JP2012172782A - Vibration control device - Google Patents

Vibration control device Download PDF

Info

Publication number
JP2012172782A
JP2012172782A JP2011036382A JP2011036382A JP2012172782A JP 2012172782 A JP2012172782 A JP 2012172782A JP 2011036382 A JP2011036382 A JP 2011036382A JP 2011036382 A JP2011036382 A JP 2011036382A JP 2012172782 A JP2012172782 A JP 2012172782A
Authority
JP
Japan
Prior art keywords
vibration
order
frequency
control mode
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011036382A
Other languages
Japanese (ja)
Inventor
Yuichi Hamaguchi
雄一 濱口
Takeo Ito
丈生 伊藤
Hideaki Moriya
英朗 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2011036382A priority Critical patent/JP2012172782A/en
Publication of JP2012172782A publication Critical patent/JP2012172782A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve vibration control accuracy by achieving proper vibration control in both a low-frequency domain and a high-frequency domain under a constraint of poor arithmetic capacity such as of an inexpensive calculator.SOLUTION: The device includes; a basic order drive instruction arithmetic unit 32 which calculates a basic order drive instruction Ifor canceling a basic order component of a detected vibration detected by a vibration detection unit 1; a high order drive instruction arithmetic unit 33 which calculates a high order drive instruction Ifor canceling a high order component of the detected vibration detected by the vibration detection unit 1; a multiple order control mode for driving an excitation means 2 based on instructions obtained by composing the drive instructions of both of the arithmetic units 32, 33; a high frequency control mode for driving the excitation means 2 based on the drive instruction calculated by the basic order arithmetic unit 32; and a mode selection unit 36 which switches either one of the multiple order control mode and the high frequency control mode to the other based on a frequency acquired at a position pos to be vibration-controlled.

Description

本発明は、発生する振動に対し逆相となる振動を加振して両者を相殺する制振装置に関する。   The present invention relates to a vibration damping device that vibrates vibrations that are in opposite phases to generated vibrations and cancels them out.

従来から車両のエンジン等の振動発生源で生じた振動とリニアアクチュエータ(加振手段)を通じて発生させた相殺振動とを制振すべき位置で相殺する制振装置が知られている。このような従来の制振装置として例えば特許文献1の図10に、制振すべき位置(座席)での振動を検出する加速度センサを用いた振動検出部と、振動検出部により検出された検出振動のうち基本次数成分(1次成分)の振動を相殺するための1次電流指令を演算により生成する1次周波数演算部及び正弦波発信器と、検出振動のうち高次成分(2次成分)の振動を相殺するための2次電流指令を演算により生成する2次周波数演算部及び正弦波発信器とを具備し、1次周波数演算部及び2次周波数演算部によって演算し生成された1次電流指令と2次電流指令とを合成した指令に基づいて加振手段を駆動する複数次数制御モードでの制振を実施するものが開示されている。   2. Description of the Related Art Conventionally, there is known a vibration damping device that cancels vibration generated at a vibration generation source such as an engine of a vehicle and canceling vibration generated through a linear actuator (vibration means) at a position where vibration is to be suppressed. As such a conventional vibration damping device, for example, in FIG. 10 of Patent Document 1, a vibration detection unit using an acceleration sensor that detects vibration at a position (seat) to be damped, and detection detected by the vibration detection unit A primary frequency calculation unit and a sine wave generator that generate a primary current command for canceling vibration of a basic order component (primary component) of vibration, and a high-order component (secondary component of detected vibration) 1), a secondary frequency calculation unit that generates a secondary current command for canceling vibrations) and a sine wave transmitter, and 1 generated by calculation by the primary frequency calculation unit and the secondary frequency calculation unit. An apparatus is disclosed that performs vibration suppression in a multi-order control mode that drives an excitation means based on a command obtained by combining a secondary current command and a secondary current command.

国際公開第2007/129627号International Publication No. 2007/129627

上記の複数次数制御モードは、車のアイドリング時など制振すべき位置に生じる振動の周波数が低周波数領域である場合に、基本次数成分(1次成分)の振動だけでなく高次成分(N次成分、Nは2以上の正数)の振動も無視できない程度の大きさとなるので、これら基本次数成分及び高次成分の振動を制振対象とする制御である。制振制御において制振すべき位置での振動波形を予め定めた振動一周期あたりのサンプリング数でサンプリングするにあたり、制御破綻を起こさないためには、予め定めた振動一周期あたりのサンプリング数および周波数に応じて定まる許容演算時間(演算タップ)内に基本次数成分(1次)および高次成分(2次)の演算を完了させる必要がある。   In the above-described multi-order control mode, not only the vibration of the basic order component (primary component) but also the high-order component (N Since the vibration of the second order component, N is a positive number equal to or greater than 2, cannot be ignored, the control is to control the vibration of the basic order component and the higher order component. In order to prevent control failure when sampling the vibration waveform at the position to be controlled in vibration suppression control at a predetermined number of samplings per vibration period, a predetermined number of samplings and frequencies per vibration period are predetermined. It is necessary to complete the calculation of the basic order component (first order) and the higher order component (second order) within an allowable calculation time (calculation tap) determined in accordance with.

しかしながら、演算能力に乏しい廉価演算器を用いて複数次数制御モードでの制振を高周波数領域で実行しようとすると、上記の許容演算時間よりも、基本次数成分(1次)および高次成分(2次)の演算に要する時間の方が長くなってしまい、高周波数領域では複数次数制御モードによる制振制御を実施することができない。   However, if it is attempted to perform vibration suppression in the multi-order control mode in a high frequency region using a low-cost arithmetic unit having poor computing capability, the basic order component (first order) and the higher order component ( The time required for the calculation of the (second order) becomes longer, and the vibration suppression control in the multi-order control mode cannot be performed in the high frequency region.

一方、高周波数領域では、制振すべき位置に生じる振動のうち高次成分(N次成分)が無視できる程度の大きさとなることが多いので、許容演算時間内に演算時間を収めるために基本次数の演算のみを行う高周波数制御モードが有効であると考えられる。しかし、高周波数制御モードでの制振を低周波数領域で行うと、高次成分の振動を制振対象としていないために制振精度が損なわれてしまう。   On the other hand, in the high frequency region, the high-order component (N-order component) of vibrations generated at the position to be damped is often large enough to be ignored, so it is fundamental to keep the calculation time within the allowable calculation time. It is considered that the high frequency control mode in which only the order calculation is performed is effective. However, if the vibration suppression in the high frequency control mode is performed in the low frequency region, the vibration suppression accuracy is impaired because the vibrations of the higher order components are not targeted for vibration suppression.

このように、複数次数制御モード又は高周波数制御モードのいずれか一方のみを搭載した制振装置では、低周波数領域又は高周波数領域のうちいずれか一方の領域において適切な制振が可能であるが、いずれか他方の領域において振動を十分に相殺できずに制振精度が低減してしまう。   In this way, in the vibration damping device equipped with only one of the multi-order control mode or the high frequency control mode, appropriate vibration damping is possible in either the low frequency region or the high frequency region. In any one of the regions, vibrations cannot be sufficiently canceled out, and the vibration suppression accuracy is reduced.

本発明は、このような課題に着目してなされたものであって、その目的は、廉価演算器など演算能力の乏しい制約の下で低周波数領域及び高周波数領域いずれの領域においても適切な制振制御を実行可能とし、制振精度を向上させた制振装置を提供することである。   The present invention has been made paying attention to such problems, and its purpose is to appropriately control both low frequency regions and high frequency regions under the constraints of poor computing capabilities such as low-cost computing units. It is to provide a vibration control device that can execute vibration control and improve vibration control accuracy.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明に係る制振装置は、振動発生源で生じる振動と加振手段により発生する振動とを制振すべき位置で相殺する制振装置であって、制振すべき位置での振動を検出する振動検出部と、振動検出部により検出された検出振動のうち基本次数成分に対し逆相となる振動を制振すべき位置に加振手段を通じて発生させるための基本次数駆動指令を算出する基本次数駆動指令演算部と、振動検出部により検出された検出振動のうち高次成分に対し逆相となる振動を制振すべき位置に加振手段を通じて発生させるための高次駆動指令を算出する高次駆動指令演算部と、予め定めた振動一周期あたりのサンプリング数および振動周波数に応じて定まる許容演算時間内において前記基本次数駆動指令演算部の演算と前記高次駆動指令演算部の演算とを順次実行して双方の演算を完了させ、双方の演算部の駆動指令を合成した指令に基づいて加振手段を駆動する複数次数制御モードと、前記許容演算時間内において前記高次駆動指令演算部の演算を停止した状態で前記基本次数駆動指令演算部の演算を実行してその演算を完了させ、基本次数演算部で算出された駆動指令に基づいて加振手段を駆動する高周波数制御モードと、制振すべき位置での振動の周波数又は実行すべき制御モードを示す外部指令を取得し、取得した周波数又は外部指令に基づいて前記複数次数制御モード又は前記高周波数制御モードのいずれか一方から他方に切り換えるモード選択部とを具備することを特徴とする。   That is, the vibration damping device according to the present invention is a vibration damping device that cancels out the vibration generated at the vibration source and the vibration generated by the vibration excitation means at the position where vibration is to be suppressed, and the vibration at the position where vibration is to be suppressed. And a basic order drive command for generating vibrations that are out of phase with respect to the basic order component out of the detected vibrations detected by the vibration detecting unit through vibration means at the position to be damped. A higher-order drive command for generating vibrations that are in phase opposite to the higher-order component among the detected vibrations detected by the vibration detection unit through a vibrating means at a position to be damped. Within the allowable calculation time determined according to the predetermined number of samplings per vibration period and vibration frequency, and the calculation of the basic order drive command calculation unit and the high order drive command calculation unit Performance In order to complete both calculations and drive the excitation means based on a command obtained by combining the drive commands of both calculation units, and the higher-order drive command within the allowable calculation time. High-frequency control for driving the excitation means based on the drive command calculated by the basic order calculation unit by executing the calculation of the basic order drive command calculation unit while the calculation of the calculation unit is stopped. An external command indicating the mode and the frequency of vibration at the position to be damped or the control mode to be executed is acquired, and based on the acquired frequency or the external command, either the multi-order control mode or the high-frequency control mode And a mode selection unit for switching from one to the other.

許容演算時間は、制振すべき位置での振動波形を予め定めた振動一周期あたりのサンプリング数でサンプリングする際のサンプリング周期であり、制御破綻を起こさない範囲で取り得る演算時間の最大値を意味する。   The allowable calculation time is the sampling period when sampling the vibration waveform at the position to be damped at a predetermined number of samplings per vibration period, and the maximum calculation time that can be taken within the range that does not cause control failure. means.

このように、制振すべき位置での振動の周波数又は実行すべき制御モードを示す外部指令を取得し、取得した周波数又は外部指令に基づいて前記複数次数制御モード又は前記高周波数制御モードのいずれか一方から他方に切り換えるので、予め定めた振動一周期あたりのサンプリング数および現周波数に応じて定まる許容演算時間内に基本次数駆動指令演算部の演算と高次駆動指令演算部の演算とが完了する周波数の場合に複数次数制御モードとし、完了しない周波数の場合に高周波数制御モードとすることが可能となり、廉価演算器など演算能力の乏しい制約の下で低周波数領域及び高周波数領域いずれの領域においても適切な制振制御が実施可能となり、制振精度を向上させることが可能となる。   Thus, an external command indicating the frequency of vibration at the position to be damped or the control mode to be executed is acquired, and either the multi-order control mode or the high-frequency control mode is acquired based on the acquired frequency or external command. Since switching from one to the other, the calculation of the basic order drive command calculation unit and the calculation of the high-order drive command calculation unit are completed within the allowable calculation time determined according to the predetermined number of samplings per vibration cycle and the current frequency. It is possible to set the multi-order control mode for the frequency to be used, and the high frequency control mode for the frequency that is not completed. Therefore, it is possible to perform appropriate vibration suppression control, and it is possible to improve the vibration suppression accuracy.

制御モードの切り換えが頻発するチャタリングを防止して制御を安定させるためには、前記モード選択部は、前記取得した周波数が予め定めた第一の閾値を上回った場合に前記高周波数制御モードに切り換えるとともに、前記取得した周波数が前記第一の閾値よりも低く設定された第二の閾値を下回った場合に前記複数次数制御モードに切り換えることが好ましい。   In order to prevent chattering that frequently causes switching of the control mode and stabilize control, the mode selection unit switches to the high frequency control mode when the acquired frequency exceeds a predetermined first threshold. At the same time, it is preferable to switch to the multi-order control mode when the acquired frequency falls below a second threshold set lower than the first threshold.

乗員に快適な乗り心地を提供するためには、上記の制振装置を車両に備えることが挙げられる。   In order to provide a comfortable ride for the occupant, it is possible to provide the vehicle with the above vibration damping device.

本発明は、以上説明したように、現周波数又は外部指令に基づいて複数次数制御モード又は高周波数制御モードのいずれか一方から他方に切り換えるので、周波数により定まる許容演算時間内に基本次数成分及び高次成分の演算が完了する周波数の場合に複数次数制御モードとし、完了しない周波数の場合に高周波数制御モードとすることが可能となり、廉価演算器など演算能力の乏しい制約の下で低周波数領域及び高周波数領域いずれの領域においても適切な制振制御が実施可能となり、制振精度を向上させることが可能となる。したがって、演算器に要するコストを増大させることなく、制振精度を向上させた制振装置を提供することが可能となる。   As described above, since the present invention switches from one of the multiple-order control mode or the high-frequency control mode to the other based on the current frequency or the external command, the basic order component and the high-order component are within the allowable calculation time determined by the frequency. It is possible to set the multi-order control mode when the frequency of the calculation of the next component is complete, and the high frequency control mode when the frequency is not complete. Appropriate vibration suppression control can be performed in any high frequency region, and vibration suppression accuracy can be improved. Therefore, it is possible to provide a vibration damping device with improved vibration damping accuracy without increasing the cost required for the arithmetic unit.

本発明の一実施形態に係る制振装置の概略全体模式図。1 is a schematic overall schematic diagram of a vibration damping device according to an embodiment of the present invention. 制御手段の構成および機能の概略ブロック図。The schematic block diagram of a structure and function of a control means. 制振すべき位置の振動に関する説明図。Explanatory drawing regarding the vibration of the position which should be controlled. 振動周波数と許容演算時間との関係を示す図。The figure which shows the relationship between a vibration frequency and permissible calculation time. 複数次数制御モードにおける演算時間及び許容演算時間の関係を示す図。The figure which shows the relationship between the calculation time and allowable calculation time in multiple order control mode. 高周波数制御モードにおける演算時間及び許容演算時間の関係を示す図。The figure which shows the relationship between the calculation time in the high frequency control mode, and permissible calculation time. 周波数と実行する制御モードとの関係を示す図。The figure which shows the relationship between a frequency and the control mode to perform.

以下、本発明の一実施形態に係る制振装置を、図面を参照して説明する。   Hereinafter, a vibration damping device according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態の制振装置は、図1に示すように、自動車等の車両に搭載されるものであり、座席st等の制振すべき位置posでの振動を検出する加速度センサ等の振動検出部1と、所定の質量を有する補助質量2aを振動させることにより振動Vi2を発生するリニアアクチュエータを用いた加振手段2と、振動発生源gnであるエンジンの点火パルス信号Sと振動検出部1からの検出信号とを入力し加振手段2で発生させた振動Vi2を制振すべき位置posへ伝達させることにより制振すべき位置posに相殺振動Vi4を発生させる制御手段3とを有し、車体フレームfrmにマウンタgnmを介して搭載されたエンジン等の振動発生源gnで生じる振動Vi1と加振手段2を通じて制振すべき位置posに発生させる相殺振動Vi4とを制振すべき位置posで相殺させて制振すべき位置posでの振動を低減するものである。 As shown in FIG. 1, the vibration damping device of the present embodiment is mounted on a vehicle such as an automobile, and vibration detection such as an acceleration sensor that detects vibration at a position pos to be damped such as a seat st. and part 1, the vibration means 2 using a linear actuator for generating vibrations Vi2 by vibrating the auxiliary mass 2a having a predetermined mass, the ignition pulse signal S 0 and the vibration detecting portion of the engine which is a vibration generating source gn And a control means 3 for generating a canceling vibration Vi4 at the position pos to be damped by inputting the detection signal from 1 and transmitting the vibration Vi2 generated by the oscillating means 2 to the position pos to be damped. The vibration Vi1 generated by the vibration generation source gn of the engine or the like mounted on the body frame frm via the mounter gnm and the canceling vibration Vi generated at the position pos to be controlled through the vibration means 2 4 is canceled at the position pos to be damped, and the vibration at the position pos to be damped is reduced.

なお、図1に示すように、振動発生源gnで生じた振動Vi1は、制振すべき位置posに至るまでにその振幅又は位相が変化して振動Vi3となり、加振手段2で生じた振動Vi2は、制振すべき位置posに至るまでにその振幅又は位相が変化して振動Vi4となる。図中では、振動発生源gnから制振すべき位置posまでの伝達経路上の伝達特性をG’とし、加振手段2から制振すべき位置posまでの伝達経路上の伝達特性をGとして表している。   As shown in FIG. 1, the vibration Vi1 generated at the vibration generation source gn changes in amplitude or phase until reaching the position pos to be damped, and becomes a vibration Vi3. Vi2 changes its amplitude or phase until reaching a position pos to be damped, and becomes a vibration Vi4. In the figure, the transfer characteristic on the transfer path from the vibration source gn to the position pos to be damped is G ′, and the transfer characteristic on the transfer path from the vibration means 2 to the position pos to be damped is G. Represents.

図3(a)〜(c)に示すように、制振すべき位置での振動は、基本次数成分(1次成分)の振動と高次成分(N次成分、Nは2以上の正数)の振動との合成波である。制御手段3は、この振動を適切に制振すべく、図2に示すように、振動検出部1により検出された検出振動のうち基本次数成分の振動(図3(b)参照)に対し逆相となる振動を制振すべき位置posに加振手段2を通じて発生させるための基本次数駆動指令Iを算出する基本次数駆動指令演算部32と、振動検出部1により検出された検出振動のうち高次成分の振動(図3(c)参照)に対し逆相となる振動を制振すべき位置posに加振手段2を通じて発生させるための高次駆動指令Iを算出する高次駆動指令演算部33とを主体とし、その他、周波数検出部31及びモータ指令変換部34を有している。 As shown in FIGS. 3A to 3C, the vibration at the position to be damped is the vibration of the basic order component (first order component) and the higher order component (Nth order component, where N is a positive number of 2 or more. ) And vibration. As shown in FIG. 2, the control means 3 reverses the vibration of the fundamental order component (see FIG. 3 (b)) among the detected vibrations detected by the vibration detection unit 1, in order to appropriately suppress this vibration. A basic order drive command calculation unit 32 for calculating a basic order drive command I 1 for generating the phase vibration to the position pos to be damped through the vibration means 2, and the detected vibration detected by the vibration detection unit 1. vibration of the inner high-order components higher driving for calculating the higher-order drive command I N for generating through vibrating means 2 to the position pos should damp the vibrations opposite phases with respect to (FIG. 3 (c) refer) The command calculation unit 33 is a main component, and in addition, a frequency detection unit 31 and a motor command conversion unit 34 are provided.

周波数検出部31は、図2に示すように、振動発生源gnで生じる振動Vi1に関連する信号に基づいて制振すべき位置posでの振動の周波数fを検出する。検出した周波数fは、基本次数駆動指令Iや高次駆動指令Iの周波数の基礎として用いられる。本実施形態では、振動発生源gnで生ずる振動Vi1に関連する振動としてのエンジンの点火パルス信号SをECU等から入力している。勿論、エンジンの点火パルス信号Sに代えて例えばエンジンクランクの回転数を検出するセンサからの検出パルス信号等、その他の信号を用いてもよい。 As shown in FIG. 2, the frequency detector 31 detects the frequency f of vibration at the position pos to be damped based on a signal related to the vibration Vi1 generated at the vibration source gn. The detected frequency f is used as the basis of the frequency of the basic order drive command I 1 and the higher order drive command I N. In the present embodiment, the ignition pulse signal S 0 of the engine as the vibration associated with vibration Vi1 generated by the vibration generating source gn is inputted from the ECU or the like. Of course, the detection pulse signal from the sensor for detecting the rotational speed of the engine crankshaft, for example, instead of the ignition pulse signal S 0 of the engine, and may be other signals.

基本次数駆動指令演算部32は、図2に示すように、適応制御アルゴリズムを用いて基本次数成分の振動(図3(b)参照)を相殺するための基本次数駆動指令Iを算出するもので、特許文献1に開示の構成と同様であるので具体的な説明を省略するが、周波数検出部31により検出された周波数fと同一周波数の基準波(正弦波)を生成し、この基準波に対して適応アルゴリズムの適応フィルタ32fを用いたフィルタリングを施すことにより基準波の振幅又は位相を変化させて基本次数駆動指令Iを生成する。また、基準次数駆動指令演算部32は、振動検出部1により入力した相殺誤差として残る残留振動(Vi3+Vi4)を評価振動とし、この評価振動が小さくなるように適応フィルタ32fを逐次更新する。基本次数駆動指令演算部32で算出された基本次数駆動指令Iは、モータ指令変換部34に入力される。 As shown in FIG. 2, the basic order drive command calculation unit 32 calculates a basic order drive command I 1 for canceling out the vibration of the basic order component (see FIG. 3B) using an adaptive control algorithm. Since the configuration is the same as that disclosed in Patent Document 1, a detailed description thereof is omitted, but a reference wave (sine wave) having the same frequency as the frequency f detected by the frequency detector 31 is generated, and this reference wave is generated. by changing the reference wave amplitude or phase by performing filtering using an adaptive filter 32f of the adaptive algorithm for generating a fundamental-order drive command I 1 against. Further, the reference order drive command calculation unit 32 uses the residual vibration (Vi3 + Vi4) remaining as the cancellation error input by the vibration detection unit 1 as the evaluation vibration, and sequentially updates the adaptive filter 32f so that the evaluation vibration is reduced. The basic order drive command I 1 calculated by the basic order drive command calculation unit 32 is input to the motor command conversion unit 34.

高次駆動指令演算部33は、図2に示すように、上記の基本次数駆動指令演算部32と同様に適応制御アルゴリズムを用いて高次成分の振動(図3(c)参照)を相殺するための高次駆動指令Iを算出するものである。高次駆動指令演算部33で算出された高次駆動指令Iは、加算器35で基本次数駆動指令Iと合成されてモータ指令変換部34に入力される。 As shown in FIG. 2, the high-order drive command calculation unit 33 cancels out high-order component vibrations (see FIG. 3C) using an adaptive control algorithm in the same manner as the basic order drive command calculation unit 32 described above. Therefore, the higher-order drive command IN is calculated. The high-order drive command I N calculated by the high-order drive command calculation unit 33 is combined with the basic order drive command I 1 by the adder 35 and input to the motor command conversion unit 34.

モータ指令変換部34は、図2に示すように、基本次数駆動指令I(又は基本次数駆動指令I+高次駆動指令I)に対応する通電を加振手段2に行うことにより加振手段2を駆動して制振すべき位置posに相殺振動Vi4を発生させる。 As shown in FIG. 2, the motor command conversion unit 34 applies the energization corresponding to the basic order drive command I 1 (or the basic order drive command I 1 + the higher order drive command I N ) to the vibration means 2. The vibration means 2 is driven to generate a cancellation vibration Vi4 at the position pos to be damped.

上記構成において複数次数制御モードでの制振は、次のように実行される。すなわち、複数次数制御モードは、図2及び図5に示すように、基本次数駆動指令演算部32での演算及び高次駆動指令演算部33での演算を順次実行し、両演算部32・33の駆動指令I・Iを合成した指令(I+I)に基づいて加振手段2を駆動する制御である。具体的には、電流制御の周期に従って繰り返し現れる制御タイミングt,t,t,t…をクロックとして用い、一回目の制御タイミングtでは基本次数駆動指令演算部32による基本次数の演算を実行し、二回目の制御タイミングtでは高次駆動指令演算部33による演算を実行し、三回目の制御タイミングtではいずれの演算部32・33においても演算を実行しないという一連の動作を繰り返す。振動検出部1による振動の検出(サンプリング)は、各々の制御タイミングt,t毎に行われ、サンプリングした信号に基づき演算処理が実行され、その演算処理が次の制御タイミングが到来するまでに完了する。勿論、一回目の制御タイミングtで基本次数駆動指令演算部32による基本次数の演算、二回目の制御タイミングtで高次駆動指令演算部33による演算を行うという一連の動作を繰り返すようにし、いずれの演算部32・33においても演算を実行しない制御タイミングを省略してもよい。 In the above configuration, vibration suppression in the multi-order control mode is executed as follows. That is, in the multi-order control mode, as shown in FIGS. 2 and 5, the calculation in the basic order drive command calculation unit 32 and the calculation in the high-order drive command calculation unit 33 are sequentially executed, and both calculation units 32 and 33 are executed. This is a control for driving the vibration means 2 based on a command (I 1 + I N ) obtained by combining the drive commands I 1 and I N. Specifically, the control timings t 1 , t 2 , t 3 , t 4 ... Repeatedly appearing according to the current control period are used as clocks, and at the first control timing t 1 performs operations, perform operations according to the second time control timing t 2 in order drive command computation unit 33, a series of not to perform the operation even in the arithmetic unit 32, 33 of either the third time control timing t 3 Repeat the operation. Vibration detection (sampling) by the vibration detection unit 1 is performed at each control timing t 1 and t 2 , and arithmetic processing is executed based on the sampled signals until the next control timing arrives. To complete. Of course, to repeat a series of operations of performing calculation by first-time control timing t 1 calculation of the basic order by the fundamental-order drive command calculation unit 32, the second time high-order driver command computation unit 33 in the control timing t 2 of The control timing at which no calculation is performed in any of the calculation units 32 and 33 may be omitted.

ここで、図4に示すように、制振すべき位置posでの振動波形を予め定めた振動一周期あたりのサンプリング数(図中では図示の都合上4つとしている)でサンプリングする際のサンプリング周期は、予め定めた振動一周期あたりのサンプリング数および周波数fによって定まる。具体的には、図4に示すように、低周波数になるほど長くなり、高周波数になるほど短くなる。制振制御においては、このサンプリング周期よりも、演算器の演算能力によって定まる基本次数成分(1次)および高次成分(2次)の演算に要する時間の方が短くなければ制御が間に合わないので、このサンプリング周期は、制御破綻を起こさない範囲で取り得る演算時間の最大値すなわち許容演算時間Pと言える。すなわち、図5(a)に示すように、複数次数制御モードを低周波数領域で行う場合には、演算器の演算能力によって定まる基本次数駆動指令演算部32の演算および高次駆動指令演算部33の演算に要する時間Lよりも、予め定めた振動一周期あたりのサンプリング数および周波数fに応じて定まる許容演算時間P(=P)の方が長いので、演算処理がサンプリング周期内に収まって適切な制振制御がなされる。一方、図5(b)に示すように、複数次数制御モードを高周波数領域で行おうとすると、基本次数駆動指令演算部32の演算および高次駆動指令演算部33の演算に要する時間Lよりも、許容演算時間P(=P)の方が短くなり、演算処理がサンプリング周期内に収まらずに制御が成立しなくなる。このように、複数次数制御モードは、基本次数駆動指令演算部32の演算および高次駆動指令演算部33の演算に要する時間L≦許容演算時間Pの関係を満たす周波数で実行する必要があり、高周波数領域では実施できない。なお、本実施形態では、電流制御の周期をクロックとして用いて制振制御の各処理を実行しているので、演算に要する時間Lを、制御タイミングの周期を最小単位として表現しているが、これに限定されるものではない。 Here, as shown in FIG. 4, sampling is performed when the vibration waveform at the position pos to be damped is sampled at a predetermined number of samplings per vibration period (four in the drawing for convenience of illustration). The period is determined by a predetermined number of samplings per vibration period and a frequency f. Specifically, as shown in FIG. 4, the frequency becomes longer as the frequency becomes lower, and becomes shorter as the frequency becomes higher. In vibration suppression control, control is not in time unless the time required to calculate the basic order component (first order) and the higher order component (second order) determined by the computing capability of the computing unit is shorter than the sampling period. The sampling period can be said to be the maximum value of the calculation time that can be taken in a range that does not cause the control failure, that is, the allowable calculation time P. That is, as shown in FIG. 5A, when the multi-order control mode is performed in the low frequency region, the basic order drive command computation unit 32 and the high order drive command computation unit 33 determined by the computation capability of the computing unit. Since the allowable calculation time P (= P 1 ) determined according to a predetermined number of samplings per vibration period and the frequency f is longer than the time L 1 required for the calculation, the calculation process is within the sampling period. Therefore, appropriate vibration suppression control is performed. On the other hand, as shown in FIG. 5B, when the multi-order control mode is to be performed in the high frequency region, from the time L 1 required for the calculation of the basic order drive command calculation unit 32 and the calculation of the high-order drive command calculation unit 33. However, the allowable calculation time P (= P 2 ) is shorter, and the calculation process does not fall within the sampling period, and control is not established. As described above, the multi-order control mode needs to be executed at a frequency satisfying the relationship of time L ≦ allowable calculation time P required for calculation of the basic order drive command calculation unit 32 and calculation of the high-order drive command calculation unit 33. It cannot be implemented in the high frequency range. In this embodiment, since each process of vibration suppression control is executed using the current control period as a clock, the time L required for the calculation is expressed using the control timing period as a minimum unit. It is not limited to this.

そこで、低周波数領域だけではなく、複数次数制御モードを実行不能な高周波数領域でも適切な制振制御を実施するために、本実施形態では、図6に示す高周波数制御モードを設けている。   Accordingly, in order to perform appropriate vibration suppression control not only in the low frequency region but also in the high frequency region where the multi-order control mode cannot be executed, the high frequency control mode shown in FIG. 6 is provided in the present embodiment.

高周波数制御モードは、図6及び図2に示すように、高次駆動指令演算部33の演算を停止した状態で基本次数駆動指令演算部32の演算を実行し、基本次数駆動指令演算部32で算出された基本次数駆動指令Iに基づき加振手段2を駆動する制御である。具体的には、上述した制御タイミングt,t,t,t…毎に基本次数駆動指令演算部32による基本次数成分の演算を繰り返して、高次駆動指令演算部33による高次成分の演算を行わない。この場合、制振に関する演算に要する時間Lが複数次数制御モードの場合の時間Lに比べて短縮され(図5参照)、許容演算時間Pよりも短くなる。勿論、前提として制御タイミングの周期は、制御対象とする最大周波数によって定まる許容演算時間よりも短くなるように設定してある。 In the high frequency control mode, as shown in FIGS. 6 and 2, the calculation of the basic order drive command calculation unit 32 is executed in a state where the calculation of the high order drive command calculation unit 33 is stopped, and the basic order drive command calculation unit 32 is executed. This is a control for driving the vibration means 2 based on the basic order drive command I1 calculated in ( 1 ). Specifically, the basic order component calculation by the basic order drive command calculation unit 32 is repeated every control timing t 1 , t 2 , t 3 , t 4 . Does not calculate the component. In this case, it is shorter than the time L 1 when the time L 2 required for the operation on the vibration control of a plurality orders control mode (see FIG. 5), is shorter than the allowable calculation time P 1. Of course, as a premise, the cycle of the control timing is set to be shorter than the allowable calculation time determined by the maximum frequency to be controlled.

この高周波数制御モードは、図6(b)に示すような高周波数領域では、制振対象でない高次成分の振動が問題とならない程度の大きさのために適切な制振状態となるが、図6(a)に示すような低周波数領域では、制振対象でない高次成分の振動が無視できない程度の大きさとなるので、制振精度が損なわれる。   In this high frequency control mode, in the high frequency region as shown in FIG. 6 (b), the vibrations of the high-order components that are not to be controlled are in a suitable vibration suppression state due to the magnitude that does not cause a problem. In the low frequency region as shown in FIG. 6 (a), the vibration of the high-order component that is not the object of vibration suppression is so large that it cannot be ignored.

そこで、複数次数制御モード又は高周波数制御モードのうち周波数領域に応じた適切な制御モードを実施するために、図2に示すモード選択部36を設けている。図2に示すモード選択部36は、制振すべき位置posでの振動の周波数fを取得し、取得した周波数fに基づいて複数次数制御モード又は高周波数制御モードのいずれか一方から他方に切り換える。具体的には、モード選択部36は、周波数検出部31の検出した周波数fを取得し、図7及び図2に示すように、取得した現周波数fが予め定めた第一の閾値thを上回った場合にモードフラグ信号Sを出力する。このモードフラグ信号Sが出力されている場合には、高次駆動指令演算部33での演算を停止し、基本次数駆動指令演算部32での演算を実行することで高周波数制御モードを実現する。一方、モード選択部36は、図7及び図2に示すように、現周波数fが上記の第一の閾値thよりも低く設定された第二の閾値thを下回った場合にモードフラグ信号Sの出力を停止する。このモードフラグ信号Sが出力されてない場合には、基本次数駆動指令演算部32及び高次駆動指令演算部33の演算を順次実行することで複数次数制御モードを実現する。 Therefore, in order to implement an appropriate control mode corresponding to the frequency region among the multi-order control mode or the high frequency control mode, the mode selection unit 36 shown in FIG. 2 is provided. The mode selection unit 36 shown in FIG. 2 acquires the vibration frequency f at the position pos to be damped, and switches from one of the multi-order control mode or the high frequency control mode to the other based on the acquired frequency f. . Specifically, the mode selection unit 36 acquires the frequency f detected by the frequency detection unit 31, and, as shown in FIGS. 7 and 2, the acquired current frequency f sets a first threshold th 1 that is set in advance. It outputs a mode flag signals S 1 when exceeded. If this mode flag signal S 1 is output to stop the operation at higher driving command computation unit 33, provides high frequency control mode by executing calculation in the basic order drive command calculation unit 32 To do. On the other hand, as shown in FIGS. 7 and 2, the mode selection unit 36 selects the mode flag signal when the current frequency f falls below the second threshold th 2 set lower than the first threshold th 1. to stop the output of the S 1. If this mode flag signal S 1 is not outputted, realizing the multiple-order control mode by sequentially performing operations of the fundamental-order drive command calculation unit 32 and the high-order driver command computation unit 33.

第一の閾値thは、演算器の処理能力によって定まる基本次数成分及び高次成分の演算に要する時間Lと、周波数fにより定まる許容演算時間Pとを勘案して設定されている。このように、第一の閾値thなどの閾値を周波数に関連付けて設定することにより、周波数fにより定まる許容演算時間(P)内に基本次数駆動指令演算部32の演算と高次駆動指令演算部33の演算とが完了するか否かを示す情報を周波数毎に関連付けた切換情報を保持するとともに、切換情報と現周波数とに基づいて制御モードを切り換えるように構成されているとも言える。 The first threshold th 1 is set in consideration of the time L required for the calculation of the basic order component and the higher order component determined by the processing capability of the calculator and the allowable calculation time P determined by the frequency f. Thus, by setting a threshold such as the first threshold th 1 in association with the frequency, the calculation of the basic order drive command calculation unit 32 and the high-order drive command calculation within the allowable calculation time (P) determined by the frequency f. It can be said that the control mode is switched based on the switching information and the current frequency while holding the switching information in which the information indicating whether the calculation of the unit 33 is completed is associated for each frequency.

すなわち、図7に示すように、現周波数fが低周波数領域側から上昇して第一の閾値thを超えた場合には複数次数制御モードから高周波数制御モードに切り替わり、現周波数fが高周波数領域側から降下して第二の閾値thを下回った場合には高周波数制御モードから複数次数制御モードに切り替わり、低周波数領域及び高周波数領域いずれの領域においても適切な制振が実施される。 That is, as shown in FIG. 7, switches from a plurality orders control mode to the high frequency control mode when the current frequency f exceeds a first threshold th 1 rises from the low frequency range side, the current frequency f is high switches from a high frequency control mode to the multiple orders control mode, an appropriate damping is performed even in the low frequency range and high frequency range which region when it falls below a second threshold th 2 and drops from the frequency region side The

以上のように、本実施形態に係る制振装置は、振動発生源gnで生じる振動Vi3と加振手段2により発生する振動Vi4とを制振すべき位置posで相殺する制振装置であって、制振すべき位置posでの振動を検出する振動検出部1と、振動検出部1により検出された検出振動のうち基本次数成分に対し逆相となる振動を制振すべき位置posに加振手段2を通じて発生させるための基本次数駆動指令Iを算出する基本次数駆動指令演算部32と、振動検出部1により検出された検出振動のうち高次成分に対し逆相となる振動を制振すべき位置posに加振手段2を通じて発生させるための高次駆動指令Iを算出する高次駆動指令演算部33と、予め定めた振動一周期あたりのサンプリング数および振動周波数に応じて定まる許容演算時間(P)内において基本次数駆動指令演算部32の演算と高次駆動指令演算部33の演算とを順次実行して双方の演算を完了させ、双方の演算部32,33の駆動指令を合成した指令(I+I)に基づいて加振手段2を駆動する複数次数制御モードと、許容演算時間(P)内において高次駆動指令演算部33の演算を停止した状態で基本次数駆動指令演算部32の演算を実行してその演算を完了させ、基本次数演算部32で算出された駆動指令Iに基づいて加振手段2を駆動する高周波数制御モードと、制振すべき位置posでの振動の周波数を取得し、取得した周波数fに基づいて複数次数制御モード又は高周波数制御モードのいずれか一方から他方に切り換えるモード選択部36とを具備している。 As described above, the vibration damping device according to the present embodiment is a vibration damping device that cancels the vibration Vi3 generated by the vibration generation source gn and the vibration Vi4 generated by the vibration excitation unit 2 at the position pos to be damped. The vibration detection unit 1 that detects vibration at the position pos to be damped, and the vibration that is out of phase with the fundamental order component of the detected vibration detected by the vibration detection unit 1 is added to the position pos to be damped. A basic order drive command calculation unit 32 that calculates a basic order drive command I 1 to be generated through the vibration means 2 and vibrations that are out of phase with respect to higher-order components among the detected vibrations detected by the vibration detection unit 1. a higher driving command computation unit 33 for calculating a high-order drive command I N for generating through vibrating means 2 to Hus should position pos, determined in accordance with the sampling number and the vibration frequency per oscillation one period a predetermined Acceptable Within the calculation time (P), the calculation of the basic order drive command calculation unit 32 and the calculation of the higher order drive command calculation unit 33 are sequentially executed to complete both calculations, and the drive commands of both calculation units 32 and 33 are issued. Multi-order control mode for driving the vibration means 2 based on the synthesized command (I 1 + I N ) and basic order drive in a state where the computation of the high-order drive command computation unit 33 is stopped within the allowable computation time (P) A high frequency control mode for executing the calculation of the command calculation unit 32 to complete the calculation and driving the vibration means 2 based on the drive command I 1 calculated by the basic order calculation unit 32, and a position to be damped A mode selection unit 36 that acquires the frequency of vibration at pos and switches from one of the multiple-order control mode or the high-frequency control mode to the other based on the acquired frequency f is provided.

許容演算時間は、制振すべき位置での振動波形を予め定めた振動一周期あたりのサンプリング数でサンプリングする際のサンプリング周期であり、制御破綻を起こさない範囲で取り得る演算時間の最大値を意味する。   The allowable calculation time is the sampling period when sampling the vibration waveform at the position to be damped at a predetermined number of samplings per vibration period, and the maximum calculation time that can be taken within the range that does not cause control failure. means.

このように、制振すべき位置posでの振動の周波数fを取得し、取得した周波数fに基づいて複数次数制御モード又は高周波数制御モードのいずれか一方から他方に切り換えるので、予め定めた振動一周期あたりのサンプリング数および現周波数fに応じて定まる許容演算時間(P)内に基本次数駆動指令演算部32の演算と高次駆動指令演算部33の演算とが完了する周波数の場合に複数次数制御モードとし、完了しない周波数の場合に高周波数制御モードとすることが可能となり、廉価演算器など演算能力の乏しい制約の下で低周波数領域及び高周波数領域いずれの領域においても適切な制振制御が実施可能となり、制振精度を向上させることが可能となる。   In this way, the vibration frequency f at the position pos to be damped is acquired, and either the multi-order control mode or the high-frequency control mode is switched from one to the other based on the acquired frequency f. When the frequency is such that the calculation of the basic order drive command calculation unit 32 and the calculation of the high-order drive command calculation unit 33 are completed within an allowable calculation time (P) determined according to the number of samplings per cycle and the current frequency f. It is possible to set the order control mode to the high frequency control mode when the frequency is not complete. The control can be performed, and the vibration control accuracy can be improved.

本実施形態では、モード選択部36が、取得した周波数fが予め定めた第一の閾値thを上回った場合に高周波数制御モードに切り換えるとともに、取得した周波数fが第一の閾値thよりも低く設定された第二の閾値thを下回った場合に複数次数制御モードに切り換えるので、双方の閾値(第一の閾値th、第二の閾値th)の間に不感帯を設定してヒステリシス性を持たせ、現周波数が閾値の近傍で変動することにより複数次数制御モードと高周波数制御モードとの切り換えが頻発するチャタリングを防止して制御を安定させることが可能となる。 In the present embodiment, the mode selection unit 36 switches to the high frequency control mode when the acquired frequency f exceeds a predetermined first threshold th 1 , and the acquired frequency f is greater than the first threshold th 1 . Since the mode is switched to the multi-order control mode when the value falls below the second threshold th 2 set to be lower, a dead zone is set between both the thresholds (first threshold th 1 , second threshold th 2 ). By providing hysteresis and changing the current frequency in the vicinity of the threshold value, chattering that frequently switches between the multi-order control mode and the high frequency control mode can be prevented and the control can be stabilized.

その他、本実施形態では、上記制振装置を自動車等の車両に備えているので、乗員に快適な乗り心地を提供することができる。   In addition, in the present embodiment, since the vibration damping device is provided in a vehicle such as an automobile, a comfortable ride can be provided to the occupant.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、本実施形態では、制御モードの切り換えにヒステリシス性を持たせているが、第二の閾値を設けず、モード選択部が第一の閾値以下となる場合に複数次数制御モードに切り換えるように構成して、ヒステリシス性を設けないようにしてもよい。   For example, in this embodiment, control mode switching has hysteresis, but the second threshold value is not provided, and the mode selection unit is switched to the multi-order control mode when the first threshold value is less than or equal to the first threshold value. It may be configured not to provide hysteresis.

また、本実施形態では、モード選択部36が、周波数検出部31を通じて制振すべき位置posでの振動の周波数fを取得し、この周波数に基づいて制御モードの切り換えを行っているが、実行すべき制御モードを示す外部指令を上位コントローラ等の外部から取得し、取得した外部指令に基づいて制御モードを切り換えるように構成してもよい。   In this embodiment, the mode selection unit 36 acquires the vibration frequency f at the position pos to be damped through the frequency detection unit 31 and switches the control mode based on this frequency. An external command indicating a control mode to be acquired may be acquired from the outside such as a host controller, and the control mode may be switched based on the acquired external command.

さらに、低周波数領域と高周波数領域との間に振動の生じない不感帯領域がある場合に、現周波数が三つの領域いずれの領域であるかを示す情報を予め設定しておき、現周波数が低感度領域である場合に複数次数制御モードに切り換え、現周波数が高周波数領域である場合に高周波数制御モードに切り換え、現周波数が不感帯領域である場合には、基本次数駆動指令演算部および高次駆動指令演算部いずれの演算部の演算をも停止した無制振制御モードに切り換えるように構成してもよい。このように構成すれば、不感帯領域では振動が生じないために、かかる微弱な振動を相殺するために制御系が不安定になることを防止でき、安定性を向上させることが可能となる。   Furthermore, when there is a dead zone where no vibration occurs between the low frequency region and the high frequency region, information indicating which of the three regions is the current frequency is set in advance, and the current frequency is low. Switch to multi-order control mode when it is in the sensitivity region, switch to high-frequency control mode when the current frequency is in the high frequency region, and switch to the basic order drive command calculation unit and high order when the current frequency is in the dead zone region. You may comprise so that it may switch to the vibration suppression control mode which stopped the calculation of any calculation part of a drive command calculating part. With this configuration, since no vibration is generated in the dead zone, it is possible to prevent the control system from becoming unstable in order to cancel out such a weak vibration, and it is possible to improve the stability.

さらにまた、モード選択部が、制振すべき位置における振動をFFT解析(高速フーリエ変換解析)等により解析し、高次成分の振幅値が予め定めた値を超えるか否かによって複数次数制御モードを実行すべきであるか否かを判定し、複数次数制御モードで実行すべきであると判定した場合に複数次数制御モードに切り換える一方、複数次数制御モードで実行すべきではないと判定した場合に高周波数制御モードに切り換えるように構成してもよい。   Furthermore, the mode selection unit analyzes the vibration at the position to be damped by FFT analysis (fast Fourier transform analysis) or the like, and the multi-order control mode depending on whether or not the amplitude value of the higher order component exceeds a predetermined value. Is determined to be executed, and when it is determined that it should be executed in the multi-order control mode, it is switched to the multi-order control mode while it is determined that it should not be executed in the multi-order control mode. Alternatively, the high frequency control mode may be switched.

その他、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each unit is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…振動検出部
2…加振手段
32…基本次数駆動指令演算部
33…高次駆動指令演算部
36…モード選択部
gn…振動発生源
pos…制振すべき位置
…基本次数駆動指令
…高次駆動指令
P、P、P…許容演算時間
th…第一の閾値
th…第二の閾値
1 ... vibration detector 2 ... vibrator 32 ... position I 1 ... fundamental-order drive command basic order driver command computation unit 33 ... high-order driver command calculation unit 36 ... mode selector gn ... vibration source pos ... to be damped I N ... Higher order drive commands P, P 1 , P 2 ... Allowable calculation time th 1 ... First threshold th 2 ... Second threshold

Claims (2)

振動発生源で生じる振動と加振手段により発生する振動とを制振すべき位置で相殺する制振装置であって、
制振すべき位置での振動を検出する振動検出部と、
振動検出部により検出された検出振動のうち基本次数成分に対し逆相となる振動を制振すべき位置に加振手段を通じて発生させるための基本次数駆動指令を算出する基本次数駆動指令演算部と、
振動検出部により検出された検出振動のうち高次成分に対し逆相となる振動を制振すべき位置に加振手段を通じて発生させるための高次駆動指令を算出する高次駆動指令演算部と、
予め定めた振動一周期あたりのサンプリング数および振動周波数に応じて定まる許容演算時間内において前記基本次数駆動指令演算部の演算と前記高次駆動指令演算部の演算とを順次実行して双方の演算を完了させ、双方の演算部の駆動指令を合成した指令に基づいて加振手段を駆動する複数次数制御モードと、
前記許容演算時間内において前記高次駆動指令演算部の演算を停止した状態で前記基本次数駆動指令演算部の演算を実行してその演算を完了させ、基本次数演算部で算出された駆動指令に基づいて加振手段を駆動する高周波数制御モードと、
制振すべき位置での振動の周波数又は実行すべき制御モードを示す外部指令を取得し、取得した周波数又は外部指令に基づいて前記複数次数制御モード又は前記高周波数制御モードのいずれか一方から他方に切り換えるモード選択部とを具備することを特徴とする制振装置。
A vibration damping device that cancels out vibrations generated at a vibration source and vibrations generated by the vibration excitation means at a position where vibrations should be suppressed,
A vibration detection unit for detecting vibration at a position to be controlled;
A basic order drive command calculating unit for calculating a basic order drive command for generating vibrations that are out of phase with respect to the basic order component among the detected vibrations detected by the vibration detecting unit through a vibration means at a position to be damped; ,
A high-order drive command calculation unit that calculates a high-order drive command for generating vibrations that are in phase opposite to the high-order component out of the detected vibrations detected by the vibration detection unit through a vibration means at a position to be damped; ,
The basic order drive command calculation unit and the high order drive command calculation unit are sequentially executed within the allowable calculation time determined according to the predetermined number of samplings per vibration period and vibration frequency, and both calculations are performed. And a multi-order control mode for driving the vibrating means based on a command obtained by combining the drive commands of both arithmetic units,
The calculation of the basic order drive command calculation unit is executed in a state where the calculation of the high-order drive command calculation unit is stopped within the allowable calculation time to complete the calculation, and the drive command calculated by the basic order calculation unit is A high frequency control mode for driving the excitation means based on
An external command indicating a vibration frequency at a position to be damped or a control mode to be executed is acquired, and based on the acquired frequency or the external command, either the multi-order control mode or the high-frequency control mode is switched from one to the other. And a mode selection unit for switching to the vibration control device.
前記モード選択部は、前記取得した周波数が予め定めた第一の閾値を上回った場合に前記高周波数制御モードに切り換えるとともに、前記取得した周波数が前記第一の閾値よりも低く設定された第二の閾値を下回った場合に前記複数次数制御モードに切り換える請求項1に記載の制振装置。   The mode selection unit switches to the high frequency control mode when the acquired frequency exceeds a predetermined first threshold, and the acquired frequency is set to be lower than the first threshold. The vibration control device according to claim 1, wherein the vibration control device switches to the multi-order control mode when the threshold value is below a threshold value.
JP2011036382A 2011-02-22 2011-02-22 Vibration control device Withdrawn JP2012172782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036382A JP2012172782A (en) 2011-02-22 2011-02-22 Vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036382A JP2012172782A (en) 2011-02-22 2011-02-22 Vibration control device

Publications (1)

Publication Number Publication Date
JP2012172782A true JP2012172782A (en) 2012-09-10

Family

ID=46975875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036382A Withdrawn JP2012172782A (en) 2011-02-22 2011-02-22 Vibration control device

Country Status (1)

Country Link
JP (1) JP2012172782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683639A (en) * 2018-12-06 2019-04-26 中国电子工程设计院有限公司 A kind of control method and device of active vibration isolation
JP2019111600A (en) * 2017-12-22 2019-07-11 株式会社日立製作所 Damper gear and damping device
JP2019211315A (en) * 2018-06-04 2019-12-12 株式会社Nttファシリティーズ Device, damping control system, waveform data generation method, damping control method, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019111600A (en) * 2017-12-22 2019-07-11 株式会社日立製作所 Damper gear and damping device
JP2019211315A (en) * 2018-06-04 2019-12-12 株式会社Nttファシリティーズ Device, damping control system, waveform data generation method, damping control method, and program
JP7080106B2 (en) 2018-06-04 2022-06-03 株式会社Nttファシリティーズ Equipment, vibration control control system, waveform data generation method, vibration control control method and program
CN109683639A (en) * 2018-12-06 2019-04-26 中国电子工程设计院有限公司 A kind of control method and device of active vibration isolation
CN109683639B (en) * 2018-12-06 2021-08-10 中国电子工程设计院有限公司 Active vibration isolation control method and device

Similar Documents

Publication Publication Date Title
JP5522038B2 (en) Vibration control device and vehicle
CN102027262B (en) Vibration control device and vehicle
JP3430699B2 (en) Control type anti-vibration support device
US9857776B2 (en) Vehicle vibration reduction system
WO2011065441A1 (en) Vibration damping device and vehicle provided therewith
JP2012172782A (en) Vibration control device
WO2020137639A1 (en) Motor control device
JP5127767B2 (en) Drive control device
US8632097B1 (en) Systems and methods for hand wheel translational vibration attenuation
Kauba et al. Multi-channel narrowband Filtered-x-Least-Mean-Square algorithm with reduced calculation complexity
JP5353662B2 (en) Vibration control device and vehicle equipped with the same
JP2009275821A (en) Vibration damping device and vehicle
JP2003202902A (en) Active vibration control method using adaptive control method
JP2019170054A (en) Electric vehicle control method, and electric vehicle controller
JP5353661B2 (en) Vibration control device and vehicle equipped with the same
JP5353657B2 (en) Vibration control device and vehicle equipped with the same
JP2013024323A (en) Vibration damping system for vehicle
JP2020070895A (en) Vibration damping device
JP6441150B2 (en) Active vibration control device
JP2011112163A (en) Vibration control device and vehicle provided with the same
JP2021026323A (en) Control unit and damping apparatus comprising the same
JP2011209830A (en) Motorized actuator drive device and vibration damper including the same
JPH0736554A (en) Active vibration controller

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513