JP2011112542A - Electro-optical distance meter - Google Patents

Electro-optical distance meter Download PDF

Info

Publication number
JP2011112542A
JP2011112542A JP2009270006A JP2009270006A JP2011112542A JP 2011112542 A JP2011112542 A JP 2011112542A JP 2009270006 A JP2009270006 A JP 2009270006A JP 2009270006 A JP2009270006 A JP 2009270006A JP 2011112542 A JP2011112542 A JP 2011112542A
Authority
JP
Japan
Prior art keywords
distance
light
signal
reference signal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009270006A
Other languages
Japanese (ja)
Other versions
JP5535599B2 (en
Inventor
Yasutoshi Aoki
康俊 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Topcon Co Ltd
Original Assignee
Sokkia Topcon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Topcon Co Ltd filed Critical Sokkia Topcon Co Ltd
Priority to JP2009270006A priority Critical patent/JP5535599B2/en
Publication of JP2011112542A publication Critical patent/JP2011112542A/en
Application granted granted Critical
Publication of JP5535599B2 publication Critical patent/JP5535599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a cyclic error from occurring in an electro-optical distance meter. <P>SOLUTION: In the electro-optical distance meter including a light emitting part (d) for emitting a ranging light (L), a modulator (14) for modulating the ranging light, a reference signal generator (12) for sending a reference signal (K) to the modulator, a light receiving part (e) for converting the received ranging light into ranging signals (P), and a distance calculation part (26) for finding a distance to a measuring point by the ranging signals, the modulator is composed of a switch element (28) connected with the light emitting part and two-stage XOR circuits (30A and 30B) interposed between the switch element and the reference signal generator, and phase inversion signals (T<SB>A</SB>and T<SB>B</SB>) from the distance calculation part are input to the XOR circuit on the respective stage, respectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ターゲットに向けて測距光を送光し、ターゲットで反射してきた測距光を受光し、送光した測距光と受光した測距光との位相差からターゲットまでの距離を測定する光波距離計に関する。   The present invention transmits distance measuring light toward the target, receives the distance measuring light reflected by the target, and determines the distance to the target from the phase difference between the transmitted distance measuring light and the received distance measuring light. The present invention relates to a light wave distance meter to be measured.

従来の光波距離計として、下記特許文献1に記載されたものを図7に示す。この光波距離計は、測距光Lを発する発光部dと、周波数の異なる複数の基準信号を発生する発振部aと、複数の基準信号から1つの基準信号を選択する周波数選択部bと、選択された基準信号Kにより発光部dから発する測距光Lを変調する変調部cと、発光部dから発した測距光Lが測点に設置された図示しないターゲットで反射して戻って来たときに測距光Lを受光して測距信号Mに変換する受光部eと、基準信号Kと測距信号Mとの位相差を測定してターゲットまでの距離を算出する計数器fとを備える。この際、周波数の異なる基準信号Kから得た各測定値を総合してターゲットまでの距離が算出される。   FIG. 7 shows a conventional optical distance meter described in Patent Document 1 below. The light wave distance meter includes a light emitting unit d that emits distance measuring light L, an oscillation unit a that generates a plurality of reference signals having different frequencies, a frequency selection unit b that selects one reference signal from the plurality of reference signals, The modulation unit c that modulates the distance measuring light L emitted from the light emitting unit d by the selected reference signal K, and the distance measuring light L emitted from the light emitting unit d is reflected and returned by a target (not shown) installed at the measuring point. A light receiving portion e that receives the distance measuring light L when it comes and converts it into a distance measuring signal M, and a counter f that measures the phase difference between the reference signal K and the distance measuring signal M to calculate the distance to the target. With. At this time, the distance to the target is calculated by combining the measured values obtained from the reference signals K having different frequencies.

また、発光部dからの測距光Lは、光路切換器gにより、ターゲットへ向かう測距光Lと、光波距離計内部のミラーi1、i2で反射して受光部eに至る参照光路hを進む参照光Rとに切換えられる。参照光路hを経て受光部eに入射した参照光Rから変換された参照信号Sも計数器fで基準信号Kとの位相差を測定し、この位相差からも距離を算出して、この距離によって測距信号Mから算出された距離の補正が行われる。   Further, the distance measuring light L from the light emitting part d is reflected by the distance measuring light L toward the target by the optical path switch g and the reference light path h which is reflected by the mirrors i1 and i2 inside the lightwave distance meter and reaches the light receiving part e. It is switched to the reference light R that advances. The reference signal S converted from the reference light R incident on the light receiving unit e through the reference light path h is also measured by the counter f with respect to the reference signal K, and the distance is also calculated from this phase difference. Thus, the distance calculated from the distance measurement signal M is corrected.

通常、測定値の安定性を上げるために、光路切換器gにより、参照光R、測距光L、参照光R、測距光Lと順番に出射して、多数回の距離測定を行い、平均値を得ていた。   Usually, in order to increase the stability of the measured value, the optical path switch g emits the reference light R, the distance measuring light L, the reference light R, and the distance measuring light L in order, and performs a number of distance measurements. The average value was obtained.

従来の光波距離計においては、基準信号Kとしては、数十MHz以下の周波数が使用されていたが、近年の光波距離計においては、測定精度を上げるため、基準信号Kとして、従来より高い周波数まで使用するようになってきた。周波数選択部bから出力される基準信号Kの周波数を高くすると、基準信号Kは、静電結合や電磁結合や電磁波放射等によって、受光部eから計数器fまでの間の回路へノイズとして入り込み、ターゲットまでの距離を往復することなく計数器fに入力されてしまい、これによってサイクリックエラーと呼ぶ誤差を生じるという問題が起き易くなってきた。   In a conventional lightwave distance meter, a frequency of several tens of MHz or less was used as the reference signal K. However, in recent lightwave distance meters, a higher frequency than the conventional frequency is used as the reference signal K in order to increase measurement accuracy. Have come to use until. When the frequency of the reference signal K output from the frequency selection unit b is increased, the reference signal K enters the circuit between the light receiving unit e and the counter f as noise due to electrostatic coupling, electromagnetic coupling, electromagnetic wave radiation, or the like. The distance to the target is input to the counter f without going back and forth, and this causes a problem of causing an error called a cyclic error.

下記特許文献1では、このようなサイクリックエラーを防止した光波距離計についても開示している。以下に、この光波距離計について説明する。   The following Patent Document 1 also discloses an optical distance meter that prevents such a cyclic error. Below, this light wave distance meter is demonstrated.

図8は、この光波距離計のブロック図である。この光波距離計10は、ターゲット8に向けて測距光Lを出射する発光部(発光ダイオード)dと、基準信号Kを発生する基準信号発生器12と、基準信号Kにより発光部dから出射する測距光Lを変調する変調器14と、測距光Lがターゲット(プリズム)8で反射して戻って来たときに測距光Lを受光して測距信号P、Prを発生させる受光部(ホトダイオード)eと、測距信号P、Prを増幅する増幅器16と、測距信号P、Prを用いて距離を算出する距離算出部18を備えている。ただし、Pは基準信号K正転時、Prは基準信号K反転時の各測距信号である。   FIG. 8 is a block diagram of this light wave distance meter. The lightwave distance meter 10 includes a light emitting unit (light emitting diode) d that emits distance measuring light L toward the target 8, a reference signal generator 12 that generates a reference signal K, and a light emitted from the light emitting unit d by the reference signal K. A modulator 14 for modulating the ranging light L to be received, and when the ranging light L is reflected by the target (prism) 8 and returns, the ranging light L is received and the ranging signals P and Pr are generated. A light receiving unit (photodiode) e, an amplifier 16 that amplifies the ranging signals P and Pr, and a distance calculating unit 18 that calculates a distance using the ranging signals P and Pr are provided. However, P is each ranging signal when the reference signal K is rotated forward, and Pr is each ranging signal when the reference signal K is inverted.

基準信号発生器12は、安定した周波数の基本信号を発生する水晶発振器20と、基本信号を逓倍又は分周して得られる複数の周波数から適切な周波数の基準信号Kを選択する周波数選択器22からなる。   The reference signal generator 12 includes a crystal oscillator 20 that generates a basic signal having a stable frequency, and a frequency selector 22 that selects a reference signal K having an appropriate frequency from a plurality of frequencies obtained by multiplying or dividing the basic signal. Consists of.

変調器14は、CPU26から位相反転信号Tが送られてこないときには(T=0)、基準信号Kによって測距光Lを変調し、CPU26から位相反転信号T(T=1)が送られてきたときには、位相反転させた基準信号−Kによって測距光Lを変調するようになっている。このため、この変調器14は、変調トランジスタ(スイッチ素子)28と、この変調トランジスタ28の通電を制御するXOR回路(排他的論理和回路)30からなり、具体的には、変調トランジスタ28のベースがXOR回路30の出力端に接続されている。そして、変調トランジスタ28のコレクタに発光部dが接続され、XOR回路30には、周波数選択器22からの基準信号Kと、CPU26からの位相反転信号Tが入力されるようになっている。   When the phase inversion signal T is not sent from the CPU 26 (T = 0), the modulator 14 modulates the distance measuring light L with the reference signal K, and the phase inversion signal T (T = 1) is sent from the CPU 26. In this case, the ranging light L is modulated by the reference signal -K whose phase is inverted. For this reason, the modulator 14 includes a modulation transistor (switch element) 28 and an XOR circuit (exclusive OR circuit) 30 for controlling energization of the modulation transistor 28. Specifically, the modulator 14 has a base. Is connected to the output terminal of the XOR circuit 30. The light emitting section d is connected to the collector of the modulation transistor 28, and the XOR circuit 30 receives the reference signal K from the frequency selector 22 and the phase inversion signal T from the CPU 26.

CPU26から位相反転信号T(T=1)をXOR回路30に送ると、周波数選択器22からの高レベル信号(1)は、低レベル(0)に位相反転されてXOR回路30から出力され、周波数選択22からの低レベル信号(0)は、高レベル(1)に位相反転されてXOR回路30から出力される。   When the CPU 26 sends the phase inversion signal T (T = 1) to the XOR circuit 30, the high level signal (1) from the frequency selector 22 is phase inverted to the low level (0) and output from the XOR circuit 30, The low level signal (0) from the frequency selection 22 is phase-inverted to the high level (1) and output from the XOR circuit 30.

CPU26から位相反転信号TをXOR回路30に送らないと(T=0)、周波数選択器22からの高レベル信号(1)は、高レベル(1)のままXOR回路30から出力され、周波数選択器22からの低レベル信号(0)は、低レベル(0)のままXOR回路30から出力される。こうして、位相反転信号Tの有無により、位相反転しない基準信号K又は位相反転された基準信号−Kのいずれかによって、発光部dから発する光は変調される。   If the phase inversion signal T is not sent from the CPU 26 to the XOR circuit 30 (T = 0), the high level signal (1) from the frequency selector 22 is output from the XOR circuit 30 with the high level (1), and the frequency is selected. The low level signal (0) from the device 22 is output from the XOR circuit 30 with the low level (0). Thus, depending on the presence or absence of the phase inversion signal T, the light emitted from the light emitting unit d is modulated by either the reference signal K that is not phase-inverted or the reference signal -K that is phase-inverted.

発光部dから出射された測距光Lは、光路切換器gによって、ターゲット8へ向かう測距光路jを進む測距光Lと、光波距離計10内部の参照光路hを経て受光部eへ導かれる参照光Rに切換えられる。参照光路hは、発光部dから受光部eへ導くミラーi1、i2から構成される。受光部eで参照光Rから変換された参照信号Sは、基準信号Kと測距信号P、Prとの位相差の補正のために用いられる。   The distance measuring light L emitted from the light emitting part d is sent to the light receiving part e through the distance measuring light L traveling on the distance measuring optical path j toward the target 8 and the reference optical path h inside the optical distance meter 10 by the optical path switch g. It is switched to the guided reference light R. The reference optical path h is composed of mirrors i1 and i2 guided from the light emitting part d to the light receiving part e. The reference signal S converted from the reference light R by the light receiving unit e is used for correcting the phase difference between the standard signal K and the distance measurement signals P and Pr.

距離算出部18は、変調器14から送られて来る基準信号K、−Kと、増幅器16から送られて来る測距信号P、Prとの位相差を測定する位相比較器24と、この位相差からターゲット8までの距離を算出するCPU26を備えている。   The distance calculation unit 18 includes a phase comparator 24 that measures the phase difference between the reference signals K and −K sent from the modulator 14 and the distance measurement signals P and Pr sent from the amplifier 16. A CPU 26 for calculating the distance from the phase difference to the target 8 is provided.

この光波距離計10では、光路切換器gによる切換と、CPU26からの位相反転信号Tにより、基準信号Kで変調した参照光R、基準信号Kで変調した測距光L、位相反転した基準信号−Kで変調した測距光R、位相反転した基準信号−Kで変調した参照光Lを、この順番で繰り返して発光部dから出射し、多数回の距離測定を行い、多数の測定値を平均して距離を算出する。   In this optical distance meter 10, reference light R modulated by the reference signal K, distance measuring light L modulated by the reference signal K, phase-reversed reference signal by the switching by the optical path switch g and the phase inversion signal T from the CPU 26. The ranging light R modulated with -K and the reference light L modulated with the phase-inverted reference signal -K are repeatedly emitted in this order from the light emitting part d, and the distance measurement is performed many times to obtain a large number of measured values. The distance is calculated by averaging.

それでは、この光波距離計10でノイズを除去して距離測定ができる原理を図9に基づいて説明する。まず、最初に、基準信号Kによって変調した参照光Rを出射し、続いて基準信号Kによって変調した測距光Lを出射する。このとき、受光部eで得られる測距信号Pは、真の測距信号MにノイズNが加わったものとなる。この測距信号Pと基準信号Kとの位相差θpを位相比較器24で測定し、CPU26に記憶する。この位相差θpは、CPU26によって、参照光Rから得られる参照信号Sと基準信号Kとの位相差を用いて補正される。   Now, the principle that distance can be measured by removing noise with this optical distance meter 10 will be described with reference to FIG. First, the reference light R modulated by the standard signal K is emitted, and then the distance measuring light L modulated by the standard signal K is emitted. At this time, the distance measurement signal P obtained by the light receiving unit e is obtained by adding noise N to the true distance measurement signal M. The phase difference θp between the distance measurement signal P and the reference signal K is measured by the phase comparator 24 and stored in the CPU 26. This phase difference θp is corrected by the CPU 26 using the phase difference between the reference signal S obtained from the reference light R and the standard signal K.

次に、位相反転した基準信号−Kによって変調した測距光Lを出射し、続いて位相反転した基準信号−Kによって変調した参照光Rを出射する。   Next, the ranging light L modulated by the phase-inverted reference signal -K is emitted, and then the reference light R modulated by the phase-inverted reference signal -K is emitted.

このとき、受光部eで得られる測距信号Prは、真の測距信号Mを位相反転した反転測距信号MrにノイズNが加わったものである。この測距信号Prと位相反転した基準信号−Kとの位相差θrを位相比較器24で求め、CPU26に記憶する。この位相差θrも、参照光Rから得られる参照信号Sと位相反転された基準信号−Kとの位相差によって補正される。   At this time, the ranging signal Pr obtained by the light receiving unit e is obtained by adding noise N to the inverted ranging signal Mr obtained by inverting the phase of the true ranging signal M. A phase difference .theta.r between the distance measurement signal Pr and the phase-inverted reference signal -K is obtained by the phase comparator 24 and stored in the CPU. This phase difference θr is also corrected by the phase difference between the reference signal S obtained from the reference light R and the phase-inverted reference signal -K.

そして、CPU26は、前記2つの位相差θpとθrとの平均値θtを求め、この平均値θtから、ターゲット8までの距離を算出する。   The CPU 26 calculates an average value θt between the two phase differences θp and θr, and calculates a distance to the target 8 from the average value θt.

図9から解るように、測距信号Prと位相反転した基準信号−Kとの位相差θrは、測距信号Prを位相反転させた信号−Prと基準信号との位相差に等しくなる。そして、測距信号Pと測距信号Prを位相反転した信号−Prとを平均すると、ノイズN成分がうち消し合って、両者の平均測距信号Ptは、真の測距信号Mにほとんど一致する。したがって、前記2つの位相差θpとθrの平均値θtの位相誤差が極めて小さくなるので、サイクリックエラーを大幅に減少させることができる。   As can be seen from FIG. 9, the phase difference θr between the distance measurement signal Pr and the reference signal −K whose phase is inverted is equal to the phase difference between the signal −Pr whose phase is inverted and the reference signal. When the ranging signal P and the signal -Pr obtained by inverting the phase of the ranging signal Pr are averaged, the noise N component disappears, and the average ranging signal Pt of both of them almost coincides with the true ranging signal M. To do. Therefore, since the phase error of the average value θt of the two phase differences θp and θr becomes extremely small, the cyclic error can be greatly reduced.

特開2004−264112号公報JP 2004-264112 A

ところで、前記特許文献1に開示された光波距離計においては、近年では基準信号Kが高周波化されており、XOR回路30の位相遅れにより、基準信号Kを位相反転させても完全に180°位相が反転するのではなく、実際には180°より小さな位相角、普通は170°程度しか位相変化しないため、サイクリックエラーを完全に除去しきれないという問題があった。   By the way, in the optical distance meter disclosed in Patent Document 1, in recent years, the reference signal K has been increased in frequency, and even if the phase of the reference signal K is inverted due to the phase delay of the XOR circuit 30, the phase is completely 180 °. Is not reversed, and actually the phase angle is smaller than 180 °, and usually only about 170 °, there is a problem that the cyclic error cannot be completely removed.

この問題について、さらに詳細に説明する。図10に、基準信号K正転時の真の参照信号S、ノイズNが加わった実際の参照信号U、真の測距信号M、ノイズNが加わった実際の測距信号Pの各ベクトルを示す。図11に、基準信号K反転時の真の参照信号Sr、実際の参照信号Ur、真の測距信号Mr、実際の測距信号Prの各ベクトルを示す。図12に、基準信号K正転時の各ベクトルU、P、S、M、Nと、基準信号K反転時の各ベクトルUr、Pr、Sr、Mr、Nを、SrとS、MrとMが一致するように回転させたベクトルUr’、Pr’、N’を重ねた図を示す。   This problem will be described in more detail. FIG. 10 shows respective vectors of the true reference signal S at the time of normal rotation of the reference signal K, the actual reference signal U to which noise N is added, the true ranging signal M, and the actual ranging signal P to which noise N is added. Show. FIG. 11 shows vectors of the true reference signal Sr, the actual reference signal Ur, the true ranging signal Mr, and the actual ranging signal Pr when the reference signal K is inverted. FIG. 12 shows the vectors U, P, S, M, and N when the reference signal K is rotated forward, and the vectors Ur, Pr, Sr, Mr, and N when the reference signal K is inverted, as Sr and S, Mr and M. FIG. 8 shows a diagram in which vectors Ur ′, Pr ′, and N ′ rotated so as to coincide with each other are superimposed.

ただし、参照信号U、Urと測距信号P、Prは、それぞれ、参照光Rによる測距値Dr、測距光Lによる測距値Dlに対応する。そして、参照信号U、Ur’の平均と測距信号P、Pr’の平均の間の位相差は、表示する測距値に対応する。この表示する測距値は、
{(P+Pr’)/2}−{(U+Ur’)/2}
={(P-U)+(Pr’−Ur’)}/2
と変形できるから、基準信号K正転時の測距値と反転時の測距値を平均しても、同じ結果が得られる。後述する本発明では、この方法を用いている。
However, the reference signals U and Ur and the ranging signals P and Pr correspond to the ranging value Dr by the reference light R and the ranging value Dl by the ranging light L, respectively. The phase difference between the average of the reference signals U and Ur ′ and the average of the distance measurement signals P and Pr ′ corresponds to the distance value to be displayed. This displayed distance value is
{(P + Pr ′) / 2} − {(U + Ur ′) / 2}
= {(P−U) + (Pr′−Ur ′)} / 2
Therefore, the same result can be obtained by averaging the distance measurement value at the time of normal rotation of the reference signal K and the distance measurement value at the time of inversion. This method is used in the present invention described later.

さて、参照光Rによる測距値Dr、測距光Lによる測距値Dlは、それぞれ次式から求まる。ただし、λは測距波長、Asは参照信号Sの振幅、ψsは参照信号Sの位相、AnはノイズNの振幅、ψnはノイズNの位相、Apは測距信号Pの振幅、ψpは測距信号Pの位相である。
Dr={λ/(2π)}tan−1{(As・sinψs+An・sinψn)/(As・cosψs+An・cosψn)} (1)
Dl={λ/(2π)}tan−1{(Ap・sinψs+An・sinψn)/(Ap・cosψs+An・cosψn)} (2)
Now, the distance measurement value Dr by the reference light R and the distance measurement value Dl by the distance measurement light L are obtained from the following equations, respectively. Where λ is the ranging wavelength, As is the amplitude of the reference signal S, ψs is the phase of the reference signal S, An is the amplitude of the noise N, ψn is the phase of the noise N, Ap is the amplitude of the ranging signal P, and ψp is the measurement This is the phase of the distance signal P.
Dr = {λ / (2π)} tan −1 {(As · sinψs + An · sinψn) / (As · cosψs + An · cosψn)} (1)
Dl = {λ / (2π)} tan −1 {(Ap · sinφs + An · sinφn) / (Ap · cosφs + An · cosφn)} (2)

ここで、Dl−Drから測距値が得られる。そこで、波長λを2m、参照信号Sの振幅を1、測距信号Pの振幅を0.01、ノイズの振幅を0.001、参照信号Sの位相を0°、測距信号Pの位相を180°として、基準信号K正転時及び基準信号K反転時の各測距値を計算し、それぞれノイズNが無いときの測距値と比較した測距誤差を計算し、その結果を図13に示す。参照信号Sと測距信号Pの位相差を180°にしているのは、測距誤差を最大にできるからである。これから、基準信号K正転時及び基準信号K反転時の各測距値を平均すると、基準信号K正転時及び基準信号K反転時の測距誤差が打ち消しあって、測距誤差が大幅に減ることが分かる。   Here, a distance measurement value is obtained from D1-Dr. Therefore, the wavelength λ is 2 m, the amplitude of the reference signal S is 1, the amplitude of the ranging signal P is 0.01, the amplitude of the noise is 0.001, the phase of the reference signal S is 0 °, and the phase of the ranging signal P is At 180 °, each distance measurement value at the time of forward rotation of the reference signal K and at the time of reversal of the reference signal K is calculated, and a distance measurement error compared with the distance measurement value when there is no noise N is calculated. Shown in The reason why the phase difference between the reference signal S and the distance measurement signal P is set to 180 ° is that the distance measurement error can be maximized. From this, when the distance measurement values at the time of the reference signal K forward rotation and the reference signal K inversion are averaged, the distance measurement errors at the time of the reference signal K forward rotation and the reference signal K inversion cancel each other, and the distance measurement error is greatly increased. You can see that it decreases.

しかし、実際には、XOR回路30では基準信号Kを完全に180°位相反転させることはできず、180°よりいくらか小さい位相角だけ変化させていた。以下、このような場合も位相反転と称する。そこで、基準信号Kが位相角(180−φ)°(ただし、0°<φ<180°、実際のφは10°程度であるが、今後、基準信号Kがさらに高周波化されると、φは増加する。)で反転した時、それぞれの参照信号Sr、測距信号Pr、ノイズN、反転後の基準信号K’の各ベクトルを図14に示す。そして、前記図12と同様に、基準信号K正転時の各ベクトルU、P、S、M、Nと、基準信号K反転時の各ベクトルを、SとSr、MとMrとは一致するように回転させたベクトルUr’、Pr’、N’を重ねた図を図15に示す。さらに、図13に示した測距誤差を求めたときと同じ条件で測距値を計算して、測距誤差を求め、その結果を図16に示す。図16からは、φ=0°のときは測距誤差が極めて小さいが、φが大きくなるほど測距誤差が大きくなることが分かる。すなわち、従来の光波距離計ではサイクリックエラーを完全に除去することができないという問題があった。   However, in actuality, the XOR circuit 30 cannot completely invert the phase of the reference signal K by 180 °, and the phase is changed by a phase angle somewhat smaller than 180 °. Hereinafter, such a case is also referred to as phase inversion. Therefore, the reference signal K has a phase angle (180−φ) ° (where 0 ° <φ <180 ° and the actual φ is about 10 °. However, if the reference signal K is further increased in frequency in the future, φ FIG. 14 shows respective vectors of the reference signal Sr, ranging signal Pr, noise N, and inverted reference signal K ′. Similarly to FIG. 12, the vectors U, P, S, M, and N at the time of normal rotation of the reference signal K and the vectors at the time of inversion of the reference signal K match S and Sr, and M and Mr. FIG. 15 shows a diagram in which the vectors Ur ′, Pr ′, N ′ rotated in this manner are superimposed. Further, the distance measurement value is calculated under the same conditions as those for obtaining the distance measurement error shown in FIG. 13 to obtain the distance measurement error, and the result is shown in FIG. FIG. 16 shows that the distance measurement error is extremely small when φ = 0 °, but the distance measurement error increases as φ increases. That is, the conventional lightwave distance meter has a problem that the cyclic error cannot be completely removed.

本発明は、前記問題に鑑みてなされたもので、光波距離計においてサイクリックエラーをさらに小さくすることを課題とする。   This invention is made | formed in view of the said problem, and makes it a subject to make cyclic error still smaller in a light wave rangefinder.

上記の課題を解決するため請求項1に係る発明は、測距光を出射する発光部と、前記測距光を変調する変調器と、該変調器に基準信号を送る基準信号発生器と、受光した測距光を測距信号に変換する受光部と、前記測距信号を用いて測点までの距離を算出する距離算出部とを備える光波距離計において、前記変調器は、前記発光部に接続されたスイッチ素子と、該スイッチ素子と前記基準信号発生器の間に介在させた2段の位相反転器からなり、各段の位相反転器それぞれに前記距離算出部からの位相反転信号が入力されるものであることを特徴とする。   In order to solve the above-mentioned problems, an invention according to claim 1 includes a light emitting unit that emits distance measuring light, a modulator that modulates the distance measuring light, a reference signal generator that transmits a reference signal to the modulator, In the lightwave distance meter comprising: a light receiving unit that converts received ranging light into a ranging signal; and a distance calculation unit that calculates a distance to a measuring point using the ranging signal, the modulator includes the light emitting unit And a two-stage phase inverter interposed between the switch element and the reference signal generator, and the phase-inverted signal from the distance calculation unit is provided in each phase inverter of each stage. It is input.

請求項2に係る発明では、請求項1に係る発明において、前記位相反転器がXOR回路であり、前記スイッチ素子を制御する信号を出力する2段目XOR回路と、該2段目XOR回路に入力する信号を出力するとともに前記基準信号が入力される初段XOR回路を備えたことを特徴とする。   In the invention according to claim 2, in the invention according to claim 1, the phase inverter is an XOR circuit, and a second-stage XOR circuit that outputs a signal for controlling the switch element, and the second-stage XOR circuit An initial stage XOR circuit is provided that outputs a signal to be input and receives the reference signal.

請求項1に係る発明では、変調器は、発光部に接続されたスイッチ素子と、該スイッチ素子と基準信号発生器の間に介在させた2段の位相反転器からなり、各段の位相反転器それぞれに距離算出部からの位相反転信号が入力されるようになっている。これにより、初段位相反転器と2段目位相反転器をともに正転、初段位相反転器又は2段目位相反転器の一方を正転で他方を反転、初段位相反転器と2段目位相反転器をともに反転させて、3回の測定を行うことができる。すると、2回目の測定では、1回目の測定に対して、基準信号が90°〜180°の間の所定角位相変化し、3回目の測定では、1回目の測定に対して、前記所定角の2倍位相が変化する。1回目と2回目の測定の平均と、2回目と3回目の測定の平均と、さらに両平均の平均を採ることにより、ノイズ成分が打ち消し合って、サイクリックエラーを小さくできる。また、略完全に位相反転させた基準信号で変調できるようにした変調器よりも変調器を簡単に製造できて、本発明の光波距離計を安価に製造できる。   In the invention according to claim 1, the modulator includes a switch element connected to the light emitting unit and a two-stage phase inverter interposed between the switch element and the reference signal generator. A phase inversion signal from the distance calculation unit is input to each device. As a result, both the first-stage phase inverter and the second-stage phase inverter are normally rotated, one of the first-stage phase inverter and the second-stage phase inverter is rotated forward and the other is inverted, and the first-stage phase inverter and the second-stage phase inverter are reversed. The instrument can be inverted together to make three measurements. Then, in the second measurement, the reference signal has a predetermined angle phase change between 90 ° and 180 ° with respect to the first measurement, and in the third measurement, the predetermined angle is changed with respect to the first measurement. 2 times the phase changes. By taking the average of the first and second measurements, the average of the second and third measurements, and the average of both averages, the noise components cancel each other out and the cyclic error can be reduced. Further, a modulator can be manufactured more easily than a modulator that can modulate with a reference signal whose phase is almost completely inverted, and the lightwave distance meter of the present invention can be manufactured at a low cost.

請求項2に係る発明によれば、さらに、前記位相反転器がXOR回路であり、前記スイッチ素子を制御する信号を出力する2段目XOR回路と、該2段目XOR回路に入力する信号を出力するとともに前記基準信号が入力される初段XOR回路を備えたから、変調器が特に簡単な構成となって、本発明の光波距離計をいっそう安価に製造できる。   According to the invention of claim 2, the phase inverter is an XOR circuit, and a second-stage XOR circuit that outputs a signal for controlling the switch element, and a signal that is input to the second-stage XOR circuit Since the first stage XOR circuit for outputting the reference signal and outputting the reference signal is provided, the modulator has a particularly simple configuration, and the lightwave distance meter of the present invention can be manufactured at a lower cost.

本発明の光波距離計の第1実施例を説明するブロック図である。It is a block diagram explaining the 1st Example of the lightwave distance meter of the present invention. 前記光波距離計での距離測定方法を説明する図である。It is a figure explaining the distance measuring method with the said light wave distance meter. 前記光波距離計の測距誤差を示す図である。It is a figure which shows the ranging error of the said light wave rangefinder. 前記光波距離計の測距誤差を示す図である。It is a figure which shows the ranging error of the said light wave rangefinder. 本発明の光波距離計の第2実施例を説明するブロック図である。It is a block diagram explaining 2nd Example of the lightwave distance meter of this invention. 本発明の光波距離計の別の実施例を説明するブロック図である。It is a block diagram explaining another Example of the lightwave distance meter of this invention. 一般的な従来の光波距離計のブロック図である。It is a block diagram of a general conventional lightwave distance meter. サイクリックエラーを低減させた従来の光波距離計のブロック図である。It is a block diagram of the conventional lightwave distance meter which reduced the cyclic error. 前記サイクリックエラーを低減させた従来の光波距離計で、サイクリックエラーを低減させる原理を説明する図である。It is a figure explaining the principle which reduces a cyclic error with the conventional lightwave distance meter which reduced the said cyclic error. 前記サイクリックエラーを低減させた従来の光波距離計で基準信号正転時の参照信号、測距信号、ノイズの関係を示す図である。It is a figure which shows the relationship between the reference signal at the time of normal rotation of a standard signal, a ranging signal, and noise in the conventional optical wave rangefinder which reduced the said cyclic error. 前記サイクリックエラーを低減させた従来の光波距離計で基準信号反転時の参照信号、測距信号、ノイズの関係を示す図である。It is a figure which shows the relationship between the reference signal at the time of standard signal inversion in the conventional lightwave distance meter which reduced the said cyclic error, a ranging signal, and noise. 図11を反転させて図10に重ねた図である。It is the figure which reversed FIG. 11 and overlapped on FIG. 前記サイクリックエラーを低減させた従来の光波距離計の理論的な測距誤差を示す図である。It is a figure which shows the theoretical ranging error of the conventional lightwave rangefinder which reduced the said cyclic error. 前記サイクリックエラーを低減させた従来の光波距離計で、基準信号が(180−φ)°位相変化したときの参照信号、測距信号、ノイズの関係を示す図である。It is a figure which shows the relationship between a reference signal, a ranging signal, and noise when a standard signal changes phase by (180-φ) ° in the conventional optical wave rangefinder in which the cyclic error is reduced. 図14を(180−φ)°右回転させて図10に重ねた図である。FIG. 11 is a diagram in which FIG. 14 is rotated to the right by (180−φ) ° and superimposed on FIG. 10. 前記サイクリックエラーを低減させた従来の光波距離計の現実的な測距誤差を示す図である。It is a figure which shows the realistic ranging error of the conventional lightwave rangefinder which reduced the said cyclic error.

以下、図面に基づいて、本発明の光波距離計の好ましい実施例について詳細に説明する。   Hereinafter, preferred embodiments of the lightwave distance meter of the present invention will be described in detail with reference to the drawings.

まず、図1〜図4に基づいて、本発明の光波距離計の第1の実施例について説明する。図1のブロック図に示したように、この光波距離計では、基準信号発生器12と変調トランジスタ28との間に、位相反転器であるXOR回路30A、30Bが2段設けられており、これ以外は、図8に示した従来のものと同じである。そこで、従来と同じ部分には、図面で同じ符号を付すに止めて説明を省略する。もちろん、XOR回路30A、30Bは、1段では、完全に180°の位相反転はできず、180°よりいくらか小さい(180−φ)°の位相変化をさせるものである。ただし、0°<φ<90°とする。   First, based on FIGS. 1-4, the 1st Example of the light wave distance meter of this invention is described. As shown in the block diagram of FIG. 1, in this optical distance meter, two stages of XOR circuits 30A and 30B, which are phase inverters, are provided between the reference signal generator 12 and the modulation transistor 28. Except for this, it is the same as the conventional one shown in FIG. Therefore, the same parts as those in the prior art are designated by the same reference numerals in the drawings, and description thereof is omitted. Of course, the XOR circuits 30A and 30B cannot completely invert the phase by 180 ° in one stage, but change the phase by slightly smaller than 180 ° (180−φ) °. However, 0 ° <φ <90 °.

初段のXOR回路30Aは、CPU26からの位相反転信号Tにより、正転と反転とに切換えできる。同じく、2段目のXOR回路30Bも、位相反転信号Tにより、正転と反転とに切換えられできる。 The first stage of the XOR circuit 30A, the phase inversion signal T A from the CPU 26, can be switched to the normal rotation reversal and. Similarly, the second stage XOR circuit 30B also, by the phase inversion signal T B, Dekiru switched to the normal rotation reversal and.

前記特許文献1に開示されたものでは、XOR回路30の正転と反転での2回測定を行い、その平均を測距値としたが、本実施例の場合、初段XOR回路30Aと2段目XOR回路30Bがともに正転、初段XOR回路30Aが反転(又は正転)で2段目XOR回路30Bが正転(又は反転)、初段XOR回路30Aと2段目XOR回路30Bがともに反転の3回の測定を行い、1回目と2回目の測定の平均と、2回目と3回目の測定の平均と、さらに両平均の平均を採ることにより測距値を得る。   In the device disclosed in Patent Document 1, the XOR circuit 30 is measured twice by normal rotation and inversion, and the average is used as the distance measurement value. In this embodiment, the first-stage XOR circuit 30A and the two-stage circuit are used. Both the first XOR circuit 30B is normal, the first XOR circuit 30A is inverted (or normal), the second XOR circuit 30B is normal (or inverted), and both the first XOR circuit 30A and the second XOR circuit 30B are inverted. A distance measurement value is obtained by measuring three times and taking the average of the first and second measurements, the average of the second and third measurements, and the average of both averages.

本実施例では、2回目の測定では、基準信号Kが1回目の測定に対して(180−φ)°位相が変化し(図14のK’参照)、3回目の測定では、基準信号Kが1回目の測定に対して2*(180-φ)°位相が変化する。3回目の測定について、図15と同様なベクトル図を描くと、図2のようになる。ただし、図2では、図面が煩雑になるのを防ぐため、ノイズN、反転させたノイズN’、再度反転させたノイズN”のみを表示している。3回目の測定では、ノイズN”が元のノイズNから2φ回転した位置になる。   In the present embodiment, in the second measurement, the phase of the reference signal K changes by (180−φ) ° with respect to the first measurement (see K ′ in FIG. 14), and in the third measurement, the reference signal K However, the 2 * (180-φ) ° phase changes with respect to the first measurement. For the third measurement, a vector diagram similar to FIG. 15 is drawn as shown in FIG. However, in FIG. 2, only the noise N, the inverted noise N ′, and the inverted noise N ″ are displayed to prevent the drawing from becoming complicated. In the third measurement, the noise N ″ is The position is rotated 2φ from the original noise N.

そこで、2回目の測定と3回目の測定について、図13に示した測距誤差を求めたときと同じ条件で測距値を計算する。そして2つの測距値の平均を取り、該平均のノイズが全く無いときに対する測距誤差を図3に示す。1回目の測定と2回目の測定について、測距値の平均のノイズが全く無いときに対する測距誤差は、図16に示したとおりである。そこで、1回目と2回目の測定の平均と、2回目と3回目の測定の平均と、さらに両平均の平均値を計算し、該平均値のノイズが全く無いときに対する測距誤差を図4に示す。図4から、φ=0°のときの測距誤差は極めて小さく、φ=45°でも測距誤差はまだ小さく、φが大きくなるとともに測距誤差が大きくなるが、φ<90°でも、従来のものより測距誤差を小さくできることが分かる。   Therefore, for the second measurement and the third measurement, distance measurement values are calculated under the same conditions as when the distance measurement error shown in FIG. 13 is obtained. Then, the average of the two distance measurement values is taken, and the distance measurement error when there is no noise of the average is shown in FIG. For the first measurement and the second measurement, the distance measurement error when there is no average noise of the distance measurement values is as shown in FIG. Therefore, the average of the first and second measurements, the average of the second and third measurements, and the average value of both averages are calculated, and the distance measurement error when there is no noise of the average value is shown in FIG. Shown in From FIG. 4, the distance measurement error when φ = 0 ° is extremely small, and the distance measurement error is still small even when φ = 45 °, and the distance measurement error increases as φ increases, but even when φ <90 °, It can be seen that the distance measurement error can be made smaller than that of the above.

このように、本実施例によれば、今後、基準信号Kが高周波化され、φが増加しても、1回目と2回目の測定の平均と、2回目と3回目の測定の平均と、さらに両平均の平均を採ることにより、ノイズNが互いに打ち消し合って、サイクリックエラーを小さくできる。また、略完全に位相反転させた基準信号Kで変調できるようにした変調器よりも、変調器14を簡単に製造できて、本発明の光波距離計を安価に製造できる。   Thus, according to this embodiment, even if the reference signal K is increased in frequency and φ increases in the future, the average of the first and second measurements, the average of the second and third measurements, Further, by taking the average of both averages, the noises N cancel each other, and the cyclic error can be reduced. Further, the modulator 14 can be manufactured more easily than the modulator that can modulate with the reference signal K whose phase is almost completely inverted, and the optical distance meter of the present invention can be manufactured at a low cost.

次に、本実施例の光波距離計の第2の実施例について詳細に説明する。図5は、この光波距離計のブロック図を示す。   Next, a second embodiment of the lightwave distance meter of this embodiment will be described in detail. FIG. 5 shows a block diagram of this light wave distance meter.

まず、発振器51で周波数Fの基準信号を発生させる。この周波数Fの基準信号は、分周部52に入力されるとともに、PLL55を介して、発振器56に入力される。分周部52は、周波数Fの基準信号を分周して、周波数F2及びFの基準信号を発生する。この周波数F2及びFの基準信号と周波数Fの基準信号とは、周波数重畳回路53を経て、初段XOR回路(位相反転器)30A及び2段目XOR回路(位相反転器)30Bを経て駆動回路(変調トランジスタ等のスイッチ素子)54へ入力される。駆動回路54の出力は負荷抵抗58を経て発光素子(発光部)61に供給される。発光素子61は、周波数F、F及びFで変調された光を出射する。初段XOR回路30Aと2段目XOR回路30Bは、図示しないCPU(距離算出部)からの位相反転信号T、Tによって位相反転する。 First, a reference signal having a frequency F 1 is generated by the oscillator 51. The reference signal having the frequency F 1 is input to the frequency divider 52 and is also input to the oscillator 56 via the PLL 55. The frequency divider 52 divides the reference signal having the frequency F 1 to generate the reference signals having the frequencies F 2 and F 3 . The reference signals of the frequencies F 2 and F 3 and the reference signal of the frequency F 1 pass through the frequency superimposing circuit 53 and then through the first stage XOR circuit (phase inverter) 30A and the second stage XOR circuit (phase inverter) 30B. This is input to a drive circuit (switching element such as a modulation transistor) 54. The output of the drive circuit 54 is supplied to a light emitting element (light emitting unit) 61 through a load resistor 58. The light emitting element 61 emits light modulated at frequencies F 1 , F 2 and F 3 . The first-stage XOR circuit 30A and the second-stage XOR circuit 30B are phase-inverted by phase inversion signals T A and T B from a CPU (distance calculation unit) (not shown).

発振器56は、周波数Fといくらか異なる周波数F+Δfの局部発振信号を発生する。この周波数F+Δfの局部発振信号からは、周波数生成回路57で分周されて、周波数F及びFとそれぞれいくらか異なる周波数F+Δf及びF+Δfの局部発振信号も生成される。これらの周波数F+Δf、F+Δf及びF+Δfの局部発振信号は、後述するように、それぞれ周波数変換器82、85、88へ入力される。 Oscillator 56 generates a somewhat different local oscillation signal of frequency F 1 + Δf 1 and frequency F 1. From the local oscillation signal of frequency F 1 + Δf 1 , the frequency generation circuit 57 divides the frequency to generate local oscillation signals of frequencies F 2 + Δf 2 and F 3 + Δf 3 that are somewhat different from the frequencies F 2 and F 3 , respectively. The The local oscillation signals of these frequencies F 1 + Δf 1 , F 2 + Δf 2 and F 3 + Δf 3 are input to frequency converters 82, 85 and 88, respectively, as will be described later.

発光素子61から出射された光は、ビームスプリッタ70で2つに分けられ、シャッター78を切換えることにより、一方が図示しない送光光学系から測距光として出射され、測点に設置された目標反射物(ターゲット)72までを往復する測距光路73を経て受光素子(受光部)80に入射し、他方が参照光として、光波距離計内部の参照光路76を経て受光素子80に入射する。測距光路73には、受光素子80の前に、受光光学系74と光量調整用の可変濃度フィルタ75が配置されている。参照光路76にも、受光素子80の前に光量減衰用の濃度フィルタ77が配置されている。   The light emitted from the light emitting element 61 is divided into two by the beam splitter 70, and by switching the shutter 78, one of the light is emitted as distance measuring light from a light transmission optical system (not shown) and is installed at a target point. The light enters the light receiving element (light receiving unit) 80 through a distance measuring optical path 73 that reciprocates up to the reflecting object (target) 72, and the other enters the light receiving element 80 through the reference light path 76 inside the lightwave distance meter as reference light. In the distance measuring optical path 73, a light receiving optical system 74 and a variable density filter 75 for adjusting the amount of light are disposed in front of the light receiving element 80. Also in the reference light path 76, a density filter 77 for attenuating the light amount is disposed in front of the light receiving element 80.

受光素子80から出力される測距信号は、増幅器81を経て3つに分けられ、一つ目は第1の周波数変換器82に入力され、2つ目は第2の周波数変換器85に入力され、3つ目は第3の周波数変換器88に入力される。   The ranging signal output from the light receiving element 80 is divided into three through an amplifier 81, the first being input to the first frequency converter 82, and the second being input to the second frequency converter 85. The third is input to the third frequency converter 88.

第1の周波数変換器82は、測距光路73を経た測距光又は参照光路76を経た参照光から得られた測距信号の周波数F成分に、前述した周波数Fといくらか異なる周波数F+Δfの局部発振信号を乗算して、周波数Δfの中間周波信号を発生させる。第2の周波数変換器85は、測距光路73を経た測距光又は参照光路76を経た参照光から得られた測距信号の周波数F成分に、前述した周波数Fといくらか異なる周波数F+Δfの局部発振信号を乗算して、周波数Δfの中間周波信号を発生させる。第3の周波数変換器88、測距光路73を経た測距光又は参照光路76を経た参照光から得られた測距信号の周波数F成分に、前述した周波数Fといくらか異なる周波数F+Δfの局部発振信号を乗算して、周波数Δfの中間周波信号を発生させる。 The first frequency converter 82 uses a frequency F 1 component of the ranging signal obtained from the ranging light that has passed through the ranging optical path 73 or the reference light that has passed through the reference optical path 76 to a frequency F that is somewhat different from the frequency F 1 described above. Multiply the 1 + Δf 1 local oscillator signal to generate an intermediate frequency signal of frequency Δf 1 . The second frequency converter 85 uses a frequency F 2 component of the ranging signal obtained from the ranging light that has passed through the ranging optical path 73 or the reference light that has passed through the reference optical path 76 to a frequency F that is somewhat different from the frequency F 2 described above. Multiply the 2 + Δf 2 local oscillation signal to generate an intermediate frequency signal of frequency Δf 2 . The frequency F 3 component of the ranging signal obtained from the third frequency converter 88, ranging light that has passed through the ranging optical path 73 or reference light that has passed through the reference optical path 76, has a frequency F 3 that is somewhat different from the frequency F 3 described above. Multiply the + Δf 3 local oscillation signal to generate an intermediate frequency signal of frequency Δf 3 .

各周波数変換器82、85、88から出力された中間周波信号は、それぞれ、低域フィルタ83、86、89によって高周波成分が除去される。
各低域フィルタ83、86、89を経た中間周波信号は、それぞれA/D変換器84、87、90に入力される。そして、これらの中間周波信号は、図示しないCPU(距離算出部)に送られ、そこで初期位相及び振幅が求められる。各中間周波信号の初期位相が求まると、目標反射物72までの測距値が、参照光路76を経た参照光から得られた測距値で補正される。また、各中間周波信号の振幅も求まると、これらの振幅は可変濃度フィルタ75による光量調節に利用される。
The intermediate frequency signals output from the frequency converters 82, 85, and 88 are respectively removed from the high frequency components by the low-pass filters 83, 86, and 89.
The intermediate frequency signals that have passed through the low-pass filters 83, 86, and 89 are input to A / D converters 84, 87, and 90, respectively. These intermediate frequency signals are sent to a CPU (distance calculation unit) (not shown), where the initial phase and amplitude are obtained. When the initial phase of each intermediate frequency signal is obtained, the distance value to the target reflector 72 is corrected with the distance value obtained from the reference light that has passed through the reference light path 76. Further, when the amplitudes of the intermediate frequency signals are obtained, these amplitudes are used for light amount adjustment by the variable density filter 75.

本実施例でも、変調器14を前記第1の実施例の変調器14と同様に構成しているため、前記第1の実施例と同じ効果を奏する。また、本実施例では、測距光Lを3つの周波数F、F及びFで同時に変調するから、3つの周波数を切換えて変調する場合に比べて測定時間を短縮できる。 Also in this embodiment, since the modulator 14 is configured in the same manner as the modulator 14 of the first embodiment, the same effect as that of the first embodiment can be obtained. Further, in the present embodiment, since the ranging light L is simultaneously modulated with the three frequencies F 1 , F 2 and F 3 , the measurement time can be shortened compared with the case where the modulation is performed by switching the three frequencies.

ところで、本発明は、前記実施例に限るものではなく、種々の変形が可能である。たとえば、本発明は、光波距離計以外にも、光波距離計を内蔵したトータルステーション等、光波距離計を内蔵する測量機の全てに適用可能である。また、更にXOR回路数を増やして測定値を平均することにより、測距誤差を低減できる場合は、XOR回路を増やしてもよい。さらに、位相反転器は、前記実施例のようにXOR回路30A、30Bを用いる必要はなく、基準信号に対して90°以上で180°以下の位相変化させることができる適宜位相反転器を使用することができ、例えば、図6に示したように、否定回路(NOT回路)31B、32Bとスイッチ31A、32Aから構成することもできる。   By the way, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the present invention can be applied to all surveying instruments including a light wave distance meter, such as a total station including a light wave distance meter, in addition to the light wave distance meter. Further, when the distance measurement error can be reduced by further increasing the number of XOR circuits and averaging the measured values, the number of XOR circuits may be increased. Further, the phase inverter does not need to use the XOR circuits 30A and 30B as in the above-described embodiment, and an appropriate phase inverter that can change the phase from 90 ° to 180 ° with respect to the reference signal is used. For example, as shown in FIG. 6, it can be configured by NOT circuits (NOT circuits) 31B and 32B and switches 31A and 32A.

8 ターゲット
10 光波距離計
12 基準信号発生器
14 変調器
26 CPU(距離算出部)
28 変調トランジスタ(スイッチ素子)
30A、30B XOR回路(位相反転器)
d 発光部
e 受光部
K 基準信号
T、T、T 位相反転信号
8 Target 10 Lightwave Distance Meter 12 Reference Signal Generator 14 Modulator 26 CPU (Distance Calculation Unit)
28 Modulation transistor (switch element)
30A, 30B XOR circuit (phase inverter)
d emitting portion e light receiving portion K reference signals T, T A, T B phase inversion signal

Claims (2)

測距光を出射する発光部と、前記測距光を変調する変調器と、該変調器に基準信号を送る基準信号発生器と、受光した測距光を測距信号に変換する受光部と、前記測距信号を用いて測点までの距離を算出する距離算出部とを備える光波距離計において、
前記変調器は、前記発光部に接続されたスイッチ素子と、該スイッチ素子と前記基準信号発生器の間に介在させた2段の位相反転器からなり、各段の位相反転器それぞれに前記距離算出部からの位相反転信号が入力されるものであることを特徴とする光波距離計。
A light emitting unit that emits distance measuring light; a modulator that modulates the distance measuring light; a reference signal generator that transmits a reference signal to the modulator; and a light receiving unit that converts the received distance measuring light into a distance measuring signal; In a lightwave distance meter comprising a distance calculation unit that calculates a distance to a measurement point using the distance measurement signal,
The modulator includes a switching element connected to the light emitting unit, and a two-stage phase inverter interposed between the switching element and the reference signal generator, and each of the phase inverters in each stage has the distance. A light wave distance meter, to which a phase inversion signal from a calculation unit is input.
前記位相反転器はXOR回路であり、前記スイッチ素子を制御する信号を出力する2段目XOR回路と、該2段目XOR回路に入力する信号を出力するとともに前記基準信号が入力される初段XOR回路を備えたことを特徴とする請求項1に記載の光波距離計。 The phase inverter is an XOR circuit, a second-stage XOR circuit that outputs a signal for controlling the switch element, and a first-stage XOR that outputs a signal input to the second-stage XOR circuit and receives the reference signal The lightwave distance meter according to claim 1, further comprising a circuit.
JP2009270006A 2009-11-27 2009-11-27 Light wave distance meter Active JP5535599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270006A JP5535599B2 (en) 2009-11-27 2009-11-27 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270006A JP5535599B2 (en) 2009-11-27 2009-11-27 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2011112542A true JP2011112542A (en) 2011-06-09
JP5535599B2 JP5535599B2 (en) 2014-07-02

Family

ID=44234979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270006A Active JP5535599B2 (en) 2009-11-27 2009-11-27 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP5535599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105200A (en) * 2013-11-29 2015-06-08 積水化学工業株式会社 Flaky graphite dispersion and production method of flaky graphite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543490A (en) * 1977-06-03 1979-01-11 Aga Ab Method of balance removing internal jam in distance measuring device and means for executing same
JPH075260A (en) * 1993-06-15 1995-01-10 Nikon Corp Light wave range-finding device
JP2004264112A (en) * 2003-02-28 2004-09-24 Sokkia Co Ltd Electro-optical distance meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543490A (en) * 1977-06-03 1979-01-11 Aga Ab Method of balance removing internal jam in distance measuring device and means for executing same
JPH075260A (en) * 1993-06-15 1995-01-10 Nikon Corp Light wave range-finding device
JP2004264112A (en) * 2003-02-28 2004-09-24 Sokkia Co Ltd Electro-optical distance meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105200A (en) * 2013-11-29 2015-06-08 積水化学工業株式会社 Flaky graphite dispersion and production method of flaky graphite

Also Published As

Publication number Publication date
JP5535599B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
US20180188369A1 (en) Chirped Coherent Laser Radar System and Method
JP4801194B2 (en) Low frequency signal light transmission system and low frequency signal light transmission method
JP2010112768A (en) Measurement apparatus
JP2014039027A (en) Laser with transmission mode and reflection mode feedback control
JP4828245B2 (en) Light wave distance meter
US11204246B1 (en) Systems and methods to reduce differential harmonics of resonance tracking modulation in a resonant fiber optic gyroscope
JP2016014662A (en) Symmetric three-laser resonator fiber optic gyroscope
US11719817B2 (en) Distance-measuring apparatus and control method
WO2020236545A1 (en) Frequency modulated scanning lidar with 360 degrees field of view
EP3973313A1 (en) Methods for large angle field of view scanning lidar with no movable parts
JP5014382B2 (en) Light wave distance meter
JP5535599B2 (en) Light wave distance meter
JP3262311B2 (en) Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit
JP2007155660A (en) Light wave range finder
WO2019186776A1 (en) Distance measurement device and control method
JP5730094B2 (en) Light wave distance meter
JP2023142441A (en) Light wave rangefinder
JP2011013108A (en) Lightwave distance meter
JP5234653B2 (en) Light wave distance meter
JP4306843B2 (en) Resonance point tracking system and ring resonance type optical fiber gyro using this system
JP5475349B2 (en) Light wave distance meter
US8270844B2 (en) Low jitter RF distribution system
JP7423118B1 (en) Phase modulation signal generation device for optical fiber gyroscope
JP2004264112A (en) Electro-optical distance meter
JP7448964B2 (en) Optical comb distance measuring method and optical comb distance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250