JP2011109927A - Method for extracting fish-originated collagen peptide - Google Patents

Method for extracting fish-originated collagen peptide Download PDF

Info

Publication number
JP2011109927A
JP2011109927A JP2009266427A JP2009266427A JP2011109927A JP 2011109927 A JP2011109927 A JP 2011109927A JP 2009266427 A JP2009266427 A JP 2009266427A JP 2009266427 A JP2009266427 A JP 2009266427A JP 2011109927 A JP2011109927 A JP 2011109927A
Authority
JP
Japan
Prior art keywords
collagen peptide
fish
collagen
diffraction intensity
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009266427A
Other languages
Japanese (ja)
Other versions
JP5649025B2 (en
Inventor
Takashi Watanabe
崇 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2009266427A priority Critical patent/JP5649025B2/en
Publication of JP2011109927A publication Critical patent/JP2011109927A/en
Application granted granted Critical
Publication of JP5649025B2 publication Critical patent/JP5649025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for extracting fish-originated collagen peptide, by which the collagen peptide can efficiently be recovered in a high recovery rate, while shortening the treating time. <P>SOLUTION: The method for extracting the fish-originated collagen peptide is characterized by including a crushing process for finely crushing a fish-originated raw material so that a decrease rate in the diffraction intensity of the Miller index (002) of hydroxyapatite crystal obtained by X-ray diffraction method on the basis of the un-crushed fish-originated raw material is fit to a prescribed range; and a process for performing a treatment for extracting collagen protein from the finely crushed fish-originated raw material in 30 to 70°C water and a treatment for hydrolyzing the extracted collagen protein into collagen peptide with a protease, as one process; wherein the lower limit value of the prescribed range is determined from a viewpoint that the recovery of the collagen peptide is ≥75%; and the upper limit value of the prescribed range is determined from a viewpoint that the increase in the ratio of the recover rate of the collagen peptide to the decrease rate of the diffraction intensity is maintained at ≥0.34. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、魚由来のコラーゲンペプチドの抽出方法に関する。   The present invention relates to a method for extracting a collagen peptide derived from fish.

コラーゲンは食品から医薬品・化粧品に至るまで幅広い分野で利用され、年間300億円の市場があるといわれている。このコラーゲンは、従来は牛や豚などの哺乳動物由来のものが主であったが、牛海綿状脳症、口蹄疫が発生して以来、利用が敬遠されるようになっている。特に化粧品に使われるコラーゲンは、水生動物由来のものが大半を占めるようになっている。
コラーゲン及びこの変性物であるゼラチンは、体内や肌への吸収率向上や機能性を付与する目的で、酵素等により低分子化(加水分解)処理が行なわれる。なお、この処理を受けた試料をコラーゲンペプチドという。
Collagen is used in a wide range of fields, from food to pharmaceuticals and cosmetics, and is said to have an annual market of 30 billion yen. Conventionally, this collagen has been mainly derived from mammals such as cattle and pigs, but its use has been avoided since the occurrence of bovine spongiform encephalopathy and foot-and-mouth disease. In particular, collagen used in cosmetics is mostly from aquatic animals.
Collagen and gelatin, which is a modified product thereof, are subjected to a low molecular weight (hydrolysis) treatment with an enzyme or the like for the purpose of improving absorption into the body or skin and imparting functionality. In addition, the sample which received this process is called collagen peptide.

水生動物からコラーゲンペプチドを抽出する方法として、未脱灰の魚鱗を粉砕処理することでコラーゲンの可溶化及び酵素との接触を促進し、コラーゲンペプチドを抽出する方法が知られている(例えば、特許文献1)。   As a method for extracting a collagen peptide from an aquatic animal, a method is known in which collagen peptide is extracted by pulverizing undecalcified fish scales to promote collagen solubilization and contact with an enzyme (for example, patents). Reference 1).

特開2004−57196号公報JP 2004-57196 A

しかしながら、当該抽出方法によってコラーゲン抽出を行なうには、堅い三重螺旋構造を持ったコラーゲン、特に内部コラーゲン線維を可溶化するため、粉砕処理をした魚鱗を酵素処理する前に、90℃以上で2時間以上の加熱処理を行ないゼラチン化する処理を必要とする。このため、コラーゲン抽出処理と後の酵素による加水分解処理を別工程としなければならず、また両工程の間には冷却工程も必要となる。当該加熱処理は省略することもできるが、省略した場合にはコラーゲンペプチドの回収率が著しく減少する。また、当該抽出方法における粉砕処理は、魚鱗の嵩が増すため、一度に高濃度のコラーゲンペプチドが得られないという欠点もあり、さらなる改良が望まれる。   However, in order to perform collagen extraction by the extraction method, collagen having a hard triple helix structure, particularly internal collagen fibers, is solubilized. The above heat treatment is required to be gelatinized. For this reason, the collagen extraction treatment and the subsequent hydrolysis treatment with an enzyme must be performed as separate steps, and a cooling step is also required between the two steps. The heat treatment can be omitted, but when it is omitted, the recovery rate of the collagen peptide is remarkably reduced. Further, the pulverization treatment in the extraction method has the disadvantage that a high concentration of collagen peptide cannot be obtained at one time because the bulk of fish scales increases, and further improvement is desired.

そこで、本発明は、かかる不都合を解消して、処理時間の短縮しつつ、コラーゲンペプチドを効率よく高回収率で回収できる魚由来のコラーゲンペプチドの抽出方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for extracting a fish-derived collagen peptide that can efficiently recover a collagen peptide at a high recovery rate while eliminating the inconvenience and shortening the processing time.

かかる目的を達成するために、本発明の魚由来のコラーゲンペプチドの抽出方法は、魚由来の原料をX線回折法において得られるヒドロキシアパタイト結晶のミラー指数(002)の粉砕前を基準とした回折強度の減少率が所定範囲に収まるように微粉砕する原料微粉砕工程と、30℃〜70℃の温度の水中において前記微粉砕した魚由来の原料からコラーゲンタンパク質を抽出する処理と抽出されたコラーゲンタンパク質をタンパク質分解酵素によってコラーゲンペプチドに加水分解する処理とを一の工程として行うコラーゲンペプチド抽出工程を有し、前記所定範囲の下限値は、コラーゲンペプチドの回収率を75%以上にする観点から定められ、前記所定範囲の上限値は、前記回折強度の減少率に対するコラーゲンペプチドの回収率の比率の増加を0.34以上に維持する観点から定められていることを特徴とする。   In order to achieve such an object, the method for extracting a fish-derived collagen peptide of the present invention uses a fish-derived raw material as a diffraction pattern before the milling of the Miller index (002) of a hydroxyapatite crystal obtained by an X-ray diffraction method. Raw material pulverization step for finely pulverizing the strength reduction rate to fall within a predetermined range, treatment for extracting collagen protein from the pulverized fish-derived raw material in water at a temperature of 30 ° C to 70 ° C, and extracted collagen A collagen peptide extraction step in which the process of hydrolyzing the protein into a collagen peptide by a proteolytic enzyme is performed as one step, and the lower limit value of the predetermined range is determined from the viewpoint of making the recovery rate of the collagen peptide 75% or more The upper limit of the predetermined range is the recovery rate of the collagen peptide with respect to the rate of decrease of the diffraction intensity. Characterized in that it is determined from the viewpoint of maintaining the increase rate to 0.34 or more.

発明者は、魚由来の原料に対して、十分なメカノケミカル効果が与えられるように粉砕処理が実行されることにより、コラーゲンの抽出率を向上させうることを知見した。ここで「メカノケミカル効果」とは、粉砕過程で微粒子化した試料に機械的エネルギー(衝撃又は摩擦)を与えることにより、機械的エネルギーの一部が粒子内に蓄積され、結晶構造の歪み又は化学結合の切断等を引き起こす効果である。   The inventor has found that the extraction rate of collagen can be improved by carrying out a pulverization process so that a sufficient mechanochemical effect is given to the fish-derived raw material. Here, the “mechanochemical effect” means that mechanical energy (impact or friction) is applied to a sample that has been microparticulated during the pulverization process, so that a part of the mechanical energy is accumulated in the particle and distortion of the crystal structure or chemical This is an effect of causing a bond breakage.

また発明者は、メカノケミカル効果が発生する程度と、X線回折法によって測定できる魚由来の原料に含まれるヒドロキシアパタイト結晶のc軸に属する回折強度の減少の程度とが比例関係にあることを知見した。   The inventor also shows that the degree of mechanochemical effect is proportional to the degree of decrease in diffraction intensity belonging to the c-axis of hydroxyapatite crystals contained in fish-derived raw materials that can be measured by X-ray diffraction. I found out.

具体的には、発明者は、魚由来の原料は、六方晶系に属するイオン結晶であるヒドロキシアパタイトと、当該結晶のc軸に沿って整列したコラーゲン繊維とからなるために機械的強度に優れた構造をしているのに対して、当該原料に与えられるメカノケミカル効果がが高くなるほど、当該結晶のc軸に属するミラー指数(002)におけるX線回折法によって得られる回折強度が、粉砕前の回折強度と比較して低くなることを知見した。   Specifically, the inventor has excellent mechanical strength because the fish-derived material is composed of hydroxyapatite, which is an ionic crystal belonging to the hexagonal system, and collagen fibers aligned along the c-axis of the crystal. However, as the mechanochemical effect imparted to the raw material increases, the diffraction intensity obtained by the X-ray diffractometry in the Miller index (002) belonging to the c-axis of the crystal becomes higher before pulverization. It was found that the intensity was lower than the diffraction intensity.

この知見に基づくことにより、前記c軸に属するミラー指数(002)における回折強度が粉砕前の回折強度と比較して所定の割合以上減少するように原料を微粉砕する処理を実行しうる。   Based on this knowledge, the raw material can be finely pulverized so that the diffraction intensity at the Miller index (002) belonging to the c-axis is reduced by a predetermined ratio or more compared to the diffraction intensity before pulverization.

前記所定割合の下限値は、本来、工業上の要請としてコラーゲンペプチドの回収率は75%以上必要とされていることから、この75%を超えるように設定する。   The lower limit value of the predetermined ratio is set to exceed 75% because the collagen peptide recovery rate is originally required to be 75% or more as an industrial requirement.

一方、コラーゲンペプチドの回収率はほぼ100%(95%〜98%)に到達する程度に微粉砕する処理を実行すれば十分であり、それ以上に回収率を上昇させるために処理工程を追加又は継続して実行することは、却って工業上の作業効率の点から無駄が生じる結果となる。したがって、前記所定範囲の上限値は、コラーゲンペプチドの回収率が95%を超えないように、前記回折強度の減少率に対するコラーゲンペプチドの回収率の比率の増加を0.34以上に維持しうるように設定する。   On the other hand, it is sufficient to perform a process of finely pulverizing the collagen peptide recovery rate to reach almost 100% (95% to 98%), and additional processing steps are added to increase the recovery rate. On the contrary, the continuous execution results in waste in terms of industrial work efficiency. Accordingly, the upper limit value of the predetermined range can maintain the increase in the ratio of the recovery rate of the collagen peptide to the decrease rate of the diffraction intensity at 0.34 or more so that the recovery rate of the collagen peptide does not exceed 95%. Set to.

また、発明者の実験によれば、本発明の魚由来のコラーゲンペプチドの抽出方法では、前記所定の割合は13.4%〜37.2%に設定することが好ましい。   According to the inventors' experiment, in the method for extracting a fish-derived collagen peptide of the present invention, the predetermined ratio is preferably set to 13.4% to 37.2%.

なお、このコラーゲンペプチドの回収率は、原料に含まれるコラーゲンペプチドを100としたときの、回収したコラーゲンペプチドの質量の相対的割合を意味する。   In addition, the recovery rate of this collagen peptide means the relative ratio of the mass of the collect | recovered collagen peptides when the collagen peptide contained in a raw material is set to 100.

そして、前記微粉砕処理を実行した後、コラーゲンタンパク質を抽出する処理と抽出されたコラーゲンタンパク質をタンパク質分解酵素によってコラーゲンペプチドに加水分解する処理が実行される。   And after performing the said fine grinding process, the process which extracts a collagen protein and the process which hydrolyzes the extracted collagen protein to a collagen peptide by a proteolytic enzyme are performed.

前記微粉砕処理を実行により、十分なメカノケミカル効果が与えられた魚由来の原料は、酵素活性が維持される30℃〜70℃の温度の水中でコラーゲンの可溶化、抽出化が実行することができる。したがって、従来別工程で行なわれていた前記コラーゲンタンパク質を抽出する処理及び前記加水分解処理を同時に行なうことができるとともに、前記抽出する工程と前記加水分解処理工程の間に、冷却工程を省略することができる。   The fish-derived raw material that has been given a sufficient mechanochemical effect by executing the fine pulverization treatment should be subjected to collagen solubilization and extraction in water at a temperature of 30 ° C. to 70 ° C. in which enzyme activity is maintained. Can do. Therefore, the process of extracting the collagen protein and the hydrolysis process, which have been conventionally performed in separate processes, can be performed at the same time, and the cooling process is omitted between the extraction process and the hydrolysis process. Can do.

しかも、この粉砕処理によれば、嵩が従来と比較して著しく低いので、前記コラーゲンタンパク質を抽出する処理及び前記加水分解処理に際して、一度により多量の粉砕原料を対象としてコラーゲンペプチドの抽出をすることができる。   In addition, according to this pulverization treatment, the bulk is remarkably low as compared with the conventional case, so that in the process of extracting the collagen protein and the hydrolysis treatment, the collagen peptide is extracted once more for the pulverized raw material. Can do.

この結果、本発明の魚由来のコラーゲンペプチドの抽出方法によれば、処理時間の短縮しつつ、コラーゲンペプチドを効率よく高回収率で回収することができる。   As a result, according to the method for extracting a fish-derived collagen peptide of the present invention, the collagen peptide can be efficiently recovered at a high recovery rate while shortening the processing time.

なお、前記コラーゲンペプチドの回収率は、単位質量あたりの魚鱗から回収可能なコラーゲンペプチドの最大値が、回収率100%として定義される。この最大値は実験により定められる。たとえば、コンバージミルで魚鱗を粉砕処理する継続時間を延ばしても、回収率が向上しなくなったときの値が当該最大値として定められる。   The collagen peptide recovery rate is defined as the maximum recovery rate of collagen peptide that can be recovered from fish scales per unit mass as 100% recovery rate. This maximum value is determined by experiment. For example, even when the duration of pulverizing fish scales with a convergence mill is extended, the value when the recovery rate is not improved is determined as the maximum value.

秋刀魚の鱗を試料とする実施例3〜5及び比較例2のX線回折測定で得られた回折パターンを示す図。The figure which shows the diffraction pattern obtained by the X-ray-diffraction measurement of Examples 3-5 and the comparative example 2 which use the scale of a sword fish as a sample. 鰯の鱗を試料とする実施例1、2及び比較例1のX線回折測定で得られたミラー指数(002)の回折強度の減少率とコラーゲンペプチドの抽出率との関係説明図。Explanatory drawing of the relationship between the reduction rate of the diffraction intensity of the Miller index (002) obtained by the X-ray-diffraction measurement of Examples 1 and 2 and Comparative Example 1 which use a cocoon scale as a sample, and the extraction rate of a collagen peptide. 秋刀魚の鱗を試料とする実施例3〜5及び比較例2のX線回折測定で得られたミラー指数(002)の回折強度の減少率とコラーゲンペプチドの抽出率との関係説明図。Explanatory drawing of the relationship between the reduction rate of the diffraction intensity of the Miller index | exponent (002) obtained by the X-ray-diffraction measurement of Examples 3-5 and the comparative example 2 which uses a sword fish scale as a sample, and the extraction rate of a collagen peptide.

次に、本発明の実施の形態について図を用いて、さらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the drawings.

図1は、X線回折法によって測定した、秋刀魚由来の原料に含まれるヒドロキシアパタイト結晶のc軸に属する回折強度を示すグラフである。図1(a)は、粉砕処理として、カッターミルによる一次粉砕のみをした場合の回折強度のグラフである。図1(b)は、前記一次粉砕に加え、後述のコンバージミルによって20分の微粉砕処理を実行した場合の回折強度のグラフである。図1(c)は、同様に40分の微粉砕処理を実行した場合の回折強度のグラフである。図1(d)は、同様に60分の微粉砕処理を実行した場合の回折強度のグラフである。   FIG. 1 is a graph showing the diffraction intensity belonging to the c-axis of a hydroxyapatite crystal contained in a raw material derived from sword fish, measured by X-ray diffraction. Fig.1 (a) is a graph of the diffraction intensity at the time of performing only the primary grinding | pulverization by a cutter mill as a grinding | pulverization process. FIG. 1 (b) is a graph of diffraction intensity when a fine grinding process of 20 minutes is performed by a convergence mill described later in addition to the primary grinding. FIG.1 (c) is a graph of the diffraction intensity at the time of performing the fine grinding process for 40 minutes similarly. FIG. 1 (d) is a graph of the diffraction intensity when the fine grinding process for 60 minutes is similarly executed.

この図1(a)乃至図1(c)から明らかなように、コンバージミルによる微粉砕処理の実行時間が長くなり、原料に与えられるメカノケミカル効果が高くなるほど、当該結晶のc軸に属するミラー指数(002)における回折強度が、粉砕前の回折強度と比較して低くなることがわかる。   As apparent from FIGS. 1 (a) to 1 (c), the longer the execution time of the fine pulverization process by the convergence mill and the higher the mechanochemical effect given to the raw material, the higher the mirror belonging to the c-axis of the crystal. It can be seen that the diffraction intensity at the index (002) is lower than the diffraction intensity before grinding.

また、図1(c)及び図1(d)から明らかなように、回折強度の減少率は、所定の程度まで達すると、それ以上時間を掛けて微粉砕処理を継続しても、回折強度の減少率はほとんど変化しないということがわかる。   Further, as is clear from FIGS. 1C and 1D, when the reduction rate of the diffraction intensity reaches a predetermined level, the diffraction intensity can be increased even if the pulverization process is continued for a longer time. It can be seen that there is almost no change in the decrease rate.

本実施形態は、これらの実験結果に基づいて、前記c軸に属するミラー指数(002)における回折強度の粉砕前の回折強度を基準とした減少率が、所定範囲に収まるように原料を微粉砕する処理を実行するものである。   In this embodiment, based on the results of these experiments, the raw material is finely pulverized so that the reduction rate based on the diffraction intensity before pulverization in the Miller index (002) belonging to the c-axis is within a predetermined range. The process which performs is performed.

本実施形態における魚由来のコラーゲンペプチドの抽出方法で用いられる魚由来の原料の種類は、特に限定されず、例えば平目、鮭、鱸、鰯、秋刀魚、真鯛などの魚類である。前記知見された傾向は、いずれの魚類であっても同様に示される。また、魚由来の原料であれば、魚皮であってもよいが、魚鱗が比較的魚臭さが少ないことから好ましい。   The type of fish-derived raw material used in the method for extracting a fish-derived collagen peptide in the present embodiment is not particularly limited, and examples thereof include fish such as flat eyes, sea bream, sea bream, sea bream, sword fish, and sea bream. The found tendency is similarly shown in any fish. Moreover, if it is a raw material derived from a fish, a fish skin may be sufficient, but since a fish scale has comparatively little fish odor, it is preferable.

本実施形態の魚由来の原料の微粉砕工程においては、あらかじめ洗浄して不純物を除去した未脱灰の魚由来の原料をカッターミルで90秒程度一次粉砕した後、微粉砕手段によって、X線回折法によって得られたヒドロキシアパタイト結晶のミラー指数(002)における回折強度が粉砕前の回折強度と比較して13.4%〜37.2%減少するように微粉砕する。   In the finely pulverizing process of the fish-derived raw material of the present embodiment, the raw material derived from the undecalcified fish that has been previously cleaned to remove impurities is first ground for about 90 seconds with a cutter mill, and then, X-ray The hydroxyapatite crystal obtained by the diffraction method is finely pulverized so that the diffraction intensity at the Miller index (002) is reduced by 13.4% to 37.2% compared to the diffraction intensity before pulverization.

前記微粉砕手段は、特に限定されないが、複数個の粉砕媒体ボールと粉体とを収納した処理容器の回転により、該粉体を微粒子化する高速粉体反応装置が好ましく用いられ、特に特許第3486682号又は特許第3533526号に開示されているコンバージミルの原理を利用した高速粉体反応装置を用いるのが好ましい。   The fine pulverization means is not particularly limited, but a high-speed powder reactor that finely pulverizes the powder by rotation of a processing container containing a plurality of pulverization medium balls and powder is preferably used. It is preferable to use a high-speed powder reactor utilizing the principle of a convergence mill disclosed in US Pat. No. 3,486,682 or Japanese Patent No. 3533526.

この高速粉体反応装置は、粉砕用容器や粉砕用ボールの衝突による磨耗分の混入を軽減でき、スケールアップも容易であるので、本実施形態の微粉砕手段として好ましい。但し、前記高速粉体反応装置の規模、性能により、前記所定の回折強度の減少率(13.4%〜37.2%)になるのに必要な粉砕処理の実行時間は異なるため、予め実験で当該装置の運転時間と減少率との関係を求めておくことが好ましい。   This high-speed powder reactor is preferable as the fine pulverization means of the present embodiment because it can reduce the amount of wear due to collision of the pulverization container and pulverization balls and can be easily scaled up. However, since the execution time of the pulverization process required to achieve the predetermined reduction rate of diffraction intensity (13.4% to 37.2%) differs depending on the scale and performance of the high-speed powder reactor, an experiment was conducted in advance. Thus, it is preferable to obtain the relationship between the operating time of the apparatus and the reduction rate.

本実施形態のコラーゲンペプチド抽出工程では、前記微粉砕した魚由来の原料からコラーゲンタンパク質を抽出する処理と抽出されたコラーゲンタンパク質をタンパク質分解酵素によってコラーゲンペプチドに加水分解する処理とを一の工程として行う。   In the collagen peptide extraction process of the present embodiment, the process of extracting collagen protein from the finely pulverized fish-derived raw material and the process of hydrolyzing the extracted collagen protein into collagen peptides by proteolytic enzymes are performed as one process. .

まず、前記コラーゲンタンパク質を抽出する処理として、前記微粉砕した魚由来の原料を水中に浸漬する。これにより、魚由来の原料のコラーゲンタンパク質の大半がゼラチン化して水に溶出するので、後述のタンパク質分解酵素による加水分解を行いうる。このコラーゲンタンパク質を短時間でゼラチン化して水に溶出させるためには、水温が30℃以上であることが好ましい。一方で、前記水温が70℃を超えてしまうと、後述のタンパク質を加水分解する酵素が活性を失ってしまうため、60℃以下であることが好ましい。   First, as a process for extracting the collagen protein, the finely pulverized fish-derived raw material is immersed in water. Thereby, most of the collagen protein as a raw material derived from fish is gelatinized and eluted in water, so that it can be hydrolyzed by a proteolytic enzyme described later. In order to gelatinize this collagen protein in a short time and elute it in water, the water temperature is preferably 30 ° C. or higher. On the other hand, since the enzyme which hydrolyzes the below-mentioned protein will lose activity when the said water temperature exceeds 70 degreeC, it is preferable that it is 60 degrees C or less.

次に、前記コラーゲンタンパク質を加水分解する処理は、前記水に溶出したコラーゲンタンパク質をタンパク質分解酵素によって、加水分解することにより行われる。本加水分解処理は、水に可溶化したコラーゲン(ゼラチン)のみならず、上記温度条件で可溶化できないコラーゲンにも作用することができるため、さらにコラーゲンペプチドの回収率を上げることができる。   Next, the treatment for hydrolyzing the collagen protein is performed by hydrolyzing the collagen protein eluted in the water with a proteolytic enzyme. Since the present hydrolysis treatment can act not only on collagen (gelatin) solubilized in water but also on collagen that cannot be solubilized under the above temperature conditions, the recovery rate of collagen peptides can be further increased.

本実施形態に用いられるタンパク質分解酵素は、化学的な脱灰処理なしに、コラーゲンタンパク質を加水分解することができるものであれば特に制限されない。例えば、天野エンザイム株式会社製「プロテアーゼNアマノG(商標)」、「プロレザーFG−F(商標)」やナガセケムテックス株式会社製「デナプシン2P(商標)」など、食品に使用できるものが好ましい。なお、これらの酵素を変性させ活性を失わせることは、沸騰水浴下(95℃)で10分間加熱処理することにより行なうことができる。   The proteolytic enzyme used in the present embodiment is not particularly limited as long as it can hydrolyze collagen protein without chemical decalcification treatment. For example, “Protease N Amano G (trademark)” manufactured by Amano Enzyme Co., Ltd., “Proleather FG-F (trademark)” and “Denapsin 2P (trademark)” manufactured by Nagase ChemteX Corporation are preferable. . In addition, denaturation of these enzymes and loss of activity can be carried out by heat treatment for 10 minutes in a boiling water bath (95 ° C.).

本実施形態の魚由来のコラーゲンペプチドの抽出方法によって得られたコラーゲンペプチドは、公知の手段によって更に濃縮・精製することができる。例えば、濃縮には遠心濃縮や凍結乾燥など、精製には活性炭や合成吸着樹脂などを挙げることができる。なお、活性炭による精製の場合、補助剤(例えば、珪藻土(ダイアトマイト))とともに用いることが好ましい。   The collagen peptide obtained by the method for extracting fish-derived collagen peptide of this embodiment can be further concentrated and purified by known means. For example, the concentration includes centrifugal concentration and lyophilization, and the purification includes activated carbon and synthetic adsorption resin. In the case of purification using activated carbon, it is preferable to use it together with an auxiliary agent (for example, diatomite).

本実施形態の魚由来のコラーゲンペプチドの抽出方法によれば、X線回折法によって魚由来の原料に含まれるヒドロキシアパタイト結晶のミラー指数(002)における回折強度を測定し、微粉砕前の回折強度を基準とした回折強度の減少率を把握することにより、メカノケミカル効果の発生の程度を認識することができる。そして、メカノケミカル効果の発生の程度により、コラーゲンペプチドの回収率が変化することから、工業上効率的にコラーゲンペプチドの回収率が達成できる程度のメカノケミカル効果が発生させるために、必要最小限の前記微粉砕処理をすべき程度を認識することができる。   According to the method for extracting a fish-derived collagen peptide of this embodiment, the diffraction intensity at the Miller index (002) of a hydroxyapatite crystal contained in a fish-derived raw material is measured by an X-ray diffraction method, and the diffraction intensity before pulverization By grasping the reduction rate of the diffraction intensity with reference to the above, the degree of occurrence of the mechanochemical effect can be recognized. Since the recovery rate of the collagen peptide varies depending on the degree of occurrence of the mechanochemical effect, the minimum necessary amount is required to generate a mechanochemical effect that can achieve the recovery rate of the collagen peptide in an industrially efficient manner. The degree to which the pulverization process should be performed can be recognized.

また、メカノケミカル効果が与えられるように微粉砕処理された魚由来の原料は、30℃〜60℃という酵素が活性を失わない温度域でコラーゲンの可溶化及び高抽出化が実現できるため、従来別工程で行なわれていた加熱によるコラーゲンタンパク質抽出処理と酵素による加水分解処理を同時に行なうことができる。   In addition, fish-derived raw materials that have been finely pulverized so as to give a mechanochemical effect can realize solubilization and high extraction of collagen in a temperature range where the enzyme does not lose activity at 30 ° C to 60 ° C. Collagen protein extraction treatment by heating and enzymatic hydrolysis treatment, which have been performed in separate steps, can be performed simultaneously.

しかも、この微粉砕処理によれば、発生する嵩が従来の粉砕処理で発生する嵩と比較して著しく少ないので、前記コラーゲンタンパク質を抽出する処理及び前記加水分解処理に際して、一度により多量の粉砕原料を対象としてコラーゲンの抽出をすることができる。   In addition, according to this fine pulverization process, the volume generated is significantly smaller than the volume generated by the conventional pulverization process. Collagen can be extracted from the target.

この結果、本実施形態の魚由来のコラーゲンペプチドの抽出方法によれば、処理時間の短縮しつつ、コラーゲンペプチドを効率よく高回収率で回収することができる。   As a result, according to the method for extracting a fish-derived collagen peptide of the present embodiment, the collagen peptide can be efficiently recovered at a high recovery rate while shortening the processing time.

[鰯を原料とした実験例]
<実施例1>
(鱗の採取、洗浄、脱脂、乾燥)
鮮度低下を防ぐため−35度で凍結保存しておいた鰯の鱗に対し、水道水で十分洗浄処理を施した。この洗浄済みの鱗にアセトンを添加し脱脂処理を行ない、これを数回繰り返した。さらに、この鰯の鱗をドラフト内で自然乾燥後、シリカゲル入りのデシケーター内で2〜3日間乾燥させ、洗浄乾燥鱗を得た。
[Experimental example using rice cake]
<Example 1>
(Scale collection, washing, degreasing, drying)
In order to prevent a decrease in freshness, the scales of the salmon frozen and stored at -35 degrees were sufficiently washed with tap water. Acetone was added to the washed scales for degreasing, and this was repeated several times. Further, the scales of the straw were naturally dried in a fume hood and then dried in a desiccator containing silica gel for 2 to 3 days to obtain washed dry scales.

(鱗の一次粉砕)
前記洗浄乾燥鱗を、室温20〜25℃でPower grinder(カッターミル、Master社製)を回転数30000rpmで90秒の粉砕処理を行った。
(Primary crush of scales)
The washed dry scales were pulverized for 90 seconds at a rotational speed of 30000 rpm with a power grinder (Cutter Mill, manufactured by Master) at a room temperature of 20 to 25 ° C.

(鱗の二次粉砕)
前記粗粉砕鱗を、特許第3486682号及び特許第3533526号に記載されたコンバージミルの原理を利用した高速粉体反応装置(株式会社真壁技研社製)を用いて微粉砕した。具体的には、上記高速粉体反応装置のジルコニア製粉砕容器(1000ml)に、原料粉として粗粉砕鱗30gと、媒体ボールとして直径10mmのジルコニアボール271g(80ml)とを投入し、空気雰囲気下、回転数700rpmにて60分の粉砕処理を行った。
(Secondary crushing of scales)
The coarsely pulverized scales were finely pulverized using a high-speed powder reactor (manufactured by Makabe Giken Co., Ltd.) using the principle of a convergence mill described in Japanese Patent No. 3486682 and Japanese Patent No. 3533526. Specifically, 30 g of coarsely pulverized scales as raw material powder and 271 g (80 ml) of zirconia balls having a diameter of 10 mm as medium balls are put into a zirconia pulverization vessel (1000 ml) of the above high-speed powder reactor, The pulverization process was performed for 60 minutes at a rotation speed of 700 rpm.

これにより、得られた微粉砕鱗の平均粒子径は36μmであった。また、X線回折法によるヒドロキシアパタイト結晶のミラー指数(002)に帰属する回折強度は、粉砕前の回折強度と比較すると35.8%減少した。   Thereby, the average particle size of the finely pulverized scales obtained was 36 μm. Further, the diffraction intensity attributed to the Miller index (002) of the hydroxyapatite crystal by X-ray diffraction method was reduced by 35.8% compared with the diffraction intensity before pulverization.

(抽出・加水分解)
上記の微粉砕鱗を0.1g秤量し、これに蒸留水10mlと14mg/mlに調製したプロテアーゼ(天野エンザイム(株)製プロレザー(商標)FG−F)を0.1ml加え、酵素製剤終濃度約140μg/mlとし、当該液体を60℃に保ち、60分攪拌混合して加水分解した。
(Extraction / hydrolysis)
0.1 g of the above finely pulverized scale was weighed, and 0.1 ml of protease (Amino Enzyme Co., Ltd. Pro Leather (trademark) FG-F) was added to 10 ml of distilled water and 14 mg / ml. The concentration was about 140 μg / ml, and the liquid was kept at 60 ° C. and stirred and mixed for 60 minutes for hydrolysis.

(固液分離)
加水分解後の懸濁液を12000×g、20分の条件で遠心分離を行ない、コラーゲンペプチドを含む上清液を回収した。
(Solid-liquid separation)
The suspension after hydrolysis was centrifuged at 12000 × g for 20 minutes, and a supernatant containing collagen peptide was collected.

(酵素の変性)
沸騰水浴下で10分間加熱することで酵素の失活・変性処理を行なった。
(Enzyme denaturation)
The enzyme was inactivated / denatured by heating for 10 minutes in a boiling water bath.

(変性酵素の除去)
固液分離と同条件で遠心分離を行ない、変性酵素を除去し上清液(コラーゲンペプチド)を得た。
(Removal of denaturing enzyme)
Centrifugation was performed under the same conditions as in solid-liquid separation, the denatured enzyme was removed, and a supernatant (collagen peptide) was obtained.

上記溶液のコラーゲンペプチド濃度はウシ血清アルブミンを標準タンパク質とするLowry法(非特許文献:Lowryら (1951) J. Biol. Chem. 192巻, p263−275)により定量することで求めた。得られた濃度に酵素の変性処理後の液量を乗じてコラーゲンペプチド量を算出した。なお、上記固液分離操作前に酵素の変性処理を施せば、固液分離の際ヒドロキシアパタイトと変性酵素の除去を同時に行なうことができるが、本実施例では抽出・加水分解工程で得られるコラーゲンペプチド量を純粋に評価するため、上記手順に従って処理を行なった。   The collagen peptide concentration of the above solution was determined by quantification by the Lowry method using bovine serum albumin as a standard protein (non-patent document: Lowry et al. (1951) J. Biol. Chem. 192, p263-275). The amount of collagen peptide was calculated by multiplying the obtained concentration by the amount of the solution after the enzyme denaturation treatment. If the enzyme is subjected to a denaturation treatment before the solid-liquid separation operation, hydroxyapatite and the denatured enzyme can be removed simultaneously during the solid-liquid separation. In this embodiment, collagen obtained by the extraction / hydrolysis step is used. In order to purely evaluate the amount of peptide, the treatment was performed according to the above procedure.

(X線回折強度の測定)
X線回折強度の測定に用いた魚鱗粉末試料は、タンパク質が共存すると回折強度のベースラインが大きく乱れるため、これを回避するため十分に除タンパクされたものを使用した。具体的には、魚鱗粉末試料に対して、特開2004‐57196の実施例1と同様の操作を施し、得られる残渣(ヒドロキシアパタイト)を洗浄・乾燥して測定用試料を得た。X線回折強度の測定には日本電子株式会社製のJDX−3530を用い、X線源:Cu/Kα線、管電圧:30kV、管電流:30mA、測定範囲:2θ=70°まで、X線のスキャンスピード:0.04°×0.5secの条件で測定した。
(Measurement of X-ray diffraction intensity)
The fish scale powder sample used for the measurement of the X-ray diffraction intensity was sufficiently deproteinized to avoid this because the baseline of the diffraction intensity was greatly disturbed when the protein coexists. Specifically, the fish scale powder sample was subjected to the same operation as in Example 1 of JP-A-2004-57196, and the resulting residue (hydroxyapatite) was washed and dried to obtain a measurement sample. JDX-3530 manufactured by JEOL Ltd. was used for the measurement of X-ray diffraction intensity. X-ray source: Cu / Kα ray, tube voltage: 30 kV, tube current: 30 mA, measurement range: 2θ = 70 °, X-ray The scan speed was measured under the condition of 0.04 ° × 0.5 sec.

(コラーゲンペプチドの回収率)
ヒドロキシアパタイト結晶のミラー指数(002)における粉砕前の回折強度からの回折強度の減少率とコラーゲンペプチドの回収率の結果は、図2(a)に示された表1の実施例1の欄に示した。なお、実施例1におけるコラーゲンペプチドの回収率は、97.8%であった。
(Collagen peptide recovery rate)
The results of the reduction rate of the diffraction intensity from the diffraction intensity before grinding and the recovery rate of the collagen peptide in the Miller index (002) of the hydroxyapatite crystal are shown in the column of Example 1 of Table 1 shown in FIG. 2 (a). Indicated. The recovery rate of collagen peptide in Example 1 was 97.8%.

なお、前記コラーゲンペプチドの回収率は、単位質量あたりの魚鱗から回収可能なコラーゲンペプチドの最大値が、回収率100%として定義される。この最大値は実験により定められる。たとえば、コンバージミルで魚鱗を粉砕処理する継続時間を延ばしても、回収率が向上しなくなったときの値が当該最大値として定められる。なお、コラーゲンペプチドの回収率が向上しなくなった状態では、ミラー指数(002)の回折強度の減少率も40%以上には向上しなくなった。このことから、回折強度の減少率は40%が上限であり、減少率が40%に到達すれば、コラーゲンペプチドの回収率は100%となることが推測される。   The collagen peptide recovery rate is defined as the maximum recovery rate of collagen peptide that can be recovered from fish scales per unit mass as 100% recovery rate. This maximum value is determined by experiment. For example, even when the duration of pulverizing fish scales with a convergence mill is extended, the value when the recovery rate is not improved is determined as the maximum value. In the state where the recovery rate of the collagen peptide was not improved, the reduction rate of the diffraction intensity of the Miller index (002) was not improved to 40% or more. From this, the reduction rate of the diffraction intensity has an upper limit of 40%, and if the reduction rate reaches 40%, it is estimated that the recovery rate of the collagen peptide becomes 100%.

<実施例2>
二次粉砕の時間を180分に変更した以外は、実施例1と同様の操作を行った。
<Example 2>
The same operation as in Example 1 was performed except that the secondary pulverization time was changed to 180 minutes.

ヒドロキシアパタイト結晶のミラー指数(002)における粉砕前の回折強度からの回折強度の減少率とコラーゲンペプチドの回収率の結果は、図2(a)に示された表1の実施例2の欄に示した。なお、実施例2におけるコラーゲンペプチドの回収率は、99.8%であった。   The results of the reduction rate of the diffraction intensity from the diffraction intensity before grinding and the recovery rate of the collagen peptide in the Miller index (002) of the hydroxyapatite crystal are shown in the column of Example 2 of Table 1 shown in FIG. Indicated. In addition, the recovery rate of the collagen peptide in Example 2 was 99.8%.

<比較例1>
二次粉砕を行わなかった以外は、実施例1と同様の操作を行った。
<Comparative Example 1>
The same operation as in Example 1 was performed except that secondary pulverization was not performed.

ヒドロキシアパタイト結晶のミラー指数(002)における粉砕前の回折強度からの回折強度の減少率とコラーゲンペプチドの回収率の結果は、図2(a)に示された表1の比較例1欄に示した。なお、比較例1におけるコラーゲンペプチドの回収率は、60.3%であった。   The results of the reduction rate of the diffraction intensity from the diffraction intensity before pulverization and the recovery rate of collagen peptide in the Miller index (002) of the hydroxyapatite crystal are shown in Comparative Example 1 column of Table 1 shown in FIG. It was. The recovery rate of collagen peptide in Comparative Example 1 was 60.3%.

<考察>
鰯の魚鱗を試料に用いた実施例1、2及び比較例1のヒドロキシアパタイト結晶のミラー指数(002)における回折強度の減少率とコラーゲンペプチドの回収率の関係を図2(b)に示した。なお、回折強度の減少率は、比較例1の回折強度を基準として各実験例の回折強度の減少の割合を算出することによって求めた。
<Discussion>
FIG. 2B shows the relationship between the reduction rate of the diffraction intensity and the recovery rate of the collagen peptide in the Miller index (002) of the hydroxyapatite crystals of Examples 1 and 2 and Comparative Example 1 using salmon fish scales as samples. . Note that the reduction rate of the diffraction intensity was obtained by calculating the reduction rate of the diffraction intensity of each experimental example based on the diffraction intensity of Comparative Example 1.

図2(b)によれば、鰯を原料とした実験より求めた前記回折強度の減少率とコラーゲンペプチドの回収率との近似曲線として、近似式(1)が算出される。   According to FIG. 2 (b), the approximate expression (1) is calculated as an approximate curve between the reduction rate of the diffraction intensity and the recovery rate of the collagen peptide obtained from experiments using straw as a raw material.

上述のとおり、本来、工業上の要請としてコラーゲンペプチドの回収率は75%以上必要とされている。そのため、当該近似式(1)に基づいて計算すると、前記回折強度の減少率が3.82%以上であれば、コラーゲンペプチドの回収率は75%を超えることがわかる。   As described above, the recovery rate of collagen peptides is originally required as 75% or more as an industrial requirement. Therefore, when calculating based on the approximate expression (1), it can be seen that the recovery rate of collagen peptide exceeds 75% when the decrease rate of the diffraction intensity is 3.82% or more.

また、コラーゲンペプチドの回収率はほぼ100%(95%〜98%)に到達する程度に微粉砕する処理を実行すれば十分であり、それ以上に回収率を上昇させるために処理工程を追加又は継続して実行することは、却って工業上の作業効率の点から好ましくない。   In addition, it is sufficient to perform a pulverization process so that the recovery rate of the collagen peptide reaches almost 100% (95% to 98%), and a processing step is added to increase the recovery rate. Continued execution is not preferable from the viewpoint of industrial work efficiency.

そのため、当該式(1)に基づいて計算すると、前記回折強度の減少率が13.7%以下であれば、コラーゲンペプチドの回収率を95%以内に調整でき、工業上の作業効率の観点から好ましくない余分な微粉砕処理を回避しうることがわかる。なお、前記回折強度の減少率が13.7%であるときのコラーゲンペプチドの回収率の比率の増加の割合、すなわち、前記回折強度の減少率が13.7%であるときの近似式(1)の接線の傾きは、0.81であることがわかる。   Therefore, when calculated based on the formula (1), if the reduction rate of the diffraction intensity is 13.7% or less, the recovery rate of the collagen peptide can be adjusted to within 95%, from the viewpoint of industrial work efficiency. It can be seen that undesired extra pulverization can be avoided. It should be noted that the rate of increase in the recovery rate of the collagen peptide when the decrease rate of the diffraction intensity is 13.7%, that is, the approximate expression (1) when the decrease rate of the diffraction intensity is 13.7% It can be seen that the inclination of the tangent line is 0.81.

[秋刀魚を原料とした実験例]
<実施例3>
試料を鰯の鱗から秋刀魚の魚鱗に変更した。また、二次粉砕としてコンバージミルを用いて20分間微粉砕した。それ以外の操作は実施例1と同様に行った。
[Experimental example using sword fish]
<Example 3>
The sample was changed from salmon scales to sword fish scales. Moreover, it pulverized for 20 minutes using a convergence mill as secondary pulverization. Other operations were performed in the same manner as in Example 1.

ヒドロキシアパタイト結晶のミラー指数(002)における粉砕前の回折強度からの回折強度の減少率とコラーゲンペプチドの回収率の結果は、図3(a)に示された表2の実施例3の欄に示した。なお、実施例3におけるコラーゲンペプチドの回収率は、80.3%であった。   The results of the reduction rate of the diffraction intensity from the diffraction intensity before grinding in the Miller index (002) of the hydroxyapatite crystal and the recovery rate of the collagen peptide are shown in the column of Example 3 of Table 2 shown in FIG. Indicated. The recovery rate of collagen peptide in Example 3 was 80.3%.

<実施例4>
二次粉砕の時間を40分とした以外は、実施例3と同様の操作を行った。
<Example 4>
The same operation as in Example 3 was performed except that the time for secondary pulverization was 40 minutes.

ヒドロキシアパタイト結晶のミラー指数(002)における粉砕前の回折強度からの回折強度の減少率とコラーゲンペプチドの回収率の結果は、図3(a)に示された表2の実施例4の欄に示した。なお、実施例4におけるコラーゲンペプチドの回収率は、92.9%であった。   The results of the reduction rate of the diffraction intensity from the diffraction intensity before grinding in the Miller index (002) of the hydroxyapatite crystal and the recovery rate of the collagen peptide are shown in the column of Example 4 of Table 2 shown in FIG. Indicated. In addition, the recovery rate of the collagen peptide in Example 4 was 92.9%.

<実施例5>
二次粉砕の時間を60分とした以外は、実施例6と同様の操作を行った。
<Example 5>
The same operation as in Example 6 was performed except that the time for secondary pulverization was 60 minutes.

ヒドロキシアパタイト結晶のミラー指数(002)における粉砕前の回折強度からの回折強度の減少率とコラーゲンペプチドの回収率の結果は、図3(a)に示された表2の実施例5の欄に示した。なお、実施例5におけるコラーゲンペプチドの回収率は、99.9%であった。   The results of the reduction rate of the diffraction intensity from the diffraction intensity before grinding in the Miller index (002) of the hydroxyapatite crystal and the recovery rate of the collagen peptide are shown in the column of Example 5 of Table 2 shown in FIG. Indicated. In addition, the recovery rate of the collagen peptide in Example 5 was 99.9%.

<比較例2>
二次粉砕を行わなかった以外は、実施例3と同様の操作を行った。
<Comparative Example 2>
The same operation as in Example 3 was performed except that secondary pulverization was not performed.

ヒドロキシアパタイト結晶のミラー指数(002)における粉砕前の回折強度からの回折強度の減少率とコラーゲンペプチドの回収率の結果は、図3(a)に示された表2の比較例2欄に示した。なお、比較例2におけるコラーゲンペプチドの回収率は、37.9%であった。   The results of the reduction rate of the diffraction intensity from the diffraction intensity before grinding and the recovery rate of the collagen peptide in the Miller index (002) of the hydroxyapatite crystal are shown in Comparative Example 2 column of Table 2 shown in FIG. 3 (a). It was. The recovery rate of collagen peptide in Comparative Example 2 was 37.9%.

<考察>
秋刀魚の魚鱗を試料に用いた実施例3〜5及び比較例2のヒドロキシアパタイト結晶のミラー指数(002)における回折強度の減少率とコラーゲンペプチドの回収率の関係を図3(b)に示した。なお、回折強度の減少率は、比較例2の回折強度を基準として各実験例の回折強度の減少の割合を算出することによって求めた。
<Discussion>
FIG. 3 (b) shows the relationship between the reduction rate of the diffraction intensity and the recovery rate of the collagen peptide in the Miller index (002) of the hydroxyapatite crystals of Examples 3 to 5 and Comparative Example 2 using the fish scales of sword fish as a sample. . The reduction rate of the diffraction intensity was obtained by calculating the rate of decrease in the diffraction intensity of each experimental example on the basis of the diffraction intensity of Comparative Example 2.

図3(b)によれば、秋刀魚を原料とした実験より求めた前記回折強度の減少率とコラーゲンペプチドの回収率との近似曲線として、近似式(2)が算出される。   According to FIG. 3 (b), the approximate expression (2) is calculated as an approximate curve between the reduction rate of the diffraction intensity and the recovery rate of the collagen peptide obtained from an experiment using Akito fish.

そして、同様に近似式(2)に基づいて計算すると、前記回折強度の減少率が13.4%以上であれば、コラーゲンペプチドの回収率は75%を超えることがわかる。   Similarly, when calculated based on the approximate expression (2), it can be seen that when the reduction rate of the diffraction intensity is 13.4% or more, the recovery rate of the collagen peptide exceeds 75%.

また、当該式(2)に基づいて計算すると、前記回折強度の減少率が37.2%以下であれば、コラーゲンペプチドの回収率を95%以内に調整できることがわかる。なお、前記回折強度の減少率が37.2%であるときのコラーゲンペプチドの回収率の比率の増加の割合、すなわち、前記回折強度の減少率が37.2%であるときの近似式(2)の接線の傾きは、0.34であることがわかる。   Moreover, if it calculates based on the said Formula (2), if the decreasing rate of the said diffraction intensity is 37.2% or less, it turns out that the collection | recovery rate of a collagen peptide can be adjusted within 95%. It should be noted that the rate of increase in the collagen peptide recovery rate when the reduction rate of the diffraction intensity is 37.2%, that is, the approximate expression (2) when the reduction rate of the diffraction intensity is 37.2%. It can be seen that the slope of the tangent line of) is 0.34.

<結果>
図2(b)及び図3(b)によれば、一次粉砕後の魚鱗にメカノケミカル効果を付与できる粉砕機により二次粉砕すると、鰯及び秋刀魚の両魚鱗とも粉砕処理時間の経過とともにヒドロキシアパタイト結晶のミラー指数(002)における回折強度の減少率が増加することがわかる。
<Result>
According to FIG. 2 (b) and FIG. 3 (b), when secondary pulverization is performed by a pulverizer capable of imparting a mechanochemical effect to the fish scales after primary pulverization, both the fish scales of salmon and sword fish are hydroxyapatite over time. It can be seen that the decreasing rate of the diffraction intensity in the Miller index (002) of the crystal increases.

また、図2(b)及び図3(b)によれば、回折強度の減少率は、所定の程度まで達すると、それ以上時間を掛けて微粉砕処理を継続しても、回折強度の減少率はほとんど変化しないということがわかる。   Further, according to FIGS. 2B and 3B, when the reduction rate of the diffraction intensity reaches a predetermined level, the diffraction intensity decreases even if the pulverization process is continued for a longer time. It can be seen that the rate hardly changes.

この結果、前記回折強度の減少率が所定範囲(例えば鰯であれば、3.82%〜13.7%、例えば秋刀魚であれば、13.4%〜37.2%)に収まるように微粉砕処理を実行する魚由来のコラーゲンペプチドの抽出方法によれば、処理時間の短縮しつつ、コラーゲンペプチドを効率よく高回収率で回収することができることが明らかとなった。   As a result, the reduction rate of the diffraction intensity is so small that it falls within a predetermined range (e.g., 3.82% to 13.7% in the case of a salmon, 13.4% to 37.2% in the case of an autumn sword fish). It has been clarified that according to the method for extracting a collagen peptide derived from fish that performs pulverization, the collagen peptide can be efficiently recovered at a high recovery rate while shortening the processing time.

Claims (2)

魚由来の原料をX線回折法において得られるヒドロキシアパタイト結晶のミラー指数(002)の回折強度が粉砕前を基準とした減少率が所定範囲に収まるように微粉砕する原料微粉砕工程と、30℃〜70℃の温度の水中において前記微粉砕した魚由来の原料からコラーゲンタンパク質を抽出する処理と抽出されたコラーゲンタンパク質をタンパク質分解酵素によってコラーゲンペプチドに加水分解する処理とを一の工程として行うコラーゲンペプチド抽出工程を有し、
前記所定範囲の下限値は、コラーゲンペプチドの回収率を75%以上にする観点から定められ、前記所定範囲の上限値は、前記回折強度の減少率に対するコラーゲンペプチドの回収率の比率の増加を0.34以上に維持する観点から定められていることを特徴とする魚由来のコラーゲンペプチドの抽出方法。
A raw material pulverizing step for finely pulverizing a fish-derived raw material so that the reduction rate of the Miller index (002) of the hydroxyapatite crystal obtained in the X-ray diffraction method is within a predetermined range with respect to that before pulverization; Collagen that performs a process of extracting collagen protein from the finely pulverized fish-derived raw material and a process of hydrolyzing the extracted collagen protein into a collagen peptide by a proteolytic enzyme in water at a temperature of from 0C to 70C. Having a peptide extraction step;
The lower limit value of the predetermined range is determined from the viewpoint of making the recovery rate of collagen peptide 75% or more, and the upper limit value of the predetermined range is an increase in the ratio of the recovery rate of collagen peptide to the decrease rate of the diffraction intensity. A method for extracting a collagen peptide derived from fish, characterized in that it is determined from the viewpoint of maintaining a value of 34 or more.
前記所定の割合は13.4%〜37.2%であることを特徴とする請求項1記載の魚由来のコラーゲンペプチドの抽出方法。

2. The method for extracting a fish-derived collagen peptide according to claim 1, wherein the predetermined ratio is 13.4% to 37.2%.

JP2009266427A 2009-11-24 2009-11-24 Extraction method of collagen peptide derived from fish Expired - Fee Related JP5649025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009266427A JP5649025B2 (en) 2009-11-24 2009-11-24 Extraction method of collagen peptide derived from fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266427A JP5649025B2 (en) 2009-11-24 2009-11-24 Extraction method of collagen peptide derived from fish

Publications (2)

Publication Number Publication Date
JP2011109927A true JP2011109927A (en) 2011-06-09
JP5649025B2 JP5649025B2 (en) 2015-01-07

Family

ID=44232759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266427A Expired - Fee Related JP5649025B2 (en) 2009-11-24 2009-11-24 Extraction method of collagen peptide derived from fish

Country Status (1)

Country Link
JP (1) JP5649025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907471A (en) * 2022-04-21 2022-08-16 自然资源部第三海洋研究所 Large-scale treatment method for fish leftover slurry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057196A (en) * 2002-06-07 2004-02-26 Chisso Corp Method for producing scale-originated collagen peptide and calcium apatite
JP2006151847A (en) * 2004-11-26 2006-06-15 Nitta Gelatin Inc Collagen peptide composition, method for producing the same and cosmetic composition
JP2008212025A (en) * 2007-03-01 2008-09-18 Yaizu Suisankagaku Industry Co Ltd Method for producing chitin decomposition product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057196A (en) * 2002-06-07 2004-02-26 Chisso Corp Method for producing scale-originated collagen peptide and calcium apatite
JP2006151847A (en) * 2004-11-26 2006-06-15 Nitta Gelatin Inc Collagen peptide composition, method for producing the same and cosmetic composition
JP2008212025A (en) * 2007-03-01 2008-09-18 Yaizu Suisankagaku Industry Co Ltd Method for producing chitin decomposition product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907471A (en) * 2022-04-21 2022-08-16 自然资源部第三海洋研究所 Large-scale treatment method for fish leftover slurry
CN114907471B (en) * 2022-04-21 2023-12-22 自然资源部第三海洋研究所 Fish offal slurry large-scale treatment method

Also Published As

Publication number Publication date
JP5649025B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP2012501675A5 (en)
CN102170795B (en) Process for reducing the fluoride content when producing proteinaceous concentrates from krill
JPH0331414B2 (en)
JPH03123479A (en) Preparation of protein-rich substance, fibrous substance and/or vegetable oil from beer cake
CN1202751C (en) Seacucumbus whole powder food and its preparation method
CN1903918A (en) Method of extracting collagen and method of using collagen to prepare collagen protein
JP5734101B2 (en) Oyster extract manufacturing method and oyster extract
JP6457652B2 (en) Method for producing collagen degrading enzyme and method for producing collagen tripeptide using the same
CN112410392A (en) Extraction method and application of type I collagen
JP3696018B2 (en) Extracting Jellyfish Collagen
JP4400039B2 (en) Method for producing fish scale-derived collagen peptide and calcium apatite
JP5649025B2 (en) Extraction method of collagen peptide derived from fish
KR101541007B1 (en) Process for the preparation of fermentation broth for degrading proteins
JP5717239B2 (en) Extraction method of water-soluble protein derived from shell or pearl
JP6373444B1 (en) Amnion-derived raw material manufacturing method, cosmetic manufacturing method, and health food manufacturing method
JP7107502B2 (en) Method for producing chitin oligomer, N-acetylglucosamine and 1-O-alkyl-N-acetylglucosamine
JP2008220208A (en) Method for producing low-molecular collagen
JP6105871B2 (en) Method for producing sulfur-containing cysteine compound
JP2010239919A (en) Method for producing elastin-originated peptide, and elastin-originated peptide
JP2011162469A (en) Skin keratinization promoter
JP5263870B2 (en) Method for producing collagen peptide
JP2009284798A (en) Method for producing dipeptidyl peptidase iv inhibitor
JPS6078548A (en) Separation of fish oil, fish bone and fish protein from fish body, etc.
JP2004059568A (en) Method for producing gelatine and calcium apatite derived from fish scale
KR102085775B1 (en) Method for separating and purifying DHA from tuna bark

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5649025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees