記憶された周波数温度情報76を外部に出力するものである。シリアルインターフェース回路22は記憶回路20、温度センサー16に接続されており、データ入出力端子26、第1制御クロック入力端子28、第2制御クロック入力端子30を有している。   The serial interface circuit 22 receives a command from the outside, stores the frequency temperature information 76 in the storage circuit 20, and outputs the frequency temperature information 76 stored in the storage circuit 20 to the outside. The serial interface circuit 22 is connected to the memory circuit 20 and the temperature sensor 16, and has a data input / output terminal 26, a first control clock input terminal 28, and a second control clock input terminal 30.

第1制御クロック入力端子28に第1の制御クロック60を入力すると、データ入出力端子26に入力されるシリアル化された周波数温度情報76を、第1の制御クロック60をトリガとして(第1の制御クロック60に同期して)記憶回路20に記憶する(書き込む)ことができる。第2制御クロック入力端子30に第2の制御クロック62を入力すると、記憶回路20に記憶された周波数温度情報76を、データ入出力端子26を介して第2の制御クロック62をトリガとしてシリアル化して出力することができる。   When the first control clock 60 is input to the first control clock input terminal 28, the serialized frequency temperature information 76 input to the data input / output terminal 26 is triggered by the first control clock 60 (the first control clock 60). It can be stored (written) in the storage circuit 20 in synchronization with the control clock 60. When the second control clock 62 is input to the second control clock input terminal 30, the frequency temperature information 76 stored in the storage circuit 20 is serialized using the second control clock 62 as a trigger via the data input / output terminal 26. Can be output.

記憶回路20は、EEPROM等で形成され、シリアルインターフェース回路22を介して周波数温度情報76が記憶され(書き込まれ)、または周波数温度情報76を出力することができる。周波数温度情報76は、有限個のデータにより構成されているが、それぞれ測定器50中の演算機であるPC54、及び温度補償回路40中のCPU44が共通に認識できるアドレスが設けられている。   The storage circuit 20 is formed of an EEPROM or the like, and the frequency temperature information 76 is stored (written) through the serial interface circuit 22 or can be output. The frequency temperature information 76 is composed of a finite number of data, and addresses that can be commonly recognized by the PC 54 that is a computing unit in the measuring device 50 and the CPU 44 in the temperature compensation circuit 40 are provided.

周波数温度情報76としては、後述の温度係数とオフセット係数との組み合わせ、または圧電振動子12の使用温度範囲から任意に選択した複数の温度情報と、前記複数の温度情報のそれぞれに対応した周波数の情報、若しくは前記複数の温度情報に対応する基準周波数からの周波数偏差の情報との組み合わせを用いることができる。このうち、複数の温度情報と、前記複数の温度情報のそれぞれに対応した基準周波数からの周波数偏差の情報との組み合わせは、発振周波数の絶対値を用いた場合より情報の桁数を小さくすることができるので、周波数温度情報76の容量が最も小さくなる。また周波数温度情報76として温度係数を記憶する場合は、温度そのものを記憶する必要はないので周波数温度情報76の容量を小さくすることができる。なお、周波数温度情報76として、上述の複数の温度情報と、前記複数の温度情報のそれぞれに対応した周波数の情報との組み合わせとした場合には、基準温度と基準温度における周波数の情報を取得するとともに、その組み合わせについて、PC54及びCPU44が他の情報と識別できるアドレスを付す必要がある。   As the frequency temperature information 76, a combination of a temperature coefficient and an offset coefficient, which will be described later, or a plurality of temperature information arbitrarily selected from the operating temperature range of the piezoelectric vibrator 12 and a frequency corresponding to each of the plurality of temperature information. Information or a combination with frequency deviation information from a reference frequency corresponding to the plurality of temperature information can be used. Among these, the combination of the plurality of temperature information and the information of the frequency deviation from the reference frequency corresponding to each of the plurality of temperature information reduces the number of digits of information compared to the case where the absolute value of the oscillation frequency is used. Therefore, the capacity of the frequency temperature information 76 is the smallest. When the temperature coefficient is stored as the frequency temperature information 76, it is not necessary to store the temperature itself, so that the capacity of the frequency temperature information 76 can be reduced. When the frequency temperature information 76 is a combination of the above-described plurality of temperature information and frequency information corresponding to each of the plurality of temperature information, the reference temperature and the frequency information at the reference temperature are acquired. At the same time, it is necessary to attach an address that allows the PC 54 and the CPU 44 to be distinguished from other information.

図2に圧電発振器10と測定器50との接続図を示す。測定器50は、発振回路14に搭載された圧電振動子12の発振周波数の温度特性から温度補償回路40で用いられる周波数温度情報76を算出して記憶回路20に書き込むものであり、周波数カウンタ52、PC54、電圧マルチメータ56により構成される。周波数カウンタ52は、発振回路14に接続され、所定時間間隔ごとに発振回路14から出力される発振信号58の周波数を測定してPC54に出力することができる。電圧マルチメータ56は、温度センサー16からの検出電圧66をデジタルデータに変換してPC54に出力することができる。   FIG. 2 shows a connection diagram between the piezoelectric oscillator 10 and the measuring instrument 50. The measuring device 50 calculates the frequency temperature information 76 used in the temperature compensation circuit 40 from the temperature characteristics of the oscillation frequency of the piezoelectric vibrator 12 mounted on the oscillation circuit 14 and writes the frequency temperature information 76 in the storage circuit 20. , PC 54 and voltage multimeter 56. The frequency counter 52 is connected to the oscillation circuit 14 and can measure the frequency of the oscillation signal 58 output from the oscillation circuit 14 at every predetermined time interval and output it to the PC 54. The voltage multimeter 56 can convert the detection voltage 66 from the temperature sensor 16 into digital data and output it to the PC 54.

PC54は、データ入出力端子26、第1制御クロック入力端子28、周波数カウンタ52、電圧マルチメータ56に接続されている。PC54は、キー操作等により周波数カウンタ52や電圧マルチメータ56を起動可能であるとともに、温度センサー16から電圧マルチメータ56を介して常時検出電圧66(周囲温度の情報)を入力している。またPC54は、インストールされたプログラムに従って所定の温度ごとに周波数を周波数カウンタ52から入力し、検出電圧66(周囲温度の情報)と周波数をPC内の記憶領域(不図示)に記憶する。   The PC 54 is connected to the data input / output terminal 26, the first control clock input terminal 28, the frequency counter 52, and the voltage multimeter 56. The PC 54 can start the frequency counter 52 and the voltage multimeter 56 by a key operation or the like, and always inputs a detection voltage 66 (ambient temperature information) from the temperature sensor 16 via the voltage multimeter 56. Further, the PC 54 inputs a frequency from the frequency counter 52 for each predetermined temperature according to the installed program, and stores the detection voltage 66 (ambient temperature information) and the frequency in a storage area (not shown) in the PC.

厚みすべり振動を用いた圧電振動子の共振周波数について、基準温度Tにおける基準周波数をfとすると、任意の温度Tにおける周波数温度情報Δf/fは近似的に以下のべき級数で表すことができる。

Figure 2011114860
With respect to the resonance frequency of the piezoelectric vibrator using the thickness shear vibration, if the reference frequency at the reference temperature T 0 is f, the frequency temperature information Δf / f at an arbitrary temperature T can be approximately expressed by the following power series. .
Figure 2011114860

ここで、A、B、C、Dは周波数温度情報の近似曲線を決定する温度係数、Eは周波数温度情報のオフセットを決定するオフセット係数であり、温度係数に属するものである。そして温度補償回路40においては数式1に示すような温度変化に対して連続的に変化する周波数温度情報を算出する必要がある。   Here, A, B, C, and D are temperature coefficients that determine an approximate curve of frequency temperature information, E is an offset coefficient that determines an offset of frequency temperature information, and belongs to the temperature coefficient. In the temperature compensation circuit 40, it is necessary to calculate frequency temperature information that continuously changes with respect to a temperature change as shown in Formula 1.

ところで、数式1においては変数が5つあるため、例えば、周波数温度情報76として、測定された周囲温度の情報(検出電圧66)と、周囲温度の情報に対応した基準周波数からの周波数偏差の情報との組み合わせが少なくとも5つあれば、これらをそれぞれ数式1に代入して、連立5元1次方程式を解くことにより数式1における変数を全て算出し近似曲線情報を算出することができる。さらに、上述のように7点の温度点における周波数の情報に基づき、最小二乗法等により数式1を満たす温度係数を算出することにより、より高精度な近似曲線を生成することが可能となる。しかし、圧電振動子はヒステリシス特性を有するため、温度上昇時の温度情報、及び温度下降時の温度情報を考慮する必要がある。   By the way, since there are five variables in Equation 1, for example, as the frequency temperature information 76, information on the measured ambient temperature (detection voltage 66) and information on the frequency deviation from the reference frequency corresponding to the information on the ambient temperature. If there are at least five combinations with the above, each of them is substituted into Equation 1, and all the variables in Equation 1 can be calculated by solving the simultaneous quinary linear equation, and approximate curve information can be calculated. Furthermore, it is possible to generate a more accurate approximate curve by calculating the temperature coefficient satisfying Equation 1 by the least square method or the like based on the frequency information at the seven temperature points as described above. However, since the piezoelectric vibrator has hysteresis characteristics, it is necessary to consider temperature information when the temperature rises and temperature information when the temperature falls.

そこで圧電振動子12の周囲温度を、設定最低温度(−30℃)から基準温度(+25℃)を挟んで上昇させて設定最高温度(+85℃)に至るまでの間に、PC54はプログラム等により所定の温度間隔で周波数を測定(昇温周波数温度情報77a)し、その後設定最高温度から基準温度を挟んで低下させて設定最低温度に至るまで所定の温度間隔で周波数を測定(降温周波数温度情報77b)する。   Therefore, during the period from when the ambient temperature of the piezoelectric vibrator 12 is increased from the set minimum temperature (−30 ° C.) to the reference maximum temperature (+ 25 ° C.) until the set maximum temperature (+ 85 ° C.) is reached, the PC 54 is programmed. The frequency is measured at a predetermined temperature interval (temperature increase frequency temperature information 77a), and then the frequency is measured at a predetermined temperature interval until the reference temperature is lowered from the set maximum temperature to reach the set minimum temperature (temperature decrease frequency temperature information). 77b).

そしてPC54は、温度上昇時に生成される昇温周波数温度情報77a(例えば、7点の温度と、温度に対応する周波数偏差)と数式1を用いて第1の近似曲線情報70(図5参照)を算出し、温度下降時に生成される降温周波数温度情報77b(例えば、7点の温度と、温度に対応する周波数偏差)と数式1を用いて第2の近似曲線情報72(図5参照)を算出する。   Then, the PC 54 uses the temperature rising frequency temperature information 77a (for example, the temperature at 7 points and the frequency deviation corresponding to the temperature) generated at the time of temperature rise and the first approximate curve information 70 (see FIG. 5) using Equation 1. And the second approximate curve information 72 (see FIG. 5) using the temperature-decreasing frequency temperature information 77b (for example, the seven temperatures and the frequency deviation corresponding to the temperature) generated when the temperature is lowered calculate.

次に、例えば第1の近似曲線情報70と第2の近似曲線情報72の周波数の成分の加算平均をとる演算を行い、第1の近似曲線情報70と第2の近似曲線情報72の周波数成分の中間値となる第3の近似曲線情報74(図5参照)を算出する。同様にこれを他の温度(例えば−30℃〜+85℃の任意の温度)に対しても行なう。そして第3の近似曲線情報74から、温度補償回路40が第3の近似曲線情報74を算出しやすい複数の温度情報と前記温度情報に対応する周波数の組み合わせを適宜抽出し、温度補償回路40中のCPU44が認識できるアドレスを付して周波数温度情報76を生成する。   Next, for example, a calculation is performed to obtain an average of the frequency components of the first approximate curve information 70 and the second approximate curve information 72, and the frequency components of the first approximate curve information 70 and the second approximate curve information 72 are calculated. The third approximate curve information 74 (see FIG. 5), which is an intermediate value of, is calculated. Similarly, this is performed for other temperatures (for example, an arbitrary temperature of -30 ° C to + 85 ° C). Then, from the third approximate curve information 74, a plurality of temperature information for which the temperature compensation circuit 40 can easily calculate the third approximate curve information 74 and a combination of frequencies corresponding to the temperature information are appropriately extracted. The frequency temperature information 76 is generated with an address that the CPU 44 can recognize.

上述のようにPC54において周波数温度情報76を構築したのち、PC54は、第1制御クロック入力端子28に第1の制御クロック60を出力し、第1の制御クロック60に同期させてシリアルデータ化させた周波数温度情報76をデータ入出力端子26に出力し、シリアルインターフェース回路22を介して記憶回路20に周波数温度情報76を記憶させる。   After the frequency temperature information 76 is constructed in the PC 54 as described above, the PC 54 outputs the first control clock 60 to the first control clock input terminal 28 and converts it into serial data in synchronization with the first control clock 60. The frequency temperature information 76 is output to the data input / output terminal 26, and the frequency temperature information 76 is stored in the storage circuit 20 via the serial interface circuit 22.

図1に示すように、温度補償回路40は、圧電発振器10とは分離した外部システムの一部である。温度補償回路40は、PC54から記憶回路20に入力された周波数温度情報76を用いて、圧電振動子12の発振周波数の連続的な温度変化に対応した近似曲線情報(第3の近似曲線情報74と同様)を算出し、近似曲線情報と温度センサー16から常時入力される検出電圧66(周囲温度の情報)に基づいて温度補償量80を算出するものであり、周波数補正回路42、CPU44、メモリ46等から構成される。周波数補正回路42は、CPU44から出力される温度補償量80に対応して、発振信号58の周波数を可変させる回路であって、発振回路14に接続されて発振信号58が入力され、CPU44の制御のもと温度補償を行った発振信号68を出力するものである。   As shown in FIG. 1, the temperature compensation circuit 40 is a part of an external system separated from the piezoelectric oscillator 10. The temperature compensation circuit 40 uses the frequency temperature information 76 input from the PC 54 to the storage circuit 20, and approximate curve information (third approximate curve information 74) corresponding to a continuous temperature change in the oscillation frequency of the piezoelectric vibrator 12. The temperature compensation amount 80 is calculated based on the approximate curve information and the detected voltage 66 (information on the ambient temperature) that is always input from the temperature sensor 16, and the frequency correction circuit 42, CPU 44, memory 46 and the like. The frequency correction circuit 42 is a circuit that varies the frequency of the oscillation signal 58 corresponding to the temperature compensation amount 80 output from the CPU 44. The frequency correction circuit 42 is connected to the oscillation circuit 14 and receives the oscillation signal 58. The oscillation signal 68 subjected to temperature compensation is output.

CPU44は、温度補償回路40の中核をなすものであって、記憶回路20から入力した周波数温度情報76から近似曲線情報(第3の近似曲線情報74と同じ)を算出し、近似曲線情報と温度センサー16から入力される検出電圧66(周囲温度の情報)に基づいて温度補償量80を算出して周波数補正回路42に出力するものである。なお、仮に記憶回路20に昇温周波数温度情報77aが記憶されるとCPU44は第1の近似曲線情報70と同様の近似曲線情報を算出し、降温周波数温度情報77bが記憶されるとCPU44は第2の近似曲線情報72と同様の近似曲線情報を算出することになる。   The CPU 44 is the core of the temperature compensation circuit 40, calculates approximate curve information (same as the third approximate curve information 74) from the frequency temperature information 76 input from the storage circuit 20, and calculates approximate curve information and temperature. A temperature compensation amount 80 is calculated based on the detection voltage 66 (information on ambient temperature) input from the sensor 16 and is output to the frequency correction circuit 42. If the temperature increase frequency temperature information 77a is stored in the storage circuit 20, the CPU 44 calculates approximate curve information similar to the first approximate curve information 70, and if the temperature decrease frequency temperature information 77b is stored, the CPU 44 The approximate curve information similar to the approximate curve information 72 of 2 is calculated.

CPU44は、データ入出力端子26、第2制御クロック入力端子30、周波数補正回路42に接続され、さらに温度センサー16にA/D変換器48を介して接続されている。CPU44は、起動時に、プログラムにより第2制御クロック入力端子30に第2の制御クロック62を入力し、第2の制御クロック62に同期して記憶回路20内の周波数温度情報76を、シリアルインターフェース回路22を介してデータ入出力端子26から出力させ、CPU44に付属するメモリ46に記憶する。   The CPU 44 is connected to the data input / output terminal 26, the second control clock input terminal 30, and the frequency correction circuit 42, and is further connected to the temperature sensor 16 via an A / D converter 48. At startup, the CPU 44 inputs the second control clock 62 to the second control clock input terminal 30 by a program, and synchronizes the second control clock 62 with the frequency / temperature information 76 in the storage circuit 20 as a serial interface circuit. The data is output from the data input / output terminal 26 via 22 and stored in the memory 46 attached to the CPU 44.

記憶回路20に記憶された周波数温度情報76が圧電振動子12の使用温度範囲の複数の温度情報と、前記複数の温度情報のそれぞれに対応した周波数偏差との組み合わせである場合、CPU44は、周波数温度情報76と数式1を用いて、数式1における温度係数と、オフセット係数を上述の方法により算出し、付属のメモリ46に記憶可能な構成を有するものを用いる。また周波数温度情報76が上述の複数の温度情報と各温度情報に対応した周波数(絶対値)の情報である場合は、CPU44は周波数温度情報76中の基準温度の情報と基準温度で測定した周波数の情報のアドレスを識別可能とし、周波数温度情報76と数式1を用いて、数式1における温度係数と、オフセット係数を上述の方法により算出し、付属のメモリ46に記憶可能な構成を有するものを用いる。また記憶回路20に記憶された周波数温度情報76が温度係数とオフセット係数であれば、CPU44は、そのまま付属のメモリ46に記憶する構成を有するものを用いる。   When the frequency temperature information 76 stored in the storage circuit 20 is a combination of a plurality of temperature information in the operating temperature range of the piezoelectric vibrator 12 and a frequency deviation corresponding to each of the plurality of temperature information, the CPU 44 Using the temperature information 76 and Equation 1, the temperature coefficient and the offset coefficient in Equation 1 are calculated by the above-described method, and those having a configuration that can be stored in the attached memory 46 are used. Further, when the frequency temperature information 76 is information of the above-described plurality of temperature information and the frequency (absolute value) corresponding to each temperature information, the CPU 44 uses the reference temperature information in the frequency temperature information 76 and the frequency measured at the reference temperature. The address of the above information can be identified, and the temperature coefficient and the offset coefficient in Formula 1 are calculated by the above-described method using the frequency temperature information 76 and Formula 1, and have a configuration that can be stored in the attached memory 46. Use. If the frequency temperature information 76 stored in the storage circuit 20 is a temperature coefficient and an offset coefficient, the CPU 44 uses the one having a configuration in which it is stored in the attached memory 46 as it is.

またCPU44は、プログラム等により所定時間ごとに温度センサー16からの検出電圧66(周囲温度の情報)をA/D変換器48を介してデジタル化して入力し、付属のメモリ46に記憶する。そしてメモリ46から温度係数とオフセット係数を読み出して近似曲線(第3の近似曲線情報74)を算出し、さらにメモリ46から温度センサー16からの検出電圧66を読み出して、近似曲線(第3の近似曲線情報74)と検出電圧66から温度補償量80を算出し、温度補償量80を周波数補正回路42に出力する。よってCPU44は所定時間ごとに温度補償量80を算出して周波数補正回路42に出力する。これにより周波数補正回路42からは所定時間ごとに温度補償が行われた発振信号68が出力される。   Further, the CPU 44 digitizes and inputs the detection voltage 66 (information on the ambient temperature) from the temperature sensor 16 through the A / D converter 48 every predetermined time by a program or the like, and stores it in the attached memory 46. Then, the temperature coefficient and the offset coefficient are read out from the memory 46 to calculate an approximate curve (third approximate curve information 74), and the detected voltage 66 from the temperature sensor 16 is read out from the memory 46 to obtain an approximate curve (third approximate curve). A temperature compensation amount 80 is calculated from the curve information 74) and the detection voltage 66, and the temperature compensation amount 80 is output to the frequency correction circuit 42. Therefore, the CPU 44 calculates the temperature compensation amount 80 every predetermined time and outputs it to the frequency correction circuit 42. As a result, the frequency correction circuit 42 outputs an oscillation signal 68 subjected to temperature compensation every predetermined time.

上記実施形態においては、昇温周波数温度情報77aと降温周波数温度情報77bにおける周波数測定時の温度情報が互いに異なる場合、または周波数温度情報76において必要とする温度情報が昇温周波数温度情報77a及び降温周波数温度情報77bの温度情報と異なる場合は、数式1で表現される複数の近似曲線情報を用いて周波数温度情報76を生成する、ことを前提として述べてきた。   In the above embodiment, when the temperature information at the time of frequency measurement in the temperature rise frequency temperature information 77a and the temperature drop frequency temperature information 77b is different from each other, or the temperature information required in the frequency temperature information 76 is the temperature rise frequency temperature information 77a and the temperature drop. In the case where the temperature information is different from the temperature information of the frequency temperature information 77b, it has been described on the premise that the frequency temperature information 76 is generated using a plurality of pieces of approximate curve information expressed by Formula 1.

しかし、昇温周波数温度情報77a及び降温周波数温度情報77bの温度情報が互いに一致し、周波数温度情報76の要求する温度情報と一致する場合には、PC54は、昇温周波数温度情報77aと降温周波数温度情報77bにおいて同一の温度情報に対応する周波数の情報の加算平均等により周波数の中間値の情報を算出し、温度情報と前記中間値の情報との組み合わせにより周波数温度情報76を生成することが可能となる。この場合PC54は、第1の近似曲線情報70及び第2の近似曲線情報72を算出する必要はなく、圧電発振器10の製造工程を簡略化できるのでコストを抑制することができる。   However, if the temperature information of the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b match each other and match the temperature information requested by the frequency temperature information 76, the PC 54 determines that the temperature increase frequency temperature information 77a and the temperature decrease frequency In the temperature information 77b, information on an intermediate frequency value is calculated by, for example, addition averaging of frequency information corresponding to the same temperature information, and frequency temperature information 76 is generated by a combination of the temperature information and the intermediate value information. It becomes possible. In this case, the PC 54 does not need to calculate the first approximate curve information 70 and the second approximate curve information 72, and the manufacturing process of the piezoelectric oscillator 10 can be simplified, so that the cost can be suppressed.

また本実施形態において、周波数温度情報76は、圧電振動子12(または発振回路14)の周波数の温度特性を近似するための情報としたが、本発明にあってはこれに限られず、例えば、周波数補正回路42で出力すべき目標の周波数と圧電振動子12(または発振回路14)の周波数との差に係る情報として、前記差の情報、若しくは前記差の情報に目標の周波数の情報を加算した情報を記憶回路20に記憶しておき、この情報に基づき前記温度補償量80をCPU44で算出するようにしても良い。このとき、記憶回路20に記憶される情報は、目標の周波数と圧電振動子12(または発振回路14)の周波数との差の情報と、温度の情報とから構成されたものであり、或いは目標の周波数の圧電振動子12(または発振回路14)の周波数との差を近似するための近似式の情報(温度係数とオフセット係数)であっても良い。このようにすればCPU44における温度補償量80の計算を簡略化できる。   In the present embodiment, the frequency temperature information 76 is information for approximating the temperature characteristic of the frequency of the piezoelectric vibrator 12 (or the oscillation circuit 14). However, the present invention is not limited to this, and for example, As the information relating to the difference between the target frequency to be output by the frequency correction circuit 42 and the frequency of the piezoelectric vibrator 12 (or the oscillation circuit 14), the difference information or the information on the target frequency is added to the difference information. The information may be stored in the storage circuit 20 and the temperature compensation amount 80 may be calculated by the CPU 44 based on this information. At this time, the information stored in the storage circuit 20 includes information on the difference between the target frequency and the frequency of the piezoelectric vibrator 12 (or the oscillation circuit 14), and information on the temperature. Information (temperature coefficient and offset coefficient) of an approximate expression for approximating the difference between the frequency of the piezoelectric vibrator 12 (or the oscillation circuit 14) and the frequency of In this way, the calculation of the temperature compensation amount 80 in the CPU 44 can be simplified.

次に、本実施形態に係る圧電発振器10の作用効果について述べる。図3(a)に圧電振動子のヒステリシス特性、図3(b)は図3(a)の部分拡大図を示す。図4(a)に温度上昇時の昇温周波数温度情報を用いて温度補償を行った場合の温度補償回路から出力される発振信号の周波数偏差(温度上昇時、温度下降時)、図4(b)に温度下降時の降温周波数温度情報を用いて温度補償を行った場合の温度補償回路から出力される発振信号の周波数偏差(温度上昇時、温度下降時)を示す。図5(a)は本実施形態の周波数温度情報を示す図、図5(b)は図5(a)の部分拡大図、図5(c)は本実施形態の周波数温度情報を用いて温度補償を行った場合の温度補償回路から出力される発振信号の周波数偏差を示す。   Next, the effect of the piezoelectric oscillator 10 according to the present embodiment will be described. FIG. 3A shows a hysteresis characteristic of the piezoelectric vibrator, and FIG. 3B shows a partially enlarged view of FIG. FIG. 4A shows the frequency deviation of the oscillation signal output from the temperature compensation circuit when the temperature compensation is performed using the temperature increase frequency temperature information at the time of temperature rise (when the temperature rises and when the temperature falls), FIG. b) shows the frequency deviation (when the temperature rises and when the temperature falls) of the oscillation signal output from the temperature compensation circuit when temperature compensation is performed using the temperature-decreasing frequency temperature information when the temperature falls. 5A is a diagram showing frequency temperature information of the present embodiment, FIG. 5B is a partially enlarged view of FIG. 5A, and FIG. 5C is a temperature using the frequency temperature information of the present embodiment. The frequency deviation of the oscillation signal output from the temperature compensation circuit when compensation is performed is shown.

従来技術でも述べたように、圧電振動子には図3に示すように温度上昇時、温度下降時において同一の周波数温度特性を有さずヒステリシス特性を有している。そこで、図3(a)、(b)に示すように温度補償回路40において温度上昇時の昇温周波数温度情報77aを用いた近似曲線(第1の近似曲線70)を算出し、これに基づいて温度補償を行うと、図4(a)に示すように、圧電発振器10の温度を上昇させたときの温度補償は良好に行われているが、逆に温度を下降させたときの温度補償は良好には行われず周波数偏差が0.5ppmを超えたものとなっている。   As described in the prior art, as shown in FIG. 3, the piezoelectric vibrator does not have the same frequency-temperature characteristic when the temperature rises and falls, but has a hysteresis characteristic. Therefore, as shown in FIGS. 3A and 3B, the temperature compensation circuit 40 calculates an approximate curve (first approximate curve 70) using the temperature rise frequency temperature information 77a at the time of temperature rise, and based on this. When the temperature compensation is performed, as shown in FIG. 4A, the temperature compensation when the temperature of the piezoelectric oscillator 10 is raised is satisfactorily performed, but the temperature compensation when the temperature is lowered is reversed. Is not performed well, and the frequency deviation exceeds 0.5 ppm.

また図3(a)、(b)に示すように、温度補償回路40において温度下降時の降温周波数温度情報77bを用いた近似曲線(第2の近似曲線情報72)を算出し、これに基づいて温度補償を行うと、図4(b)に示すように、圧電振動子12の温度を下降させたときの温度補償は良好に行われているが、逆に温度を上昇させたときの温度補償は良好には行われず周波数偏差が0.5ppmとなっている。本実施形態が想定するGPS機能を有する機器にこのような周波数偏差が生じると、従来技術で述べたように測位性能に悪影響を及ぼすことになる。   Further, as shown in FIGS. 3A and 3B, the temperature compensation circuit 40 calculates an approximate curve (second approximate curve information 72) using the temperature decrease frequency temperature information 77b at the time of temperature decrease, and based on this. When the temperature compensation is performed, as shown in FIG. 4B, the temperature compensation when the temperature of the piezoelectric vibrator 12 is lowered is satisfactorily performed, but conversely, the temperature when the temperature is raised. Compensation is not performed well, and the frequency deviation is 0.5 ppm. When such a frequency deviation occurs in a device having a GPS function assumed in the present embodiment, the positioning performance is adversely affected as described in the prior art.

一方、本実施形態の周波数温度情報76は、図5(a)、(b)に示すように、昇温周波数温度情報77aに対応して算出された第1の近似曲線情報70と、降温周波数温度情報77bに対応して算出された第2の近似曲線情報72と、の周波数方向の中間値として算出された第3の近似曲線情報74から抽出して形成されたものである。よって温度補償回路40においては、第3の近似曲線情報74と周囲温度の情報(検出電圧66)とを用いて基準周波数からの周波数偏差を算出し、これにより温度補償量80を算出することになる。よって、周囲温度が上昇している場合でも、下降している場合でも圧電振動子12のヒステリシス特性に起因する補正誤差を一定の範囲に抑制することができる。そして図5(c)に示すように、本実施形態においては、温度上昇時、温度下降時共に周数偏差を0.3ppm程度に抑えることができ、ヒステリシス特性を有する圧電振動子12に対して良好な温度補償を行うことができることがわかる。   On the other hand, as shown in FIGS. 5A and 5B, the frequency temperature information 76 of the present embodiment includes first approximate curve information 70 calculated corresponding to the temperature increase frequency temperature information 77a, and the temperature decrease frequency. The second approximate curve information 72 calculated corresponding to the temperature information 77b and the third approximate curve information 74 calculated as an intermediate value in the frequency direction are extracted and formed. Therefore, the temperature compensation circuit 40 calculates the frequency deviation from the reference frequency using the third approximate curve information 74 and the ambient temperature information (detection voltage 66), thereby calculating the temperature compensation amount 80. Become. Therefore, the correction error caused by the hysteresis characteristics of the piezoelectric vibrator 12 can be suppressed within a certain range regardless of whether the ambient temperature is rising or falling. As shown in FIG. 5C, in the present embodiment, the frequency deviation can be suppressed to about 0.3 ppm both when the temperature rises and when the temperature falls, and the piezoelectric vibrator 12 having hysteresis characteristics can be suppressed. It can be seen that good temperature compensation can be performed.

ところで、本実施形態に係る圧電振動子12のヒステリシス特性は、基準温度近傍で最も顕著に現れ、基準温度から離れるほど小さくなり、設定最低温度(−30℃)、設定最高温度(+85℃)においては殆ど検出されない。よって昇温周波数温度情報77a及び降温周波数温度情報77bのいずれか一方の測定範囲を限定した上で近似的に算出し、本実施形態の周波数温度情報76を構築する時間を短縮することができる。   By the way, the hysteresis characteristic of the piezoelectric vibrator 12 according to the present embodiment appears most prominently near the reference temperature, and decreases as the distance from the reference temperature increases. Are hardly detected. Therefore, it is possible to reduce the time for constructing the frequency temperature information 76 of the present embodiment by calculating approximately after limiting either one of the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b.

図6に圧電振動子の発振周波数の温度上昇時の周波数温度情報と、温度下降時の周波数温度情報の差分(ヒステリシス量)を示す。図6(a)に示すように、圧電振動子の発振周波数の温度上昇時の周波数温度情報77a(第1の近似曲線情報70、図3等参照)と温度下降時の周波数温度情報77b(第2の近似曲線情報72、図3等参照)の差分は、基準温度を中心として上に凸の2次関数的な形状を有していることが分かった。そこで、本発明は、基準温度におけるヒステリシス量から全体のヒステリシス特性を簡易的に算出している。   FIG. 6 shows the difference (hysteresis amount) between the frequency temperature information when the oscillation frequency of the piezoelectric vibrator rises and the frequency temperature information when the temperature drops. As shown in FIG. 6A, frequency temperature information 77a (see the first approximate curve information 70, FIG. 3 etc.) when the oscillation frequency of the piezoelectric vibrator increases, and frequency temperature information 77b (first) when the temperature drops. The difference between the two approximate curve information 72 (see FIG. 3 and the like) has a quadratic shape that is convex upward with the reference temperature as the center. Therefore, in the present invention, the entire hysteresis characteristic is simply calculated from the hysteresis amount at the reference temperature.

例えば、昇温周波数温度情報77aは、前述同様に圧電振動子12の周囲温度を基準温度を挟んで上昇させた場合の所定温度ごとの温度情報と周波数の情報とを組み合わせて生成する。このとき昇温周波数温度情報77aは、基準温度より低い温度領域で測定した低温領域情報82(設定最低温度を含む)と、基準温度を包含する基準温度領域で測定した第1の基準温度領域情報84と、基準温度領域より高い高温領域で測定した高温領域情報86(設定最高温度を含む)と、を有する。さらにこの昇温周波数温度情報77aに対応した第1の近似曲線情報70を算出する。   For example, the temperature increase frequency temperature information 77a is generated by combining the temperature information for each predetermined temperature and the frequency information when the ambient temperature of the piezoelectric vibrator 12 is increased across the reference temperature as described above. At this time, the temperature rising frequency temperature information 77a includes low temperature region information 82 (including a set minimum temperature) measured in a temperature region lower than the reference temperature, and first reference temperature region information measured in a reference temperature region including the reference temperature. 84, and high temperature region information 86 (including the set maximum temperature) measured in a high temperature region higher than the reference temperature region. Further, first approximate curve information 70 corresponding to the temperature increase frequency temperature information 77a is calculated.

そして近似的に算出する第2の降温周波数温度情報(不図示)は、周囲温度を基準温度を挟んで低下させた場合の基準温度領域において測定した第2の基準温度領域情報88と第1の基準温度領域情報84との差分と、低温領域情報82と、高温領域情報86と、を用いて算出することができる。ここで低温領域と、高温領域において昇温周波数温度情報77aと降温周波数温度情報77bの差分(ヒステリシス量)をゼロと近似することにより、図6(b)に示すように3つのプロット点からヒステリシス量を近似する2次関数の2次の温度係数を算出することができる。この2次の温度係数を第1の近似曲線情報70を構成する2次の温度係数から引くことにより第2の近似曲線情報(不図示)を算出することができる。この第2の近似曲線情報(不図示)から所定温度ごとの温度情報と温度情報に対応した周波数の情報を抽出することにより降温周波数温度情報(不図示)を近似的に生成することができる。   Then, second temperature-decreasing frequency temperature information (not shown) that is approximately calculated includes the second reference temperature region information 88 measured in the reference temperature region when the ambient temperature is lowered across the reference temperature, and the first information It can be calculated using the difference from the reference temperature region information 84, the low temperature region information 82, and the high temperature region information 86. Here, by approximating the difference (hysteresis amount) between the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b to zero in the low temperature region and the high temperature region, hysteresis is obtained from three plot points as shown in FIG. 6B. A quadratic temperature coefficient of a quadratic function approximating the quantity can be calculated. By subtracting the secondary temperature coefficient from the secondary temperature coefficient constituting the first approximate curve information 70, second approximate curve information (not shown) can be calculated. By extracting the temperature information for each predetermined temperature and the frequency information corresponding to the temperature information from the second approximate curve information (not shown), the temperature-decreasing frequency temperature information (not shown) can be generated approximately.

なお基準温度領域にて2点以上を測定して、これに対応したべき級数を用いてフィッティングさせて、これにより得られる温度係数を、対応する第1の近似曲線情報70を構成する温度係数から引くことにより第2の近似曲線情報(不図示)を算出することができる。以上の演算は全てPC54上で行なうことになる。そして図6(c)に示すように、昇温周波数温度特性77aと近似的に算出された降温周波数温度特性(不図示)との差分73aは、昇温周波数温度特性77aと降温周波数温度特性77bとの差分73bと遜色のないヒステリシス特性を有していることがわかる。なお、本実施形態においては、第2の基準温度領域情報88を先に生成し、その後昇温周波数温度情報77aを生成してもよい。   It should be noted that two or more points are measured in the reference temperature region, and fitting is performed using a power series corresponding thereto, and the temperature coefficient obtained thereby is calculated from the temperature coefficient constituting the corresponding first approximate curve information 70. By subtracting, second approximate curve information (not shown) can be calculated. All the above operations are performed on the PC 54. As shown in FIG. 6C, the difference 73a between the temperature increase frequency temperature characteristic 77a and the temperature decrease frequency temperature characteristic (not shown) approximately calculated is a temperature increase frequency temperature characteristic 77a and a temperature decrease frequency temperature characteristic 77b. It can be seen that it has a hysteresis characteristic that is inferior to the difference 73b. In the present embodiment, the second reference temperature region information 88 may be generated first, and then the temperature increase frequency temperature information 77a may be generated.

逆に昇温周波数温度情報77aの算出において上述の近似を用いる場合、降温周波数温度情報77bは、前述同様に圧電振動子12の周囲温度を基準温度を挟んで下降させた場合の所定温度ごとの温度情報と周波数の情報とを組み合わせて生成する。このとき降温周波数温度情報77bは、周囲温度を基準温度を挟んで上昇させた場合の基準温度より高い温度領域で測定した高温領域情報(高温領域情報86と同一であると近似)と、基準温度を包含する基準温度領域において測定した第3の基準温度領域情報90(第2の基準温度領域情報88と同一)と、前記基準温度領域より低い低温領域で測定した低温領域情報(低温領域情報82と同一であると近似)と、を有する。そしてこの降温周波数温度情報77bに対応した第2の近似曲線情報72を算出する。   Conversely, when the above approximation is used in the calculation of the temperature increase frequency temperature information 77a, the temperature decrease frequency temperature information 77b is the same as described above for each predetermined temperature when the ambient temperature of the piezoelectric vibrator 12 is decreased with the reference temperature interposed therebetween. A combination of temperature information and frequency information is generated. At this time, the temperature decrease frequency temperature information 77b includes high temperature region information (approximate to be the same as the high temperature region information 86) measured in a temperature region higher than the reference temperature when the ambient temperature is raised across the reference temperature, and the reference temperature. Third reference temperature region information 90 (same as the second reference temperature region information 88) measured in the reference temperature region including the low temperature region information (low temperature region information 82) measured in a low temperature region lower than the reference temperature region. And approximated to be the same. Then, second approximate curve information 72 corresponding to the temperature decrease frequency temperature information 77b is calculated.

一方、近似的に算出する昇温周波数温度情報(不図示)は、周囲温度を基準温度を挟んで上昇させたときの基準温度領域において測定した第4の基準温度領域情報92(第1の基準温度領域情報84と同一)と第3の基準温度領域情報90との差分と、低温領域情報82と、高温領域情報86と、を用いて算出することができる。ここで低温領域と、高温領域において昇温周波数温度情報77aと降温周波数温度情報77bの差分(ヒステリシス量)をゼロと近似することにより、図6(b)に示すように3つのプロット点からヒステリシス量を近似する2次関数の2次の温度係数を算出することができる。この2次の温度係数を第2の近似曲線情報72を構成する2次の温度係数から引くことにより第1の近似曲線情報(不図示)を算出することができる。この第1の近似曲線情報(不図示)から所定温度ごとの温度情報と温度情報に対応した周波数の情報を抽出することにより昇温周波数温度情報(不図示)を近似的に生成することができる。   On the other hand, the temperature increase frequency temperature information (not shown) calculated approximately is fourth reference temperature region information 92 (first reference) measured in the reference temperature region when the ambient temperature is raised with the reference temperature interposed therebetween. It can be calculated using the difference between the third reference temperature region information 90, the low temperature region information 82, and the high temperature region information 86. Here, by approximating the difference (hysteresis amount) between the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b to zero in the low temperature region and the high temperature region, hysteresis is obtained from three plot points as shown in FIG. 6B. A quadratic temperature coefficient of a quadratic function approximating the quantity can be calculated. By subtracting the secondary temperature coefficient from the secondary temperature coefficient constituting the second approximate curve information 72, the first approximate curve information (not shown) can be calculated. By extracting temperature information for each predetermined temperature and frequency information corresponding to the temperature information from the first approximate curve information (not shown), it is possible to approximately generate temperature rising frequency temperature information (not shown). .

図7に記憶回路に記憶する周波数温度情報の容量を比較する表を示す。図7に示すように、周波数温度情報として周波数の絶対値の情報を記憶する場合は11桁必要とするが、基準周波数からの周波数偏差の情報を記憶する場合は5桁で済むので周波数の情報に関する容量を約45パーセント削減することができる。また仮に昇温周波数温度情報77a、降温周波数温度情報77bを周波数の絶対値の情報を用いて構成した場合の容量を100とすると、周波数温度情報76を周波数の絶対値の情報を用いて構成したときは容量を50%削減でき、周波数温度情報76を周波数偏差の情報を用いて構成したときは容量を73%削減することができる。なお、周波数温度情報として記憶するアドレスの情報において必要な桁数は、測定温度が7点である場合は、3桁(最大8個のアドレスを許容)で充分であり、周囲温度の情報(検出電圧66)はその分解能に従って必要な桁数が決定される。さらに周波数温度情報が温度係数の情報である場合、温度係数については有効数字に従って必要な桁数が決定されるが、温度情報は不要であるので、その分の容量を削減することができる。   FIG. 7 shows a table for comparing the capacity of the frequency temperature information stored in the storage circuit. As shown in FIG. 7, eleven digits are required to store frequency absolute value information as frequency temperature information, but five digits are sufficient to store frequency deviation information from the reference frequency. About 45 percent. Further, assuming that the capacity when the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b are configured using information on the absolute value of frequency is 100, the frequency temperature information 76 is configured using information on the absolute value of frequency. When the frequency temperature information 76 is configured using frequency deviation information, the capacity can be reduced by 73%. Note that the required number of digits in the address information stored as frequency temperature information is sufficient if the measured temperature is 7 points, and 3 digits (up to 8 addresses are allowed) are sufficient. The number of digits required for the voltage 66) is determined according to its resolution. Further, when the frequency temperature information is information on the temperature coefficient, the necessary number of digits is determined according to the significant digits for the temperature coefficient, but the temperature information is unnecessary, so the capacity can be reduced.

以上述べたように、本実施形態に係る圧電発振器10の温度補償方法、及び圧電発振器10によれば、第1には、圧電振動子12の周囲温度を上昇させた場合に生成される昇温周波数温度情報77aと、周囲温度を下降させた場合の降温周波数温度情報77bとの中間値となる周波数温度情報76が入力され、周波数温度情報76と圧電振動子12の発振時の圧電振動子12の温度情報とを用いて基準周波数からの周波数偏差を算出し、これにより温度補償量80を算出することになる。よって、周囲温度が上昇している場合でも、下降している場合でも圧電振動子のヒステリシス特性に起因する補正誤差を一定の範囲に抑制することができる。さらに記憶回路20には昇温周波数温度情報77a、降温周波数温度情報77b、またはこれらから抽出した温度係数を記憶する必要はないので記憶回路20の容量負担の増大を回避することができる。   As described above, according to the temperature compensation method of the piezoelectric oscillator 10 and the piezoelectric oscillator 10 according to the present embodiment, first, the temperature rise generated when the ambient temperature of the piezoelectric vibrator 12 is increased. Frequency temperature information 76 which is an intermediate value between the frequency temperature information 77a and the temperature decrease frequency temperature information 77b when the ambient temperature is lowered is input, and the frequency temperature information 76 and the piezoelectric vibrator 12 at the time of oscillation of the piezoelectric vibrator 12 are input. The frequency deviation from the reference frequency is calculated using the temperature information, and thereby the temperature compensation amount 80 is calculated. Therefore, the correction error caused by the hysteresis characteristic of the piezoelectric vibrator can be suppressed to a certain range regardless of whether the ambient temperature is rising or falling. Furthermore, since it is not necessary to store the temperature increase frequency temperature information 77a, the temperature decrease frequency temperature information 77b, or the temperature coefficient extracted from these in the storage circuit 20, an increase in capacity burden on the storage circuit 20 can be avoided.

第2には、周波数温度情報76を、昇温周波数温度情報77aから算出され、発振周波数の連続的な温度特性を示す第1の近似曲線情報70と、降温周波数温度情報77bから算出され、発振周波数の連続的な温度特性を示す第2の近似曲線情報72と、の中間値として算出された第3の近似曲線情報74から抽出している。これにより、周波数温度情報76は温度変化に対して連続的に変化する第3の近似曲線情報74から抽出する。一方、温度補償回路40では周波数温度情報76を元に温度変化に対して連続的に変化する発振周波数の近似曲線を形成している。したがって温度補償回路40で算出される近似曲線は第3の近似曲線情報74となるので、温度補償を高精度に行うことができる。また、昇温周波数温度情報77aと降温周波数温度情報77bは同一の温度位置で測定する必要はないので、周波数温度情報76の生成の歩留を高め、コストを抑制することができる。   Secondly, the frequency temperature information 76 is calculated from the temperature rising frequency temperature information 77a, calculated from the first approximate curve information 70 indicating the continuous temperature characteristic of the oscillation frequency, and the temperature decreasing frequency temperature information 77b. The second approximate curve information 72 indicating the continuous temperature characteristics of the frequency and the third approximate curve information 74 calculated as an intermediate value are extracted. Thereby, the frequency temperature information 76 is extracted from the third approximate curve information 74 that continuously changes with respect to the temperature change. On the other hand, the temperature compensation circuit 40 forms an approximate curve of the oscillation frequency that continuously changes with respect to the temperature change based on the frequency temperature information 76. Therefore, since the approximate curve calculated by the temperature compensation circuit 40 is the third approximate curve information 74, temperature compensation can be performed with high accuracy. Further, since it is not necessary to measure the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b at the same temperature position, the yield of generation of the frequency temperature information 76 can be increased and the cost can be suppressed.

第3には、周波数温度情報76を、温度情報と、前記温度情報に対応した発振周波数の情報、若しくは前記温度情報に対応した基準周波数からの周波数偏差の情報により生成することにより、圧電発振器10側で温度係数の演算が不要となるため圧電発振器10形成時の作業負担を抑制してコストを抑制することができる。特に周波数偏差の情報を記憶する場合は、桁数が小さくなるためデータの容量を小さくすることが可能であり、記憶回路20を小型化してコストを抑制することができる。この場合、ユーザー側で周波数温度情報76のプロットに重なるべき級数の温度係数を演算して第3の近似曲線情報74を算出することになるが、ユーザー側で独自に正確な温度係数を演算することができる。   Third, the frequency temperature information 76 is generated from the temperature information and the information on the oscillation frequency corresponding to the temperature information or the information on the frequency deviation from the reference frequency corresponding to the temperature information. Since the calculation of the temperature coefficient is not required on the side, the work burden at the time of forming the piezoelectric oscillator 10 can be suppressed and the cost can be suppressed. In particular, when frequency deviation information is stored, the number of digits is reduced, so that the data capacity can be reduced, and the memory circuit 20 can be reduced in size and the cost can be reduced. In this case, the user calculates the third approximate curve information 74 by calculating the temperature coefficient of the series that should overlap the plot of the frequency temperature information 76, but the user calculates the exact temperature coefficient uniquely. be able to.

第4には、周波数温度情報76を、第3の近似曲線情報74から抽出される温度係数の情報により生成することにより、温度補償回路40においては第3の近似曲線情報74を算出するための演算が不要となるため、ユーザー側の負担を軽減して圧電発振器10を搭載したシステムの構築を容易に行うことができる。   Fourth, by generating the frequency temperature information 76 based on the temperature coefficient information extracted from the third approximate curve information 74, the temperature compensation circuit 40 calculates the third approximate curve information 74. Since computation is not required, it is possible to easily construct a system equipped with the piezoelectric oscillator 10 while reducing the burden on the user side.

第5には、昇温周波数温度情報77aを、降温周波数温度情報77bと圧電振動子12の周囲温度を基準温度領域に上昇させて測定した温度と周波数の情報と、を用いて近似的に算出した。昇温周波数温度情報77aと降温周波数温度情報77bとの周波数成分の差分をとると基準温度領域において差分が最も大きくなり、基準温度から離れるほど小さくなる。よって昇温周波数温度情報77aは、降温周波数温度情報77bと、周囲温度を基準温度領域に上昇させて測定した温度と周波数の情報と、を用いて近似的に算出することができる。したがって、温度上昇時の温度と周波数との情報は基準温度領域のみ取得すればよく、基準温度より高い高温領域まで温度を上昇させる工程が不要になる。したがって昇温周波数温度情報77aの取得時間を短縮することができるため、作業負担を削減してコストを抑制することができる。   Fifth, temperature increase frequency temperature information 77a is approximately calculated using temperature decrease frequency temperature information 77b and temperature and frequency information measured by raising the ambient temperature of the piezoelectric vibrator 12 to the reference temperature region. did. When the difference between the frequency components of the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b is taken, the difference becomes the largest in the reference temperature region, and becomes smaller as the distance from the reference temperature is increased. Therefore, the temperature increase frequency temperature information 77a can be approximately calculated using the temperature decrease frequency temperature information 77b and temperature and frequency information measured by raising the ambient temperature to the reference temperature region. Therefore, information on the temperature and frequency at the time of temperature rise need only be acquired in the reference temperature region, and a step of raising the temperature to a high temperature region higher than the reference temperature becomes unnecessary. Therefore, since the acquisition time of the temperature rising frequency temperature information 77a can be shortened, the work load can be reduced and the cost can be suppressed.

第6には、降温周波数温度情報77bを、昇温周波数温度情報77aと圧電振動子12の周囲温度を基準温度領域に下降させて測定した温度と周波数の情報と、を用いて近似的に算出した。上述同様の理由により、降温周波数温度情報77bは昇温周波数温度情報77aと周囲温度を基準温度領域に下降させて測定した温度と周波数の情報とを用いて近似的に算出することができる。さらに温度下降時は基準温度領域を測定すればよく、基準温度より低い低温領域を測定する必要はない。したがって降温周波数温度情報77bの取得時間を短縮することができるため、作業負担を削減してコストを抑制することができる。   Sixth, the temperature decrease frequency temperature information 77b is approximately calculated using the temperature increase frequency temperature information 77a and temperature and frequency information measured by lowering the ambient temperature of the piezoelectric vibrator 12 to the reference temperature region. did. For the same reason as described above, the temperature decrease frequency temperature information 77b can be calculated approximately using the temperature increase frequency temperature information 77a and temperature and frequency information measured by lowering the ambient temperature to the reference temperature region. Further, it is only necessary to measure the reference temperature region when the temperature falls, and it is not necessary to measure a low temperature region lower than the reference temperature. Therefore, since the acquisition time of the temperature decrease frequency temperature information 77b can be shortened, the work burden can be reduced and the cost can be suppressed.

第7には、前記周囲温度に対応した検出電圧66を出力する温度センサー16を圧電振動子12に隣接して配設し、昇温周波数温度情報77a及び前記降温周波数温度情報77bを、前記検出電圧66の関数として生成し、周波数温度情報76を、昇温周波数温度情報77a及び降温周波数温度情報77bに基づいて算出し、周波数温度情報76と検出電圧66とに基づいて温度補償量80を算出可能な温度補償回路40に発振信号58を出力し、温度センサー16から温度補償回路40に検出電圧66を出力する構成とした。   Seventh, a temperature sensor 16 that outputs a detection voltage 66 corresponding to the ambient temperature is disposed adjacent to the piezoelectric vibrator 12, and the temperature increase frequency temperature information 77a and the temperature decrease frequency temperature information 77b are detected. Generated as a function of the voltage 66, the frequency temperature information 76 is calculated based on the temperature rising frequency temperature information 77a and the temperature decreasing frequency temperature information 77b, and the temperature compensation amount 80 is calculated based on the frequency temperature information 76 and the detected voltage 66. The oscillation signal 58 is output to the possible temperature compensation circuit 40, and the detection voltage 66 is output from the temperature sensor 16 to the temperature compensation circuit 40.

これにより、温度センサー16は圧電振動子12の周囲温度を測定誤差を抑制して測定することができるので、昇温周波数温度情報77a及び降温周波数温度情報77bを高精度に生成して、周波数温度情報76を高精度に算出することができる。さらに圧電振動子12の温度情報をリアルタイムでかつ高精度に測定できるので、温度補償回路40における補正誤差を抑制して、温度補償を高精度に行なうことができる。   As a result, the temperature sensor 16 can measure the ambient temperature of the piezoelectric vibrator 12 while suppressing measurement errors, so that the temperature rise frequency temperature information 77a and the temperature fall frequency temperature information 77b are generated with high accuracy, and the frequency temperature Information 76 can be calculated with high accuracy. Furthermore, since the temperature information of the piezoelectric vibrator 12 can be measured in real time and with high accuracy, the correction error in the temperature compensation circuit 40 can be suppressed and temperature compensation can be performed with high accuracy.

なお、本実施形態において、圧電振動子は厚みすべり振動子を前提として述べてきたが、これに限定されず、双音叉型圧電振動子、シングルビーム型圧電振動子、SAW共振子等にも適用できる。また昇温周波数温度情報77a、降温周波数温度情報77b、第1の近似曲線情報70、第2の近似曲線情報72、第3の近似曲線情報74、周波数温度情報76は、それぞれ検出電圧66の関数として生成されるが、温度センサー16から出力される検出電圧66を実際の温度の値に変換して用いてもよい。よってこれに対応して、これらの情報を実際の温度の関数としてもよく、さらにPC54、及びCPU44も上述の情報を温度の関数として認識できるように構成してもよい。   In this embodiment, the piezoelectric vibrator has been described on the premise of a thickness-shear vibrator. However, the present invention is not limited to this, and is applicable to a double tuning fork type piezoelectric vibrator, a single beam type piezoelectric vibrator, a SAW resonator, and the like. it can. The temperature rise frequency temperature information 77a, the temperature fall frequency temperature information 77b, the first approximate curve information 70, the second approximate curve information 72, the third approximate curve information 74, and the frequency temperature information 76 are functions of the detected voltage 66, respectively. However, the detection voltage 66 output from the temperature sensor 16 may be converted into an actual temperature value and used. Accordingly, in response to this, the information may be a function of the actual temperature, and the PC 54 and the CPU 44 may be configured to recognize the above information as a function of the temperature.

10………圧電発振器、12………圧電振動子、14………発振回路、16………温度センサー、18………バッファー、20………記憶回路、22………シリアルインターフェース回路、24………発振周波数出力端子、26………データ入出力端子、28………第1制御クロック入力端子、30………第2制御クロック入力端子、34………温度センサー電圧出力端子、36………電源端子、38………グランド端子、40………温度補償回路、42………周波数補正回路、44………CPU、46………メモリ、48………A/D変換器、50………測定器、52………周波数カウンタ、54………PC、56………電圧マルチメータ、58………発振信号、60………第1の制御クロック、62………第2の制御クロック、66………検出電圧、68………発振信号、70………第1の近似曲線情報、72………第2の近似曲線情報、74………第3の近似曲線情報、76………周波数温度情報、77a………昇温周波数温度情報、77b………降温周波数温度情報、78………温度係数、80………温度補償量、82………低温領域情報、84………第1の基準温度領域情報、86………高温領域情報、88………第2の基準温度領域情報、90………第3の基準温度領域情報、92………第4の基準温度領域情報。 10 ......... Piezoelectric oscillator, 12 ......... Piezoelectric vibrator, 14 ......... Oscillation circuit, 16 ......... Temperature sensor, 18 ......... Buffer, 20 ......... Storage circuit, 22 ......... Serial interface circuit, 24... Oscillation frequency output terminal 26... Data input / output terminal 28... First control clock input terminal 30 30 Second control clock input terminal 34 34 Temperature sensor voltage output terminal 36... Power supply terminal 38... Ground terminal 40 40 Temperature compensation circuit 42 Frequency correction circuit 44 CPU 46 Memory 48 A / D conversion 50 ......... Measurement instrument 52 ......... Frequency counter 54 ......... PC 56 ......... Voltage multimeter 58 ......... Oscillation signal 60 ......... First control clock 62 ... ... second control clock, 66 ... Detected voltage, 68... Oscillation signal, 70... First approximate curve information, 72... Second approximate curve information, 74. , 77a ......... Temperature increase frequency temperature information, 77b ......... Temperature decrease frequency temperature information, 78 ......... Temperature coefficient, 80 ......... Temperature compensation amount, 82 ......... Low temperature region information, 84 ......... First Reference temperature region information, 86 ... High temperature region information, 88 ... Second reference temperature region information, 90 ... Third reference temperature region information, 92 ... Fourth reference temperature region information.

Claims (1)

周波数温度特性にヒステリシス特性を有する圧電振動子と、前記圧電振動子を発振させて発振信号を出力する発振回路と、前記圧電振動子の周囲温度に対応した検出電圧を出力する温度検出手段と、前記圧電振動子の発振周波数の温度特性を示す周波数温度情報を出力する記憶回路と、を有する圧電発振器と、
前記周波数温度情報と前記検出電圧とを用いて温度補償量を算出するCPUと、前記温度補償量に基づいて前記発振周波数の温度補償を行う周波数補正回路と、を有する温度補償回路と、を備えた発振回路システムであって、
前記周波数温度情報は、
前記ヒステリシス特性の影響を受けて表れた前記発振信号の2つの周波数温度特性に囲まれた領域にある周波数温度特性を示すものであることを特徴とする発振回路システム。
A piezoelectric vibrator having a hysteresis characteristic in frequency temperature characteristics; an oscillation circuit that oscillates the piezoelectric vibrator and outputs an oscillation signal; and a temperature detection means that outputs a detection voltage corresponding to the ambient temperature of the piezoelectric vibrator; A storage circuit for outputting frequency temperature information indicating temperature characteristics of the oscillation frequency of the piezoelectric vibrator, and a piezoelectric oscillator having
A temperature compensation circuit comprising: a CPU that calculates a temperature compensation amount using the frequency temperature information and the detection voltage; and a frequency correction circuit that performs temperature compensation of the oscillation frequency based on the temperature compensation amount. An oscillation circuit system,
The frequency temperature information is
An oscillation circuit system characterized by exhibiting a frequency temperature characteristic in a region surrounded by two frequency temperature characteristics of the oscillation signal that appears under the influence of the hysteresis characteristic.
JP2010043462A 2010-02-26 2010-02-26 Oscillation circuit system Pending JP2011114860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010043462A JP2011114860A (en) 2010-02-26 2010-02-26 Oscillation circuit system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043462A JP2011114860A (en) 2010-02-26 2010-02-26 Oscillation circuit system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009266693A Division JP2011114403A (en) 2009-11-24 2009-11-24 Temperature compensation method for piezoelectric oscillator, and piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JP2011114860A true JP2011114860A (en) 2011-06-09

Family

ID=44236824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043462A Pending JP2011114860A (en) 2010-02-26 2010-02-26 Oscillation circuit system

Country Status (1)

Country Link
JP (1) JP2011114860A (en)

Similar Documents

Publication Publication Date Title
JP2011114403A (en) Temperature compensation method for piezoelectric oscillator, and piezoelectric oscillator
JP5533030B2 (en) Oscillation circuit and frequency correction type oscillation circuit
JP5893924B2 (en) Oscillator
JP5839884B2 (en) Temperature compensated crystal oscillator
US8729978B2 (en) Quartz-crystal controlled oscillator
JP4524326B2 (en) Crystal oscillator
CN103684255A (en) Judgment and control method for compensation and calibration of temperature-compensated crystal oscillator with built-in crystals
US5831485A (en) Method and apparatus for producing a temperature stable frequency using two oscillators
JP2011234094A (en) Piezoelectric oscillator, manufacturing method of piezoelectric oscillator and temperature compensation method of piezoelectric oscillator
JP2011114860A (en) Oscillation circuit system
JP2011114859A (en) Temperature compensation method for piezoelectric oscillator, and piezoelectric oscillator
JP5673044B2 (en) Temperature compensated piezoelectric oscillator, frequency correction system, frequency drift correction method
JP2013017074A (en) Temperature compensation oscillator and electronic apparatus
JP2011142444A (en) Method for manufacturing piezoelectric oscillator, and piezoelectric oscillator
JP2011120199A (en) Oscillation circuit system
JP2011120132A (en) Temperature compensation method of piezoelectric oscillator, and piezoelectric oscillator
JP2011119978A (en) Method of manufacturing piezoelectric oscillator, and the piezoelectric oscillator
JP2006303764A (en) Temperature compensation method of temperature compensation oscillation circuit, temperature compensation oscillation circuit, piezoelectric device, and electronic apparatus
JP2011097547A (en) Temperature compensating system
JP2011188175A (en) Method of manufacturing piezoelectric oscillator, piezoelectric oscillator
JP2011097513A (en) Temperature compensation method of piezoelectric oscillator, and the piezoelectric oscillator
JP2011119977A (en) Method of manufacturing piezoelectric oscillator, and piezoelectric oscillator
JP5213845B2 (en) Temperature compensated crystal oscillator
JP2010088123A (en) Piezoelectric oscillator, and reception device using piezoelectric oscillator
JP5831002B2 (en) Oscillators and electronics