JP2011112103A - Toroidal continuously variable transmission and continuously variable transmission - Google Patents

Toroidal continuously variable transmission and continuously variable transmission Download PDF

Info

Publication number
JP2011112103A
JP2011112103A JP2009267015A JP2009267015A JP2011112103A JP 2011112103 A JP2011112103 A JP 2011112103A JP 2009267015 A JP2009267015 A JP 2009267015A JP 2009267015 A JP2009267015 A JP 2009267015A JP 2011112103 A JP2011112103 A JP 2011112103A
Authority
JP
Japan
Prior art keywords
thrust
continuously variable
variable transmission
side disk
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009267015A
Other languages
Japanese (ja)
Other versions
JP5187301B2 (en
Inventor
Daiki Nishii
大樹 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2009267015A priority Critical patent/JP5187301B2/en
Publication of JP2011112103A publication Critical patent/JP2011112103A/en
Application granted granted Critical
Publication of JP5187301B2 publication Critical patent/JP5187301B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a structure preventing occurrence of significant abrasion in each surface composing each rolling contact portion by always appropriately maintaining contact pressure of the rolling contact portion (traction portion) of the peripheral surface of each power roller with the side surface of each disk and the rolling contact portion inside a thrust ball bearing for rotatably supporting each power roller. <P>SOLUTION: The contact pressure of each rolling contact portion is ensured by a hydraulic thrust generator. A controller controlling hydraulic pressure introduced into the thrust generator determines a first target value required for transmitting power between the input disk and the output disk in step 1, and determines a second target value required for preventing such a state that each ball composing the thrust ball bearing is not rotated but revolved in step 2. The controller compares the first and second target values with each other in step 3, and introduces the hydraulic pressure required for generating thrust according to a large target value into the hydraulic chamber of the thrust generator in steps 4, 5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、自動車用の自動変速機として、或いは各種産業機械装置用の変速機として使用するトロイダル型無段変速機及びこのトロイダル型無段変速機を組み込んだ無段変速装置の改良に関する。具体的には、各転がり接触部の接触面圧を常に適正に維持する事により、これら各転がり接触部を構成する各面に著しい摩耗が発生する事を防止できる構造を実現するものである。   The present invention relates to a toroidal-type continuously variable transmission used as an automatic transmission for automobiles or as a transmission for various industrial machine devices, and to an improvement of a continuously variable transmission incorporating the toroidal-type continuously variable transmission. Specifically, by maintaining the contact surface pressure of each rolling contact portion appropriately at all times, a structure capable of preventing the occurrence of significant wear on each surface constituting each rolling contact portion is realized.

自動車用自動変速装置としてトロイダル型無段変速機を使用する事が研究され、一部で実施されている。又、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせて無段変速装置を構成する事も、特許文献1〜9等に記載されている様に、従来から知られている。図2〜3は、このうちの特許文献4に記載された無段変速装置を示している。この無段変速装置は、トロイダル型無段変速機1と、第一〜第三各遊星歯車式変速機2〜4とを組み合わせて成るもので、互いに同心に、且つ、相対回転自在に支持された、入力軸5と、伝達軸6と、出力軸7とを有する。そして、前記第一、第二両遊星歯車式変速機2、3を前記入力軸5と前記伝達軸6との間に掛け渡す状態で、前記第三遊星歯車式変速機4をこの伝達軸6と前記出力軸7との間に掛け渡す状態で、それぞれ設けている。   The use of a toroidal continuously variable transmission as an automatic transmission for automobiles has been studied and implemented in part. In addition, as described in Patent Documents 1 to 9 and the like, it is conventionally known that a continuously variable transmission device is configured by combining a toroidal type continuously variable transmission and a planetary gear type transmission. 2 to 3 show the continuously variable transmission described in Patent Document 4 among them. This continuously variable transmission is a combination of a toroidal-type continuously variable transmission 1 and first to third planetary gear transmissions 2 to 4, and is supported concentrically and relatively rotatably. Further, it has an input shaft 5, a transmission shaft 6, and an output shaft 7. Then, in a state where the first and second planetary gear type transmissions 2 and 3 are spanned between the input shaft 5 and the transmission shaft 6, the third planetary gear type transmission 4 is connected to the transmission shaft 6. And the output shaft 7 are provided in a state of being spanned.

このうちのトロイダル型無段変速機1は、1対の入力側ディスク8a、8bと、一体型の出力側ディスク9と、複数のパワーローラ10、10とを備える。このうちの両入力側ディスク8a、8bは、それぞれが断面円弧形のトロイド曲面である軸方向片側面同士を互いに対向させた状態で、前記入力軸5のうちで軸方向に離隔した2個所位置に、互いに同心に、且つ、この入力軸5と同期した回転を自在として支持している。又、前記出力側ディスク9は、この入力軸5の中間部周囲で前記両入力側ディスク8a、8b同士の間位置に、それぞれが断面円弧形のトロイド曲面である軸方向両側面をこれら両入力側ディスク8a、8bの軸方向片側面に対向させた状態で、これら両入力側ディスク8a、8bと同心に、且つ、これら両入力側ディスク8a、8bに対する相対回転を自在に支持している。   Of these, the toroidal-type continuously variable transmission 1 includes a pair of input-side disks 8 a and 8 b, an integrated output-side disk 9, and a plurality of power rollers 10 and 10. Of these, the two input-side disks 8a and 8b have two axially spaced portions of the input shaft 5 in a state in which one axial side surfaces, which are toroidal curved surfaces each having a circular arc cross section, are opposed to each other. The position is concentric with each other and supports the rotation in synchronism with the input shaft 5 as free. Further, the output side disk 9 has both axial side surfaces, each of which is a toroidal curved surface having an arc cross section, at a position between the input side disks 8a and 8b around the intermediate portion of the input shaft 5. In a state of being opposed to one side surface in the axial direction of the input side discs 8a and 8b, the input side discs 8a and 8b are concentrically supported and freely supported for relative rotation with respect to the both input side discs 8a and 8b. .

更に、前記各パワーローラ10、10は、前記出力側ディスク9の軸方向両側面と前記両入力側ディスク8a、8bの軸方向片側面との間に、それぞれ複数個ずつ挟持している。前記各パワーローラ10、10は、それぞれの周面を部分球状凸面としており、前記両入力側ディスク8a、8bと前記出力側ディスク9との間に挟持した状態で、これら入力側、出力側両ディスク8a、8b、9同士の間での動力の伝達を自在としている。又、前記各パワーローラ10、10は、トラニオン11、11の内側面に回転自在に支持している。又、これら各トラニオン11、11は、それぞれの両端部に設けた各枢軸12、12を、ケーシング14内に設置した支持板13a、13bに、揺動並びに軸方向の変位自在に支持している。これら両支持板13a、13bは、前記ケーシング14内に、連結板15とアクチュエータボディー16とを介して支持固定された支柱17、17の両端部に、それぞれ支持されている。   Further, a plurality of each of the power rollers 10 and 10 is sandwiched between both side surfaces in the axial direction of the output side disk 9 and one side surface in the axial direction of the both input side disks 8a and 8b. Each of the power rollers 10 and 10 has a partially spherical convex surface, and both the input side and output side of the power rollers 10 and 10 are sandwiched between the input side disks 8a and 8b and the output side disk 9. Transmission of power between the disks 8a, 8b, 9 can be freely performed. The power rollers 10 and 10 are rotatably supported on the inner surfaces of the trunnions 11 and 11. The trunnions 11 and 11 support the pivot shafts 12 and 12 provided at both ends of the trunnions 11 and 13b on support plates 13a and 13b installed in the casing 14 so as to be swingable and axially displaceable. . These support plates 13a and 13b are respectively supported by both ends of support columns 17 and 17 supported and fixed in the casing 14 via a connecting plate 15 and an actuator body 16.

又、環状に形成したこれら各支柱17、17の中間部同士の間に、前記出力側ディスク9を、1対のスラストアンギュラ玉軸受18、18により回転自在に支持している。又、前記出力側ディスク9に中空回転軸19の基端部(図2の左端部)をスプライン係合させている。そして、この中空回転軸19を、エンジンから遠い側(図2の右側)の入力側ディスク8aの内側に挿通し、前記出力側ディスク9に伝わる動力を取り出し自在としている。更に、前記中空回転軸19の先端部(図2の右端部)で前記入力側ディスク8aの外側面から突出した部分に、前記第一遊星歯車式変速機2を構成する為の、第一太陽歯車20を固設している。   Further, the output side disk 9 is rotatably supported by a pair of thrust angular ball bearings 18 and 18 between the intermediate portions of the respective pillars 17 and 17 formed in an annular shape. Further, a base end portion (left end portion in FIG. 2) of the hollow rotary shaft 19 is spline engaged with the output side disk 9. The hollow rotary shaft 19 is inserted inside the input side disk 8a on the side far from the engine (right side in FIG. 2) so that power transmitted to the output side disk 9 can be taken out. Furthermore, a first sun gear for constituting the first planetary gear type transmission 2 at a portion protruding from the outer surface of the input side disk 8a at the tip end portion (the right end portion in FIG. 2) of the hollow rotary shaft 19. The gear 20 is fixed.

一方、前記中空回転軸19の内側に挿通した前記入力軸5の先端部(図2の右端部)でこの中空回転軸19から突出した部分と、前記入力側ディスク8aとの間に第一キャリア21を掛け渡す様に設けて、この入力側ディスク8aと前記入力軸5とが、互いに同期して回転する様にしている。そして、前記第一キャリア21に各遊星歯車22〜24を、それぞれ回転自在に支持している。そして、外径側の遊星歯車24と内径側の各遊星歯車22、23とを互いに噛合させると共に、内径側の遊星歯車22、23を、前記中空回転軸19の先端部(図2の右端部)に固設した前記第一太陽歯車20又は前記伝達軸6の基端部に固設した第二太陽歯車25に、外径側の遊星歯車24を、前記第一キャリア21の周囲に回転自在に設けた第一リング歯車26に、それぞれ噛合させている。又、前記入力側ディスク8aと前記第一キャリア21との間での回転伝達を行なわせるべく、これら入力側ディスク8aと第一キャリア21の一部とを係合させている。   On the other hand, a first carrier is provided between a portion protruding from the hollow rotary shaft 19 at the tip end portion (right end portion in FIG. 2) of the input shaft 5 inserted inside the hollow rotary shaft 19 and the input side disk 8a. 21 is provided so that the input side disk 8a and the input shaft 5 rotate in synchronization with each other. The planetary gears 22 to 24 are rotatably supported on the first carrier 21. Then, the planetary gear 24 on the outer diameter side and the planetary gears 22 and 23 on the inner diameter side are engaged with each other, and the planetary gears 22 and 23 on the inner diameter side are connected to the distal end portion (the right end portion in FIG. 2) of the hollow rotary shaft 19. The planetary gear 24 on the outer diameter side is freely rotatable around the first carrier 21 to the first sun gear 20 fixed to the second sun gear 25 fixed to the base end of the transmission shaft 6. Are respectively meshed with the first ring gear 26. Further, in order to transmit rotation between the input side disk 8a and the first carrier 21, the input side disk 8a and a part of the first carrier 21 are engaged.

一方、前記第三遊星歯車式変速機4を構成する為の第二キャリア27を、前記出力軸7の基端部(図2の左端部)に結合固定している。そして、この第二キャリア27と前記第一リング歯車26とを、低速用クラッチ28を介して結合している。又、前記伝達軸6の先端寄り(図2の右端寄り)部分に第三太陽歯車29を固設している。又、この第三太陽歯車29の周囲に第二リング歯車30を配置し、この第二リング歯車30と前記ケーシング14等の固定の部分との間に、高速用クラッチ31を設けている。更に、この第二リング歯車30と前記第三太陽歯車29との間に配置した複数組の遊星歯車32、33を、前記第二キャリア27に回転自在に支持している。これら各遊星歯車32、33は、互いに噛合すると共に、前記第二キャリア27の径方向に関して内側に設けた遊星歯車32を前記第三太陽歯車29に、同じく外側に設けた遊星歯車33を前記第二リング歯車30に、それぞれ噛合させている。   On the other hand, a second carrier 27 for constituting the third planetary gear type transmission 4 is coupled and fixed to a base end portion (left end portion in FIG. 2) of the output shaft 7. The second carrier 27 and the first ring gear 26 are coupled via a low speed clutch 28. Further, a third sun gear 29 is fixedly provided near the tip of the transmission shaft 6 (near the right end in FIG. 2). Further, a second ring gear 30 is disposed around the third sun gear 29, and a high speed clutch 31 is provided between the second ring gear 30 and the fixed portion of the casing 14, etc. Further, a plurality of planetary gears 32 and 33 arranged between the second ring gear 30 and the third sun gear 29 are rotatably supported on the second carrier 27. The planetary gears 32 and 33 mesh with each other, and the planetary gear 32 provided on the inner side in the radial direction of the second carrier 27 is provided on the third sun gear 29 and the planetary gear 33 provided on the outer side is provided on the first side. The two ring gears 30 are engaged with each other.

上述の様に構成する無段変速装置の場合、駆動軸34から前記入力軸5に伝達され、更にこの入力軸5から前記両入力側ディスク8a、8b及び前記各パワーローラ10、10を介して前記一体型の出力側ディスク9に伝わった動力は、前記中空回転軸19を通じて取り出される。そして、前記低速用クラッチ28を接続し、前記高速用クラッチ31の接続を断った低速モード時には、前記トロイダル型無段変速機1の変速比を変える事により、前記入力軸5の回転速度を一定にしたまま、前記出力軸7の回転速度を、停止状態を挟んで正転、逆転に変換自在となる。即ち、この状態では、前記入力軸5と共に正方向に回転する第一キャリア21と、前記中空回転軸19と共に逆方向に回転する前記第一太陽歯車20との差動成分が、前記第一リング歯車26から、前記低速用クラッチ28、前記第二キャリア27を介して、前記出力軸7に伝達される。この状態では、前記トロイダル型無段変速機1の変速比を所定値にする事で前記出力軸7を停止させられる他、このトロイダル型無段変速機1の変速比を前記所定値から増速側に変化させる事により前記出力軸7を、車両を後退させる方向に回転させられる。これに対して、前記トロイダル型無段変速機1の変速比を前記所定値から減速側に変化させる事により前記出力軸7を、車両を前進させる方向に回転させられる。   In the case of the continuously variable transmission configured as described above, it is transmitted from the drive shaft 34 to the input shaft 5, and further from the input shaft 5 through the input disks 8 a and 8 b and the power rollers 10 and 10. The power transmitted to the integrated output disk 9 is taken out through the hollow rotary shaft 19. In the low speed mode in which the low speed clutch 28 is connected and the high speed clutch 31 is disconnected, the rotational speed of the input shaft 5 is kept constant by changing the gear ratio of the toroidal continuously variable transmission 1. In this state, the rotational speed of the output shaft 7 can be converted into forward rotation and reverse rotation with the stop state interposed therebetween. That is, in this state, the differential component between the first carrier 21 that rotates in the forward direction together with the input shaft 5 and the first sun gear 20 that rotates in the reverse direction together with the hollow rotation shaft 19 becomes the first ring. The gear 26 is transmitted to the output shaft 7 through the low speed clutch 28 and the second carrier 27. In this state, the output shaft 7 is stopped by setting the gear ratio of the toroidal continuously variable transmission 1 to a predetermined value, and the speed ratio of the toroidal continuously variable transmission 1 is increased from the predetermined value. By changing to the side, the output shaft 7 is rotated in the direction of retreating the vehicle. On the other hand, the output shaft 7 is rotated in the direction of moving the vehicle forward by changing the gear ratio of the toroidal type continuously variable transmission 1 from the predetermined value to the deceleration side.

更に、前記低速用クラッチ28の接続を断ち、前記高速用クラッチ31を接続した高速モード時には、前記出力軸7を、車両を前進させる方向に回転させる。即ち、この状態では、前記入力軸5と共に正方向に回転する前記第一キャリア21と、前記中空回転軸19と共に逆方向に回転する前記第一太陽歯車20との差動成分に応じて回転する、前記第一遊星歯車式変速機2の遊星歯車22の回転が、前記外径側の遊星歯車24を介して、前記第二遊星歯車式変速機3の遊星歯車23に伝わり、前記第二太陽歯車25を介して、前記伝達軸6を回転させる。そして、この伝達軸6の先端部に設けた前記第三太陽歯車29と、この第三太陽歯車29と共に前記第三遊星歯車式変速機4を構成する第二リング歯車30及び遊星歯車32、33との噛合に基づき、前記第二キャリア27及びこの第二キャリア27に結合した前記出力軸7を、前進方向に回転させる。この状態では、前記トロイダル型無段変速機1の変速比を増速側に変化させる程、前記出力軸7の回転速度を速くできる。   Further, in the high speed mode in which the low speed clutch 28 is disconnected and the high speed clutch 31 is connected, the output shaft 7 is rotated in a direction to advance the vehicle. That is, in this state, the first carrier 21 that rotates in the forward direction together with the input shaft 5 and the first sun gear 20 that rotates in the reverse direction together with the hollow rotating shaft 19 rotate according to the differential component. The rotation of the planetary gear 22 of the first planetary gear type transmission 2 is transmitted to the planetary gear 23 of the second planetary gear type transmission 3 via the planetary gear 24 on the outer diameter side, and the second sun gear The transmission shaft 6 is rotated via the gear 25. The third sun gear 29 provided at the tip of the transmission shaft 6, and the second ring gear 30 and the planetary gears 32, 33 constituting the third planetary gear type transmission 4 together with the third sun gear 29. The second carrier 27 and the output shaft 7 coupled to the second carrier 27 are rotated in the forward direction. In this state, the rotational speed of the output shaft 7 can be increased as the speed ratio of the toroidal type continuously variable transmission 1 is changed to the speed increasing side.

上述の様な無段変速装置の運転時に、前記トロイダル型無段変速機1を構成する前記両入力側ディスク8a、8bの内側面及び前記出力側ディスク9の軸方向両側面と各パワーローラ10、10の周面との転がり接触部(トラクション部)に、適切な面圧を付与する必要がある。この為に図2〜3に示した無段変速装置を構成するトロイダル型無段変速機1の場合には、前記入力軸5のうちで前記駆動軸34側の端部と、この端部周囲に設けられた入力側ディスク8bとの間に、推力発生装置35を設けている。図2に示した構造の場合にこの推力発生装置35は、それぞれが軸方向に拡縮自在である1対の油圧室36a、36bを備えた、ダブルピストン型である。この様な油圧式の推力発生装置35を備えた構造の場合、前記各油圧室36a、36b内に送り込む圧油を制御する事で、前記各トラクション部に付与する面圧を、前記トロイダル型無段変速機1を通過するトルクの大きさに応じた適正な値に調節する。又、前記油圧室36aに内蔵した、皿板ばね等の予圧ばね37により、前記各油圧室36a、36b内に油圧が導入されない状態でも、前記各トラクション部に最低限の面圧を付与できる様にしている。   During operation of the continuously variable transmission as described above, the inner side surfaces of the input side disks 8a and 8b and both axial side surfaces of the output side disk 9 and the power rollers 10 constituting the toroidal type continuously variable transmission 1 are provided. It is necessary to apply an appropriate surface pressure to the rolling contact portion (traction portion) with 10 peripheral surfaces. For this reason, in the case of the toroidal type continuously variable transmission 1 constituting the continuously variable transmission shown in FIGS. 2 to 3, the end of the input shaft 5 on the drive shaft 34 side and the periphery of the end A thrust generator 35 is provided between the disk 8b and the input side disk 8b. In the case of the structure shown in FIG. 2, the thrust generator 35 is a double piston type provided with a pair of hydraulic chambers 36a and 36b, each of which can be expanded and contracted in the axial direction. In the case of the structure provided with such a hydraulic thrust generating device 35, the surface pressure applied to each traction portion is controlled by controlling the pressure oil fed into the respective hydraulic chambers 36a, 36b. The value is adjusted to an appropriate value according to the magnitude of the torque passing through the step transmission 1. In addition, a preload spring 37 such as a disc leaf spring incorporated in the hydraulic chamber 36a can apply a minimum surface pressure to the traction portions even when no hydraulic pressure is introduced into the hydraulic chambers 36a and 36b. I have to.

上述の様な推力発生装置35及び予圧ばね37を組み込んだ無段変速装置の場合、伝達効率の確保と耐久性の確保とを両立させる事を意図した場合、改良の余地がある。この理由は、前記低速用クラッチ28と前記高速用クラッチ31とを備えた無段変速装置の場合、これら両クラッチ28、31の断接に基づいて低速モードと高速モードとを切り換える際に、前記各パワーローラ10、10が高速で回転しているにも拘らず、前記トロイダル型無段変速機1を通過するトルクが僅少(実質的にゼロ)になる事に起因する。即ち、前記低速モードと高速モードとを切り換える際には、短時間とは言え、前記両クラッチ28、31を何れも接続した状態とする為、前記トロイダル型無段変速機1を通過するトルクが僅少になる。この様にトロイダル型無段変速機1を通過するトルクが僅少の場合には、前記各トラクション部で滑りが発生する事を防止する面からは、前記推力発生装置35が発生する推力(押圧力)は僅少で済む。   In the case of the continuously variable transmission incorporating the thrust generating device 35 and the preload spring 37 as described above, there is room for improvement when it is intended to ensure both transmission efficiency and durability. This is because, in the case of a continuously variable transmission provided with the low speed clutch 28 and the high speed clutch 31, when switching between the low speed mode and the high speed mode based on the connection / disconnection of the both clutches 28, 31, This is due to the fact that the torque passing through the toroidal type continuously variable transmission 1 becomes small (substantially zero) even though the power rollers 10 and 10 are rotating at high speed. That is, when switching between the low speed mode and the high speed mode, the torque passing through the toroidal-type continuously variable transmission 1 is maintained in order to keep both the clutches 28 and 31 connected, albeit for a short time. Become scarce. In this way, when the torque passing through the toroidal-type continuously variable transmission 1 is very small, the thrust generated by the thrust generator 35 (pressing force) is prevented from the occurrence of slippage in each traction section. ) Is negligible.

一方、前記低速モードと高速モードとの切り換えは、このトロイダル型無段変速機1が最大減速の状態で行う為、前記各パワーローラ10、10の回転速度は非常に速くなる。そして、これら各パワーローラ10、10が高速で回転している状態では、これら各パワーローラ10、10を回転自在に支持しているスラスト玉軸受38、38を構成する各玉39、39の公転速度が速くなり、これら各玉39、39に作用する遠心力が大きくなる。この結果、これら各玉39、39が、前記各スラスト玉軸受38、38を構成する内輪軌道40及び外輪軌道41に対し、前記各パワーローラ10、10の径方向外側に押し付けられる。この状態で前記推力発生装置35が発生している推力を僅少にし、その結果、前記各玉39、39の荷重作用方向(接触角方向)に関する面圧が小さくなると、これら各玉39、39が自転せずに公転する状態となる。即ち、所謂ジャイロ限界を超えて、ジャイロ滑りが発生する。この様なジャイロ滑りが発生すると、前記各玉39、39の転動面と前記内輪軌道40及び前記外輪軌道41との接触部に著しい摩耗が発生し、前記トロイダル型無段変速機1を組み込んだ無段変速装置の耐久性を低下させる原因となる。   On the other hand, since the switching between the low speed mode and the high speed mode is performed while the toroidal type continuously variable transmission 1 is in the maximum deceleration state, the rotational speeds of the power rollers 10 and 10 are very high. When the power rollers 10 and 10 are rotating at high speed, the revolution of the balls 39 and 39 constituting the thrust ball bearings 38 and 38 that rotatably support the power rollers 10 and 10 is performed. The speed is increased, and the centrifugal force acting on each of these balls 39 is increased. As a result, these balls 39 are pressed against the inner ring raceway 40 and the outer ring raceway 41 constituting the thrust ball bearings 38, 38 on the radially outer side of the power rollers 10, 10. In this state, the thrust generated by the thrust generating device 35 is reduced. As a result, when the surface pressure related to the load acting direction (contact angle direction) of the balls 39 and 39 decreases, the balls 39 and 39 It will be in a state of revolving without rotating. That is, the gyro slip occurs beyond the so-called gyro limit. When such gyro slip occurs, significant wear occurs at the contact portions between the rolling surfaces of the balls 39, 39 and the inner ring raceway 40 and the outer ring raceway 41, and the toroidal continuously variable transmission 1 is incorporated. This is a cause of reducing the durability of the continuously variable transmission.

以上の説明は、トロイダル型無段変速機を構成するパワーローラが高速で回転した状態のままこのトロイダル型無段変速機を通過するトルク(通過トルク)が僅少になる状態として、このトロイダル型無段変速機を遊星歯車式変速機と組み合わせて無段変速装置を構成した場合に就いて説明した。但し、パワーローラが高速で回転した状態のまま通過トルクが僅少になる状態は、トロイダル型無段変速機単体でも生じる。即ち、このトロイダル型無段変速機を自動車用の自動変速機として使用している場合で、アクセルペダルを踏み込んで急加速している状態から急にアクセルペダルの踏み込みを中止した場合にも生じる。この状態では、加速状態からエンジンブレーキによる減速状態に移る瞬間に、短時間とは言え、上述した状態が発生する。そして、この場合も、何らの対策も施さないとジャイロ滑りが発生する。   The above explanation is based on the assumption that the torque (passing torque) passing through the toroidal continuously variable transmission is small while the power roller constituting the toroidal continuously variable transmission is rotating at high speed. The case where the continuously variable transmission is configured by combining the step transmission with the planetary gear type transmission has been described. However, the state where the passing torque is small while the power roller is rotating at a high speed also occurs in the toroidal type continuously variable transmission alone. In other words, when this toroidal continuously variable transmission is used as an automatic transmission for an automobile, the accelerator pedal is suddenly stopped from a state where the accelerator pedal is depressed and suddenly accelerated. In this state, the above-described state occurs at the moment of shifting from the acceleration state to the deceleration state by the engine brake, although it is a short time. Also in this case, gyro slip occurs unless any countermeasure is taken.

何れの場合でも、ジャイロ滑りを原因とする耐久性低下を防止する為には、前記予圧ばね37の弾力を大きくして、前記推力発生装置35内に導入する油圧が低い場合にも、前記各玉39、39の接触角方向に関する面圧を確保する事が考えられる。但し、この場合には、前記通過トルクの値が小さく、しかも、前記各パワーローラ10、10の回転速度が遅い場合に、前記面圧が過大になる。周知の様に、転がり接触部の抵抗は、面圧が大きくなる程大きくなり、その結果、動力の伝達効率が低下する。従って、低トルク、且つ、低回転時の効率を確保する面からは、前記予圧ばね37の弾力を大きくする事は好ましくない。   In any case, in order to prevent the durability from being lowered due to gyro slip, even if the elasticity of the preload spring 37 is increased and the hydraulic pressure introduced into the thrust generator 35 is low, It is conceivable to ensure the surface pressure in the contact angle direction of the balls 39, 39. However, in this case, the surface pressure becomes excessive when the value of the passing torque is small and the rotation speed of the power rollers 10 and 10 is low. As is well known, the resistance of the rolling contact portion increases as the surface pressure increases, and as a result, the power transmission efficiency decreases. Therefore, it is not preferable to increase the elasticity of the preload spring 37 in terms of ensuring low torque and efficiency during low rotation.

特許文献10には、各ディスクの回転速度に応じて、油圧式の推力発生装置に設けた油圧室内に導入する油圧を高くし、パワーローラ用のスラスト玉軸受に作用するジャイロモーメントを抑制する技術が記載されている。但し、この様な特許文献10に記載された構造では、本発明の対象となる様な無段変速装置で、低速モードと高速モードとを切り換える際に発生するジャイロ滑りを抑える事は難しい。更に、特許文献11には、パワーローラ用のスラスト玉軸受の軌道面の形状や玉の材質を工夫する事により、ジャイロ限界を向上させ、ジャイロ滑りを抑制する技術が記載されているが、やはり、上述の様な条件下で発生するジャイロ滑りを抑える事は難しい。   Patent Document 10 discloses a technique for increasing the hydraulic pressure introduced into a hydraulic chamber provided in a hydraulic thrust generator in accordance with the rotational speed of each disk, and suppressing the gyro moment acting on the thrust ball bearing for the power roller. Is described. However, with such a structure described in Patent Document 10, it is difficult to suppress gyro-slip that occurs when switching between the low speed mode and the high speed mode in the continuously variable transmission as the object of the present invention. Furthermore, Patent Document 11 describes a technique for improving the gyro limit and suppressing gyro slip by devising the shape of the raceway surface and the material of the ball of the thrust ball bearing for the power roller. It is difficult to suppress the gyroscopic slip that occurs under the above conditions.

尚、前記各トラクション部での滑り防止を考慮して、前記通過トルクが小さい場合にも、これら各トラクション部の面圧を、トラクションオイルが固化する圧力(ガラス転遷移圧力)以上にする事が考えられる。但し、前記各パワーローラ10、10が高速回転している場合にも、前記ジャイロ滑りを確実に防止する為には、前記各トラクション部の面圧を前記ガラス転遷移圧力よりも大きくしなければならない場合もある。従って、このガラス転遷移圧力の確保を考慮していても、前記ジャイロ滑りを確実に防止する為の考慮は必要である。   In consideration of slip prevention at each traction section, even when the passing torque is small, the surface pressure of each traction section may be set to be equal to or higher than the pressure at which the traction oil is solidified (glass transition pressure). Conceivable. However, even when each of the power rollers 10 and 10 is rotating at high speed, in order to reliably prevent the gyro slip, the surface pressure of each of the traction portions must be larger than the glass transition pressure. It may not be possible. Therefore, even in consideration of securing the glass transition pressure, consideration for reliably preventing the gyro slip is necessary.

特開平6−174033号公報JP-A-6-174033 特開2000−220719号公報JP 2000-220719 A 特開2002−139124号公報JP 2002-139124 A 特開2004−84712号公報JP 2004-84712 A 米国特許第5607372号明細書US Pat. No. 5,607,372 米国特許第6059685号明細書US Pat. No. 6,059,658 米国特許第6099431号明細書US Pat. No. 6,099,431 米国特許第6358178号明細書US Pat. No. 6,358,178 特開2006−348988号公報JP 2006-348888 A 特開2004−347071号公報JP 2004-347071 A 特開平11−72153号公報JP-A-11-72153

本発明は、上述の様な事情に鑑みて、各転がり接触部、即ち、各パワーローラの周面と各ディスクの側面との転がり接触部(トラクション部)、並びに、これら各パワーローラを回転自在に支持する為のスラスト玉軸受内部の転がり接触部の接触面圧を常に適正に維持する事により、これら各転がり接触部を構成する各面に著しい摩耗が発生する事を防止できる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides each rolling contact portion, that is, a rolling contact portion (traction portion) between a peripheral surface of each power roller and a side surface of each disk, and each of these power rollers is rotatable. By maintaining the contact surface pressure of the rolling contact part inside the thrust ball bearing for proper support at all times, a structure that can prevent the occurrence of significant wear on each surface constituting each rolling contact part is realized. Invented accordingly.

本発明のトロイダル型無段変速機及び無段変速装置のうち、請求項1に記載したトロイダル型無段変速機は、従来から知られているトロイダル型無段変速機と同様に、入力側ディスク及び出力側ディスクと、複数のトラニオンと、複数のパワーローラと、推力発生装置と、制御器とを備える。
このうちの入力側ディスク及び出力側ディスクは、それぞれが断面円弧形の凹面である互いの内側面同士を対向させた状態で、互いに同心に、且つ回転自在に支持されている。 又、上記各トラニオンは、前記入力側ディスク及び出力側ディスクの中心軸に対し捻れの位置にある枢軸を中心として揺動する。
又、前記各パワーローラは、それぞれの周面を球状凸面としたもので、前記各トラニオンの中間部に、これら各トラニオンの内側面から突出する状態で支持された支持軸及びこれら各トラニオンの内側面との間に設けたスラスト玉軸受を介して、これら各トラニオンの内側面側に回転自在に支持され、且つ、前記入力側ディスク及び出力側ディスクの間に挟持されている。
又、前記推力発生装置は、油圧式であって、油圧室内への油圧の導入に伴って、前記入力側ディスクと前記出力側ディスクとを互いに近づけ合う方向の推力を発生させる。
更に、前記制御器は、前記推力発生装置が発生する推力を調節する為、前記油圧を制御する。
Of the toroidal type continuously variable transmission and continuously variable transmission of the present invention, the toroidal type continuously variable transmission according to claim 1 is similar to the conventionally known toroidal type continuously variable transmission, and the input side disk. And an output side disk, a plurality of trunnions, a plurality of power rollers, a thrust generator, and a controller.
Among these, the input side disk and the output side disk are supported concentrically and rotatably in a state where the inner side surfaces, which are concave surfaces each having an arcuate cross section, are opposed to each other. Each trunnion swings about a pivot that is twisted with respect to the central axes of the input and output disks.
Each of the power rollers has a spherical convex surface, and a support shaft supported in a state protruding from the inner side surface of each trunnion and an inner portion of each trunnion. Via a thrust ball bearing provided between the trunnion and the trunnion, the trunnion is rotatably supported on the inner side surface, and is sandwiched between the input side disk and the output side disk.
Further, the thrust generating device is of a hydraulic type, and generates a thrust in a direction in which the input side disk and the output side disk are brought close to each other as the hydraulic pressure is introduced into the hydraulic chamber.
Furthermore, the controller controls the hydraulic pressure to adjust the thrust generated by the thrust generator.

特に、本発明のトロイダル型無段変速機に於いては、前記制御器は、前記入力側ディスクと前記出力側ディスクとの間での動力伝達に必要な第一の目標値を求める機能と、前記スラスト玉軸受を構成する各玉が自転せずに公転する状態を阻止する為に必要な第二の目標値を求める機能と、これら第一、第二の目標値を比較し、大きな目標値に応じた推力を発生させる為に必要な油圧を前記油圧室内に導入する機能とを備える。   In particular, in the toroidal type continuously variable transmission of the present invention, the controller obtains a first target value necessary for power transmission between the input side disk and the output side disk; Compare the first and second target values with a function for obtaining the second target value required to prevent the balls constituting the thrust ball bearing from revolving without rotating, and a large target value. And a function of introducing a hydraulic pressure necessary for generating a thrust according to the pressure into the hydraulic chamber.

又、本発明の無段変速装置は、入力軸と、出力軸と、トロイダル型無段変速機と、遊星歯車式変速機と、これらトロイダル型無段変速機と遊星歯車式変速機との間の動力の伝達状態を切り換える為のクラッチ装置とを備える。そして、このうちのトロイダル型無段変速機が、上述した様なトロイダル型無段変速機である。   A continuously variable transmission according to the present invention includes an input shaft, an output shaft, a toroidal continuously variable transmission, a planetary gear type transmission, and a connection between the toroidal type continuously variable transmission and the planetary gear type transmission. And a clutch device for switching the power transmission state. Of these, the toroidal continuously variable transmission is the toroidal continuously variable transmission as described above.

上述の様に構成する本発明のトロイダル型無段変速機及び無段変速装置によれば、各パワーローラの周面と各ディスクの側面との転がり接触部(トラクション部)、並びに、これら各パワーローラを回転自在に支持する為のスラスト玉軸受内部の転がり接触部の接触面圧を常に適正に維持できる。そして、これら各転がり接触部を構成する各面に著しい摩耗が発生する事を防止できる。   According to the toroidal-type continuously variable transmission and continuously variable transmission of the present invention configured as described above, the rolling contact portion (traction portion) between the peripheral surface of each power roller and the side surface of each disk, and each of these powers The contact surface pressure of the rolling contact portion inside the thrust ball bearing for rotatably supporting the roller can always be maintained appropriately. And it can prevent that remarkable abrasion generate | occur | produces on each surface which comprises each of these rolling contact parts.

本発明の特徴となる機能を示すフローチャート。The flowchart which shows the function used as the characteristic of this invention. 本発明の対象となる無段変速装置の1例を示す断面図。Sectional drawing which shows an example of the continuously variable transmission used as the object of this invention. 図2のA−A断面図。AA sectional drawing of FIG.

本発明のトロイダル型無段変速機及び無段変速装置の特徴は、各パワーローラの周面と各ディスクの側面との転がり接触部(トラクション部)の面圧を確保する為の油圧式の推力発生装置に導入する油圧を、このトラクション部に必要とする面圧の確保以外に、前記各パワーローラを回転自在に支持するスラスト玉軸受にジャイロ滑りが発生するのを防止する面からも制御する点にある。その他、トロイダル型無段変速機及び無段変速装置自体の構造に関しては、前述の図2〜3に示した従来構造の1例を含めて、従来から知られている各種トロイダル型無段変速機及び無段変速装置と同様であるから、説明を省略若しくは簡略にし、以下、本発明の特徴となる、推力発生装置の油圧室に導入する油圧を制御する制御器の機能に就いて、図2〜3を参照しつつ、図1により説明する。   The toroidal type continuously variable transmission and continuously variable transmission of the present invention are characterized by a hydraulic thrust for ensuring the surface pressure of the rolling contact portion (traction portion) between the peripheral surface of each power roller and the side surface of each disk. In addition to ensuring the surface pressure required for the traction section, the hydraulic pressure introduced to the generator is also controlled from the surface that prevents the gyroscopic sliding from occurring in the thrust ball bearing that rotatably supports the power rollers. In the point. In addition, regarding the structure of the toroidal continuously variable transmission and the continuously variable transmission itself, various conventional toroidal continuously variable transmissions including one example of the conventional structure shown in FIGS. Since it is the same as the continuously variable transmission, the description thereof will be omitted or simplified, and the function of the controller for controlling the hydraulic pressure introduced into the hydraulic chamber of the thrust generator, which is a feature of the present invention, will be described below with reference to FIG. 1 will be described with reference to FIG.

本例のトロイダル型無段変速機及び無段変速装置で、油圧式の推力発生装置35の油圧室36a、36b(図2参照)内に導入する油圧を制御する為の制御器は、図1に示す様に、先ずステップ1で、第一の機能により、入力側ディスク8a、8bと出力側ディスク9(図2参照)との間での動力伝達に必要な第一の目標値(動力伝達に必要な目標ローディング圧A)を求める。この第一の目標値は、トロイダル型無段変速機及び無段変速装置の技術分野で従来から広く知られている様に、トロイダル型無段変速機1(図2〜3参照)を通過するトルク(通過トルク)と、駆動軸34(図2参照)の回転速度と、トラクション部のトラクション係数等とから求める。尚、上記通過トルクは、エンジン制御用のコンピュータ等から求められる、前記駆動軸34の駆動トルクと、前記トロイダル型無段変速機1の変速比及び低速用、高速用両クラッチ28、31(図2参照)の断接状態とから求められる。又、前記トラクション係数は、ケーシング14(図2〜3参照)内に存在するトラクションオイルの種類と、このトラクションオイルの温度とから求められる。   A controller for controlling the hydraulic pressure introduced into the hydraulic chambers 36a and 36b (see FIG. 2) of the hydraulic thrust generator 35 in the toroidal type continuously variable transmission and continuously variable transmission of this example is shown in FIG. As shown in FIG. 1, first, in Step 1, the first target value (power transmission) required for power transmission between the input side disks 8a and 8b and the output side disk 9 (see FIG. 2) is performed by the first function. The target loading pressure A) required for This first target value passes through the toroidal-type continuously variable transmission 1 (see FIGS. 2 to 3), as is widely known in the technical field of toroidal-type continuously variable transmissions and continuously variable transmissions. It is obtained from the torque (passing torque), the rotational speed of the drive shaft 34 (see FIG. 2), the traction coefficient of the traction section, and the like. The passing torque is obtained from an engine control computer or the like, the drive torque of the drive shaft 34, the transmission ratio of the toroidal-type continuously variable transmission 1, the low speed and high speed clutches 28, 31 (see FIG. 2). The traction coefficient is obtained from the type of traction oil present in the casing 14 (see FIGS. 2 to 3) and the temperature of the traction oil.

前記制御器は、前記ステップ1で動力伝達に必要な目標ローディング圧Aを求めた後、続くステップ2で、スラスト玉軸受38を構成する各玉39、39(図3参照)が自転せずに公転する状態を阻止する為に必要な第二の目標値(ジャイロ限界荷重から必要な目標ローディング圧B)を求める。この第二の目標値は、前記スラスト玉軸受38により回転自在に支持されたパワーローラ10、10(図3参照)の回転速度により定まる、前記各玉39、39の公転速度により求められる。又、前記各パワーローラ10、10の回転速度は、前記駆動軸34の回転速度と、前記トロイダル型無段変速機1の変速比とから求められる。尚、これらに基づいて前記各パワーローラ10、10の回転速度を求め、更にこれら各パワーローラ10、10の公転半径及び重量に基づいて前記ジャイロ限界荷重を求める作業(計算)は複雑である。この為、前記トロイダル型無段変速機1(を組み込んだ無段変速装置)の運転の間中この作業を継続する事は、前記制御器(ECU)の負担が過大になり、前記油圧室36a、36b内に導入する油圧の制御に遅れが発生する可能性がある。そこで、予め作成したマップ(マトリックス)に基づいて、少し余裕を持たせた(実際に必要とするよりも少し高めの)油圧を求め、この求めた油圧を前記第二の目標値とする事が、制御遅れをなくす面からは有効である。   The controller obtains the target loading pressure A necessary for power transmission in step 1 and then in step 2, the balls 39, 39 (see FIG. 3) constituting the thrust ball bearing 38 do not rotate. A second target value (necessary target loading pressure B required from the gyro limit load) required to prevent the revolving state is obtained. This second target value is obtained from the revolution speed of each of the balls 39, 39 determined by the rotational speed of the power rollers 10 and 10 (see FIG. 3) rotatably supported by the thrust ball bearing 38. The rotational speeds of the power rollers 10 and 10 are obtained from the rotational speed of the drive shaft 34 and the gear ratio of the toroidal continuously variable transmission 1. The operation (calculation) for obtaining the rotational speed of each of the power rollers 10 and 10 based on these and further for obtaining the gyro limit load based on the revolution radius and weight of each of the power rollers 10 and 10 is complicated. For this reason, continuing this operation during the operation of the toroidal-type continuously variable transmission 1 (a continuously variable transmission incorporating the toroidal-type continuously variable transmission 1) makes the load on the controller (ECU) excessive, and the hydraulic chamber 36a. , 36b may cause a delay in the control of the hydraulic pressure introduced into 36b. Therefore, based on a map (matrix) created in advance, a hydraulic pressure with a little margin (slightly higher than actually required) is obtained, and the obtained hydraulic pressure is set as the second target value. This is effective in eliminating the control delay.

前記ステップ1で動力伝達に必要な目標ローディング圧Aを求め、前記ステップ2でジャイロ限界荷重から必要な目標ローディング圧Bを求めたならば、次のステップ3で、これら両目標ローディング圧A、Bの大小を比較する。そして、動力伝達に必要な目標ローディング圧Aがジャイロ限界荷重から必要な目標ローディング圧B以上である場合には、ステップ4で、必要ローディング圧を動力伝達に必要な目標ローディング圧Aとし、この目標ローディング圧Aを前記油圧室36a、36b内に導入する。この結果、前記各パワーローラ10、10の周面と入力側ディスク8a、8b及び出力側ディスク9の内側面との転がり接触部(トラクション部)で過大な滑りを生じる事なく、これら各ディスク8a、8b、ディスク9同士の間での動力伝達が可能になる。同時に、前記スラスト玉軸受38で、ジャイロ滑りが生じる事も防止される。   If the target loading pressure A required for power transmission is obtained in the step 1 and the necessary loading pressure B is obtained from the gyro limit load in the step 2, these target loading pressures A and B are obtained in the next step 3. Compare the size of. When the target loading pressure A required for power transmission is equal to or higher than the target loading pressure B required from the gyro limit load, the required loading pressure is set as the target loading pressure A required for power transmission in step 4, and this target A loading pressure A is introduced into the hydraulic chambers 36a and 36b. As a result, the discs 8a and 10b are not slipped excessively at rolling contact portions (traction portions) between the peripheral surfaces of the power rollers 10 and 10 and the inner surfaces of the input-side discs 8a and 8b and the output-side disc 9. , 8b, power transmission between the disks 9 becomes possible. At the same time, the thrust ball bearing 38 prevents gyro slip.

これに対して、ジャイロ限界荷重から必要な目標ローディング圧Bが動力伝達に必要な目標ローディング圧Aよりも大きい場合には、ステップ5で、必要ローディング圧をジャイロ限界荷重から必要な目標ローディング圧Bとし、この目標ローディング圧Bを前記油圧室36a、36b内に導入する。この結果、前記スラスト玉軸受38を構成する前記各玉39、39と、内輪軌道40及び外輪軌道41(図3参照)との転がり接触部に関して、スラスト荷重の支承方向(接触角の方向)に関する面圧が十分に高くなる。この結果、前記各玉39、39が自転せずに公転する、所謂ジャイロ滑りが発生する事がなくなり、前記スラスト玉軸受38の各部に過大な摩耗が発生する事がなくなる。   On the other hand, when the target loading pressure B required from the gyro limit load is larger than the target loading pressure A required for power transmission, in step 5, the required loading pressure is changed from the gyro limit load to the required target loading pressure B. The target loading pressure B is introduced into the hydraulic chambers 36a and 36b. As a result, with respect to the rolling contact portions between the balls 39, 39 constituting the thrust ball bearing 38 and the inner ring raceway 40 and the outer ring raceway 41 (see FIG. 3), the thrust load bearing direction (contact angle direction) is related. The contact pressure becomes sufficiently high. As a result, the so-called gyro-slip, in which the balls 39, 39 revolve without rotating, is prevented from occurring, and excessive wear is not generated at each portion of the thrust ball bearing 38.

上述の様に構成する本例のトロイダル型無段変速機及び無段変速装置によれば、前記各パワーローラ10、10の周面と前記各ディスク8a、8b、9の内側面との転がり接触部(トラクション部)、並びに、前記各パワーローラ10、10を回転自在に支持する為の前記スラスト玉軸受38内部の転がり接触部の接触面圧を常に適正に維持できる。即ち、前記各トラクション部(転がり接触部)で過大な滑りを生じる事なく動力伝達を行える事は勿論、軽負荷時(伝達トルクが僅少の場合)に前記各パワーローラ10、10が高速回転する状態で、前記スラスト玉軸受38の内部で過大な滑りが発生する事を防止できる。この結果、過大な面圧付与に伴う転がり抵抗の増大(伝達効率の低下)を防止しつつ、前記各転がり接触部を構成する各面に著しい摩耗が発生する事を防止できる。   According to the toroidal type continuously variable transmission and continuously variable transmission of this example configured as described above, the rolling contact between the peripheral surfaces of the power rollers 10 and 10 and the inner surfaces of the disks 8a, 8b and 9 is achieved. The contact surface pressure of the rolling contact portion inside the thrust ball bearing 38 for rotatably supporting the portion (traction portion) and the power rollers 10 and 10 can always be maintained appropriately. That is, the power rollers 10 and 10 rotate at a high speed when the load is light (when the transmission torque is small) as well as the power can be transmitted without causing excessive slip at the traction portions (rolling contact portions). In this state, it is possible to prevent an excessive slip from occurring inside the thrust ball bearing 38. As a result, it is possible to prevent the occurrence of significant wear on each surface constituting each rolling contact portion while preventing an increase in rolling resistance (decrease in transmission efficiency) associated with application of excessive surface pressure.

本発明の特徴は、油圧式の推力発生装置を備えたトロイダル型無段変速機で、この推力発生装置が発生する推力が不足せず、且つ、余裕度が過剰にならない様に、この推力発生装置の油圧室内に導入する油圧を制御する点にある。油圧式の推力発生装置の構造に関しては、図示の様なダブルピストン型に限らず、シングルピストン型でも良い。更に、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせた無段変速装置として実施する場合の他、トロイダル型無段変速機単体で実施する場合にも、本発明は適用可能である。   A feature of the present invention is a toroidal-type continuously variable transmission equipped with a hydraulic thrust generating device. This thrust generating device generates a thrust so that the thrust generated by the thrust generating device is not insufficient and a margin is not excessive. This is to control the hydraulic pressure introduced into the hydraulic chamber of the apparatus. The structure of the hydraulic thrust generator is not limited to the double piston type as shown, but may be a single piston type. Furthermore, the present invention can be applied to a case where the toroidal type continuously variable transmission is implemented as a single unit in addition to a case where the toroidal type continuously variable transmission and the planetary gear type transmission are combined as a continuously variable transmission. .

1 トロイダル型無段変速機
2 第一遊星歯車式変速機
3 第二遊星歯車式変速機
4 第三遊星歯車式変速機
5 入力軸
6 伝達軸
7 出力軸
8a、8b 入力側ディスク
9 出力側ディスク
10 パワーローラ
11 トラニオン
12 枢軸
13a、13b 支持板
14 ケーシング
15 連結板
16 アクチュエータボディー
17 支柱
18 スラストアンギュラ玉軸受
19 中空回転軸
20 第一太陽歯車
21 第一キャリア
22 遊星歯車
23 遊星歯車
24 遊星歯車
25 第二太陽歯車
26 第一リング歯車
27 第二キャリア
28 低速用クラッチ
29 第三太陽歯車
30 第二リング歯車
31 高速用クラッチ
32 遊星歯車
33 遊星歯車
34 駆動軸
35 推力発生装置
36a、36b 油圧室
37 予圧ばね
38 スラスト玉軸受
39 玉
40 内輪軌道
41 外輪軌道
DESCRIPTION OF SYMBOLS 1 Toroidal type continuously variable transmission 2 1st planetary gear type transmission 3 2nd planetary gear type transmission 4 3rd planetary gear type transmission 5 Input shaft 6 Transmission shaft 7 Output shaft 8a, 8b Input side disk 9 Output side disk DESCRIPTION OF SYMBOLS 10 Power roller 11 Trunnion 12 Axis 13a, 13b Support plate 14 Casing 15 Connection plate 16 Actuator body 17 Support column 18 Thrust angular ball bearing 19 Hollow rotary shaft 20 First sun gear 21 First carrier 22 Planetary gear 23 Planetary gear 24 Planetary gear 25 Second sun gear 26 First ring gear 27 Second carrier 28 Low speed clutch 29 Third sun gear 30 Second ring gear 31 High speed clutch 32 Planetary gear 33 Planetary gear 34 Drive shaft 35 Thrust generator 36a, 36b Hydraulic chamber 37 Preload spring 38 Thrust ball bearing 39 Ball 40 Inner ring Track 41 Outer ring track

Claims (2)

それぞれが断面円弧形の凹面である互いの内側面同士を対向させた状態で、互いに同心に、且つ回転自在に支持された入力側ディスク及び出力側ディスクと、これら入力側ディスク及び出力側ディスクの中心軸に対し捻れの位置にある枢軸を中心として揺動する複数のトラニオンと、これら各トラニオンの中間部に、これら各トラニオンの内側面から突出する状態で支持された支持軸及びこれら各トラニオンの内側面との間に設けたスラスト玉軸受を介してこれら各トラニオンの内側面側に回転自在に支持され、且つ、前記入力側ディスク及び出力側ディスクの間に挟持された、それぞれの周面を球状凸面とした複数のパワーローラと、油圧室内への油圧の導入に伴って前記入力側ディスクと前記出力側ディスクとを互いに近づけ合う方向の推力を発生させる、油圧式の推力発生装置と、この推力発生装置が発生する推力を調節する為、前記油圧を制御する制御器とを備えたものであるトロイダル型無段変速機に於いて、
前記制御器は、前記入力側ディスクと前記出力側ディスクとの間での動力伝達に必要な第一の目標値を求める機能と、前記スラスト玉軸受を構成する各玉が自転せずに公転する状態を阻止する為に必要な第二の目標値を求める機能と、これら第一、第二の目標値を比較し、大きな目標値に応じた推力を発生させる為に必要な油圧を前記油圧室内に導入する機能とを備えたものである事を特徴とするトロイダル型無段変速機。
An input side disk and an output side disk that are supported concentrically and rotatably in a state in which the inner side surfaces, which are concave surfaces each having a circular arc shape, are opposed to each other, and these input side disk and output side disk A plurality of trunnions that swing about a pivot that is twisted with respect to the central axis of the shaft, a support shaft that is supported in an intermediate portion of each trunnion in a state of protruding from the inner surface of each trunnion, and each trunnion Respective peripheral surfaces that are rotatably supported on the inner side surface of each trunnion via a thrust ball bearing provided between the inner side surface and the input side disc and the output side disc. A plurality of power rollers having a spherical convex surface, and in a direction in which the input side disk and the output side disk come close to each other with the introduction of hydraulic pressure into the hydraulic chamber. Generates a force, a hydraulic thrust generating apparatus, for adjusting the thrust the thrust generator is generated, in the toroidal type continuously variable transmission in which and a controller for controlling the hydraulic pressure,
The controller has a function of obtaining a first target value necessary for power transmission between the input side disk and the output side disk, and each ball constituting the thrust ball bearing revolves without rotating. Compares the first and second target values with the function for obtaining the second target value necessary to prevent the state, and supplies the hydraulic pressure necessary to generate thrust according to the large target value in the hydraulic chamber. A toroidal-type continuously variable transmission characterized in that it is equipped with a function to be introduced.
入力軸と、出力軸と、トロイダル型無段変速機と、遊星歯車式変速機と、これらトロイダル型無段変速機と遊星歯車式変速機との間の動力の伝達状態を切り換える為のクラッチ装置とを備え、
このうちのトロイダル型無段変速機は、それぞれが断面円弧形の凹面である互いの内側面同士を対向させた状態で、互いに同心に、且つ回転自在に支持された入力側ディスク及び出力側ディスクと、これら入力側ディスク及び出力側ディスクの中心軸に対し捻れの位置にある枢軸を中心として揺動する複数のトラニオンと、これら各トラニオンの中間部に、これら各トラニオンの内側面から突出する状態で支持された支持軸及びこれら各トラニオンの内側面との間に設けたスラスト玉軸受を介してこれら各トラニオンの内側面側に回転自在に支持され、且つ、前記入力側ディスク及び出力側ディスクの間に挟持された、それぞれの周面を球状凸面とした複数のパワーローラと、油圧室内への油圧の導入に伴って前記入力側ディスクと前記出力側ディスクとを互いに近づけ合う方向の推力を発生させる、油圧式の推力発生装置と、この推力発生装置が発生する推力を調節する為、前記油圧を制御する制御器とを備えたものである無段変速装置に於いて、
前記制御器は、前記入力側ディスクと前記出力側ディスクとの間での動力伝達に必要な第一の目標値を求める機能と、前記スラスト玉軸受を構成する各玉が自転せずに公転する状態を阻止する為に必要な第二の目標値を求める機能と、これら第一、第二の目標値を比較し、大きな目標値に応じた推力を発生させる為に必要な油圧を前記油圧室内に導入する機能とを備えたものである事を特徴とする無段変速装置。
Input shaft, output shaft, toroidal continuously variable transmission, planetary gear transmission, and clutch device for switching the power transmission state between these toroidal continuously variable transmission and planetary gear transmission And
Of these, the toroidal continuously variable transmission has an input side disk and an output side that are supported concentrically and rotatably, with the inner side surfaces of each concave surface having an arcuate cross section facing each other. A disc, a plurality of trunnions that swing about a pivot that is twisted with respect to the center axis of the input side disc and the output side disc, and an intermediate portion of each trunnion protrudes from the inner surface of each trunnion The input side disk and the output side disk are rotatably supported on the inner side surface of each trunnion via a support shaft supported in a state and a thrust ball bearing provided between the inner side surfaces of each trunnion. A plurality of power rollers each having a spherical convex surface sandwiched between them, and the input side disk and the output along with the introduction of hydraulic pressure into the hydraulic chamber A stepless generator comprising a hydraulic thrust generating device that generates thrust in a direction in which the disk approaches each other, and a controller that controls the hydraulic pressure to adjust the thrust generated by the thrust generating device. In the transmission,
The controller has a function of obtaining a first target value necessary for power transmission between the input side disk and the output side disk, and each ball constituting the thrust ball bearing revolves without rotating. Compares the first and second target values with the function for obtaining the second target value necessary to prevent the state, and supplies the hydraulic pressure necessary to generate thrust according to the large target value in the hydraulic chamber. A continuously variable transmission characterized by having a function to be introduced into the vehicle.
JP2009267015A 2009-11-25 2009-11-25 Toroidal continuously variable transmission and continuously variable transmission Expired - Fee Related JP5187301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267015A JP5187301B2 (en) 2009-11-25 2009-11-25 Toroidal continuously variable transmission and continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267015A JP5187301B2 (en) 2009-11-25 2009-11-25 Toroidal continuously variable transmission and continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2011112103A true JP2011112103A (en) 2011-06-09
JP5187301B2 JP5187301B2 (en) 2013-04-24

Family

ID=44234600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267015A Expired - Fee Related JP5187301B2 (en) 2009-11-25 2009-11-25 Toroidal continuously variable transmission and continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5187301B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084712A (en) * 2002-08-23 2004-03-18 Nsk Ltd Toroidal-type continuously variable transmission and continuously variable transmission
JP2004347071A (en) * 2003-05-23 2004-12-09 Nissan Motor Co Ltd Troidal continuously variable transmission
JP2007198510A (en) * 2006-01-26 2007-08-09 Toyota Motor Corp Hydraulic pressure controller of toroidal type continuous transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084712A (en) * 2002-08-23 2004-03-18 Nsk Ltd Toroidal-type continuously variable transmission and continuously variable transmission
JP2004347071A (en) * 2003-05-23 2004-12-09 Nissan Motor Co Ltd Troidal continuously variable transmission
JP2007198510A (en) * 2006-01-26 2007-08-09 Toyota Motor Corp Hydraulic pressure controller of toroidal type continuous transmission

Also Published As

Publication number Publication date
JP5187301B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5131353B2 (en) Continuously variable transmission
US9551404B2 (en) Continuously variable transmission and an infinitely variable transmission variator drive
WO2012111562A1 (en) Toroidal type continuously variable transmission
JP2015075148A (en) Toroidal type continuously variable transmission
JP5187301B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP5234015B2 (en) Continuously variable transmission
WO2014069141A1 (en) Stepless transmission
JP6558075B2 (en) Continuously variable transmission
JP5786367B2 (en) Drive device having speed change function and rotation direction conversion function
JP5304688B2 (en) Power transmission device
JP3674264B2 (en) Continuously variable transmission
JP4930249B2 (en) Continuously variable transmission
WO2015052950A1 (en) Single-cavity toroidal continuously variable transmission
JP2014040892A (en) Frictional roller type transmission
JP6729074B2 (en) Toroidal type continuously variable transmission
JP5120365B2 (en) Toroidal continuously variable transmission and vehicle equipped with toroidal continuously variable transmission
JPH06229452A (en) Toroidal-type continuously variable transmission
JP6311452B2 (en) Toroidal continuously variable transmission
JP4158320B2 (en) Continuously variable transmission
JP4492195B2 (en) Continuously variable transmission
JP6153498B2 (en) Toroidal continuously variable transmission
JP4561126B2 (en) Toroidal continuously variable transmission
JP6413377B2 (en) Toroidal continuously variable transmission
JP2007092946A (en) Toroidal continuously variable transmission
JP6421647B2 (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5187301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees