JP2004059568A - Method for producing gelatine and calcium apatite derived from fish scale - Google Patents

Method for producing gelatine and calcium apatite derived from fish scale Download PDF

Info

Publication number
JP2004059568A
JP2004059568A JP2002364143A JP2002364143A JP2004059568A JP 2004059568 A JP2004059568 A JP 2004059568A JP 2002364143 A JP2002364143 A JP 2002364143A JP 2002364143 A JP2002364143 A JP 2002364143A JP 2004059568 A JP2004059568 A JP 2004059568A
Authority
JP
Japan
Prior art keywords
gelatin
scale
calcium apatite
fish
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002364143A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kurokawa
黒川 泰弘
Katsutoshi Ogawa
小川 勝利
Ippei Tanaka
田中 一平
Eriko Kawashima
川島 恵利子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2002364143A priority Critical patent/JP2004059568A/en
Publication of JP2004059568A publication Critical patent/JP2004059568A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/924Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high quality gelatine and calcium apatite derived from fish scales in a simple process not requiring an acid resistant material and capable of being performed by a usual device at a low cost. <P>SOLUTION: This method of producing the gelatine is provided by washing the raw material fish scales as necessary, drying, dry- or wet-crushing mechanically, then immersing in water at <100°C temperature without performing delime treatment and extracting the gelatine in the fish scales, and the method for producing calcium apatite by using residue after producing the gelatine. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は魚鱗からゼラチン及びカルシウムアパタイトを製造する方法に関する。詳しくは、工程が簡単で耐酸仕様の材質を必要とせず一般的な装置で実施可能な、低廉なコストで魚鱗由来の高品質ゼラチン及びカルシウムアパタイトを製造する方法に関する。
【0002】
【従来の技術】
従来、動物骨や魚骨を原料とするゼラチンの工業的な製造方法としては、原料を粉砕し化学的に脱脂処理し、脱灰処理(カルシウム成分を化学的に除去処理することをいう)した後、アルカリで前処理し、次いで水でゼラチンを抽出する方法が知られている。また、高温の水蒸気で加圧(オートクレーブ)下で抽出処理する方法も知られている。これらの方法は、設備に耐腐食性や耐圧性が求められる上、高温加圧水処理の場合には、熱分解によってゼラチンが着色し、不純物も多く、ゼリー強度等の物理特性も低いという問題がある。
魚皮や魚骨を原料とし、原料中の鱗や魚肉等をゼラチンを分解しないプロテアーゼで除去した後、脱脂処理および温水抽出してゼラチンを抽出し、更に抽出ゼラチンをリパーゼ処理する方法(例えば、特許文献1参照)も提案されているが工程が複雑である。尚、魚鱗よりカルシウムアパタイトを得る方法は、魚鱗を焼成して有機物を除き粉砕する方法及び魚鱗を酸で溶解して不溶解成分であるコラーゲンを除き、酸溶解液にアルカリ物質を添加して再沈殿させる方法が知られている(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開平10−276680号公報
【特許文献2】
特開平8−104508号公報
【0004】
【発明が解決しようとする課題】
本発明の課題は、工程が簡単で耐酸仕様の材質を必要とせず一般的な装置で実施可能な、低廉なコストで魚鱗由来の高品質ゼラチン及びカルシウムアパタイトを製造する方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者等は、上記の課題を解決するため鋭意研究した。その結果、魚鱗原料を必要に応じて洗浄し、乾燥し、機械的に乾式または湿式粉砕した後、脱灰処理することなく100℃未満の温度の水に浸漬して、魚鱗中のゼラチンを抽出するゼラチンの製造方法、及びゼラチン製造後の魚鱗残さを用いるカルシウムアパタイトの製造方法によって課題が解決されることを知り、この知見に基づいて本発明を完成した。
【0006】
本発明は以下によって構成される。
(1)魚鱗を脱灰処理することなく100℃未満の温度の水に浸漬して、魚鱗中のゼラチンを抽出することを特徴とするゼラチンの製造方法。
【0007】
(2)魚鱗が、ゼラチンを抽出する前に機械的に乾式または湿式粉砕されることを特徴とする(1)項記載のゼラチンの製造方法。
【0008】
(3)魚鱗の機械的な粉砕が、30℃以下の温度で行われることを特徴とする(2)項記載のゼラチンの製造方法。
【0009】
(4)(1)〜(3)項のいずれか1項記載の製造方法によるゼラチンの製造で生じる魚鱗残さを用いることを特徴とするカルシウムアパタイトの製造方法。
【0010】
【発明の実施の形態】
本発明は、必要に応じて機械的に乾式または湿式粉砕した魚鱗を、化学的な脱灰処理(カルシウム成分を化学的に除去処理することをいう)なしに水に浸漬し、水抽出により魚鱗からゼラチンを製造する方法である。更に本発明は、ゼラチンを抽出した後の魚鱗から粗製カルシウムアパタイトを製造する方法である。粗製カルシウムアパタイトは精製することによって高純度カルシウムアパタイトとすることが可能である。
本発明の方法で製造されるゼラチンは食品、医用カプセル等に好適に利用できる他にコラーゲンペプチドの原料として用いることができる。また、カルシウムアパタイトは食品、健康食品、歯磨き粉、触媒担体として利用できる。
尚、本発明で粗製カルシウムアパタイトとは、カルシウムアパタイトを主成分とし有機化合物を少量含む未精製の混合物をいう。主成分とは、混合物中に占めるカルシウムアパタイトの量が最も多いことを意味する。また、高純度カルシウムアパタイトとは、粗製カルシウムアパタイトを精製したものをいう。
【0011】
本発明で用いる魚鱗を得るための魚種は特に限定されない。水産加工場の選別ラインよりロータリースクリーン等で現在も鱗が回収されている鰯や秋刀魚や、水産加工場でフィーレや切り身加工の際にジェット水流で鱗を剥ぐ真鯛等を例示することができる。この他にもスケソウ鱈、エソ、鮭、ニシン、鯉、テラピア等の鱗も使用することができる。本発明で用いられる魚鱗はその鮮度及び純度ができるだけ高いものが好ましい。青魚である秋刀魚や鰯の水産加工場より回収された魚鱗中には魚体や魚肉、巻き網漁で混在した鰭、海藻、その他の夾雑物が含まれる場合が多く、回収後直ちに、これらの夾雑物を水洗等により除くことが好ましい。魚肉の自己消化や鱗粉により発生した有臭物質付着や着色が鱗に生じると、得られるゼラチン及びカルシウムアパタイトの品質が損なわれる恐れがある。高純度のゼラチン及び粗製カルシウムアパタイトを得るためには、かかる魚肉や鰭、海藻等の夾雑物は、できるだけ少ないことが好ましい。
【0012】
本発明では、魚鱗を粉砕せずにゼラチンの製造に用いることができる。しかし、ゼラチンの回収率を高めるため、予め洗浄して夾雑物を除いた後の洗浄鱗を、機械的に乾式または湿式粉砕することが好ましい。粉砕方法は、水分を含んだままの魚鱗を粉砕する湿式粉砕、魚鱗を乾燥させた後に粉砕する乾式粉砕の何れであってもよい。
魚鱗の粉砕に用いる粉砕機の種類は特に限定されない。例えば、中速回転運動機構を備えた衝撃やせん断で粉砕するタイプの粉砕機、及び高速回転運動機構を備えた衝撃にて粉砕するタイプの粉砕機が好ましい。具体的には、セイシン企業社製インペラーミル及び中央化工機社製振動ミルが好適に使用できる。魚鱗の湿式粉砕には、振動ミルやボールミル等が好適に使用できる。粉砕時の温度は、魚鱗の鮮度低下を避けるため100℃未満が好ましく、30℃以下がより好ましい。粉砕時の温度上昇を抑える目的で液体窒素等にて鱗を冷凍状態にして粉砕することも可能であり、冷凍状態であれば、中高速回転運動機構以外の往復、旋回、低速回転、ロール、自公転、容器回転、容器振動、ジェット噴射等の運動機構を備えた粉砕機機種も使用可能となる。乾式または湿式粉砕された魚鱗は、一般に綿状乃至粉末状の形状となる。
【0013】
本発明の方法においては、魚鱗を脱灰処理することなく100℃未満、好ましくは55℃以上100℃未満、より好ましくは65℃以上100℃未満、の温度の水に浸漬することによって、魚鱗中のゼラチンが抽出される。抽出水の温度が100℃未満であるため、製造設備が簡単で低コストであり、実施が容易である。
水抽出に用いられる水は、飲料水、工業用水、蒸留水、イオン交換水等特に限定はされないが、酸またはEDTAのようなカルシウムと反応して溶解させる物質を含まないことが好ましい。
【0014】
本発明の方法は、脱灰処理に用いる酸の使用がないため、従来法に比べ工程が短く、得られるゼラチンの脱塩処理が不要であり、コストを低くすることができる。また、脱灰処理に伴うゼラチンのロスがないため、これらの回収率が高くなり効率的である。
尚、得られるゼラチンを、必要に応じて公知の方法により脱色、脱臭して精製することもできる。
【0015】
本発明によって製造されるカルシウムアパタイトは、非晶性及び/または結晶性カルシウムアパタイト(カルシウム欠損の炭酸型を含む)、非晶性及び/または結晶性第三燐酸カルシウム、その他燐酸カルシウム化合物の混合物である。これら化合物の含有比率は魚種、漁期及び抽出分離後の精製法により異なる。
本発明によって製造されるカルシウムアパタイトの粉末は、ポーラスで比表面積が大きく、重金属捕捉能力が高い。また生体適合性に優れるので歯科用充填材等の医学的な用途に適している。カルシウム補強の食品や健康食品としても最適である。
【0016】
粗製カルシウムアパタイトを精製して高純度カルシウムアパタイトを製造する方法としては、空気中で600℃以上の温度で焼成して、少量含まれる有機物を熱分解除去する方法、または酸溶解後に不溶解成分をろ過等の手段で分離した溶解液にアルカリ物質を添加して高純度カルシウムアパタイトを再沈殿させる方法が好ましい。また、アルカリにて残存せる蛋白質を溶解除去する方法も好ましい。酸を用いる処理の場合は、カルシウム等と反応して不溶性の塩を生成しない酸の使用が好ましい。本発明で好ましい酸の種類は塩酸と酢酸であり、該酸の濃度は処理温度によっても変動するが、一般的に0.1mol/l〜10mol/l程度の濃度が好ましい。
【0017】
粗製カルシウムアパタイト中に残存する蛋白質の溶解除去に好適に用いられるアルカリとしては、食品に使用可能であれば特に限定されない。例えば水酸化ナトリウム及び水酸化カリウムの食品に用いられるグレードが挙げられる。使用する濃度はその後のアルカリ除去または中和を考え極力希薄な方が望ましい。使用するアルカリ濃度と作用時間は、粗製カルシウムアパタイトの粒度が細かい程、低アルカリ濃度、短作用時間であることが好ましいが、蛋白質の溶解除去には相応のアルカリ濃度と処理時間が必要である。また、アルカリ処理の影響を軽減するため、蛋白分解の目的で1種の酵素または複合酵素を使用してもよい。使用する酵素の種類は食品に使用できるものであれば特に制限されないが、一般的には細菌プロテアーゼ等が使用できる。
【0018】
【実施例】
以下、実施例により本発明を更に詳細に説明する。
実施例及び比較例中、特に断らない限り%は重量%を表す。また、実施例、比較例で用いられた試験方法は以下の通りである。
(a)ゼリー強度の測定
測定はJIS K 6503「にかわ及びゼラチン」の方法に準じて行った。
(b)灰分の測定
粗製カルシウムアパタイトの乾燥粉末約10gを予め600℃で恒量とした磁性ルツボ中に入れルツボごと精秤した。該ルツボを200℃電気炉に入れて600℃まで昇温させ、600℃で6時間焼成した後デシケーター中で放冷した後、灰分重量を測定した。
【0019】
実施例1
(真鯛鱗の採取、洗浄、乾燥)
フィーレ加工する際に真鯛を1匹づつ水流ジェット式鱗剥離機にかけて、真鯛鱗を水と共にSUS製網カゴに捕集し、水できれいに洗浄し、天日乾燥した(水分8%)。この真鯛鱗を更に105℃で12時間乾燥し水分を除いたものを、ケルダール分解して、窒素含有率(%)を求めた。コラーゲン量はケルダール法窒素測定値に1963年米国農商務省発表食品成分表の窒素分からのコラーゲン換算係数5.55を掛けて算出した。また、カルシウムアパタイト量はカルシウムアパタイトの分子式をCa10(PO(OH)として、ICP分析の結果に基づき計算により求めた。鱗を硝酸、過塩素酸ソーダで分解後に塩酸に溶解させたものをICP分析して、CaとP量を測定した。P量をPOに換算した値にCa量を加え、更に水酸基に相当する量を補正して求めた。その結果、真鯛鱗は、コラーゲン42.1%、カルシウムアパタイト57.9%の組成であり、この数値を基準値に用いて回収率を算出した。
【0020】
(真鯛鱗の冷凍粉砕)
粉砕にはフィーダー、ターボミル、サイクロン、バグフイルターよりなるシステム(セイシン企業社製)を使用した。液体窒素にてシステム全体を冷却状態にしてから、フィーダーより真鯛乾燥鱗をフィードした。ターボミル回転数は6,000rpm、出口温度を−10〜−30℃に管理しながらフィード量を調節した。得られた粉砕鱗は殆どが綿状で、嵩比重が0.066と嵩高く、粒径35μm付近の粉末含有量が2%、水分含有量が7.6%であった。尚、嵩比重はJIS K 6721−1977「塩化ビニル樹脂試験方法」に記載された「かさ比重」の測定方法に準じて求めた。
【0021】
(ゼラチン抽出と分離)
粉砕鱗94gに蒸留水1,250mlを加えて、94℃で1時間ゼラチンを抽出した。ゼラチン量は粗製カルシウムアパタイト粉末をろ過分離した溶液を凍結乾燥して得た粉末重量を測定して求めた。粗製カルシウムアパタイト量は水抽出溶液をろ過分離し、水洗、105℃で12時間乾燥して得た不溶解分の粉末重量を測定して求めた。真鯛鱗からのゼラチンと粗製カルシウムアパタイトの回収率は、原料真鯛鱗の組成をコラーゲン42.1%、粗製カルシウムアパタイト57.9%とし、これらが回収されたときの回収率をそれぞれ100%として、計算により求めた。尚、コラーゲンはゼラチンとして回収されるものとした。また、ゼラチンのゼリー強度と粗製カルシウムアパタイトの灰分を測定した。尚、ゼリー強度測定時の6.67%ゼラチン水溶液のpHは25℃で6.0〜6.5であった。試験結果を表1に記載した。
【0022】
実施例2
ゼラチンの抽出時間を1時間から2時間に変更した以外は実施例1と同様に操作を実施した。試験結果を表1に記載した。
【0023】
実施例3
実施例1の冷凍粉砕を常温(20〜30℃)粉砕に変更した以外は実施例1と同様に操作を実施した。粉砕システムには冷凍粉砕と同じものを使用した。室温20℃でターボミル回転数6,000rpmでミルの外筒が30℃以下で運転できる様に調節した。得られた粉砕鱗は極く僅かに粉末を含む綿状で、嵩比重が0.060と嵩高く、粒径35μm付近の粉末含有量が1%、水分含有量が7.7%であった。試験結果を表1に記載した。
【0024】
実施例4
粉砕用機器を実施例1〜3で使用したシステムから中央化工機社製MB−1型振動ミルに変更して常温(20〜30℃)粉砕し、ゼラチン抽出温度を60℃とした以外は実施例3と同様に操作を実施した。尚、粉砕はSUS粉砕筒(3.6リットル)に粉砕媒体としてSUSロッド16本を充填(充填率60%)し、真鯛乾燥鱗100gに水400gを加えて60分間30℃以下で粉砕した。レーザー式粒度分布計での測定では、粉砕鱗の粒度は4.1〜120μmに分布していた。試験結果を表1に記載した。
【0025】
実施例5
ゼラチン抽出温度を60℃から70℃に変更した以外は実施例4と同様に操作を実施した。試験結果を表1に記載した。
【0026】
実施例6
ゼラチン抽出温度を60℃から80℃に変更した以外は実施例4と同様に操作を実施した。試験結果を表1に記載した。
【0027】
実施例7
ゼラチン抽出温度を60℃から94℃に変更した以外は実施例4と同様に操作を実施した。試験結果を表1に記載した。
【0028】
【表1】

Figure 2004059568
【0029】
表1からわかるように、ゼラチン抽出時間は1時間より2時間の方が回収率が高かった。尚、ここには示していないが抽出時間を2時間以上に長くしても回収率の上昇は僅かであり、却ってゼリー強度が低下する傾向が観察された。また、ゼラチン抽出温度は、ゼリー強度の点から70℃以上、94℃以下の80℃付近が最適温度を示した。尚、動物の皮や骨を用いたアルカリ前処理法及び酸前処理法の場合は、ゼラチン抽出温度tpゼリー強度の関係は60℃より70℃の方が高く、80℃の方がより高く、94℃では70℃より低くなった。
ゼラチン抽出後のろ過残分である粗製カルシウムアパタイト粉末は回収率が100%を超えているものを600℃焼成した場合、灰分が純白でなく灰色を呈することから有機物が含有されていると推定された。
【0030】
実施例8
(片口鰯鱗の採取、洗浄、乾燥)
水産加工場の選別ラインの末端に取り付けられたロータリースクリーンから排出された片口鰯鱗から魚体等大きな夾雑物を目視除去した後、水で綺麗に洗浄し、乾燥し乾燥鱗を得た。この片口鰯鱗を更に105℃で12時間乾燥し水分を除いたものを、ケルダール分解して、窒素含有率(%)を求め実施例1の場合と同様に係数5.55を乗じて、鱗中のコラーゲン量を算出した。片口鰯鱗の組成はコラーゲン36.6%、粗製カルシウムアパタイト54.2%であった。
【0031】
(片口鰯鱗の常温粉砕)
洗浄乾燥した片口鰯鱗をダルトン社製パワーミルにてほぐした(平均水分10.5%)後、室温20℃でインペラーミル(IMP−250型、セイシン企業社製)を使用し回転数6,000rpmで粉砕した。粉砕鱗を篩分測定した粒度分布は8mm〜2mmが53.3%、2mm〜1mmが25.7%、1mmパスが21%であった。
【0032】
(ゼラチン抽出と分離)
粉砕鱗94gに蒸留水1,250mlを加えて、94℃で1時間抽出を行った。ゼラチン量は粗製カルシウムアパタイト粉末をろ過分離した溶液を凍結乾燥して得た粉末重量を測定して求めた。粗製カルシウムアパタイト量は水抽出溶液をろ過分離し、水洗し、105℃で12時間乾燥して得た不溶解分の粉末重量を測定して求めた。片口鰯鱗からのゼラチンと粗製カルシウムアパタイトの回収率は、原料片口鰯鱗の組成をコラーゲン36.6%、粗製カルシウムアパタイト54.2%とし、これらが回収されたときの回収率をそれぞれ100%として計算により求めた。尚、コラーゲンはゼラチンとして回収されるものとした。また、ゼラチンのゼリー強度を測定した。ゼリー強度測定時の6.67%ゼラチン水溶液のpHは25℃で6.0〜6.5であった。試験結果を表2に記載した。
【0033】
実施例9
インペラーミルの回転数を6,000rpmから5,000rpmに変更した以外は実施例8と同様に操作を実施した。粉砕鱗の粒度分布は、8mm〜2mmが56.4%、2mm〜1mmが24.7%、1mmパスが18.8%であった。試験結果を表2に記載した。
【0034】
実施例10
インペラーミルの回転数を6,000rpmから3,000rpmに変更した以外は実施例8と同様に操作を実施した。粉砕鱗の粒度分布は、8mm〜2mmが63.8%、2mm〜1mmが20.3%、1mmパスが16%であった。試験結果を表2に記載した。
【0035】
実施例11
実施例8で用いられたと同様の片口鰯鱗を家庭用の電動コーヒーミルにて粉砕した鱗を篩い分けして、8mmパス〜2mmオンの粉砕鱗を用いた以外は、実施例8と同様に操作を実施した。試験結果を表2に記載した。
【0036】
実施例12
実施例8で用いられたと同様の片口鰯鱗を家庭用の電動コーヒーミルにて粉砕した鱗を篩い分けして、2mmパス〜1mmオンの粉砕鱗を用いた以外は、実施例8と同様に操作を実施した。試験結果を表2に記載した。
【0037】
【表2】
Figure 2004059568
【0038】
表2からわかるように、ゼラチン回収率は片口鰯鱗の粉砕の程度が大き程高い結果を示した。尚、ゼラチン抽出温度が94℃と高く、ゼラチン抽出時間が1時間と短いためにゼリー強度は70g〜94gと低い値を示した。
【0039】
実施例13
実施例10と同様の条件で得た粉砕鱗を用いて、抽出温度を60℃とした以外は実施例10と同様に操作を実施した。試験結果を表3に示した。
【0040】
実施例14
実施例10と同様の条件で得た粉砕鱗を用いて、抽出温度を70℃とした以外は実施例10と同様に操作を実施した。試験結果を表3に示した。
【0041】
実施例15
実施例10と同様の条件で得た粉砕鱗を用いて、抽出温度を80℃とした以外は実施例10と同様に操作を実施した。試験結果を表3に示した。
【0042】
【表3】
Figure 2004059568
【0043】
実施例16
実施例8記載の乾燥鱗を粉砕せずに用いて、抽出温度を60℃とした以外は実施例8と同様に操作を実施した。試験結果を表4に示した。
【0044】
実施例17
実施例8記載の乾燥鱗を粉砕せずに用いて、抽出温度を70℃とした以外は実施例8と同様に操作を実施した。試験結果を表4に示した。
【0045】
実施例18
実施例8記載の乾燥鱗を粉砕せずに用いて、抽出温度を80℃とした以外は実施例8と同様に操作を実施した。試験結果を表4に示した。
【0046】
実施例19
実施例8記載の乾燥鱗を粉砕せずに用いて、抽出温度を94℃とした以外は実施例8と同様に操作を実施した。試験結果を表4に示した。
【0047】
【表4】
Figure 2004059568
【0048】
表3、表4の結果は、粉砕鱗と洗浄乾燥鱗は共に抽出温度が60℃、70℃と高くなる程ゼラチン回収率が高くなりゼリー強度も高くなることを示した。また、最大のゼリー強度を得る抽出温度は真鯛鱗と同様に80℃付近と推定された。尚、粉砕鱗と洗浄乾燥鱗の比較では明らかに粉砕鱗の方が回収率が高い結果であった。
【0049】
比較例1
洗浄した片口鰯乾燥鱗100gを、0.6mol/l塩酸1,500mlに投入し、室温(20〜25℃)で24時間緩攪拌しながら脱カルシウム処理を行った。不溶解分であるコラーゲン成分をろ過して集め、0.3mol/l塩酸にて2回、水にて1回洗浄し粗コラーゲンを得た。得られた粗コラーゲンに蒸留水1,250ml加え、抽出温度70℃で2時間ゼラチンを抽出した。不溶分をろ過して取除いた後のゼラチン溶液を凍結乾燥して固体ゼラチンとした。試験結果を表5に示した。
【0050】
比較例2
比較例1のゼラチン抽出後の液をろ過し、ろ過残分に蒸留水1,250ml加え、更に80℃で2.5時間抽出した。不溶分をろ過して取除いた後のゼラチン溶液を凍結乾燥して固体ゼラチンとした。試験結果を表5に示した。
【0051】
比較例3
比較例2のゼラチン抽出後の液をろ過し、ろ過残分に蒸留水1,250ml加え、更に94℃で5時間抽出した。不溶分をろ過して取除いた後のゼラチン溶液を凍結乾燥して固体ゼラチンとした。試験結果を表5に示した。
【0052】
【表5】
Figure 2004059568
【0053】
比較例1〜3の脱灰処理で得られた粗コラーゲン由来のゼラチンは、実施例の同じ抽出温度で、脱灰処理なしで得られた本発明によるゼラチンと比べ、明らかに回収率が低くゼリー強度も低かった。この原因としては、脱灰処理時に酸によるゼラチンの加水分解が一部生じたものと推定される。
この結果から明らかなように、脱灰処理で得られた粗コラーゲン由来のゼラチンは、製造工程が煩雑で回収率も低く、品質も満足できるものではなかった。
【0054】
【発明の効果】
本発明の製造方法は、魚鱗を脱灰処理(カルシウム成分の化学的除去処理)なしに、必要に応じて機械的に乾式または湿式粉砕した後に、大気圧下、100℃未満の水でゼラチンを抽出する方法である。このため、耐酸仕様の装置材質を必要とせず、一般的な装置材質でのゼラチンの製造が可能である。その上、本発明の製造方法は、工程数が脱灰処理を伴うプロセスより少なく、低廉なコストでゼラチン及びカルシウムアパタイトを製造するのに好適な方法である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing gelatin and calcium apatite from fish scales. More specifically, the present invention relates to a method for producing high-quality fish scale-derived gelatin and calcium apatite at a low cost, which is a simple process and can be carried out by a general apparatus without requiring a material having an acid-resistant specification.
[0002]
[Prior art]
Conventionally, as an industrial method for producing gelatin using animal bones and fish bones as raw materials, the raw materials are pulverized, chemically degreased, and decalcified (meaning that calcium components are chemically removed). Thereafter, a method of pretreating with an alkali and then extracting gelatin with water is known. There is also known a method of performing extraction treatment with high-temperature steam under pressure (autoclave). In these methods, corrosion resistance and pressure resistance are required for the equipment, and in the case of high-temperature pressurized water treatment, gelatin is colored by thermal decomposition, there are many impurities, and physical properties such as jelly strength are low. .
Using fish skin or fish bone as a raw material, scales and fish meat in the raw material are removed with a protease that does not decompose gelatin, followed by delipidation and hot water extraction to extract the gelatin, and a lipase treatment of the extracted gelatin (for example, Patent Document 1) has also been proposed, but the process is complicated. In addition, the method of obtaining calcium apatite from fish scales is a method of baking fish scales to remove organic substances and a method of dissolving fish scales with acid to remove collagen which is an insoluble component, adding an alkaline substance to an acid solution, and re-using. A precipitation method is known (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP-A-10-276680 [Patent Document 2]
JP-A-8-104508
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing high-quality fish scale-derived gelatin and calcium apatite at a low cost, which can be performed by a general apparatus without requiring a material having an acid-resistant specification, in which the process is simple. .
[0005]
[Means for Solving the Problems]
The present inventors have intensively studied to solve the above problems. As a result, the fish scale raw material is washed as necessary, dried, mechanically dry- or wet-pulverized, and then immersed in water at a temperature of less than 100 ° C without decalcification to extract gelatin in the fish scale. The present inventors have found that the problems can be solved by a method for producing gelatin and a method for producing calcium apatite using fish scale residue after producing gelatin, and based on this finding, the present invention has been completed.
[0006]
The present invention is constituted by the following.
(1) A method for producing gelatin, comprising immersing fish scales in water at a temperature of less than 100 ° C. without demineralization to extract gelatin in the fish scales.
[0007]
(2) The method for producing gelatin according to (1), wherein the fish scale is mechanically pulverized dry or wet before extracting the gelatin.
[0008]
(3) The method for producing gelatin according to (2), wherein the mechanical grinding of the fish scale is performed at a temperature of 30 ° C. or less.
[0009]
(4) A method for producing calcium apatite, comprising using fish scale residue generated by the production of gelatin by the production method according to any one of (1) to (3).
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides a method for immersing fish scales, which are mechanically dry- or wet-pulverized as necessary, in water without chemical demineralization (which means chemically removing calcium components), and extracting the scales with water. This is a method for producing gelatin from corn. Further, the present invention is a method for producing crude calcium apatite from fish scales after extracting gelatin. Crude calcium apatite can be purified to high purity calcium apatite.
The gelatin produced by the method of the present invention can be suitably used for foods, medical capsules and the like, and can be used as a raw material for collagen peptide. In addition, calcium apatite can be used as food, health food, toothpaste, and catalyst carrier.
In the present invention, the crude calcium apatite refers to an unpurified mixture containing calcium apatite as a main component and a small amount of an organic compound. The main component means that the amount of calcium apatite in the mixture is the largest. The high-purity calcium apatite is obtained by purifying crude calcium apatite.
[0011]
The fish species for obtaining the fish scale used in the present invention is not particularly limited. Examples include sardines and saury fish whose scales are still collected by a rotary screen or the like from a sorting line at a fishery processing plant, and red snappers that peel scales with a jet stream when processing fillets or cuts at a fishery processing plant. In addition, scales such as pollock cod, eso, salmon, herring, carp, and tilapia can be used. The fish scale used in the present invention preferably has as high freshness and purity as possible. Fish scales collected from fish processing plants for blue swords and sardines often contain fish, fish meat, fins, seaweed, and other contaminants mixed in seine net fishing. It is preferable to remove the objects by washing with water or the like. When odorous substances attached or colored due to self-digestion or scale of fish meat occur on scales, the quality of gelatin and calcium apatite obtained may be impaired. In order to obtain high-purity gelatin and crude calcium apatite, it is preferable that such impurities as fish meat, fins, seaweed, and the like be as small as possible.
[0012]
In the present invention, fish scales can be used for the production of gelatin without being ground. However, in order to increase the recovery rate of gelatin, it is preferable to mechanically dry- or wet-pulverize the washed scale after washing to remove impurities. The pulverization method may be any of wet pulverization for pulverizing fish scales containing moisture and dry pulverization for pulverizing fish scales after drying.
The type of crusher used for crushing fish scales is not particularly limited. For example, a pulverizer having a medium-speed rotary motion mechanism and performing pulverization by impact or shear, and a pulverizer having a high-speed rotary motion mechanism and performing pulverization by impact are preferable. Specifically, an impeller mill manufactured by Seishin Enterprise Co., Ltd. and a vibration mill manufactured by Chuo Kakoki Co., Ltd. can be suitably used. For wet grinding of fish scales, a vibration mill, a ball mill or the like can be suitably used. The temperature at the time of pulverization is preferably less than 100 ° C., more preferably 30 ° C. or less, to avoid a decrease in freshness of the fish scale. It is also possible to grind the scale in a frozen state with liquid nitrogen or the like for the purpose of suppressing the temperature rise during grinding, and in the frozen state, reciprocation, rotation, low-speed rotation, roll, other than medium-high speed rotation mechanism It is also possible to use a crusher model having a movement mechanism such as rotation and revolution, container rotation, container vibration, and jet injection. The dry or wet crushed fish scales generally have a flocculent or powdery shape.
[0013]
In the method of the present invention, fish scales are immersed in water at a temperature of less than 100 ° C., preferably 55 ° C. or more and less than 100 ° C., more preferably 65 ° C. or more and less than 100 ° C. Of gelatin is extracted. Since the temperature of the extraction water is less than 100 ° C., the production equipment is simple, low-cost, and easy to implement.
The water used for the water extraction is not particularly limited, such as drinking water, industrial water, distilled water, and ion-exchanged water, but preferably does not contain a substance that reacts with and dissolves with calcium such as acid or EDTA.
[0014]
Since the method of the present invention does not use an acid used for the demineralization treatment, the steps are shorter than those of the conventional method, the desalting treatment of the obtained gelatin is unnecessary, and the cost can be reduced. In addition, since there is no loss of gelatin due to the demineralization treatment, the recovery rate of these is high and the efficiency is high.
The obtained gelatin can be purified by decolorization and deodorization by a known method, if necessary.
[0015]
The calcium apatite produced according to the present invention is a mixture of amorphous and / or crystalline calcium apatite (including calcium-deficient carbonate type), amorphous and / or crystalline tribasic calcium phosphate, and other calcium phosphate compounds. is there. The content ratio of these compounds differs depending on the fish species, the fishing season, and the purification method after extraction and separation.
The calcium apatite powder produced according to the present invention is porous, has a large specific surface area, and has a high heavy metal capturing ability. Also, since it has excellent biocompatibility, it is suitable for medical uses such as dental fillers. Ideal for calcium-fortified foods and health foods.
[0016]
As a method for producing high-purity calcium apatite by refining crude calcium apatite, a method of calcining at a temperature of 600 ° C. or more in air to thermally decompose and remove a small amount of contained organic substances, or removing insoluble components after acid dissolution It is preferable to add an alkali substance to the solution separated by means such as filtration to reprecipitate high-purity calcium apatite. Further, a method of dissolving and removing the remaining protein with an alkali is also preferable. In the case of treatment using an acid, it is preferable to use an acid which does not react with calcium or the like to form an insoluble salt. Preferred types of acids in the present invention are hydrochloric acid and acetic acid, and the concentration of the acid varies depending on the treatment temperature, but is generally preferably about 0.1 mol / l to 10 mol / l.
[0017]
The alkali suitably used for dissolving and removing the protein remaining in the crude calcium apatite is not particularly limited as long as it can be used for food. For example, sodium hydroxide and potassium hydroxide may be used in food grades. The concentration used is desirably as low as possible in consideration of subsequent alkali removal or neutralization. The alkali concentration and action time used are preferably low and short action time as the particle size of the crude calcium apatite is finer. However, appropriate dissolution and removal of the protein require a corresponding alkali concentration and treatment time. Further, in order to reduce the influence of the alkali treatment, one kind of enzyme or a complex enzyme may be used for the purpose of proteolysis. The type of enzyme to be used is not particularly limited as long as it can be used in foods, but generally bacterial protease or the like can be used.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
In Examples and Comparative Examples,% represents% by weight unless otherwise specified. The test methods used in Examples and Comparative Examples are as follows.
(A) Measurement of jelly strength Measurement was carried out according to the method of JIS K6503 "Glue and gelatin".
(B) Measurement of Ash Content About 10 g of dry powder of crude calcium apatite was placed in a magnetic crucible having a constant weight at 600 ° C. in advance, and the crucible was weighed together. The crucible was placed in an electric furnace at 200 ° C., heated to 600 ° C., calcined at 600 ° C. for 6 hours, and allowed to cool in a desiccator, and the ash weight was measured.
[0019]
Example 1
(Collecting, washing and drying red snapper scales)
At the time of the fillet processing, each red snapper was applied to a water jet scale remover, and the red snapper was collected in a SUS net basket together with water, washed with water, and dried in the sun (8% moisture). The red snapper was further dried at 105 ° C. for 12 hours to remove water, and then subjected to Kjeldahl decomposition to determine the nitrogen content (%). The amount of collagen was calculated by multiplying the nitrogen value measured by the Kjeldahl method by a conversion factor of 5.55 from the nitrogen content in the food composition table published by the United States Department of Agriculture and Commerce in 1963. The amount of calcium apatite was determined by calculation based on the results of ICP analysis, with the molecular formula of calcium apatite being Ca 10 (PO 4 ) 6 (OH) 2 . After the scale was decomposed with nitric acid and sodium perchlorate and dissolved in hydrochloric acid, the content of Ca and P was measured by ICP analysis. The amount of Ca was added to the value obtained by converting the amount of P to PO 4 , and the amount corresponding to the hydroxyl group was further corrected and obtained. As a result, the red snapper had a composition of 42.1% of collagen and 57.9% of calcium apatite, and the recovery rate was calculated using this numerical value as a reference value.
[0020]
(Frozen crushed red snapper)
For the pulverization, a system composed of a feeder, a turbo mill, a cyclone, and a bag filter (manufactured by Seishin Enterprise Co., Ltd.) was used. After cooling the whole system with liquid nitrogen, dried scales of red snapper were fed from the feeder. The feed rate was controlled while controlling the turbo mill rotation speed at 6,000 rpm and the outlet temperature at -10 to -30 ° C. Most of the obtained crushed scale was cotton-like, had a bulk specific gravity of 0.066 and was bulky, had a powder content of around 35 μm in powder content of 2%, and a water content of 7.6%. In addition, the bulk specific gravity was determined according to the measurement method of "bulk specific gravity" described in JIS K 6721-1977 "Testing method for vinyl chloride resin".
[0021]
(Gelatin extraction and separation)
1,250 ml of distilled water was added to 94 g of the crushed scale, and gelatin was extracted at 94 ° C. for 1 hour. The amount of gelatin was determined by lyophilizing a solution obtained by filtering and separating a crude calcium apatite powder and measuring the weight of the powder. The amount of crude calcium apatite was determined by filtering and separating the water extraction solution, washing with water, and drying at 105 ° C. for 12 hours, and measuring the weight of the insoluble powder obtained. The recovery rate of gelatin and crude calcium apatite from red snapper was calculated assuming that the composition of the raw red snapper was collagen 42.1% and crude calcium apatite 57.9%, and the recovery rate when these were recovered was 100%, respectively. It was determined by calculation. The collagen was recovered as gelatin. The jelly strength of gelatin and the ash content of crude calcium apatite were measured. The pH of the 6.67% gelatin aqueous solution at the time of measuring the jelly strength was 6.0 to 6.5 at 25 ° C. The test results are shown in Table 1.
[0022]
Example 2
The operation was performed in the same manner as in Example 1 except that the extraction time of gelatin was changed from 1 hour to 2 hours. The test results are shown in Table 1.
[0023]
Example 3
The operation was performed in the same manner as in Example 1 except that the freezing and pulverization in Example 1 was changed to pulverization at normal temperature (20 to 30 ° C.). The same pulverization system as that used in the freeze pulverization was used. The temperature was adjusted so that the outer cylinder of the mill could be operated at a temperature of 30 ° C. or lower at a room temperature of 20 ° C. and a turbo mill rotation speed of 6,000 rpm. The resulting crushed scale was cotton-like with a slight amount of powder, had a bulky specific gravity of 0.060, and had a powder content of 1% and a water content of 7.7% near a particle size of 35 μm. . The test results are shown in Table 1.
[0024]
Example 4
The milling equipment was changed from the system used in Examples 1 to 3 to an MB-1 type vibration mill manufactured by Chuo Kakoki Co., Ltd. and milled at room temperature (20 to 30 ° C), and the gelatin extraction temperature was changed to 60 ° C. The operation was carried out as in Example 3. The crushing was performed by filling a SUS crushing cylinder (3.6 liter) with 16 SUS rods as a crushing medium (filling rate: 60%), adding 400 g of water to 100 g of dried scales of red snapper, and crushing at 30 ° C. or lower for 60 minutes. In the measurement with the laser type particle size distribution meter, the particle size of the crushed scale was distributed in the range of 4.1 to 120 μm. The test results are shown in Table 1.
[0025]
Example 5
The same operation as in Example 4 was performed except that the gelatin extraction temperature was changed from 60 ° C to 70 ° C. The test results are shown in Table 1.
[0026]
Example 6
The same operation as in Example 4 was performed except that the gelatin extraction temperature was changed from 60 ° C to 80 ° C. The test results are shown in Table 1.
[0027]
Example 7
The same operation as in Example 4 was performed except that the gelatin extraction temperature was changed from 60 ° C to 94 ° C. The test results are shown in Table 1.
[0028]
[Table 1]
Figure 2004059568
[0029]
As can be seen from Table 1, the recovery rate was higher for the gelatin extraction time of 2 hours than for 1 hour. Although not shown here, even if the extraction time was increased to 2 hours or more, the recovery rate was slightly increased, and the tendency of the jelly strength to decrease was observed. As for the gelatin extraction temperature, the optimum temperature was around 70 ° C. from 70 ° C. to 94 ° C. from the point of jelly strength. Incidentally, in the case of the alkali pretreatment method and the acid pretreatment method using animal skin or bone, the relationship between the gelatin extraction temperature tp jelly strength is higher at 70 ° C than at 60 ° C, and higher at 80 ° C, At 94 ° C, the temperature was lower than 70 ° C.
The crude calcium apatite powder, which is a filtration residue after gelatin extraction and has a recovery rate of more than 100%, is baked at 600 ° C. Was.
[0030]
Example 8
(Sampling of one sided sardine scale, washing and drying)
After visually removing large foreign substances such as fish from one-sided sardine scale discharged from a rotary screen attached to the end of a sorting line at a fishery processing plant, the scale was washed with water and dried to obtain a dried scale. This one-sided sardine scale was further dried at 105 ° C. for 12 hours to remove water, and then subjected to Kjeldahl decomposition to determine the nitrogen content (%), multiplied by a coefficient of 5.55 in the same manner as in Example 1, and scaled. The amount of collagen was calculated. The composition of one-sided sardine scale was 36.6% of collagen and 54.2% of crude calcium apatite.
[0031]
(Normal temperature pulverization of one side sardine scale)
The washed and dried sardine scale is loosened with a power mill manufactured by Dalton (average moisture: 10.5%) and then rotated at 6,000 rpm using an impeller mill (IMP-250, manufactured by Seishin Enterprise) at room temperature of 20 ° C. Crushed. The particle size distribution of the crushed scale measured by sieving was 53.3% for 8 mm to 2 mm, 25.7% for 2 mm to 1 mm, and 21% for the 1 mm pass.
[0032]
(Gelatin extraction and separation)
To 94 g of the crushed scale, 1,250 ml of distilled water was added, and extraction was performed at 94 ° C for 1 hour. The amount of gelatin was determined by lyophilizing a solution obtained by filtering and separating a crude calcium apatite powder and measuring the weight of the powder. The amount of the crude calcium apatite was determined by filtering and separating the water extraction solution, washing with water, and drying at 105 ° C. for 12 hours, and measuring the powder weight of the insoluble matter obtained. The recovery rate of gelatin and crude calcium apatite from one-sided sardine scale was calculated assuming that the composition of raw material one-sided sardine scale was 36.6% for collagen and 54.2% for crude calcium apatite, and the recovery rate when these were recovered was 100%. Determined by The collagen was recovered as gelatin. In addition, the jelly strength of gelatin was measured. The pH of the 6.67% gelatin aqueous solution at the time of measuring the jelly strength was 6.0 to 6.5 at 25 ° C. The test results are shown in Table 2.
[0033]
Example 9
The operation was performed in the same manner as in Example 8, except that the number of revolutions of the impeller mill was changed from 6,000 rpm to 5,000 rpm. The particle size distribution of the crushed scale was 56.4% for 8 mm to 2 mm, 24.7% for 2 mm to 1 mm, and 18.8% for 1 mm pass. The test results are shown in Table 2.
[0034]
Example 10
The operation was performed in the same manner as in Example 8, except that the number of revolutions of the impeller mill was changed from 6,000 rpm to 3,000 rpm. The particle size distribution of the crushed scale was 63.8% for 8 mm to 2 mm, 20.3% for 2 mm to 1 mm, and 16% for 1 mm pass. The test results are shown in Table 2.
[0035]
Example 11
The same operation as in Example 8 was performed except that the same one-sided sardine scale as used in Example 8 was crushed with a home electric coffee mill, and the crushed scale was sieved, and a crushed scale of 8 mm pass to 2 mm on was used. Was carried out. The test results are shown in Table 2.
[0036]
Example 12
The same operation as in Example 8 was carried out except that the same one-sided sardine scale as used in Example 8 was crushed with a home electric coffee mill and sieved to use a crushed scale of 2 mm pass to 1 mm on. Was carried out. The test results are shown in Table 2.
[0037]
[Table 2]
Figure 2004059568
[0038]
As can be seen from Table 2, the recovery rate of gelatin showed a higher degree of pulverization of one-sided sardine scale. Since the gelatin extraction temperature was as high as 94 ° C. and the gelatin extraction time was as short as 1 hour, the jelly strength showed a low value of 70 g to 94 g.
[0039]
Example 13
Using a crushed scale obtained under the same conditions as in Example 10, the same operation as in Example 10 was performed except that the extraction temperature was 60 ° C. The test results are shown in Table 3.
[0040]
Example 14
Using a crushed scale obtained under the same conditions as in Example 10, the same operation as in Example 10 was performed except that the extraction temperature was 70 ° C. The test results are shown in Table 3.
[0041]
Example 15
Using a crushed scale obtained under the same conditions as in Example 10, the operation was performed in the same manner as in Example 10, except that the extraction temperature was 80 ° C. The test results are shown in Table 3.
[0042]
[Table 3]
Figure 2004059568
[0043]
Example 16
The operation was carried out in the same manner as in Example 8, except that the dried scale described in Example 8 was used without pulverization, and the extraction temperature was 60 ° C. The test results are shown in Table 4.
[0044]
Example 17
The same operation as in Example 8 was carried out except that the dried scale described in Example 8 was used without pulverization and the extraction temperature was 70 ° C. The test results are shown in Table 4.
[0045]
Example 18
The same operation as in Example 8 was carried out except that the dried scale described in Example 8 was used without pulverization and the extraction temperature was 80 ° C. The test results are shown in Table 4.
[0046]
Example 19
The operation was carried out in the same manner as in Example 8, except that the dried scale described in Example 8 was used without pulverization and the extraction temperature was 94 ° C. The test results are shown in Table 4.
[0047]
[Table 4]
Figure 2004059568
[0048]
The results in Tables 3 and 4 show that both the crushed scale and the washed and dried scale have higher gelatin recovery and higher jelly strength as the extraction temperature increases to 60 ° C. and 70 ° C. The extraction temperature at which the maximum jelly strength was obtained was estimated to be around 80 ° C., similar to the red snapper scale. In addition, in the comparison between the crushed scale and the washed and dried scale, the crushed scale clearly showed a higher recovery rate.
[0049]
Comparative Example 1
100 g of the washed one-sided dried sardine scale was added to 1,500 ml of 0.6 mol / l hydrochloric acid, and subjected to decalcification while gently stirring at room temperature (20 to 25 ° C.) for 24 hours. Collagen components, which were insoluble components, were collected by filtration and washed twice with 0.3 mol / l hydrochloric acid and once with water to obtain crude collagen. 1,250 ml of distilled water was added to the obtained crude collagen, and gelatin was extracted at an extraction temperature of 70 ° C. for 2 hours. The gelatin solution after insoluble matter was removed by filtration was freeze-dried to obtain solid gelatin. The test results are shown in Table 5.
[0050]
Comparative Example 2
The liquid after the gelatin extraction of Comparative Example 1 was filtered, 1,250 ml of distilled water was added to the residue of the filtration, and the mixture was further extracted at 80 ° C. for 2.5 hours. The gelatin solution after insoluble matter was removed by filtration was freeze-dried to obtain solid gelatin. The test results are shown in Table 5.
[0051]
Comparative Example 3
The solution after the gelatin extraction of Comparative Example 2 was filtered, 1,250 ml of distilled water was added to the residue of the filtration, and the mixture was further extracted at 94 ° C. for 5 hours. The gelatin solution after insoluble matter was removed by filtration was freeze-dried to obtain solid gelatin. The test results are shown in Table 5.
[0052]
[Table 5]
Figure 2004059568
[0053]
The gelatin derived from the crude collagen obtained by the demineralization treatment of Comparative Examples 1 to 3 had a significantly lower recovery rate than the gelatin of the present invention obtained without the demineralization treatment at the same extraction temperature of the example. The strength was also low. It is presumed that this was caused by partial hydrolysis of gelatin by acid during the decalcification treatment.
As is apparent from the results, the gelatin derived from the crude collagen obtained by the decalcification treatment was complicated, the recovery rate was low, and the quality was not satisfactory.
[0054]
【The invention's effect】
In the production method of the present invention, the fish scale is mechanically dry- or wet-pulverized as necessary without demineralizing treatment (chemical removal treatment of calcium component), and then gelatin is reduced with water at a temperature lower than 100 ° C under atmospheric pressure. It is a method to extract. For this reason, it is not necessary to use a device material having an acid-resistant specification, and it is possible to produce gelatin using a general device material. In addition, the production method of the present invention is a method suitable for producing gelatin and calcium apatite at a low cost because the number of steps is smaller than that of a process involving a decalcification treatment.

Claims (4)

魚鱗を脱灰処理することなく100℃未満の温度の水に浸漬して、魚鱗中のゼラチンを抽出することを特徴とするゼラチンの製造方法。A method for producing gelatin, comprising immersing fish scales in water at a temperature of less than 100 ° C. without decalcification to extract gelatin in the fish scales. 魚鱗が、ゼラチンを抽出する前に機械的に乾式または湿式粉砕されることを特徴とする請求項1記載のゼラチンの製造方法。The method for producing gelatin according to claim 1, wherein the fish scale is mechanically dry- or wet-pulverized before extracting the gelatin. 魚鱗の機械的な粉砕が、30℃以下の温度で行われることを特徴とする請求項2記載のゼラチンの製造方法。The method for producing gelatin according to claim 2, wherein the mechanical grinding of the fish scale is performed at a temperature of 30 ° C or lower. 請求項1〜3のいずれか1項記載の製造方法によるゼラチンの製造で生じる魚鱗残さを用いることを特徴とするカルシウムアパタイトの製造方法。A method for producing calcium apatite, comprising using fish scale residue generated in the production of gelatin by the production method according to claim 1.
JP2002364143A 2002-06-07 2002-12-16 Method for producing gelatine and calcium apatite derived from fish scale Pending JP2004059568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364143A JP2004059568A (en) 2002-06-07 2002-12-16 Method for producing gelatine and calcium apatite derived from fish scale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002167714 2002-06-07
JP2002364143A JP2004059568A (en) 2002-06-07 2002-12-16 Method for producing gelatine and calcium apatite derived from fish scale

Publications (1)

Publication Number Publication Date
JP2004059568A true JP2004059568A (en) 2004-02-26

Family

ID=31949454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364143A Pending JP2004059568A (en) 2002-06-07 2002-12-16 Method for producing gelatine and calcium apatite derived from fish scale

Country Status (1)

Country Link
JP (1) JP2004059568A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160654A (en) * 2004-12-06 2006-06-22 Nitta Gelatin Inc Method for producing fish gelatin and fish gelatin
JP2007176909A (en) * 2005-12-28 2007-07-12 Rich Beauty Science:Kk Production method for collagen and low molecular weight collagen
JP2009107854A (en) * 2007-10-26 2009-05-21 Rbs:Kk Method for manufacturing hydroxyapatite and hydroxyapatite
JP2009120449A (en) * 2007-11-16 2009-06-04 Amino Up Chemical Co Ltd Method for producing bioapatite, and method for separating substance having biological activity
JP2010143860A (en) * 2008-12-19 2010-07-01 Chisso Corp Protein stabilizer
JP2014088409A (en) * 2013-12-20 2014-05-15 Jnc Corp Protein stabilizer
JP2016011310A (en) * 2015-10-14 2016-01-21 Jnc株式会社 Protein stabilizer
CN108185403A (en) * 2017-12-27 2018-06-22 成都经典明胶有限公司 A kind of edible gelatin production technology
JP2019154281A (en) * 2018-03-09 2019-09-19 テーブルマーク株式会社 Seasoning composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160654A (en) * 2004-12-06 2006-06-22 Nitta Gelatin Inc Method for producing fish gelatin and fish gelatin
JP2007176909A (en) * 2005-12-28 2007-07-12 Rich Beauty Science:Kk Production method for collagen and low molecular weight collagen
JP2009107854A (en) * 2007-10-26 2009-05-21 Rbs:Kk Method for manufacturing hydroxyapatite and hydroxyapatite
JP2009120449A (en) * 2007-11-16 2009-06-04 Amino Up Chemical Co Ltd Method for producing bioapatite, and method for separating substance having biological activity
JP2010143860A (en) * 2008-12-19 2010-07-01 Chisso Corp Protein stabilizer
JP2014088409A (en) * 2013-12-20 2014-05-15 Jnc Corp Protein stabilizer
JP2016011310A (en) * 2015-10-14 2016-01-21 Jnc株式会社 Protein stabilizer
CN108185403A (en) * 2017-12-27 2018-06-22 成都经典明胶有限公司 A kind of edible gelatin production technology
JP2019154281A (en) * 2018-03-09 2019-09-19 テーブルマーク株式会社 Seasoning composition
JP7094730B2 (en) 2018-03-09 2022-07-04 テーブルマーク株式会社 Seasoning composition

Similar Documents

Publication Publication Date Title
JP6046779B2 (en) Rice protein composition and method for producing the same
CN101307348B (en) Method for preparing undenatured collagen from fish scale of fresh water fish
CN101147530A (en) Preparation technology of feed additive biologically active small peptide
CN102551111A (en) Preparation method for fish bone organic acid calcium peptide powder
CN105348411B (en) A method of preparing β-chitin using squid sector bone
JP4400039B2 (en) Method for producing fish scale-derived collagen peptide and calcium apatite
JP2004059568A (en) Method for producing gelatine and calcium apatite derived from fish scale
CN1119453A (en) Method for producing gelatin
CN107455441A (en) Method for producing minced fillet antifreeze agent by enzymolysis of silver carp by-product
CN1231146C (en) Process for preparing polypeptide bone powder
CN102726599B (en) Preparation process for novel bone meal
JPH05125100A (en) High-purity pepsin soluble scale collagen and its production
JP5336722B2 (en) A method for producing hydroxyapatite containing mineral components such as phosphorus, calcium, magnesium and sodium, and hydroxyapatite containing mineral components such as phosphorus, calcium, magnesium and sodium.
CN110810619A (en) Extraction process for extracting selenoprotein from soybeans
JPH0593000A (en) Production of high-purity fish scale collagen soluble in acid
RU2287959C2 (en) Method for producing of natural structurizers from fish wastes
JPH07170939A (en) Production of health enhancer
JPH05155900A (en) High-purity acid-insoluble fish scale collagen and its production
EP1635650A1 (en) Recovery of peptones
JP4698792B2 (en) Method for removing heavy metals from mushroom extract
RU2457689C2 (en) Method for production of amino acids mixture of wastes of processing raw materials of vegetable and animal origin
JP2010001262A (en) Functional composition and health maintenance food
JPH0212467B2 (en)
JP2009171903A (en) Granular granulated substance and method for producing the same
CN111995655B (en) Walnut protein isolate and preparation method thereof, phosphorylated walnut protein isolate and preparation method thereof, and food

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106