JP2011112164A - Damping device, and vehicle provided with the same - Google Patents

Damping device, and vehicle provided with the same Download PDF

Info

Publication number
JP2011112164A
JP2011112164A JP2009269276A JP2009269276A JP2011112164A JP 2011112164 A JP2011112164 A JP 2011112164A JP 2009269276 A JP2009269276 A JP 2009269276A JP 2009269276 A JP2009269276 A JP 2009269276A JP 2011112164 A JP2011112164 A JP 2011112164A
Authority
JP
Japan
Prior art keywords
vibration
pseudo
adaptive filter
deviation
canceling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009269276A
Other languages
Japanese (ja)
Other versions
JP5353661B2 (en
Inventor
Takeshi Tomizaki
猛 富崎
Kyoji Murakishi
恭次 村岸
Takeo Ito
丈生 伊藤
Hideaki Moriya
英朗 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009269276A priority Critical patent/JP5353661B2/en
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to EP10833287A priority patent/EP2505870A1/en
Priority to CN201080053633.9A priority patent/CN102667227B/en
Priority to PCT/JP2010/071051 priority patent/WO2011065441A1/en
Priority to KR1020127008783A priority patent/KR20120114214A/en
Publication of JP2011112164A publication Critical patent/JP2011112164A/en
Priority to US13/473,876 priority patent/US9075418B2/en
Priority to HK12112257.9A priority patent/HK1171494A1/en
Application granted granted Critical
Publication of JP5353661B2 publication Critical patent/JP5353661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Feedback Control In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damping device improving responsiveness of damping control according to the case where it is necessary to significantly change offset vibration caused by a remarkable change in vibration to be damped. <P>SOLUTION: The offset vibration (Vi4) is generated in a position to be damped through an excitation means (a linear actuator 2) based a calculation value of pseudo vibration (Vi3') required for offsetting vibration (Vi3) in the position to be damped. Vibration remaining as an offset error between the vibration (Vi3) and the offset vibration (Vi4) in the position to be damped is detected. Then, calculation of an adaptive filter (32f) is repeatedly performed so that the vibration remaining as the offset error is reduced, and the pseudo vibration (Vi3') and adaptive filter (32f) are converged to a true value by repeating the calculation. Further, information on deviation corresponding to deviation between the vibration (Vi3) and the offset vibration (Vi4) generated in the position to be damped based on the pseudo vibration (Vi3') is acquired, and a convergence coefficient (32u) is changed based on the acquired information on the deviation so that the converging speed of the adaptive filter (32f) is increased according to an increase in the deviation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発生する振動を適応制御により抑制する制振装置に係り、特に適応制御の応答性および安定性を向上させた制振装置及びこれを備えた車両に関する。   The present invention relates to a vibration damping device that suppresses generated vibration by adaptive control, and more particularly to a vibration damping device that improves the response and stability of adaptive control, and a vehicle equipped with the vibration damping device.

従来から車両のエンジン等の振動発生源で生じた振動と加振手段を通じて発生させた相殺振動とを制振すべき位置で相殺する制振装置が知られている。このような従来の制振装置として特許文献1及び特許文献2には、適応フィルタを用いて制振すべき振動に相当する疑似振動を算出し、算出した疑似振動に基づいてアクチュエータ等の加振手段を通じて制振すべき位置に相殺振動を発生させ、発生した相殺振動と制振すべき振動との相殺誤差として残る振動を加速度センサで検出し、検出した相殺誤差として残る振動が小さくなるように上記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させるものが開示されている。   2. Description of the Related Art Conventionally, there is known a vibration damping device that cancels vibration generated at a vibration generation source such as an engine of a vehicle and canceling vibration generated through a vibrating means at a position where vibration is to be suppressed. As such conventional vibration damping devices, Patent Document 1 and Patent Document 2 calculate a pseudo vibration corresponding to the vibration to be controlled using an adaptive filter, and based on the calculated pseudo vibration, an excitation of an actuator or the like. The cancellation vibration is generated at the position to be controlled through the means, the vibration remaining as the cancellation error between the generated cancellation vibration and the vibration to be controlled is detected by the acceleration sensor, and the remaining vibration as the detected cancellation error is reduced. A method is disclosed in which the calculation of the adaptive filter is repeatedly executed, and the pseudo vibration and the adaptive filter are converged to a true value by accumulation of the calculation.

このような適応制御を行う制振装置は、算出一回当たりに適応フィルタを真値へ近づける度合を示す収束係数を用いて適応フィルタの算出を積み重ねる構成が通例であり、この収束係数により適応フィルタの真値への収束する速度が決定されている。収束係数は、特許文献2に例示されるように、一定の収束係数を用いるのが一般的である。   A vibration damping device that performs such adaptive control typically has a configuration in which calculation of adaptive filters is stacked using a convergence coefficient that indicates the degree to which the adaptive filter approaches a true value for each calculation. The speed of convergence to the true value of is determined. The convergence coefficient is generally a constant convergence coefficient as exemplified in Patent Document 2.

特開2003−202902号公報JP 2003-202902 A 特開2008−250131号公報JP 2008-250131 A

しかしながら、従来のように収束係数が常に一定である制振装置では、例えばエンジンの回転数やアクセル開度によって制振すべき振動が変化し、この変化に対応して発生させるべき相殺振動を大きく変化させる必要があるときには適応フィルタの収束が遅くて応答性が低下し所望の制振効果を発揮できない。また、制振すべき振動の微少な変化等により発生させるべき相殺振動を大きく変化させる必要がないときには適応フィルタの収束が速まって挙動が大きくなり、オーバーシュート等の不具合を招いて制振制御の安定性を損なう。   However, in a conventional vibration damping device with a constant convergence coefficient, for example, the vibration to be damped changes depending on the engine speed and the accelerator opening, for example, and the canceling vibration to be generated corresponding to this change is large. When it is necessary to change, the convergence of the adaptive filter is slow, the response is lowered, and the desired damping effect cannot be exhibited. In addition, when there is no need to greatly change the cancellation vibration to be generated due to a slight change in the vibration to be controlled, the adaptive filter converges faster and the behavior becomes larger. Impairs stability.

本発明は、このような課題に着目してなされたものであって、その目的は、制振すべき振動の著しい変化に起因して発生させる相殺振動を大きく変化させる必要があるときや無いとき、若しくはこれらが混在する場合であってもこれに適切に対応して制振制御の応答性または安定性を向上させた制振装置及びこれを備えた車両を提供することである。   The present invention has been made paying attention to such a problem, and its purpose is when the canceling vibration generated due to a significant change in the vibration to be controlled needs to be changed greatly or not. Alternatively, even if these are mixed, it is an object to provide a vibration damping device and a vehicle equipped with the vibration damping device in which the response or stability of the vibration damping control is improved appropriately in response to this.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明に係る制振装置は、振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の増加に応じて前記適応フィルタが収束する速度が速まるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする。   That is, the vibration damping device according to the present invention uses an adaptive filter to reduce the vibration generated from the vibration generation source and the canceling vibration generated through the excitation means from the vibration generation source using an adaptive filter. Pseudo vibration calculation means for calculating a pseudo vibration necessary for canceling the vibration transmitted to the position to be shaken, and the vibration to be controlled through the excitation means based on the pseudo vibration calculated by the pseudo vibration calculation means A canceling vibration generation command means for generating the canceling vibration at a position; and a vibration detecting means for detecting a vibration remaining as a canceling error between the vibration generated at the vibration generating source and the canceling vibration at the position to be damped. The pseudo vibration calculating means cancels the cancellation based on the vibration detected by the vibration detecting means and a convergence coefficient that determines a speed at which the adaptive filter converges to a true value. A vibration damping device that repeatedly executes the calculation of the adaptive filter so as to reduce vibration remaining as a difference, and converges the pseudo vibration and the adaptive filter to a true value by accumulating the calculation, the vibration damping from the vibration source Deviation information acquisition means for acquiring deviation information corresponding to the deviation between the vibration transmitted to the power position and the cancellation vibration generated at the position to be controlled based on the pseudo vibration, and acquired by the deviation information acquisition means Convergence coefficient changing means for changing the convergence coefficient so as to increase the speed of convergence of the adaptive filter according to an increase in the deviation based on deviation information is provided.

この構成によれば、振動発生源から制振すべき位置へ伝達した振動を相殺するために必要な疑似振動が適応フィルタを用いて疑似振動算出手段により算出され、算出された疑似振動に基づいて相殺振動発生指令手段により加振手段を通じて制振すべき位置に相殺振動が発生され、制振すべき位置において振動発生源で生じた振動と相殺振動との相殺誤差として残る振動が振動検出手段により検出され、検出された振動と適応フィルタが真値への収束する速度を決定する収束係数とに基づいて相殺誤差として残る振動が小さくなるように疑似振動算出手段により適応フィルタが算出され、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振制御が実施される。この場合、制振すべき振動の変化に対応して相殺振動を大きく変化させる必要があるときに相殺誤差として残る振動と疑似振動に基づき制振すべき位置に発生される相殺振動との偏差が大きくなることに着目して、偏差情報取得手段により上記偏差に対応する偏差情報を取得し、取得された偏差情報に基づいて偏差の増加に応じて適応フィルタが収束する速度が速まるように収束係数を収束係数変更手段により変更するので、制振すべき位置に発生させる相殺振動を大きく変化させる必要があるときに適応フィルタが収束する速度を速めて高応答化し、制振制御の応答性を向上させることができる。   According to this configuration, the pseudo vibration necessary for canceling the vibration transmitted from the vibration source to the position to be controlled is calculated by the pseudo vibration calculating means using the adaptive filter, and based on the calculated pseudo vibration. The canceling vibration generation command means generates a canceling vibration at a position to be damped through the vibrating means, and the vibration detecting means causes a vibration remaining at the position to be damped as a cancellation error between the vibration generated at the vibration source and the canceling vibration. Based on the detected vibration and the convergence coefficient that determines the speed at which the adaptive filter converges to the true value, the adaptive filter is calculated by the pseudo vibration calculating means so that the vibration remaining as an offset error is reduced. Vibration suppression control for converging the pseudo vibration and the adaptive filter to the true value is performed by stacking. In this case, there is a deviation between the vibration that remains as a cancellation error and the cancellation vibration that is generated at the position to be controlled based on the pseudo vibration when it is necessary to greatly change the cancellation vibration in response to the change in the vibration to be controlled. Focusing on the increase, the deviation information acquisition means acquires deviation information corresponding to the deviation, and based on the acquired deviation information, the convergence coefficient is increased so that the adaptive filter converges as the deviation increases. Is changed by the convergence coefficient changing means, so that when the canceling vibration generated at the position to be damped needs to be greatly changed, the speed at which the adaptive filter converges is increased to increase the response and improve the response of the vibration suppression control. Can be made.

また、本発明に係る制振装置は、振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の減少に応じて前記適応フィルタが収束する速度が遅くなるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする。   In addition, the vibration damping device according to the present invention uses an adaptive filter to offset the vibration generated from the vibration generation source and the canceling vibration generated through the vibration excitation unit from the vibration generation source using an adaptive filter. Pseudo vibration calculation means for calculating a pseudo vibration necessary for canceling the vibration transmitted to the position to be shaken, and the vibration to be controlled through the excitation means based on the pseudo vibration calculated by the pseudo vibration calculation means A canceling vibration generation command means for generating the canceling vibration at a position; and a vibration detecting means for detecting a vibration remaining as a canceling error between the vibration generated at the vibration generating source and the canceling vibration at the position to be damped. The pseudo-vibration calculating unit is configured to perform the cancellation error based on the vibration detected by the vibration detecting unit and a convergence coefficient that determines a speed at which the adaptive filter converges to a true value. The adaptive filter repeatedly executes calculation of the adaptive filter so as to reduce the remaining vibration, and converges the pseudo vibration and the adaptive filter to a true value by accumulating the calculation. Deviation information acquisition means for acquiring deviation information corresponding to the deviation between the vibration transmitted to the power position and the cancellation vibration generated at the position to be controlled based on the pseudo vibration, and acquired by the deviation information acquisition means Convergence coefficient changing means is provided for changing the convergence coefficient so that the speed at which the adaptive filter converges according to a decrease in the deviation is reduced based on deviation information.

この構成によれば、制振すべき振動の変化に対応して相殺振動を大きく変化させる必要がないときに相殺誤差として残る振動と疑似振動に基づき制振すべき位置に発生される相殺振動との偏差が小さくなることに着目して、偏差情報取得手段により上記偏差に対応する偏差情報を取得し、取得された偏差情報に基づいて偏差の減少に応じて適応フィルタが収束する速度が遅くなるように収束係数を収束係数変更手段により変更するので、加振すべき相殺振動を大きく変化させる必要がないときに適応フィルタが収束する速度を低下させて相殺振動の挙動を小さくして、制振制御の安定性を向上させることができる。   According to this configuration, the vibration that remains as a cancellation error when there is no need to greatly change the cancellation vibration in response to the change in the vibration to be controlled, and the cancellation vibration that is generated at the position to be controlled based on the pseudo vibration. The deviation information corresponding to the deviation is acquired by the deviation information acquisition means, and the speed at which the adaptive filter converges according to the decrease in the deviation is reduced based on the acquired deviation information. Thus, the convergence coefficient is changed by the convergence coefficient changing means, so when there is no need to greatly change the canceling vibration to be excited, the speed at which the adaptive filter converges is reduced to reduce the behavior of the canceling vibration, thereby suppressing vibration. Control stability can be improved.

さらに、本発明に係る制振装置は、振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の増加に応じて前記適応フィルタが収束する速度が速まり前記偏差の減少に応じて前記適応フィルタが収束する速度が遅くなるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする。   Furthermore, the vibration damping device according to the present invention uses an adaptive filter to reduce the vibration generated from the vibration generating source and the canceling vibration generated through the exciting means from the vibration generating source using an adaptive filter. Pseudo vibration calculation means for calculating a pseudo vibration necessary for canceling the vibration transmitted to the position to be shaken, and the vibration to be controlled through the excitation means based on the pseudo vibration calculated by the pseudo vibration calculation means A canceling vibration generation command means for generating the canceling vibration at a position; and a vibration detecting means for detecting a vibration remaining as a canceling error between the vibration generated at the vibration generating source and the canceling vibration at the position to be damped. The pseudo-vibration calculating unit is configured to perform the cancellation error based on the vibration detected by the vibration detecting unit and a convergence coefficient that determines a speed at which the adaptive filter converges to a true value. The vibration control apparatus repeatedly executes calculation of the adaptive filter so as to reduce the remaining vibration, and converges the pseudo vibration and the adaptive filter to a true value by accumulating the calculation. Deviation information acquisition means for acquiring deviation information corresponding to the deviation between the vibration transmitted to the position and the cancellation vibration generated at the position to be controlled based on the pseudo vibration, and the deviation acquired by the deviation information acquisition means Convergence coefficient changing means for changing the convergence coefficient so that the speed at which the adaptive filter converges increases as the deviation increases and the speed at which the adaptive filter converges decreases as the deviation decreases based on the information It is characterized by comprising.

この構成によれば、制振すべき振動の変化に対応して相殺振動を大きく変化させる必要があるときに相殺誤差として残る振動と疑似振動に基づき制振すべき位置に発生される相殺振動との偏差が大きくなり、相殺振動を大きく変化させる必要がないときに前記偏差が小さくなることに着目して、偏差情報取得手段により上記偏差に対応する偏差情報を取得し、取得された偏差情報に基づいて偏差の増加に応じて適応フィルタが収束する速度が速まり偏差の減少に応じて適応フィルタが収束する速度が遅くなるように収束係数を収束係数変更手段により変更するので、加振すべき相殺振動を大きく変化させる必要があるときに適応フィルタが収束する速度を速めて高応答化し、制振制御の応答性を向上させることができる。しかも、加振すべき相殺振動を大きく変化させる必要がないときに適応フィルタが収束する速度を低下させて相殺振動の挙動を小さくして、制振制御の安定性を向上させることができる。したがって、発生させる相殺振動を大きく変化させる必要があるときや無いときが混在する場合に制振制御を適切に実施することが可能となる。   According to this configuration, the vibration that remains as a cancellation error when the cancellation vibration needs to be greatly changed in response to the change in the vibration to be controlled, and the cancellation vibration that is generated at the position to be controlled based on the pseudo vibration. Focusing on the fact that the deviation becomes small when there is no need to greatly change the cancellation vibration, the deviation information acquisition means acquires deviation information corresponding to the deviation, and the acquired deviation information Based on this, the convergence coefficient is changed by the convergence coefficient changing means so that the speed at which the adaptive filter converges increases as the deviation increases, and the speed at which the adaptive filter converges decreases as the deviation decreases. When the canceling vibration needs to be largely changed, the response speed of the adaptive filter can be increased to increase the response, and the response of the vibration suppression control can be improved. In addition, when it is not necessary to greatly change the canceling vibration to be vibrated, the speed at which the adaptive filter converges can be reduced to reduce the behavior of the canceling vibration, thereby improving the stability of the damping control. Therefore, it is possible to appropriately perform the vibration suppression control when there are cases where the canceling vibration to be generated needs to be largely changed or when there is no need to change it.

上記偏差に対応する偏差情報を用いた制振を実現する具体的構成としては、前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記疑似振動に基づき制振すべき位置に発生される相殺振動の振幅値に対応する加振力振幅成分を取得し、前記収束係数変更手段は、前記偏差情報取得手段により取得された加振力振幅成分に応じて前記収束係数を変更することが挙げられる。   As a specific configuration for realizing vibration suppression using deviation information corresponding to the deviation, the deviation information acquisition means is generated as a deviation information corresponding to the deviation at a position to be controlled based on the pseudo vibration. The excitation force amplitude component corresponding to the amplitude value of the canceling vibration is acquired, and the convergence coefficient changing unit changes the convergence coefficient according to the excitation force amplitude component acquired by the deviation information acquisition unit. It is done.

上記偏差に対応する偏差情報を用いた制振を実現する他の具体的構成としては、前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記振動検出手段により検出される相殺誤差として残る振動の振幅成分を取得し、前記収束係数変更手段は、前記偏差情報取得手段により取得された相殺誤差として残る振動の振幅成分に応じて前記収束係数を変更することが挙げられる。   As another specific configuration for realizing the vibration suppression using the deviation information corresponding to the deviation, the deviation information acquisition unit remains as a cancellation error detected by the vibration detection unit as the deviation information corresponding to the deviation. The vibration amplitude component may be acquired, and the convergence coefficient changing unit may change the convergence coefficient according to the vibration amplitude component remaining as the cancellation error acquired by the deviation information acquisition unit.

上記偏差に対応する偏差情報を用いた制振を実現する他の具体的構成としては、前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記振動発生源で生ずる振動に関連する信号に基づいて前記制振すべき位置での振動の周波数の変化量を取得し、前記収束係数変更手段は、前記偏差情報取得手段により取得された周波数の変動量に応じて前記収束係数を変更することが挙げられる。   As another specific configuration for realizing the vibration suppression using the deviation information corresponding to the deviation, the deviation information acquisition unit may generate a signal related to vibration generated at the vibration source as deviation information corresponding to the deviation. The amount of vibration frequency change at the position to be damped is acquired based on, and the convergence coefficient changing means changes the convergence coefficient according to the amount of frequency fluctuation acquired by the deviation information acquiring means. Is mentioned.

上記偏差に対応する偏差情報を用いた制振を実現する他の具体的構成としては、前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記相殺誤差として残る振動の位相と前記疑似振動に基づき制振すべき位置に発生される振動の位相との位相差を取得し、前記収束係数変更手段は、前記偏差情報取得手段により取得された位相差に応じて前記収束係数を変更することが挙げられる。   As another specific configuration for realizing the vibration suppression using the deviation information corresponding to the deviation, the deviation information acquisition unit includes the phase of the vibration remaining as the cancellation error as the deviation information corresponding to the deviation and the pseudo vibration. The convergence coefficient changing means changes the convergence coefficient in accordance with the phase difference acquired by the deviation information acquiring means. Is mentioned.

乗員に快適な乗り心地を提供するためには、上記の制振装置を車両に備えることが挙げられる。   In order to provide a comfortable ride for the occupant, it is possible to provide the vehicle with the above vibration damping device.

本発明は、以上説明したように、制振すべき振動の変化に対応して相殺振動を大きく変化させる必要があるときに相殺誤差として残る振動と疑似振動に基づき制振すべき位置に発生される相殺振動との偏差が大きくなることに着目して、この偏差に応じて適応フィルタが収束する速度を変化するように収束係数を変更するので、制振すべき振動の著しい変化に応じて発生させる相殺振動を大きく変化させる必要の有無に左右されずに制振制御の応答性または安定性を向上させることが可能となる。   As described above, the present invention is generated at the position to be damped based on the vibration remaining as a cancellation error and the pseudo vibration when it is necessary to largely change the cancellation vibration in response to the change of the vibration to be damped. Focusing on the fact that the deviation from the canceling vibration increases, the convergence coefficient is changed to change the speed at which the adaptive filter converges according to this deviation. It is possible to improve the response or stability of the vibration suppression control without being influenced by whether or not the canceling vibration to be greatly changed is necessary.

本発明の第1実施形態に係る制振装置の概略全体模式図。1 is a schematic overall schematic diagram of a vibration damping device according to a first embodiment of the present invention. 第1実施形態に係る制御手段の構成および機能の概略ブロック図。The schematic block diagram of a structure and function of the control means which concern on 1st Embodiment. 第1実施形態に係る制御手段の構成を詳細に示すブロック図。The block diagram which shows the structure of the control means which concerns on 1st Embodiment in detail. 加振手段から制振すべき位置へ伝達する振動に関する説明図。Explanatory drawing regarding the vibration transmitted to the position which should be damped from a vibration means. 相殺振動の振幅値とこの振幅値に応じて変更される収束係数との関係を示す図。The figure which shows the relationship between the amplitude value of cancellation vibration, and the convergence coefficient changed according to this amplitude value. 本発明の第2実施形態に係る制御手段の構成を詳細に示すブロック図。The block diagram which shows the structure of the control means concerning 2nd Embodiment of this invention in detail. 本発明の第3実施形態に係る制御手段の構成を詳細に示すブロック図。The block diagram which shows in detail the structure of the control means which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る制御手段の構成を詳細に示すブロック図。The block diagram which shows in detail the structure of the control means which concerns on 4th Embodiment of this invention. 第4実施形態において振動発生源から制振すべき位置へ伝達した振動と相殺振動との相殺誤差として残る振動に関する説明図。Explanatory drawing regarding the vibration which remains as a cancellation error of the vibration transmitted to the position which should be damped from a vibration generation source, and cancellation vibration in 4th Embodiment.

<第1実施形態>
以下、本発明の第1実施形態に係る制振装置を、図1〜図5を参照して説明する。
<First Embodiment>
Hereinafter, a vibration damping device according to a first embodiment of the present invention will be described with reference to FIGS.

本実施形態の制振装置は、図1に示すように、自動車等の車両に搭載されるものであり、座席st等の制振すべき位置posに設けた加速度センサ等の振動検出手段1と、所定の質量を有する補助質量2aを振動させることにより振動Vi2を発生するリニアアクチュエータを用いた加振手段2と、振動発生源gnであるエンジンの点火パルス信号と振動検出手段1からの検出信号とを入力し加振手段2で発生させた振動Vi2を制振すべき位置posへ伝達させることにより制振すべき位置posに相殺振動Vi4を発生させる制御手段3とを有し、車体フレームfrmにマウンタgnmを介して搭載されたエンジン等の振動発生源gnで生じる振動Vi1と加振手段2を通じて制振すべき位置posに発生させた相殺振動Vi4とを制振すべき位置posで相殺させて制振すべき位置posでの振動を低減するものである。   As shown in FIG. 1, the vibration damping device of the present embodiment is mounted on a vehicle such as an automobile, and includes a vibration detection unit 1 such as an acceleration sensor provided at a position pos to be damped such as a seat st. The vibration means 2 using a linear actuator that generates the vibration Vi2 by vibrating the auxiliary mass 2a having a predetermined mass, the ignition pulse signal of the engine that is the vibration generation source gn, and the detection signal from the vibration detection means 1 And the control means 3 for generating the canceling vibration Vi4 at the position pos to be damped by transmitting the vibration Vi2 generated by the oscillating means 2 to the position pos to be damped, and the vehicle body frame frm. The vibration Vi1 generated by the vibration generation source gn of the engine or the like mounted on the mounter gnm and the canceling vibration Vi4 generated at the position pos to be controlled through the vibration means 2 are damped. Is intended to reduce vibration at the position pos should be damped by offset by to position pos.

制御手段3は、図2に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を的確に相殺する相殺振動Vi4を制振すべき位置posに発生させるために、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を模擬した疑似振動Vi3’を適応アルゴリズムの適応フィルタ32fを用いて算出し、算出した疑似振動Vi3’に基づいて加振手段2を通じて制振すべき位置posに相殺振動Vi4を発生させる。また、制御手段3は、加振手段2から制振すべき位置posへ伝達した相殺振動Vi4と振動Vi3との相殺誤差として残る振動(Vi3+Vi4)を振動検出手段1で検出し、検出した相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応フィルタ32fの算出を繰り返し実行し、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ32fを真値へ収束させる制振制御を行う。本実施形態では、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動は、振動Vi3を模擬した疑似振動Vi3’であるが、この振動Vi3の模擬を行うことなく加振手段2から制振すべき位置posへ伝達した相殺振動Vi4を直接模擬したものであってもよい。   As shown in FIG. 2, the control means 3 generates vibrations at the position pos to be damped in order to generate a canceling vibration Vi4 that accurately cancels the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped. A pseudo vibration Vi3 ′ simulating the vibration Vi3 transmitted from the generation source gn to the position pos to be damped is calculated using the adaptive filter 32f of the adaptive algorithm, and is controlled through the vibration means 2 based on the calculated pseudo vibration Vi3 ′. A canceling vibration Vi4 is generated at the position pos to be shaken. The control means 3 detects the remaining vibration (Vi3 + Vi4) as a cancellation error between the cancellation vibration Vi4 and the vibration Vi3 transmitted from the vibration means 2 to the position pos to be controlled by the vibration detection means 1, and detects the detected cancellation error. As described above, the calculation of the adaptive filter 32f is repeatedly executed so that the remaining vibration (Vi3 + Vi4) becomes small, and the vibration suppression control for converging the pseudo vibration Vi3 ′ and the adaptive filter 32f to the true value by the accumulation of the calculation is performed. In the present embodiment, the pseudo vibration necessary to cancel the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped is the pseudo vibration Vi3 ′ simulating the vibration Vi3. It is also possible to directly simulate the canceling vibration Vi4 transmitted from the vibration means 2 to the position pos to be damped without performing the above.

この適応制御による制振制御を実行する制御手段3は、図2に示すように、疑似振動算出手段32と、相殺振動発生指令手段33とを有する。   As shown in FIG. 2, the control means 3 that executes the vibration suppression control by the adaptive control includes a pseudo vibration calculation means 32 and a canceling vibration generation command means 33.

疑似振動算出手段32は、適応フィルタ32fを用いて疑似振動Vi3’を算出すると共に、振動検出手段1より入力した相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応フィルタ32fを逐次更新する。具体的には、疑似振動算出手段32は、疑似振動算出部32aと、学習適応部32bとを有する。疑似振動算出部32aは、疑似振動Vi3’の算出の基礎となる基準波に対して適応フィルタ32fを用いたフィルタリングを施すことにより基準波の振幅及び位相を変化させて疑似振動Vi3’を算出する。学習適応部32bは、振動検出手段1より入力した相殺誤差として残る振動(Vi3+Vi4)が無くなるように適応フィルタ32fの算出の基礎である基準波から適応フィルタの真値へ向かって適応フィルタの算出を繰り返し実行し、この算出の積み重ねにより疑似振動Vi3’及び適応フィルタ32fを真値へ収束させるものである。適応フィルタ32fの算出の際には、算出一回当たりに適応フィルタ32fを真値へ近づける度合を示す収束係数32uを用い、この収束係数32uにより適応フィルタ32fが真値へ収束する速度が決定されている。   The pseudo vibration calculating means 32 calculates the pseudo vibration Vi3 'using the adaptive filter 32f, and sequentially updates the adaptive filter 32f so that the vibration (Vi3 + Vi4) remaining as a cancellation error input from the vibration detecting means 1 is reduced. Specifically, the pseudo vibration calculation means 32 includes a pseudo vibration calculation unit 32a and a learning adaptation unit 32b. The pseudo vibration calculating unit 32a calculates the pseudo vibration Vi3 ′ by changing the amplitude and phase of the reference wave by applying filtering using the adaptive filter 32f to the reference wave that is a basis for calculating the pseudo vibration Vi3 ′. . The learning adaptation unit 32b calculates the adaptive filter from the reference wave, which is the basis of the calculation of the adaptive filter 32f, toward the true value of the adaptive filter so that the vibration (Vi3 + Vi4) remaining as the cancellation error input from the vibration detection unit 1 is eliminated. It is repeatedly executed, and the pseudo vibration Vi3 ′ and the adaptive filter 32f are converged to the true value by accumulating the calculations. When calculating the adaptive filter 32f, a convergence coefficient 32u indicating the degree of approaching the adaptive filter 32f to the true value is used for each calculation, and the speed at which the adaptive filter 32f converges to the true value is determined by the convergence coefficient 32u. ing.

相殺振動発生指令手段33は、疑似振動算出手段32が算出した疑似振動Vi3’に基づいて加振手段2を通じて相殺振動Vi4を制振すべき位置posに発生させる。この相殺振動を発生させるにあたり、図4に示すように、振動発生源gnから制振すべき位置posへ伝達した振動Vi3に対してこの振動Vi3を逆波形にした振動−Vi3を加振すればよいが、加振手段2で発生させた振動Vi2は制振すべき位置posに伝達する過程で振幅又は位相が変化するので、この変化を考慮して制振すべき位置posに相殺振動Vi4が印加させるように振動Vi2を加振手段2で発生させる必要がある。具体的には、加振手段2から制振すべき位置posまで伝達する振動の振幅及び位相の変化させる振動伝達関数Gの逆伝達関数を逆伝達関数記憶部33aに予め記憶しておき、制振すべき位置posでの振動Vi3を模擬した疑似振動Vi3’を逆波形にした相殺振動Vi4に対して逆伝達関数を加味して振動Vi2を算出する。ここでは、逆伝達関数の振幅成分を1/Gとし、位相成分をPとして逆伝達関数記憶部33aに記憶している。なお、振動発生源gnから制振すべき位置posへ伝達する振動の振幅又は位相を変化させる振動伝達関数をG’と示している。   The cancellation vibration generation command means 33 generates the cancellation vibration Vi4 at the position pos to be damped through the vibration means 2 based on the pseudo vibration Vi3 'calculated by the pseudo vibration calculation means 32. In generating the canceling vibration, as shown in FIG. 4, if vibration Vi3 having a reverse waveform of vibration Vi3 is applied to vibration Vi3 transmitted from vibration generation source gn to position pos to be controlled. Although the amplitude or phase of the vibration Vi2 generated by the vibration means 2 changes in the process of transmission to the position pos to be damped, the canceling vibration Vi4 is present at the position pos to be damped in consideration of this change. The vibration Vi2 needs to be generated by the vibration means 2 so as to be applied. Specifically, the inverse transfer function of the vibration transfer function G that changes the amplitude and phase of vibration transmitted from the vibration means 2 to the position pos to be damped is stored in advance in the inverse transfer function storage unit 33a. The vibration Vi2 is calculated by adding a reverse transfer function to the canceling vibration Vi4 having a reverse waveform of the pseudo vibration Vi3 ′ simulating the vibration Vi3 at the position pos to be shaken. Here, the amplitude component of the inverse transfer function is set to 1 / G, and the phase component is stored as P in the inverse transfer function storage unit 33a. A vibration transfer function for changing the amplitude or phase of vibration transmitted from the vibration source gn to the position pos to be damped is denoted by G ′.

上記の構成に対して本実施形態ではさらに、図2に示すように、偏差情報取得手段34と、収束係数変更手段35とを備えている。   In contrast to the above configuration, the present embodiment further includes deviation information acquisition means 34 and convergence coefficient changing means 35 as shown in FIG.

偏差情報取得手段34は、振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差に対応する偏差情報を取得する。   The deviation information acquisition means 34 is a deviation corresponding to the deviation between the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped and the canceling vibration Vi4 generated at the position pos to be damped based on the pseudo vibration Vi3 ′. Get information.

収束係数変更手段35は、偏差情報取得手段34により取得された加振力振幅成分が大きくなるほど適応フィルタ32fが収束する速度が速まるように収束係数を変更するものである。   The convergence coefficient changing means 35 changes the convergence coefficient so that the speed at which the adaptive filter 32f converges increases as the excitation force amplitude component acquired by the deviation information acquisition means 34 increases.

このような制御手段3を実現する具体的な制御ブロックを図3に示して説明する。   A specific control block for realizing such control means 3 will be described with reference to FIG.

図3に示すように、周波数検出部41は、振動発生源gnであるエンジンの起爆タイミングを示すエンジンパルス信号を入力し、入力したエンジンパルス信号の周波数が制振すべき位置posでの振動Vi3の周波数fと一致するものと取り扱い、振動Vi3の周波数fを認識する。勿論、エンジンの点火パルス信号に代えて例えばエンジンクランクの回転数を検出するセンサからの検出パルス信号等、その他の信号を用いてもよい。基本電気角算出部42は、認識された周波数fを入力して基本電気角θ(=ωt)を算出する。基準波生成部43は、算出された基本電気角θを基礎として基準波である基準正弦波sinθ及び基準余弦波cosθを生成する。これら基準波は制御手段3での信号処理においての波形の振幅及び位相等の基準となるものである。   As shown in FIG. 3, the frequency detection unit 41 inputs an engine pulse signal indicating the initiation timing of the engine that is the vibration generation source gn, and the vibration Vi3 at the position pos where the frequency of the input engine pulse signal is to be damped. The frequency f of the vibration Vi3 is recognized. Of course, other signals such as a detection pulse signal from a sensor that detects the rotation speed of the engine crank may be used instead of the engine ignition pulse signal. The basic electrical angle calculator 42 receives the recognized frequency f and calculates the basic electrical angle θ (= ωt). The reference wave generator 43 generates a reference sine wave sin θ and a reference cosine wave cos θ, which are reference waves, based on the calculated basic electrical angle θ. These reference waves serve as references for the amplitude and phase of the waveform in the signal processing by the control means 3.

加速度センサである振動検出手段1で検出される制振すべき位置posでの振動には、振動発生源gnで生じた振動以外にも他の振動が含まれているので、振動検出手段1の出力信号に対して周波数検出部41で認識された周波数f成分の信号のみを取り出すBPF(バンドパスフィルタ)44を施すことにより振動発生源gnで生じた振動のみを振動信号として検出している。   The vibration at the position pos to be controlled detected by the vibration detection means 1 that is an acceleration sensor includes other vibrations in addition to the vibration generated at the vibration generation source gn. By applying a BPF (band pass filter) 44 that extracts only the signal of the frequency f component recognized by the frequency detector 41 to the output signal, only the vibration generated at the vibration source gn is detected as the vibration signal.

この振動信号を模擬するために、振動信号をAsin(θ+φ)、θ=ωtと仮定し、以下の式を利用する。   In order to simulate this vibration signal, the vibration signal is assumed to be Asin (θ + φ), θ = ωt, and the following equation is used.

まず、振動信号Asin(θ+φ)に2sinθを乗算すると、
2Asin(θ+φ)×sinθ=Acosφ−Acos(2θ+φ)
と変形できる。この式を収束係数μを用いて積分すると、右辺第二項Acos(2θ+φ)の積分は(μA/2ω)sin(2θ+φ)となり、μをAに比べて非常に小さな値に設定すると振幅が小さく且つ周期関数の積分であるため(μA/2ω)sin(2θ+φ)を無視でき、右辺全体が真値Aに近い値A’の振幅成分及び真値φに近い値φ’の位相成分を有するA’cosφ’に収束する。
First, when the vibration signal Asin (θ + φ) is multiplied by 2 sin θ,
2 Asin (θ + φ) × sin θ = A cos φ−A cos (2θ + φ)
And can be transformed. When this expression is integrated using the convergence coefficient μ, the integration of the second term Acos (2θ + φ) on the right side is (μA / 2ω) sin (2θ + φ). If μ is set to a very small value compared to A, the amplitude is small. Since (μA / 2ω) sin (2θ + φ) is negligible because it is an integral of a periodic function, the entire right side has an amplitude component of a value A ′ close to the true value A and a phase component of a value φ ′ close to the true value φ. converge to 'cosφ'.

同様に、振動信号Asin(θ+φ)に2cosθを乗算すると、
2Asin(θ+φ)×cosθ=Asinφ+Asin(2θ+φ)
と変形できる。この式を収束係数μを用いて積分すると、右辺第二項Asin(2θ+φ)の積分も上記と同様に周期関数の積分であるため無視でき、右辺全体が真値Aに近い値A’の振幅成分及び真値φに近い値φ’の位相成分を有するA’sinφ’に収束する。
Similarly, when the vibration signal Asin (θ + φ) is multiplied by 2 cos θ,
2 Asin (θ + φ) × cos θ = Asin φ + Asin (2θ + φ)
And can be transformed. When this expression is integrated using the convergence coefficient μ, the integration of the second term Asin (2θ + φ) on the right side is also an integration of the periodic function as described above, and can be ignored, and the amplitude of the value A ′ whose entire right side is close to the true value A It converges to A′sinφ ′ having a component and a phase component of a value φ ′ close to the true value φ.

上記で求めたA’cosφ’及びA’sinφ’にsinθ及びcosθをそれぞれ乗算して足し合わせると、
sinθ×A’cosφ’+cosθ×A’sinφ’=A’sinθ×cosφ’+A’cosθ×sinφ’=A’sin(θ+φ’)
と変形できる。したがって、振動信号に対して上記の演算を実施することにより振動信号Asin(θ+φ)を模擬した疑似振動A’sin(θ+φ’)を算出できる。これらA’cosφ’及びA’sinφ’は、いわゆる適応制御における適応フィルタ32fであり、振動信号の入力により疑似振動の振幅A’及び位相φ’を真値たる振幅A及び位相φに収束させるべく自己適応する。また、適応フィルタは、適応フィルタに対して基準波を乗算して足し合わせることにより疑似振動に変形するので、疑似振動と基準波との振幅差及び位相差を表すものといえる。
When A ′ cos φ ′ and A ′ sin φ ′ obtained above are multiplied by sin θ and cos θ, respectively,
sinθ × A′cosφ ′ + cosθ × A′sinφ ′ = A′sinθ × cosφ ′ + A′cosθ × sinφ ′ = A′sin (θ + φ ′)
And can be transformed. Therefore, the pseudo vibration A′sin (θ + φ ′) simulating the vibration signal Asin (θ + φ) can be calculated by performing the above calculation on the vibration signal. These A ′ cos φ ′ and A ′ sin φ ′ are adaptive filters 32 f in so-called adaptive control, and in order to converge the amplitude A ′ and phase φ ′ of the pseudo vibration to the true amplitude A and phase φ by the input of the vibration signal. Self-adapt. In addition, the adaptive filter is transformed into pseudo vibration by multiplying and adding the reference wave to the adaptive filter, and thus can be said to represent the amplitude difference and phase difference between the pseudo vibration and the reference wave.

上記の演算処理を用いて振動信号Asin(θ+φ)に基づいて適応フィルタ32fを学習更新しつつ疑似振動を算出するために、図3に示すように疑似振動算出手段32を構成している。すなわち、乗算器45は、振動信号Asin(θ+φ)と2μを基礎とする収束係数とを乗算する。乗算器46、47は、乗算器45での乗算結果に対して基準波生成部43から出力される基準正弦波sinθと基準余弦波cosθをそれぞれ乗算して、積分器48、49へ出力する。積分器48、49は、乗算器46、47からの出力を積分し、疑似振動と基準波との振幅差及び位相差を表す適応フィルタ32fとしてのA’cosφ’及びA’sinφ’を出力する。   In order to calculate the pseudo vibration while learning and updating the adaptive filter 32f based on the vibration signal Asin (θ + φ) using the above arithmetic processing, the pseudo vibration calculating means 32 is configured as shown in FIG. That is, the multiplier 45 multiplies the vibration signal Asin (θ + φ) and the convergence coefficient based on 2μ. The multipliers 46 and 47 multiply the multiplication result of the multiplier 45 by the reference sine wave sin θ and the reference cosine wave cos θ output from the reference wave generation unit 43, respectively, and output the result to the integrators 48 and 49. The integrators 48 and 49 integrate the outputs from the multipliers 46 and 47, and output A ′ cos φ ′ and A ′ sin φ ′ as the adaptive filter 32f representing the amplitude difference and phase difference between the pseudo vibration and the reference wave. .

この適応フィルタ32fに対して基準正弦波sinθ及び基準余弦波θをそれぞれ乗算した後に足し合わせると上記の通り疑似振動A’sin(θ+φ’)となるが、本実施形態では、振幅成分及び位相成分の逆伝達関数を加味した基準波を適応フィルタ32fとの乗算前に生成している。勿論、疑似振動を算出した後に振幅成分及び位相成分の逆伝達関数を加味してもよい。具体的に本実施形態では、逆伝達関数振幅設定部53は、周波数に対応した逆伝達関数の振幅成分が予め記憶されており、認識した周波数fを入力して逆伝達関数の振幅成分1/Gを特定する。同様に、逆伝達関数位相設定部50は、周波数に対応した逆伝達関数の位相成分が予め記憶されており、認識した周波数fを入力して逆伝達関数の位相成分Pを特定する。特定された位相成分Pと基本電気角θとが加算器51で加算されて発振器52に入力される。発振器52は、逆伝達関数の位相成分Pが加味された正弦波sin(θ+P)及び余弦波cos(θ+P)を生成する。乗算器54、55は、生成された正弦波sin(θ+P)及び余弦波cos(θ+P)に対して逆伝達関数振幅設定部53により特定された逆伝達関数の振幅成分1/Gとをそれぞれ乗算して、振幅及び位相の逆伝達関数を加味した基準波を生成する。   When the adaptive filter 32f is multiplied by the reference sine wave sin θ and the reference cosine wave θ and added, the pseudo vibration A′sin (θ + φ ′) is obtained as described above. In the present embodiment, the amplitude component and the phase component are obtained. The reference wave taking into account the inverse transfer function is generated before multiplication with the adaptive filter 32f. Of course, the inverse transfer function of the amplitude component and the phase component may be added after calculating the pseudo vibration. Specifically, in the present embodiment, the inverse transfer function amplitude setting unit 53 stores the amplitude component of the inverse transfer function corresponding to the frequency in advance, and receives the recognized frequency f to input the amplitude component 1 / of the inverse transfer function. G is specified. Similarly, the inverse transfer function phase setting unit 50 stores the phase component of the inverse transfer function corresponding to the frequency in advance, and specifies the phase component P of the inverse transfer function by inputting the recognized frequency f. The identified phase component P and the basic electrical angle θ are added by the adder 51 and input to the oscillator 52. The oscillator 52 generates a sine wave sin (θ + P) and a cosine wave cos (θ + P) in which the phase component P of the inverse transfer function is added. The multipliers 54 and 55 respectively multiply the generated sine wave sin (θ + P) and cosine wave cos (θ + P) by the amplitude component 1 / G of the inverse transfer function specified by the inverse transfer function amplitude setting unit 53. Then, a reference wave that takes into account the inverse transfer function of the amplitude and phase is generated.

これら乗算器54、55により生成された振幅及び位相の逆伝達関数を加味した基準波(1/G)sin(θ+P)及び(1/G)cos(θ+P)に対して上記の適応フィルタ32fとしてのA’cosφ’及びA’sinφ’を乗算器56、57でそれぞれ乗算する。乗算器56、57での乗算結果を加算器58で足し合わせ、足し合わせた結果に−1を乗算器59で乗算すると、相殺振動[−(A’/G)sin(θ+φ’+P)]の発生を指令する相殺信号が生成され、加振手段2で相殺振動[−(A’/G)sin(θ+φ’+P)]が加振される。   The above-mentioned adaptive filter 32f is applied to the reference waves (1 / G) sin (θ + P) and (1 / G) cos (θ + P) taking into account the amplitude and phase inverse transfer functions generated by the multipliers 54 and 55. A'cosφ 'and A'sinφ' are multiplied by multipliers 56 and 57, respectively. When the multiplication results of the multipliers 56 and 57 are added by the adder 58 and the added result is multiplied by −1 by the multiplier 59, the cancellation vibration [− (A ′ / G) sin (θ + φ ′ + P)] is obtained. A canceling signal for commanding generation is generated, and canceling vibration [− (A ′ / G) sin (θ + φ ′ + P)] is vibrated by the vibration means 2.

上記の適応制御を用いた制振制御を行う構成に加えてさらに、偏差情報取得手段34を構成する加振力振幅成分取得部34cと、収束係数変更手段35とを有している。   In addition to the above-described configuration for performing vibration suppression control using adaptive control, an excitation force amplitude component acquisition unit 34c constituting the deviation information acquisition unit 34 and a convergence coefficient changing unit 35 are provided.

偏差情報取得手段34を構成する加振力振幅成分取得部34cは、相殺振動Vi4の振幅値が大きいほど振動発生源gnで生ずる振動に変化が発生した際に相殺誤差として残る振動(Vi3+Vi4)が大きくなり、これに伴って振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差が大きくなることに着目して、相殺振動Vi4の振幅値に対応する加振力振幅成分を上記偏差の指標として取得している。この加振力振幅成分の具体例としては、相殺振動Vi4の振幅値の基礎となる適応フィルタ32fの振幅成分や疑似振動算出手段32により算出された疑似振動Vi3’の振幅成分等が挙げられる。本実施形態では具体的に、積分器48、49により出力された適応フィルタ32fであるA’cosφ’及びA’sinφ’を入力し、入力した適応フィルタ32fに基づいて適応フィルタ32fの振幅成分A’を加振力振幅成分として取得する。   The excitation force amplitude component acquisition unit 34c constituting the deviation information acquisition unit 34 has a vibration (Vi3 + Vi4) that remains as a cancellation error when a change occurs in the vibration generated in the vibration generation source gn as the amplitude value of the cancellation vibration Vi4 increases. Accordingly, the deviation between the vibration Vi3 transmitted from the vibration generation source gn to the position pos to be damped and the canceling vibration Vi4 generated at the position pos to be damped based on the pseudo vibration Vi3 ′ increases. Focusing on the above, the excitation force amplitude component corresponding to the amplitude value of the canceling vibration Vi4 is acquired as an index of the deviation. Specific examples of this excitation force amplitude component include the amplitude component of the adaptive filter 32f that is the basis of the amplitude value of the canceling vibration Vi4, the amplitude component of the pseudo vibration Vi3 'calculated by the pseudo vibration calculation means 32, and the like. Specifically, in the present embodiment, A ′ cos φ ′ and A ′ sin φ ′, which are the adaptive filters 32f output by the integrators 48 and 49, are input, and the amplitude component A of the adaptive filter 32f is input based on the input adaptive filter 32f. 'Is acquired as the excitation force amplitude component.

収束係数変更手段35は、偏差情報取得手段34により取得された加振力振幅成分たる適応フィルタ32fの振幅成分A’に応じて収束係数32uを変更する。収束係数32uの変更は、ゲインを乗算器35aに出力することにより基礎となる基礎値2μを変化させて行う。収束係数変更手段35は、図5に示すように、加振力振幅成分たる適応フィルタ32fの振幅成分A’が予め設定された閾値Ath以下であるときは、適応フィルタ32fの収束速度が一定値Dsとなるようにゲインを出力し、振幅成分A’が閾値Athを超えている場合は、収束速度がリニアに増加するようにゲインを出力し、収束速度が予め設定された上限値Dmaxに達したときは振幅成分A’の増加に係わらず収束速度が上限値Dmaxになるようにゲインを出力する。上限値Dmaxは、収束係数32uにより決定される収束速度が或る上限を超えて速くなると適応フィルタ32fが発散するので、これを防止すべく設けられるものである。収束係数変更手段35は、上記のように加振力振幅成分の増加に応じて適応フィルタ32fが収束する速度が速まるように収束係数32uを変更するとともに、加振力振幅成分の減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更する。勿論、適応フィルタ32fが収束する速度が速まるように収束係数32uを変更する構成のみでもよいし、適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更する構成のみでもよい。   The convergence coefficient changing unit 35 changes the convergence coefficient 32 u according to the amplitude component A ′ of the adaptive filter 32 f which is the excitation force amplitude component acquired by the deviation information acquisition unit 34. The convergence coefficient 32u is changed by changing the basic value 2μ as a basis by outputting the gain to the multiplier 35a. As shown in FIG. 5, when the amplitude component A ′ of the adaptive filter 32f, which is the excitation force amplitude component, is equal to or less than a preset threshold value Ath, the convergence coefficient changing means 35 has a constant convergence speed of the adaptive filter 32f. When the gain is output so as to be Ds, and the amplitude component A ′ exceeds the threshold value Ath, the gain is output so that the convergence speed increases linearly, and the convergence speed reaches the preset upper limit value Dmax. In this case, the gain is output so that the convergence speed becomes the upper limit value Dmax regardless of the increase of the amplitude component A ′. The upper limit value Dmax is provided to prevent this because the adaptive filter 32f diverges when the convergence speed determined by the convergence coefficient 32u exceeds a certain upper limit and becomes faster. The convergence coefficient changing means 35 changes the convergence coefficient 32u so as to increase the speed at which the adaptive filter 32f converges according to the increase in the excitation force amplitude component as described above, and also according to the decrease in the excitation force amplitude component. The convergence coefficient 32u is changed so that the speed at which the adaptive filter 32f converges becomes slower. Of course, only the configuration in which the convergence coefficient 32u is changed so that the speed at which the adaptive filter 32f converges may be increased, or only the configuration in which the convergence coefficient 32u is changed so that the speed at which the adaptive filter 32f converges may be decreased.

以上のように、本実施形態に係る制振装置は、振動発生源gnで生じる振動Vi3と加振手段2を通じて発生させる相殺振動Vi4とを制振すべき位置posで相殺するにあたり、適応フィルタ32fを用いて振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動Vi3’を算出する疑似振動算出手段32と、疑似振動算出手段32により算出された疑似振動Vi3’に基づいて加振手段2を通じて制振すべき位置posに相殺振動Vi4を発生させる相殺振動発生指令手段33と、制振すべき位置posにおいて振動発生源gnで生じた振動Vi3と相殺振動Vi4との相殺誤差として残る振動(Vi3+Vi4)を検出する振動検出手段1とを具備し、疑似振動算出手段32は、振動検出手段1により検出された振動(Vi3+Vi4)と適応フィルタ32fが真値への収束する速度を決定する収束係数32uとに基づいて相殺誤差として残る振動(Vi3+Vi4)が小さくなるように適応フィルタ32fの算出を繰り返し実行し、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ32fを真値へ収束させるものであり、振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差に対応する偏差情報を取得する偏差情報取得手段34と、偏差情報取得手段34により取得された偏差情報に基づいて偏差の増加に応じて適応フィルタ32fが収束する速度が速まるように且つ偏差の減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更する収束係数変更手段35とを備えたことを特徴とする。   As described above, the vibration damping device according to the present embodiment cancels the vibration Vi3 generated by the vibration generation source gn and the canceling vibration Vi4 generated through the vibration means 2 at the position pos where vibration is to be suppressed. Is used to calculate a pseudo vibration Vi3 ′ necessary for canceling the vibration Vi3 transmitted from the vibration source gn to the position pos to be controlled, and the pseudo vibration calculated by the pseudo vibration calculation means 32. Based on the vibration Vi3 ′, the cancellation vibration generation command means 33 for generating the cancellation vibration Vi4 at the position pos to be damped through the vibration means 2, and the vibration Vi3 generated at the vibration source gn at the position pos to be damped. Vibration detection means 1 for detecting vibration (Vi3 + Vi4) remaining as an offset error with vibration Vi4, and pseudo vibration calculation means 32 includes vibration detection means. The calculation of the adaptive filter 32f is repeated so that the vibration (Vi3 + Vi4) remaining as an offset error is reduced on the basis of the vibration (Vi3 + Vi4) detected by the above and the convergence coefficient 32u that determines the convergence speed of the adaptive filter 32f to the true value. The pseudo vibration Vi3 ′ and the adaptive filter 32f are converged to true values by executing and accumulating calculations, and the vibration suppression is performed based on the vibration Vi3 and the pseudo vibration Vi3 ′ transmitted from the vibration generation source gn to the position pos to be controlled. The deviation information acquisition means 34 for acquiring deviation information corresponding to the deviation from the canceling vibration Vi4 generated at the position pos to be applied, and adapted according to the increase in deviation based on the deviation information acquired by the deviation information acquisition means 34 The speed at which the adaptive filter 32f converges so that the speed at which the filter 32f converges increases and the deviation decreases. Characterized in that a convergence factor changing means 35 for changing the convergence factor 32u so slower.

本実施形態では、振動発生源gnから制振すべき位置posへ伝達した振動Vi3を相殺するために必要な疑似振動Vi3’が適応フィルタ32fを用いて疑似振動算出手段32により算出され、算出された疑似振動Vi3’に基づいて相殺振動発生指令手段33により加振手段2を通じて制振すべき位置posに相殺振動Vi4が発生され、制振すべき位置posにおいて振動発生源gnで生じた振動Vi3と相殺振動Vi4との相殺誤差として残る振動(Vi3+Vi4)が振動検出手段1により検出され、検出された振動(Vi3+Vi4)と適応フィルタ32fが真値への収束する速度を決定する収束係数32uとに基づいて相殺誤差として残る振動(Vi3+Vi4)が小さくなるように疑似振動算出手段32により適応フィルタ32fが算出され、算出の積み重ねにより疑似振動Vi3’及び適応フィルタ32fを真値へ収束させる制振制御が実施される。この場合、制振すべき振動Vi3の変化に対応して相殺振動Vi4を大きく変化させる必要があるときに相殺誤差として残る振動(Vi3+Vi4)と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差が大きくなる一方、相殺振動Vi4を大きく変化させる必要がないときに前記偏差が小さくなることに着目して、偏差情報取得手段34により上記偏差に対応する偏差情報を取得し、取得された偏差情報に基づいて偏差の増加に応じて適応フィルタ32fが収束する速度が速まるように且つ偏差の減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを収束係数変更手段35により変更するので、制振すべき位置posに発生させる相殺振動Vi4を大きく変化させる必要があるときに適応フィルタ32fが収束する速度を速めて高応答化し、加振すべき相殺振動Vi4を大きく変化させる必要がないときに適応フィルタ32fが収束する速度を低下させて相殺振動Vi4の挙動を小さくして、制振制御の応答性および安定性を向上させて、相殺振動Vi4を大きく変化させる必要があるときや無いときが混在する場合であっても適切な制振制御を実現することができる。   In the present embodiment, the pseudo vibration Vi3 ′ necessary for canceling the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped is calculated and calculated by the pseudo vibration calculating means 32 using the adaptive filter 32f. Based on the pseudo vibration Vi3 ′, the cancellation vibration generation command means 33 generates the cancellation vibration Vi4 at the position pos to be damped through the vibration means 2, and the vibration Vi3 generated at the vibration source gn at the position pos to be damped. The vibration (Vi3 + Vi4) remaining as a canceling error between the canceling vibration Vi4 and the canceling vibration Vi4 is detected by the vibration detecting means 1, and the detected vibration (Vi3 + Vi4) and the convergence coefficient 32u that determines the speed at which the adaptive filter 32f converges to the true value. On the basis of this, an adaptive filter is used by the pseudo vibration calculation means 32 so that the vibration (Vi3 + Vi4) remaining as a cancellation error is reduced. 2f is calculated, damping control for converging a pseudo vibration Vi3 'and the adaptive filter 32f to the true value is carried out by stacking the calculation. In this case, when the cancellation vibration Vi4 needs to be greatly changed in response to the change of the vibration Vi3 to be damped, it is generated at the position pos to be damped based on the vibration (Vi3 + Vi4) remaining as a cancellation error and the pseudo vibration Vi3 ′. While the deviation from the canceling vibration Vi4 is increased, the deviation is reduced when the cancellation vibration Vi4 does not need to be greatly changed. Based on the acquired deviation information, the convergence coefficient 32u is adjusted so that the speed at which the adaptive filter 32f converges increases as the deviation increases and the speed at which the adaptive filter 32f converges decreases as the deviation decreases. Is changed by the convergence coefficient changing means 35, it is necessary to greatly change the canceling vibration Vi4 generated at the position pos to be damped. The speed at which the adaptive filter 32f converges is increased to increase the response, and when the canceling vibration Vi4 to be vibrated does not need to be greatly changed, the speed at which the adaptive filter 32f converges is decreased to reduce the behavior of the canceling vibration Vi4. It is possible to improve the response and stability of the vibration suppression control by reducing the frequency to realize appropriate vibration suppression control even when there is a case where the cancellation vibration Vi4 needs to be largely changed or not. it can.

特に本実施形態では、疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の振幅値が大きいほど振動発生源gnで生ずる振動Vi3に変化が発生した際に相殺誤差として残る振動(Vi3+Vi4)が大きくなり、上記偏差が大きくなることに着目して、偏差情報取得手段34が、偏差に対応する偏差情報として疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の振幅値に対応する加振力振幅成分である適応フィルタ32fの振幅成分A’を取得し、収束係数変更手段35が、偏差情報取得手段34により取得された加振力振幅成分である適応フィルタ32fの振幅成分A’の増加に応じて適応フィルタ32fが収束する速度が速まるように且つ適応フィルタ32fの振幅成分A’の減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更するので、上記偏差の指標として加振力振幅成分の大きさを用いることにより制振制御の応答性および安定性を向上させる構成を実現することが可能となる。
<第2実施形態>
In particular, in the present embodiment, the larger the amplitude value of the canceling vibration Vi4 generated at the position pos to be controlled based on the pseudo vibration Vi3 ′, the larger the amplitude value of the canceling vibration Vi3 generated at the vibration generating source gn remains as a canceling error. Focusing on the fact that the vibration (Vi3 + Vi4) increases and the deviation increases, the deviation information acquisition means 34 cancels the position pos to be controlled based on the pseudo vibration Vi3 ′ as deviation information corresponding to the deviation. The amplitude component A ′ of the adaptive filter 32f that is the excitation force amplitude component corresponding to the amplitude value of the vibration Vi4 is acquired, and the convergence coefficient changing unit 35 is the excitation force amplitude component acquired by the deviation information acquisition unit 34. As the amplitude component A ′ of the adaptive filter 32f increases, the speed at which the adaptive filter 32f converges increases and the amplitude component A ′ of the adaptive filter 32f decreases. Since the convergence coefficient 32u is changed so that the speed at which the adaptive filter 32f converges is reduced, the magnitude of the excitation force amplitude component is used as an index of the deviation to improve the response and stability of the damping control. The configuration can be realized.
Second Embodiment

次に、本発明の第2実施形態に係る制振装置を、図6を参照して説明する。   Next, a vibration damping device according to a second embodiment of the present invention will be described with reference to FIG.

図6は、本実施形態の制御手段103の構成及び機能を示すブロック図である。制御手段103は、上記第1実施形態に係る制御手段3とほぼ同様の構成を有するが、偏差情報取得手段34を構成する加振力振幅成分取得部34cの代わりに残振動振幅成分取得部34aを有している。   FIG. 6 is a block diagram showing the configuration and function of the control means 103 of this embodiment. The control unit 103 has substantially the same configuration as that of the control unit 3 according to the first embodiment, but a residual vibration amplitude component acquisition unit 34a instead of the excitation force amplitude component acquisition unit 34c constituting the deviation information acquisition unit 34. have.

残振動振幅成分取得部34aは、相殺誤差として残る振動(Vi3+Vi4)の振幅成分が大きいほど上記の偏差が大きくなることに着目して、相殺誤差として残る振動(Vi3+Vi4)の振幅成分を上記偏差の指標として取得している。具体的には、BPF(バンドパスフィルタ)44から出力される振動信号Asin(θ+φ)を入力し、入力した振動信号Asin(θ+φ)から振動成分Aを取得している。   The residual vibration amplitude component acquisition unit 34a pays attention to the fact that the above-mentioned deviation increases as the amplitude component of the vibration (Vi3 + Vi4) remaining as the cancellation error increases, and the amplitude component of the vibration (Vi3 + Vi4) remaining as the cancellation error becomes the above deviation. Obtained as an indicator. Specifically, the vibration signal Asin (θ + φ) output from the BPF (bandpass filter) 44 is input, and the vibration component A is acquired from the input vibration signal Asin (θ + φ).

この残振動振幅成分取得部34aに対応して収束係数変更手段35は、残振動振幅成分取得部34aにより取得された振動成分Aを入力し、入力した振動成分Aの増加に応じて適応フィルタ32fが収束する速度が速まるように且つ入力した振動成分Aの減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数を変更している。具体的には、振幅成分A×所定係数kが収束係数32uとなるようにゲインを出力している。勿論、振幅成分に応じていれば、例えば振幅成分Aに対して目的値を0とするPI制御(比例積分制御)等のその他の処理により収束係数32uを決定してもよい。 Corresponding to the residual vibration amplitude component acquisition unit 34a, the convergence coefficient changing unit 35 inputs the vibration component A acquired by the residual vibration amplitude component acquisition unit 34a, and the adaptive filter 32f according to the increase of the input vibration component A. The convergence coefficient is changed so that the speed at which the adaptive filter 32f converges becomes slower according to the decrease in the input vibration component A. Specifically, the gain is output so that the amplitude component A n × predetermined coefficient k becomes the convergence coefficient 32u. Of course, as long as it corresponds to the amplitude component, the convergence coefficient 32u may be determined by other processing such as PI control (proportional integral control) for setting the target value to 0 for the amplitude component A, for example.

以上のように、本実施形態に係る制振装置は、偏差情報取得手段34を構成する残振動振幅成分取得部34aが、偏差に対応する偏差情報として振動検出手段1により検出される相殺誤差として残る振動(Vi3+Vi4)の振幅成分Aを取得し、収束係数変更手段35が、偏差情報取得手段34を構成する残振動振幅成分取得部34aにより取得された相殺誤差として残る振動(Vi3+Vi4)の振幅成分Aの増加に応じて適応フィルタ32fが収束する速度が速まるように且つ振幅成分Aの減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更することを特徴とする。   As described above, in the vibration damping device according to the present embodiment, the residual vibration amplitude component acquisition unit 34a that constitutes the deviation information acquisition unit 34 has a cancellation error detected by the vibration detection unit 1 as deviation information corresponding to the deviation. The amplitude component A of the remaining vibration (Vi3 + Vi4) is acquired, and the amplitude component of the vibration (Vi3 + Vi4) remaining as a canceling error acquired by the convergence coefficient changing unit 35 by the remaining vibration amplitude component acquiring unit 34a constituting the deviation information acquiring unit 34. The convergence coefficient 32u is changed so that the speed at which the adaptive filter 32f converges as A increases and the speed at which the adaptive filter 32f converges as the amplitude component A decreases.

本実施形態では、相殺誤差として残る振動(Vi3+Vi4)の振幅成分Aが大きいほど振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3‘に基づき制振すべき位置posに発生される相殺振動Vi4との偏差が大きくなることに着目して、この偏差に対応する偏差情報として振動検出手段1により検出される相殺誤差として残る振動(Vi3+Vi4)の振幅成分Aを取得し、取得した振幅成分Aの増加に応じて適応フィルタ32fが収束する速度が速まるように且つ取得した振幅成分Aの減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更するので、上記偏差の指標として相殺誤差として残る振動の振幅成分Aを用いることにより制振制御の応答性および安定性を向上させる構成を実現することが可能となる。
<第3実施形態>
In the present embodiment, as the amplitude component A of the vibration (Vi3 + Vi4) remaining as a cancellation error is larger, the vibration Vi3 transmitted from the vibration source gn to the position pos to be damped and the position pos to be damped based on the pseudo vibration Vi3 ′. Focusing on the fact that the deviation from the generated canceling vibration Vi4 becomes large, the amplitude component A of the vibration (Vi3 + Vi4) remaining as the canceling error detected by the vibration detecting means 1 is obtained as deviation information corresponding to this deviation, The convergence coefficient 32u is changed so that the speed at which the adaptive filter 32f converges increases as the acquired amplitude component A increases, and the speed at which the adaptive filter 32f converges decreases as the acquired amplitude component A decreases. Therefore, by using the amplitude component A of the vibration that remains as a cancellation error as an indicator of the deviation, the response and stability of the vibration suppression control are improved. It is possible to realize the configuration to be made.
<Third Embodiment>

次に、本発明の第3実施形態に係る制振装置を、図7を参照して説明する。   Next, a vibration damping device according to a third embodiment of the present invention will be described with reference to FIG.

図7は、本実施形態の制御手段203の構成及び機能を示すブロック図である。制御手段203は、上記第1実施形態に係る制御手段3とほぼ同様の構成を有するが、偏差情報取得手段34を構成する加振力振幅成分取得部34cの代わりに周波数変動量取得部34bを有している。   FIG. 7 is a block diagram showing the configuration and function of the control means 203 of this embodiment. The control unit 203 has substantially the same configuration as that of the control unit 3 according to the first embodiment, but a frequency fluctuation amount acquisition unit 34b is used instead of the excitation force amplitude component acquisition unit 34c constituting the deviation information acquisition unit 34. Have.

周波数変動量取得部34bは、制振すべき位置posでの振動Vi3の周波数の変動量が大きいほど上記の偏差が大きくなることに着目して、振動発生源gnで生ずる振動に関連する信号に基づいて制振すべき位置posでの振動の周波数の変化量を上記偏差の指標として取得している。具体的には、周波数変動量取得部34bは、周波数検出部41により認識された周波数fを入力し、入力した周波数fに対して微分処理などを行うことにより周波数fの変動量を取得する。   The frequency fluctuation amount acquisition unit 34b pays attention to the fact that the above-described deviation increases as the frequency fluctuation amount of the vibration Vi3 at the position pos to be damped increases, and generates a signal related to the vibration generated at the vibration source gn. Based on this, the amount of change in the vibration frequency at the position pos to be damped is acquired as an index of the deviation. Specifically, the frequency variation acquisition unit 34b receives the frequency f recognized by the frequency detection unit 41, and acquires a variation amount of the frequency f by performing differentiation processing or the like on the input frequency f.

この周波数変動量取得部34bに対応して収束係数変更手段35は、周波数変動量取得部34bにより取得された振動Vi3の周波数fの変動量を入力し、入力した変動量の増加に応じて適応フィルタ32fが収束する速度が速まるように且つ入力した変動量の減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数を変更している。具体的には、周波数fの変動量に比例して適応フィルタ32fの収束する速度が速まるように収束係数32uを決定している。勿論、周波数fの変動量に応じていれば、例えば一定のゲインを乗じたり、周波数fの変動量が所定閾値を超えるか否かによって予め設定された複数の収束係数32uのうちから一つの収束係数32uを用いるように切替可能に構成してもよい。   Corresponding to the frequency fluctuation amount acquisition unit 34b, the convergence coefficient changing unit 35 inputs the fluctuation amount of the frequency f of the vibration Vi3 acquired by the frequency fluctuation amount acquisition unit 34b, and adapts according to the increase of the input fluctuation amount. The convergence coefficient is changed so that the speed at which the filter 32f converges increases and the speed at which the adaptive filter 32f converges decreases as the input fluctuation amount decreases. Specifically, the convergence coefficient 32u is determined so that the convergence speed of the adaptive filter 32f increases in proportion to the fluctuation amount of the frequency f. Of course, depending on the amount of fluctuation of the frequency f, for example, a certain gain is multiplied, or one convergence is selected from a plurality of convergence coefficients 32u set in advance depending on whether the amount of fluctuation of the frequency f exceeds a predetermined threshold. You may comprise so that switching is possible so that the coefficient 32u may be used.

以上のように、本実施形態に係る制振装置は、偏差情報取得手段34を構成する周波数変動量取得部34bが、偏差に対応する偏差情報として振動発生源1で生ずる振動Vi3に関連する信号であるエンジンパルス信号に基づいて制振すべき位置posでの振動Vi3の周波数fの変化量を取得し、収束係数変更手段が、偏差情報取得手段34を構成する周波数変動量取得部34bにより取得された周波数fの変動量の増加に応じて適応フィルタ32fが収束する速度が速まるように且つ取得された周波数fの変動量の減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更することを特徴とする。   As described above, in the vibration damping device according to the present embodiment, the frequency fluctuation amount acquisition unit 34b constituting the deviation information acquisition unit 34 has a signal related to the vibration Vi3 generated in the vibration source 1 as the deviation information corresponding to the deviation. The amount of change in the frequency f of the vibration Vi3 at the position pos to be damped is acquired based on the engine pulse signal, and the convergence coefficient changing unit is acquired by the frequency fluctuation amount acquiring unit 34b constituting the deviation information acquiring unit 34. Convergence is performed so that the speed at which the adaptive filter 32f converges increases as the fluctuation amount of the frequency f is increased, and the speed at which the adaptive filter 32f converges decreases as the fluctuation amount of the acquired frequency f decreases. The coefficient 32u is changed.

本実施形態では、制振すべき位置posでの振動Vi3の周波数fの変動量が大きいほど上記偏差が大きくなることに着目して、この偏差に対応する偏差情報として振動発生源gnで生ずる振動Vi3に関連する信号であるエンジンパルス信号に基づいて制振すべき位置posでの振動Vi3の周波数fの変化量を取得し、取得した周波数fの変化量の増加に応じて適応フィルタ32fが収束する速度が速まるように且つ取得した周波数fの変化量の減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更するので、上記偏差の指標として制振すべき位置posでの振動Vi3の周波数fの変動量を用いることにより制振制御の応答性および安定性を向上させる構成を実現することが可能となる。
<第4実施形態>
In the present embodiment, paying attention to the fact that the deviation increases as the fluctuation amount of the frequency f of the vibration Vi3 at the position pos to be damped increases, and the vibration generated at the vibration source gn as deviation information corresponding to this deviation. Based on the engine pulse signal that is a signal related to Vi3, the amount of change in the frequency f of the vibration Vi3 at the position pos to be damped is acquired, and the adaptive filter 32f converges according to the increase in the amount of change in the acquired frequency f. Since the convergence coefficient 32u is changed so that the speed at which the adaptive filter 32f converges becomes slower according to the decrease in the change amount of the acquired frequency f, the position pos to be damped as an index of the deviation. By using the amount of fluctuation of the frequency f of the vibration Vi3 at, it is possible to realize a configuration that improves the response and stability of the vibration suppression control.
<Fourth embodiment>

次に、本発明の第4実施形態に係る制振装置を、図8及び図9を参照して説明する。   Next, a vibration damping device according to a fourth embodiment of the present invention will be described with reference to FIGS.

図8は、本実施形態の制御手段303の構成及び機能を示すブロック図である。制御手段303は、上記第1実施形態に係る制御手段3とほぼ同様の構成を有するが、偏差情報取得手段34を構成する加振力振幅成分取得部34cの代わりに位相差取得部34dを有している。   FIG. 8 is a block diagram showing the configuration and function of the control means 303 of this embodiment. The control unit 303 has substantially the same configuration as the control unit 3 according to the first embodiment, but includes a phase difference acquisition unit 34d instead of the excitation force amplitude component acquisition unit 34c that constitutes the deviation information acquisition unit 34. is doing.

位相差取得部34dは、図9に示すように、相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφ(=φ−φ’)を取得するものである。その構成を以下に具体的に説明する。   As shown in FIG. 9, the phase difference acquisition unit 34d has a phase φ ′ of the vibration (Vi3 + Vi4) remaining as a cancellation error and a phase φ ′ of the cancellation vibration Vi4 generated at the position pos to be controlled based on the pseudo vibration Vi3 ′. Phase difference Δφ (= φ−φ ′). The configuration will be specifically described below.

図8に示すように、まず、除算器60aにおいて振動信号Asin(θ+φ)をリアルタイム振幅検出部60で検出した振幅Aで除算して、振幅1のsin(θ+φ)を得る。   As shown in FIG. 8, first, the divider 60a divides the vibration signal Asin (θ + φ) by the amplitude A detected by the real-time amplitude detector 60 to obtain sin (θ + φ) of amplitude 1.

リアルタイム振幅検出部60は、振幅1の正弦波sinθの半周期0〜πの積分値が(−cosπ)−(−cos0)=(1)−(−1)=2であり、その平均値は0〜πまでの平均であることから2/πとなることを利用したもので、振動信号Asin(θ+φ)を入力して、絶対値処理を加え、二倍の周波数成分を除去するノッチフィルタを介し、脈動分をLPF(ローパスフィルタ)で除去して2/πを乗ずることにより即時で振幅Aを取得するものである。   The real-time amplitude detector 60 has an integral value of (−cosπ) − (− cos0) = (1) − (− 1) = 2 in the half cycle 0 to π of the sine wave sin θ having the amplitude 1, and the average value thereof is A notch filter that uses 2 / π because it is an average from 0 to π, inputs a vibration signal Asin (θ + φ), adds absolute value processing, and removes double frequency components. Thus, the amplitude A is acquired immediately by removing the pulsation component by LPF (low pass filter) and multiplying by 2 / π.

乗算器61、62は、除算器60aでの除算結果であるsin(θ+φ)に対して2sinθ及び2cosθをそれぞれ乗算して積和定理より、cosφ−cos(2θ+φ)とsinφ+sin(2θ+φ)とを得る。乗算器61の演算結果であるcosφ−cos(2θ+φ)に対して二倍の周波数成分を除去するノッチ処理63を施し、脈動分をLPF(ローパスフィルタ)処理65で除去してcosφを得る。同様に、乗算器62の演算結果であるsinφ+sin(2θ+φ)に対して二倍の周波数成分を除去するノッチ処理64を施し、脈動分をLPF(ローパスフィルタ)処理66で除去してsinφを得る。このように振動信号Asin(θ+φ)の位相成分を有するcosφ及びsinφを即時に特定する。   Multipliers 61 and 62 multiply sin (θ + φ), which is the result of division by divider 60a, by 2 sin θ and 2 cos θ, respectively, and obtain cos φ−cos (2θ + φ) and sin φ + sin (2θ + φ) from the product-sum theorem. . A notch process 63 for removing a double frequency component is applied to cos φ−cos (2θ + φ), which is an operation result of the multiplier 61, and a pulsation component is removed by an LPF (low pass filter) process 65 to obtain cos φ. Similarly, a notch process 64 for removing a double frequency component is applied to sin φ + sin (2θ + φ), which is a calculation result of the multiplier 62, and a pulsation component is removed by an LPF (low-pass filter) process 66 to obtain sin φ. In this way, cos φ and sin φ having the phase component of the vibration signal Asin (θ + φ) are immediately identified.

位相差特定部67は、特定されたcosφ及びsinφと適応フィルタ32fであるA’cosφ’及びA’sinφ’とに基づいて位相差を特定するものである。具体的には、これら位相φ及び位相φ’は、共通の基本電気角θを基準とした位相ズレを表すものであるので、疑似振動の位相と制振すべき位置posでの振動の位相とが一致している場合はφとφ’が等しいものとなる。したがって、位相差Δφをφ−φ’と定義して、以下の式を用いて算出される位相差の正弦成分α及び余弦成分βにより位相差を表現している。
正弦成分α=A’sin(φ−φ’)=A’(sinφcosφ’−cosφsinφ’)=sinφ(A’cosφ’)−cosφ(A’sinφ’)
余弦成分β=A’cos(φ−φ’)=A’(cosφcosφ’+sinφsinφ’)=cosφ(A’cosφ’)+sinφ(A’sinφ’)
The phase difference specifying unit 67 specifies the phase difference based on the specified cos φ and sin φ and the adaptive filter 32f, A ′ cos φ ′ and A ′ sin φ ′. Specifically, since the phase φ and the phase φ ′ represent a phase shift based on the common basic electrical angle θ, the phase of the pseudo vibration and the phase of the vibration at the position pos to be controlled Are equal to each other, φ and φ ′ are equal. Therefore, the phase difference Δφ is defined as φ−φ ′, and the phase difference is expressed by a sine component α and a cosine component β of the phase difference calculated using the following equations.
Sine component α = A′sin (φ−φ ′) = A ′ (sinφcosφ′−cosφsinφ ′) = sinφ (A′cosφ ′) − cosφ (A′sinφ ′)
Cosine component β = A′cos (φ−φ ′) = A ′ (cosφcosφ ′ + sinφsinφ ′) = cosφ (A′cosφ ′) + sinφ (A′sinφ ′)

上記の適応制御アルゴリズムは、位相差Δφが±60度の範囲を超えた場合は制御が発散して制振不能となることが判明しているので、余弦成分β>0の条件で正弦成分αの符号によりΔφが進んでいるか遅れているか否かを判断でき、正弦成分αの大きさにより位相差Δφのズレ量を把握できる。   In the above adaptive control algorithm, it has been found that when the phase difference Δφ exceeds the range of ± 60 degrees, the control diverges and the vibration cannot be controlled, and therefore the sine component α under the condition of the cosine component β> 0. It can be determined whether Δφ is advanced or delayed by the sign of, and the amount of deviation of the phase difference Δφ can be grasped by the magnitude of the sine component α.

この位相差取得部34dに対応して収束係数変更手段35は、位相差取得部34dにより取得された位相差Δφを示す正弦成分α及び余弦成分βを入力し、位相差Δφに応じて適応フィルタ32fが収束する速度が変化するように収束係数を変更している。具体的には、制振すべき位置posの周波数fが変動しているときは位相差Δφも変動することが多いので、位相差Δφが変動していればその変動量に比例して適応フィルタ32fの収束する速度が変化するように収束係数32uを決定している。勿論、位相差Δφの変動量に応じていれば、例えば一定のゲインを乗じたり、位相差Δφの変動量が所定閾値を超えるか否かによって予め設定された複数の収束係数32uのうちから一つの収束係数32uを用いるように切替可能に構成してもよい。   Corresponding to the phase difference acquisition unit 34d, the convergence coefficient changing unit 35 inputs a sine component α and a cosine component β indicating the phase difference Δφ acquired by the phase difference acquisition unit 34d, and an adaptive filter according to the phase difference Δφ. The convergence coefficient is changed so that the speed at which 32f converges changes. Specifically, when the frequency f of the position pos to be controlled fluctuates, the phase difference Δφ also often fluctuates. Therefore, if the phase difference Δφ fluctuates, the adaptive filter is proportional to the fluctuation amount. The convergence coefficient 32u is determined so that the convergence speed of 32f changes. Of course, depending on the amount of fluctuation of the phase difference Δφ, for example, a constant gain is multiplied, or one of a plurality of convergence coefficients 32u set in advance depending on whether the amount of fluctuation of the phase difference Δφ exceeds a predetermined threshold. You may comprise so that switching is possible so that the one convergence coefficient 32u may be used.

以上のように、本実施形態に係る制振装置は、偏差情報取得手段34を構成する位相差取得部34dが、偏差に対応する偏差情報として相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφ(φ−φ’)を取得し、収束係数変更手段35が、偏差情報取得手段34を構成する位相差取得部34dにより取得された位相差Δφの増加に応じて適応フィルタ32fが収束する速度が速まるように且つ位相差Δφの減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更することを特徴とする。   As described above, in the vibration damping device according to the present embodiment, the phase difference acquisition unit 34d that constitutes the deviation information acquisition unit 34 and the phase φ of the vibration (Vi3 + Vi4) that remains as a cancellation error as the deviation information corresponding to the deviation are simulated. Based on the vibration Vi3 ′, the phase difference Δφ (φ−φ ′) with the phase φ ′ of the canceling vibration Vi4 generated at the position pos to be damped is acquired, and the convergence coefficient changing unit 35 sets the deviation information acquiring unit 34. The speed at which the adaptive filter 32f converges increases as the phase difference Δφ acquired by the phase difference acquisition unit 34d is increased, and the speed at which the adaptive filter 32f converges decreases as the phase difference Δφ decreases. The convergence coefficient 32u is changed to the above.

本実施形態では、相殺誤差として残る振動(Vi3+Vi4)の位相φと疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4の位相φ’との位相差Δφ(φ−φ’)が大きくなる傾向にあるときは制振すべき位置posの振動の周波数が変動していることが多く、振動発生源gnから制振すべき位置posへ伝達した振動Vi3と疑似振動Vi3’に基づき制振すべき位置posに発生される相殺振動Vi4との偏差が大きくなることに着目して、この偏差に対応する偏差情報として上記位相差Δφを取得し、取得した位相差Δφの増加に応じて適応フィルタ32fが収束する速度が速まるように且つ位相差Δφの減少に応じて適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更するので、上記位相差Δφを上記偏差の指標として用いることにより制振制御の応答性および安定性を向上させる構成を実現することが可能となる。   In the present embodiment, the phase difference Δφ (φ−φ ′) between the phase φ of the vibration (Vi3 + Vi4) remaining as a cancellation error and the phase φ ′ of the cancellation vibration Vi4 generated at the position pos to be damped based on the pseudo vibration Vi3 ′. ) Tends to increase, the vibration frequency at the position pos to be damped often fluctuates, and the vibration Vi3 and the pseudo vibration Vi3 ′ transmitted from the vibration source gn to the position pos to be damped are often found. Focusing on the fact that the deviation from the cancellation vibration Vi4 generated at the position pos to be damped based on this increases, the phase difference Δφ is obtained as deviation information corresponding to this deviation, and the obtained phase difference Δφ is increased. Accordingly, the convergence coefficient 32u is changed so that the speed at which the adaptive filter 32f converges increases and the speed at which the adaptive filter 32f converges according to the decrease in the phase difference Δφ. The Δφ becomes possible to realize a configuration to improve the response and stability of damping control by using as an indicator of the deviation.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、上記第1〜4の実施形態において、収束係数変更手段35は、適応フィルタ32fが収束する速度が速くなるように収束係数32uを変更する構成と、適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更する構成との双方の構成を有しているが、収束係数変更手段は、適応フィルタ32fが収束する速度が速くなるように収束係数32uを変更する構成のみでもよく、適応フィルタ32fが収束する速度が遅くなるように収束係数32uを変更する構成のみでもよい。   For example, in the first to fourth embodiments, the convergence coefficient changing unit 35 changes the convergence coefficient 32u so that the speed at which the adaptive filter 32f converges and the speed at which the adaptive filter 32f converges become slower. In this way, the convergence coefficient changing means may be configured to change the convergence coefficient 32u so that the speed at which the adaptive filter 32f converges increases. Only a configuration in which the convergence coefficient 32u is changed so that the speed at which the adaptive filter 32f converges is slow may be used.

また、偏差情報取得手段は、上記偏差に対応する偏差情報として上記加振力振幅成分、相殺誤差として残る振動の振幅成分、制振すべき振動の周波数の変化量、相殺誤差として残る振動の位相と疑似振動に基づき制振すべき位置に発生される振動の位相との位相差のうちのいずれか1つの偏差情報を取得しているが、複数の偏差情報を取得して収束係数を変更するように構成してもよい。単一の偏差情報を取得する構成では、上記偏差の増加や減少の兆候が現れにくい偏差情報を取得していることがあり、この場合、収束係数の変更が遅れてしまうことが考えられる。しかし、複数の偏差情報を取得するように構成すると、上記偏差の増加や減少の兆候が現れやすい偏差情報を取得することが単一の偏差情報を取得する構成に比べて多くなるので、応答性や安全性等の制御精度を向上させることが可能となる。   Further, the deviation information acquisition means includes the excitation force amplitude component as deviation information corresponding to the deviation, the amplitude component of vibration remaining as a cancellation error, the amount of change in the frequency of vibration to be damped, and the phase of vibration remaining as a cancellation error. The deviation information of one of the phase differences from the phase of the vibration generated at the position to be controlled based on the pseudo vibration is acquired, but the convergence coefficient is changed by acquiring a plurality of deviation information. You may comprise as follows. In the configuration in which single deviation information is acquired, deviation information in which signs of increase or decrease in the deviation do not easily appear may be acquired. In this case, it is considered that the change of the convergence coefficient is delayed. However, when it is configured to acquire multiple deviation information, it is more responsive to acquire deviation information that tends to show signs of increase or decrease of the deviation than the configuration that acquires single deviation information. And control accuracy such as safety can be improved.

その他、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each unit is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…………振動検出手段(加速度センサ)
2…………加振手段(リニアアクチュエータ)
3…………制御手段
32………疑似振動算出手段
32f……適応フィルタ
32u……収束係数
33………相殺振動発生指令手段
34………偏差情報取得手段
35………収束係数変更手段
φ、φ’…位相
Δφ………位相差
gn………振動発生源
pos……制振すべき位置
Vi1……振動発生源で生ずる振動
Vi2……加振手段で発生する振動
Vi3……制振すべき位置での振動
Vi3’…制振すべき位置での振動を模擬した疑似振動
Vi4……相殺振動
1 …… Vibration detection means (acceleration sensor)
2 ………… Excitation means (linear actuator)
3 ....... Control means 32... Pseudo vibration calculation means 32 f... Adaptive filter 32 u .. convergence coefficient 33... Canceling vibration generation command means 34. φ, φ ′, phase Δφ,... phase difference gn, vibration source pos, vibration position Vi1, vibration Vi2 generated at the vibration source, vibration Vi3 generated by the vibration means, vibration suppression Vibration Vi3 'at the position to be vibrated ... Simulated vibration Vi4 at the position to be damped Vi4 ... Canceling vibration

Claims (5)

振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、
前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、
前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の増加に応じて前記適応フィルタが収束する速度が速まるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする制振装置。
When canceling the vibration generated at the vibration source and the canceling vibration generated through the excitation means at the position to be controlled, the vibration transmitted from the vibration source to the position to be controlled is canceled using an adaptive filter. Pseudo-vibration calculating means for calculating a pseudo-vibration necessary for generating the canceling vibration, and generating the canceling vibration at the position to be damped through the excitation means based on the pseudo-vibration calculated by the pseudo-vibration calculating means Command means and vibration detection means for detecting vibration remaining as a cancellation error between the vibration generated at the vibration source at the position to be controlled and the cancellation vibration, and the pseudo vibration calculation means includes the vibration Based on the vibration detected by the detecting means and the convergence coefficient that determines the speed at which the adaptive filter converges to a true value, the vibration remaining as the cancellation error is reduced. Said adaptive calculation of filter repeatedly executed by stacking of calculating a pseudo vibration and adaptive filter a vibration damping device to converge to the true value,
Deviation information acquisition means for acquiring deviation information corresponding to the deviation between the vibration transmitted from the vibration source to the position to be damped and the cancellation vibration generated at the position to be damped based on the pseudo vibration;
Convergence coefficient changing means for changing the convergence coefficient so that the speed at which the adaptive filter converges according to the increase in the deviation is increased based on the deviation information acquired by the deviation information acquisition means. Damping device.
振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、
前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、
前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の減少に応じて前記適応フィルタが収束する速度が遅くなるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする制振装置。
When canceling the vibration generated at the vibration source and the canceling vibration generated through the excitation means at the position to be controlled, the vibration transmitted from the vibration source to the position to be controlled is canceled using an adaptive filter. Pseudo-vibration calculating means for calculating a pseudo-vibration necessary for generating the canceling vibration, and generating the canceling vibration at the position to be damped through the excitation means based on the pseudo-vibration calculated by the pseudo-vibration calculating means Command means and vibration detection means for detecting vibration remaining as a cancellation error between the vibration generated at the vibration source at the position to be controlled and the cancellation vibration, and the pseudo vibration calculation means includes the vibration Based on the vibration detected by the detecting means and the convergence coefficient that determines the speed at which the adaptive filter converges to a true value, the vibration remaining as the cancellation error is reduced. Said adaptive calculation of filter repeatedly executed by stacking of calculating a pseudo vibration and adaptive filter a vibration damping device to converge to the true value,
Deviation information acquisition means for acquiring deviation information corresponding to the deviation between the vibration transmitted from the vibration source to the position to be damped and the cancellation vibration generated at the position to be damped based on the pseudo vibration;
Convergence coefficient changing means for changing the convergence coefficient based on the deviation information acquired by the deviation information acquisition means so as to reduce the convergence speed of the adaptive filter according to a decrease in the deviation. Damping device.
振動発生源で生じる振動と加振手段を通じて発生させる相殺振動とを制振すべき位置で相殺するにあたり、適応フィルタを用いて前記振動発生源から前記制振すべき位置へ伝達した振動を相殺するために必要な疑似振動を算出する疑似振動算出手段と、前記疑似振動算出手段により算出された疑似振動に基づいて前記加振手段を通じて前記制振すべき位置に前記相殺振動を発生させる相殺振動発生指令手段と、前記制振すべき位置において前記振動発生源で生じた振動と前記相殺振動との相殺誤差として残る振動を検出する振動検出手段とを具備し、前記疑似振動算出手段は、前記振動検出手段により検出された振動と前記適応フィルタが真値への収束する速度を決定する収束係数とに基づいて前記相殺誤差として残る振動が小さくなるように前記適応フィルタの算出を繰り返し実行し、算出の積み重ねにより疑似振動及び適応フィルタを真値へ収束させる制振装置であって、
前記振動発生源から前記制振すべき位置へ伝達した振動と前記疑似振動に基づき前記制振すべき位置に発生される相殺振動との偏差に対応する偏差情報を取得する偏差情報取得手段と、
前記偏差情報取得手段により取得された偏差情報に基づいて前記偏差の増加に応じて前記適応フィルタが収束する速度が速まり前記偏差の減少に応じて前記適応フィルタが収束する速度が遅くなるように前記収束係数を変更する収束係数変更手段とを備えたことを特徴とする制振装置。
When canceling the vibration generated at the vibration source and the canceling vibration generated through the excitation means at the position to be controlled, the vibration transmitted from the vibration source to the position to be controlled is canceled using an adaptive filter. Pseudo-vibration calculating means for calculating a pseudo-vibration necessary for generating the canceling vibration, and generating the canceling vibration at the position to be damped through the excitation means based on the pseudo-vibration calculated by the pseudo-vibration calculating means Command means and vibration detection means for detecting vibration remaining as a cancellation error between the vibration generated at the vibration source at the position to be controlled and the cancellation vibration, and the pseudo vibration calculation means includes the vibration Based on the vibration detected by the detecting means and the convergence coefficient that determines the speed at which the adaptive filter converges to a true value, the vibration remaining as the cancellation error is reduced. Said adaptive calculation of filter repeatedly executed by stacking of calculating a pseudo vibration and adaptive filter a vibration damping device to converge to the true value,
Deviation information acquisition means for acquiring deviation information corresponding to the deviation between the vibration transmitted from the vibration source to the position to be damped and the cancellation vibration generated at the position to be damped based on the pseudo vibration;
Based on the deviation information acquired by the deviation information acquisition means, the speed at which the adaptive filter converges increases as the deviation increases, and the speed at which the adaptive filter converges decreases as the deviation decreases. A vibration damping device comprising a convergence coefficient changing means for changing the convergence coefficient.
前記偏差情報取得手段は、前記偏差に対応する偏差情報として前記疑似振動に基づき制振すべき位置に発生される相殺振動の振幅値に対応する加振力振幅成分を取得し、
前記収束係数変更手段は、前記偏差情報取得手段により取得された加振力振幅成分に応じて前記収束係数を変更する請求項1〜3のいずれかに記載の制振装置。
The deviation information acquisition means acquires an excitation force amplitude component corresponding to an amplitude value of a canceling vibration generated at a position to be controlled based on the pseudo vibration as deviation information corresponding to the deviation,
The damping device according to any one of claims 1 to 3, wherein the convergence coefficient changing unit changes the convergence coefficient according to an excitation force amplitude component acquired by the deviation information acquisition unit.
請求項1〜4のいずれかに記載の制振装置を備えた車両。
The vehicle provided with the damping device in any one of Claims 1-4.
JP2009269276A 2009-11-25 2009-11-26 Vibration control device and vehicle equipped with the same Expired - Fee Related JP5353661B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009269276A JP5353661B2 (en) 2009-11-26 2009-11-26 Vibration control device and vehicle equipped with the same
CN201080053633.9A CN102667227B (en) 2009-11-25 2010-11-25 Vibration damping device and vehicle provided therewith
PCT/JP2010/071051 WO2011065441A1 (en) 2009-11-25 2010-11-25 Vibration damping device and vehicle provided therewith
KR1020127008783A KR20120114214A (en) 2009-11-25 2010-11-25 Vibration damping device and vehicle provided therewith
EP10833287A EP2505870A1 (en) 2009-11-25 2010-11-25 Vibration damping device and vehicle provided therewith
US13/473,876 US9075418B2 (en) 2009-11-25 2012-05-17 Vibration damping device and method for canceling out a vibration at a damping position based on a phase difference
HK12112257.9A HK1171494A1 (en) 2009-11-25 2012-11-28 Vibration damping device and vehicle provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009269276A JP5353661B2 (en) 2009-11-26 2009-11-26 Vibration control device and vehicle equipped with the same

Publications (2)

Publication Number Publication Date
JP2011112164A true JP2011112164A (en) 2011-06-09
JP5353661B2 JP5353661B2 (en) 2013-11-27

Family

ID=44234652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009269276A Expired - Fee Related JP5353661B2 (en) 2009-11-25 2009-11-26 Vibration control device and vehicle equipped with the same

Country Status (1)

Country Link
JP (1) JP5353661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065718A1 (en) * 2018-09-25 2020-04-02 三菱電機株式会社 Elevator control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202902A (en) * 2002-01-07 2003-07-18 Tokai Rubber Ind Ltd Active vibration control method using adaptive control method
JP2006336736A (en) * 2005-06-01 2006-12-14 Tokai Rubber Ind Ltd Active vibration-isolating system
JP2008250131A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Active noise controller
JP2009275822A (en) * 2008-05-14 2009-11-26 Sinfonia Technology Co Ltd Vibration damping device and vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202902A (en) * 2002-01-07 2003-07-18 Tokai Rubber Ind Ltd Active vibration control method using adaptive control method
JP2006336736A (en) * 2005-06-01 2006-12-14 Tokai Rubber Ind Ltd Active vibration-isolating system
JP2008250131A (en) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd Active noise controller
JP2009275822A (en) * 2008-05-14 2009-11-26 Sinfonia Technology Co Ltd Vibration damping device and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065718A1 (en) * 2018-09-25 2020-04-02 三菱電機株式会社 Elevator control device
CN112739637A (en) * 2018-09-25 2021-04-30 三菱电机株式会社 Control device for elevator

Also Published As

Publication number Publication date
JP5353661B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
WO2011065441A1 (en) Vibration damping device and vehicle provided therewith
JP3572486B2 (en) Vibration noise control device
EP2600341B1 (en) Active vibration noise control apparatus
KR101555077B1 (en) Vibration control device and vehicle
EP3249806A1 (en) Control device for rotating electrical machine
JP2007328219A (en) Active noise controller
WO2013002140A1 (en) Active vibration/noise suppression device
US9517704B2 (en) Apparatus for controlling rotary machine
US20070233478A1 (en) Active noise control system and active vibration control system
WO2016151624A1 (en) Active vibration noise control apparatus
US20100111318A1 (en) Active noise controller
JP5353661B2 (en) Vibration control device and vehicle equipped with the same
JP5353662B2 (en) Vibration control device and vehicle equipped with the same
JP2012068773A (en) Damping device
JP5540667B2 (en) Vibration control device and vehicle equipped with the same
US20050055148A1 (en) Method for operating a chassis regulating system and a device to carry out the method
JP2012172782A (en) Vibration control device
JP5846776B2 (en) Active vibration and noise suppression device
JP5674569B2 (en) Active vibration and noise suppression device
EP3948847B1 (en) Active sound management in noise cancelation systems
JP3611181B2 (en) Adaptive control method for periodic signals
JP2018204662A (en) Active-type vibration noise control device
US9613613B2 (en) Method for active narrow-band acoustic control with variable transfer function(s), and corresponding system
JP5670301B2 (en) Active vibration noise control device
US20160202112A1 (en) Signal level detection device and signal level detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5353661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees