JP2011109072A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP2011109072A
JP2011109072A JP2010212217A JP2010212217A JP2011109072A JP 2011109072 A JP2011109072 A JP 2011109072A JP 2010212217 A JP2010212217 A JP 2010212217A JP 2010212217 A JP2010212217 A JP 2010212217A JP 2011109072 A JP2011109072 A JP 2011109072A
Authority
JP
Japan
Prior art keywords
solar cell
resin layer
cell module
filler
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010212217A
Other languages
Japanese (ja)
Other versions
JP5582936B2 (en
Inventor
Tatsuji Kanbara
達二 神原
Yoshiyuki Fujikawa
義之 藤川
Takahiro Kitano
貴寛 北野
Kenichiro Sumida
健一郎 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010212217A priority Critical patent/JP5582936B2/en
Publication of JP2011109072A publication Critical patent/JP2011109072A/en
Application granted granted Critical
Publication of JP5582936B2 publication Critical patent/JP5582936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/12Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using posts in combination with upper profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/30Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S2025/601Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules by bonding, e.g. by using adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell module in which there are reduced stresses such as a shearing stress applied between a solar cell device and a filler, a stress applied to a bonding interface of a backside filler and a back surface protection member, or the like, in order to reduce peeling, in a shearing stress generated between bonded members on the occurrence of deflection caused by external forces such as snow load or the like applied to the solar cell module, and a thermal stress caused by difference of a thermal expansion coefficient between the solar cell panel and supporting members. <P>SOLUTION: The solar cell module includes: a body 1A having solar cell devices, and a filler including a first filler located in a light receiving surface side of the solar cell devices, and a second filler located in a non-light receiving surface side, and holding the solar cell devices; supporting members 1B with a rod shape supporting the body from the non-light receiving surface side; and a resin layer arranged between the body and the supporting members. A value (G<SB>1</SB>/L<SB>1</SB>) is smaller than (G<SB>2</SB>/L<SB>2</SB>), wherein G<SB>1</SB>and L<SB>1</SB>are an elastic modulus and a thickness, of the resin layer, and G<SB>2</SB>and L<SB>2</SB>are an elastic modulus and a thickness, of the second filler, respectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽電池モジュールに関するものである。   The present invention relates to a solar cell module.

近年の環境保護の気運の高まりに伴い、環境負荷の少ない太陽電池モジュールが注目され、その普及拡大にあたり低コスト化が検討されている。   With the recent trend of environmental protection, solar cell modules with a low environmental load have been attracting attention, and cost reduction is being considered for their spread.

例えば、太陽電池モジュールにフレームがある場合でも、外周のフレームのみでは大型化した太陽電池モジュールの発電部の撓みを十分に支持できないという問題がある。   For example, even when the solar cell module has a frame, there is a problem that the flexure of the power generation unit of the enlarged solar cell module cannot be sufficiently supported only by the outer peripheral frame.

また、フレームレス(サッシレス)構造の太陽電池モジュールが提案されているが、フレームがない分だけ剛性が低いため架台に設置すると撓みやすく、太陽電池素子のクラックや透光性基板の割れなどが生じるおそれがあった。   In addition, a solar cell module having a frameless (sashless) structure has been proposed. However, since the rigidity is low due to the absence of the frame, it is easy to bend when installed on a pedestal, resulting in cracks in the solar cell element or a translucent substrate. There was a fear.

このため、太陽電池モジュールの強度向上が必要であり、太陽電池モジュールの中央を支持する支持部材を接着することが提案されている(例えば、特許文献1参照)。   For this reason, the intensity | strength improvement of a solar cell module is required, and adhering the support member which supports the center of a solar cell module is proposed (for example, refer patent document 1).

国際公開2006/121013号International Publication No. 2006/121013

しかしながら、上記従来技術によれば太陽電池モジュールに積雪荷重等の外力が加わり撓みが生じた際に生じる接着された部材間のせん断応力や、太陽電池パネルと支持部材との熱膨張率の違いより生じる熱応力について十分に考慮できておらず、太陽電池素子と充填材との間に加わるせん断応力や、裏面側充填材と裏面保護材との接着界面に加わる応力による剥離が発生する場合がある。   However, according to the above prior art, the external stress such as a snow load is applied to the solar cell module and the bending stress causes the shear stress between the bonded members and the difference in the thermal expansion coefficient between the solar cell panel and the support member. The generated thermal stress is not fully considered, and peeling may occur due to the shear stress applied between the solar cell element and the filler or the stress applied to the adhesive interface between the back side filler and the back surface protective material. .

また、フレームレスの太陽電池モジュールの場合に支持部材を接着する樹脂層の厚さを管理することについて十分に考慮されていなかったため、例えば、樹脂層の硬化中に支持部材の自重により接着剤が周囲にはみ出して薄くなるため、十分な強度が発揮できないおそれがあった。   In addition, in the case of a frameless solar cell module, since the thickness of the resin layer to which the support member is bonded has not been sufficiently considered, for example, the adhesive may be caused by the weight of the support member during the curing of the resin layer. Since it protrudes into the surrounding area and becomes thin, there is a possibility that sufficient strength cannot be exhibited.

また例えば、支持部材が傾いたまま樹脂層が硬化した場合は、風荷重や積雪荷重が加わったときに、支持部材から太陽電池モジュールの裏面に集中荷重が加わり、透光性基板や太陽電池素子を破損するおそれがあった。   Further, for example, when the resin layer is cured while the support member is tilted, when a wind load or a snow load is applied, a concentrated load is applied from the support member to the back surface of the solar cell module, so that the translucent substrate or the solar cell element There was a risk of damage.

また例えば、樹脂層の乾燥までスペーサーなどの治具を用いた場合は、樹脂層の養生後にスペーサーを取り外す必要があるため、タクトタイムが大きくなるという問題があった。   Further, for example, when a jig such as a spacer is used until the resin layer is dried, there is a problem that the tact time is increased because it is necessary to remove the spacer after curing the resin layer.

そこで本発明は、簡易な構造で接着強度とその信頼性に優れ、製造効率の高い太陽電池モジュールを提供することを目的としている。   Accordingly, an object of the present invention is to provide a solar cell module having a simple structure, excellent adhesive strength and reliability, and high manufacturing efficiency.

本発明の太陽電池モジュールによれば、太陽電池素子、ならびに該太陽電池素子の受光面側に位置する第1の充填材および非受光面側に位置する第2の充填材を有して前記太陽電池素子を挟持する充填材を有する本体部と、該本体部を前記非受光面側から支持する棒状の支持部材と、前記本体部と前記支持部材との間に配置される樹脂層と、を備え、該樹脂層の弾性係数をG、厚みをL、前記第2の充填材の弾性係数をG、厚みをLとしたとき、(G/L)<(G/L)である。 According to the solar cell module of the present invention, the solar cell module includes the solar cell element, the first filler located on the light receiving surface side of the solar cell element, and the second filler located on the non-light receiving surface side. A main body having a filler for sandwiching the battery element; a rod-like support member for supporting the main body from the non-light-receiving surface side; and a resin layer disposed between the main body and the support member. Provided that the elastic modulus of the resin layer is G 1 , the thickness is L 1 , the elastic modulus of the second filler is G 2 , and the thickness is L 2 , (G 1 / L 1 ) <(G 2 / L 2 ).

本発明の太陽電池モジュールによれば、支持部材を設けた場合であっても、支持部材を接着したことにより生じるせん断応力を低減して、太陽電池素子と裏側充填材との界面や、裏面側充填材と裏面保護材との界面について、剥離を低減することができる。   According to the solar cell module of the present invention, even when the support member is provided, the shear stress generated by adhering the support member is reduced, and the interface between the solar cell element and the back side filler or the back side Peeling can be reduced at the interface between the filler and the back surface protective material.

また治具を用いることなく樹脂層を所望の厚さに管理することができ、接着強度およびその信頼性が高い太陽電池モジュールを高い製造効率で得ることができる。   Further, the resin layer can be managed to a desired thickness without using a jig, and a solar cell module having high adhesive strength and reliability can be obtained with high manufacturing efficiency.

太陽電池モジュールを示す図であり、(a)は太陽電池モジュールを裏面側から見た斜視図、(b)は図1(a)のA−A’線における断面図、(c)は図1(a)のB−B’線における断面図である。It is a figure which shows a solar cell module, (a) is the perspective view which looked at the solar cell module from the back side, (b) is sectional drawing in the AA 'line of Fig.1 (a), (c) is FIG. It is sectional drawing in the BB 'line | wire of (a). 太陽電池モジュールの製造工程を示す図面であり、(a)は支持部材の取り付け前の斜視図、(b)は支持部材の取り付け後の斜視図である。It is drawing which shows the manufacturing process of a solar cell module, (a) is a perspective view before attachment of a supporting member, (b) is a perspective view after attachment of a supporting member. 太陽電池モジュールを架台に設置した状態を示す斜視図であり、(a)は受光面側からの斜視図、(b)は非受光面側からの斜視図である。It is a perspective view which shows the state which installed the solar cell module in the mount frame, (a) is a perspective view from the light-receiving surface side, (b) is a perspective view from the non-light-receiving surface side. 太陽電池モジュールの他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of a solar cell module. 太陽電池モジュールに撓みが生じた状態を拡大して示す断面図である。It is sectional drawing which expands and shows the state which the bending produced in the solar cell module. せん断応力の説明図である。It is explanatory drawing of a shear stress.

以下、本発明の第1の実施形態に係る太陽電池モジュールについて、添付図面を参照しながら説明する。   Hereinafter, a solar cell module according to a first embodiment of the present invention will be described with reference to the accompanying drawings.

太陽電池モジュールは、太陽電池素子、ならびに該太陽電池素子の受光面側に位置する第1の充填材および非受光面側に位置する第2の充填材を有して前記太陽電池素子を挟持する充填材を有する本体部と、該本体部を前記非受光面側から支持する棒状の支持部材と、前記本体部と前記支持部材との間に配置される樹脂層と、を備え、該樹脂層の弾性係数をG、厚みをL、前記第2の充填材の弾性係数をG、厚みをLとしたとき、(G/L)<(G/L)である。 The solar cell module has a solar cell element, a first filler located on the light receiving surface side of the solar cell element, and a second filler located on the non-light receiving surface side, and sandwiches the solar cell element. A main body portion having a filler, a rod-like support member that supports the main body portion from the non-light-receiving surface side, and a resin layer disposed between the main body portion and the support member. the elastic modulus G 1 in the thickness L 1, when the elastic modulus of the second filler and G 2, the thickness and L 2, are (G 1 / L 1) < (G 2 / L 2) .

例えば図5に示すように、太陽電池モジュール1に積雪荷重が加わると、太陽電池モジュール1に撓みが生じ、中立軸より外側では引張応力が生じ、内側では圧縮応力が生じる。このような圧縮応力や引張応力は、太陽電池モジュール1の積層間を剥離しようとする力となる。また太陽電池モジュール1が撓んで形状が変化することから、弧の内側では圧縮歪が生じ、外側では引張歪が生じる。   For example, as shown in FIG. 5, when a snow load is applied to the solar cell module 1, the solar cell module 1 bends, tensile stress is generated outside the neutral axis, and compressive stress is generated inside. Such compressive stress or tensile stress is a force for peeling between the stacked solar cell modules 1. Moreover, since the solar cell module 1 bends and changes its shape, compressive strain is generated inside the arc, and tensile strain is generated outside.

ガラスからなる透光性基板4やアルミニウムからなる支持部材1Bの部分は、歪にくいことから、歪による変形量を積層間のいずれかの箇所で吸収する必要がある。特に支持部材1Bは、太陽電池モジュールの裏面に部分的に接着されていることから、その接着部付近に応力集中が生じやすいため、裏面保護材5と裏面側充填材6aの層間や、裏面側充填材6aと太陽電池素子2の層間の剥離を低減するために、応力緩和できる構成にすることが必要である。   Since the translucent substrate 4 made of glass and the support member 1B made of aluminum are not easily distorted, it is necessary to absorb the deformation due to the distortion at any point between the layers. In particular, since the support member 1B is partially bonded to the back surface of the solar cell module, stress concentration is likely to occur in the vicinity of the bonded portion, and therefore, the interlayer between the back surface protective material 5 and the back surface side filler 6a or the back surface side. In order to reduce the peeling between the filler 6a and the solar cell element 2, it is necessary to have a configuration capable of relaxing the stress.

そこで本発明は、樹脂層8が裏面側充填材6aよりも低い応力で高い変形量を示し、前記応力を吸収して、剥離を低減できるようにしたものである。具体的には、樹脂層8と裏面側充填材6aに同じ歪が加わったときに、樹脂層8の歪が大きくなるようにして、裏面側充填材6aへの応力を緩和したものである。   Therefore, in the present invention, the resin layer 8 exhibits a high deformation amount with a stress lower than that of the back surface side filler 6a, and absorbs the stress to reduce peeling. Specifically, when the same strain is applied to the resin layer 8 and the back surface side filler 6a, the stress on the back surface side filler 6a is reduced by increasing the strain of the resin layer 8.

詳細に説明すると、図6に示すように、せん断応力τが加わったときに、弾性係数Gで厚みがLの部材にδの歪が生じ、τ=G(δ/L)の関係が成り立つ。   More specifically, as shown in FIG. 6, when a shear stress τ is applied, a strain of δ is generated in a member having an elastic modulus G and a thickness of L, and a relationship of τ = G (δ / L) is established.

以下、τはせん断応力、Gは弾性係数、γはせん断歪、δはせん断方向の変形量、Lは厚みとして説明する。   Hereinafter, τ is a shear stress, G is an elastic coefficient, γ is a shear strain, δ is a deformation amount in the shear direction, and L is a thickness.

樹脂層8を軟らかくして厚くし、樹脂層8の弾性係数をG、厚みをLとし、裏側充填材6aの弾性係数をG、厚みをLと表し、その関係が(G/L)<(G/L)となるようにすることで、支持部材1B側で生じた応力を大幅に緩和することができる。 The resin layer 8 is softened and thickened, the elastic coefficient of the resin layer 8 is G 1 , the thickness is L 1 , the elastic coefficient of the back side filler 6 a is G 2 , and the thickness is L 2, and the relationship is (G 1 By making / L 1 ) <(G 2 / L 2 ), the stress generated on the support member 1 B side can be relieved significantly.

代数式τ=Gγ=G(δ/L)を用いて説明すると、裏面保護材5の位置で共通の歪(伸縮)があるとした時、τ=G・δ/Lからδ=τ/(G/L)、τ=G・δ/Lからδ=τ/(G/L)が導かれる。 To explain using the algebraic expression τ = Gγ = G (δ / L), assuming that there is a common strain (expansion / contraction) at the position of the back surface protective material 5, τ = G 1 · δ 1 / L 1 to δ 1 = From τ / (G 1 / L 1 ), τ = G 2 · δ 2 / L 2 , δ 2 = τ / (G 2 / L 2 ) is derived.

この時(G/L)<(G/L)ならば、δ>δとなり、樹脂層8が低い応力で大きく変形することになるので、接着界面におけるせん断応力が低減されるとともに、裏面側充填材6aのせん断応力も低減される。 If (G 1 / L 1 ) <(G 2 / L 2 ) at this time, δ 1 > δ 2 and the resin layer 8 is greatly deformed with a low stress, so that the shear stress at the bonding interface is reduced. In addition, the shear stress of the back surface side filler 6a is also reduced.

すなわち、樹脂層8側の変形量が大きくなるようにしたことで、樹脂層8側に応力が誘導され、裏面側充填材6aを保護することができる。   That is, since the deformation amount on the resin layer 8 side is increased, stress is induced on the resin layer 8 side, and the back surface side filler 6a can be protected.

これにより支持部材1Bや裏面保護材5に生じる歪を吸収して裏面側充填材6aと太陽電池素子2との界面や、裏面側充填材6aと裏側保護材5との界面などに加わるせん断応力を低減して、積層間の剥離を低減することができる。   As a result, the shear stress applied to the interface between the back-side filler 6a and the solar cell element 2 or the interface between the back-side filler 6a and the back-side protective material 5 by absorbing strain generated in the support member 1B and the back-side protective material 5 Can be reduced, and peeling between the layers can be reduced.

さらに、太陽電池モジュールは前記樹脂層はシリコーン系接着剤、イソシアネート系接着剤、エポキシ樹脂系接着剤、エチレンプロピレンジエンゴム、およびポリウレタンの少なくとも1種からなる。   Furthermore, in the solar cell module, the resin layer is made of at least one of a silicone adhesive, an isocyanate adhesive, an epoxy resin adhesive, ethylene propylene diene rubber, and polyurethane.

例えば、裏面側充填材6aであるEVAの弾性係数を6MPa、厚さLを0.8mm、樹脂層8を弾性係数18MPaのシリコーン系接着剤とした場合、(G/L)<(G/L)を満たすには、樹脂層8の厚みを2.4mmより大きくするとよい。これにより樹脂層8のせん断変形を大きくして、層間剥離を低減することができる。 For example, when the elastic modulus of EVA which is the back surface side filler 6a is 6 MPa, the thickness L is 0.8 mm, and the resin layer 8 is a silicone adhesive having an elastic modulus of 18 MPa, (G 1 / L 1 ) <(G 2 / L 2 ), the thickness of the resin layer 8 is preferably larger than 2.4 mm. Thereby, the shear deformation of the resin layer 8 can be increased, and delamination can be reduced.

太陽電池モジュール1は、図1(a)および(b)に示すように、太陽電池素子2を含む本体部1Aと、本体部1Aの非受光面側から支持する棒状の支持部材1Bとを備え、支持部材1Bと前記非受光面との間には樹脂層8が形成されており、樹脂層8は、第1の樹脂層8aと、該第1の樹脂層8aに比べて弾性係数が小さい第2の樹脂層8bとが前記支持部材1Bに沿って交互に配置されているものである。   As shown in FIGS. 1A and 1B, the solar cell module 1 includes a main body 1A including the solar cell element 2 and a rod-shaped support member 1B that is supported from the non-light-receiving surface side of the main body 1A. The resin layer 8 is formed between the support member 1B and the non-light-receiving surface, and the resin layer 8 has a smaller elastic coefficient than the first resin layer 8a and the first resin layer 8a. The second resin layers 8b are alternately arranged along the support member 1B.

ここで、第2の樹脂層8bはスペーサーとして、第1の樹脂層8aは接着剤として働くものである。   Here, the second resin layer 8b functions as a spacer, and the first resin layer 8a functions as an adhesive.

これにより第2の樹脂層8bがスペーサーとして働いて、硬化中の第1の樹脂層8aの厚みを維持するので、別途治具を用いることなく第1の樹脂層8aを所望の厚さに管理することができる。   As a result, the second resin layer 8b acts as a spacer to maintain the thickness of the first resin layer 8a being cured, so that the first resin layer 8a is managed to a desired thickness without using a separate jig. can do.

そして、第1の樹脂層8aの厚みが均一であるので、太陽電池モジュール1と支持部材1Bとの間に局所的な応力が発生しないので、信頼性が高い太陽電池モジュール1を高い製造効率で得ることができる。   And since the thickness of the 1st resin layer 8a is uniform, since a local stress does not generate | occur | produce between the solar cell module 1 and the supporting member 1B, the highly reliable solar cell module 1 is produced with high manufacturing efficiency. Obtainable.

本体部1Aは、図1(b)に示すように、複数の太陽電池素子2がインナーリード3で電気的に接続された集合体を有している。   As shown in FIG. 1B, the main body 1 </ b> A has an aggregate in which a plurality of solar cell elements 2 are electrically connected by inner leads 3.

そして、この集合体は、透光性基板4と、太陽電池素子2の裏面を保護する裏面保護材5との間に配され、さらに、充填材6で封入されている。   The aggregate is disposed between the translucent substrate 4 and the back surface protective material 5 that protects the back surface of the solar cell element 2, and is further sealed with a filler 6.

加えて、本体部1Aは、裏面保護材5の太陽電池素子2と対向する面の裏面側に端子ボックス7と支持部材1Bが配置される。   In addition, in the main body 1A, the terminal box 7 and the support member 1B are disposed on the back surface side of the surface of the back surface protection material 5 that faces the solar cell element 2.

太陽電池素子2は、光電変換の機能を有するものであり、例えば、単結晶シリコーン、多結晶シリコーン、アモルファスシリコーン等の薄膜、CIGS、CdTe等の材料で形成される。   The solar cell element 2 has a photoelectric conversion function, and is formed of, for example, a thin film such as single crystal silicone, polycrystalline silicone, or amorphous silicone, or a material such as CIGS or CdTe.

太陽電池素子2は、例えば単結晶シリコーンや多結晶シリコーンで形成する場合、15cm角程度の大きさにしたシリコーン基板の表面及び裏面に電極が形成されている。   For example, when the solar cell element 2 is formed of single crystal silicone or polycrystalline silicone, electrodes are formed on the front and back surfaces of a silicone substrate having a size of about 15 cm square.

そして、このシリコーン基板は、略一直線上に配列されており、隣接する一方のシリコーン基板の表面の電極と、他方のシリコーン基板の裏面の電極と、がインナーリード3を用いて電気的に接続されている。   The silicone substrates are arranged in a substantially straight line, and the electrodes on the surface of one adjacent silicone substrate and the electrodes on the back surface of the other silicone substrate are electrically connected using the inner leads 3. ing.

インナーリード3は、上述したように、隣接する太陽電池素子2同士を電気的に接続するものであり、例えば、半田で被覆した銅箔を用いることができる。   As described above, the inner lead 3 is for electrically connecting adjacent solar cell elements 2 to each other. For example, a copper foil covered with solder can be used.

透光性基板4は、太陽電池素子2へ光を入射させることができる部材であれば特に限定されないが、例えば、白板ガラス、強化ガラス、倍強化ガラス、熱線反射ガラスなどのガラスやポリカーボネート樹脂などからなる光透過率の高い基板を用いればよい。   The translucent substrate 4 is not particularly limited as long as it is a member that allows light to enter the solar cell element 2. For example, glass such as white plate glass, tempered glass, double tempered glass, and heat ray reflective glass, polycarbonate resin, and the like A substrate having a high light transmittance may be used.

厚みとしては、例えば厚さ3mm〜5mm程度の白板強化ガラス、厚さ5mm程度の合成樹脂基板(ポリカーボネート樹脂などからなる)を用いることが好ましい。   As the thickness, it is preferable to use, for example, white plate tempered glass having a thickness of about 3 mm to 5 mm and a synthetic resin substrate (made of polycarbonate resin or the like) having a thickness of about 5 mm.

裏面保護材5は、充填材6や太陽電池素子2を保護する機能を有し、この裏面保護材5には、例えば、PVF(ポリビニルフルオライド)、PET(ポリエチレンテレフタレート)PEN(ポリエチレンナフタレート)ガラス基板、或いはこれらを積層したものを用いることができる。   The back surface protective material 5 has a function of protecting the filler 6 and the solar cell element 2. For example, the back surface protective material 5 includes PVF (polyvinyl fluoride), PET (polyethylene terephthalate), PEN (polyethylene naphthalate). A glass substrate or a laminate of these can be used.

充填材6は、太陽電池素子2を封止する機能を有し、この充填材6には、例えば、EVA(エチレン酢酸ビニル共重合体)やPVB(ポリビニルブチラール)を主成分とし、Tダイと押出し機により厚さ0.4〜1mm程度のシート状に成形されたものを所定の寸法に切断して用いる。   The filler 6 has a function of sealing the solar cell element 2, and the filler 6 has, for example, EVA (ethylene vinyl acetate copolymer) or PVB (polyvinyl butyral) as a main component, What is formed into a sheet having a thickness of about 0.4 to 1 mm by an extruder is cut into a predetermined size and used.

この充填材6には架橋剤が含有され、EVAなどの分子間を結合させる役割を有するものであり、例えば、70〜180℃の温度で分解してラジカルを発生する有機過酸化物を用いることができる。有機過酸化物としては、例えば、2、5−ジメチル−2、5−ビス(t−ブチルパーオキシ)ヘキサンやtert−ヘキシルパーオキシピバレートなどが挙げられ、EVA100質量部に対し1質量部程度の割合で含有させることが好ましい。充填材6は、上述のEVA以外に、熱硬化性樹脂もしくは、熱可塑性樹脂に架橋剤を含有して熱硬化の特性を持たせた樹脂であれば好適に利用可能であり、例えばアクリル樹脂、シリコーン樹脂、エポキシ樹脂やEEA(エチレン−アクリル酸エチル共重合体)などを利用可能である。   This filler 6 contains a crosslinking agent and has a role of bonding between molecules such as EVA, and for example, an organic peroxide that decomposes at a temperature of 70 to 180 ° C. to generate radicals is used. Can do. Examples of the organic peroxide include 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane and tert-hexylperoxypivalate, and about 1 part by mass with respect to 100 parts by mass of EVA. It is preferable to make it contain in the ratio. In addition to the above-mentioned EVA, the filler 6 can be suitably used as long as it is a thermosetting resin or a resin having a thermosetting property by containing a crosslinking agent in a thermoplastic resin. For example, an acrylic resin, Silicone resin, epoxy resin, EEA (ethylene-ethyl acrylate copolymer), and the like can be used.

図1(c)に示すように、支持部材1Bの長手方向に沿って第2の樹脂層8bが2箇所以上貼付され、その第2の樹脂層8b間で第1の樹脂層8aにより支持部材1Bと裏面保護材5を接着してなる。なお第2の樹脂層8bは、支持部材1Bと裏面保護材5のいずれに貼付してもよい。   As shown in FIG.1 (c), two or more 2nd resin layers 8b are affixed along the longitudinal direction of the supporting member 1B, and a supporting member is carried out by the 1st resin layer 8a between the 2nd resin layers 8b. 1B and the back surface protective material 5 are adhere | attached. The second resin layer 8b may be attached to either the support member 1B or the back surface protective material 5.

支持部材1Bは、ステンレス鋼や溶融亜鉛メッキ鋼板、アルミニウムなどよりなり、図1(b)に示す溝形の断面以外に、山形やI型、H型、Z型の断面の長尺の部材を用いることができる。   The support member 1B is made of stainless steel, hot dip galvanized steel plate, aluminum, or the like. In addition to the groove-shaped cross section shown in FIG. Can be used.

さらに、支持部材1Bに溝型断面の部材を用いた場合、図1(a)に示すように開口部を外側に向けることで持ちやすくすることができる。   Furthermore, when a groove-shaped cross-section member is used as the support member 1B, it can be easily held by turning the opening portion outward as shown in FIG.

なお、支持部材1Bは2本に限られるものではなく、太陽電池モジュール1の大きさに合せて3本以上を用いてもよい。   Note that the number of supporting members 1B is not limited to two, and three or more supporting members 1B may be used according to the size of the solar cell module 1.

さらに、本発明の各実施形態に係る太陽電池モジュールによれば、前記第1の樹脂層8aは弾性接着剤からなることが好ましい。   Furthermore, according to the solar cell module according to each embodiment of the present invention, the first resin layer 8a is preferably made of an elastic adhesive.

ここで、弾性接着剤とは、硬化後にゴム状弾性を有する接着剤と定義される。   Here, the elastic adhesive is defined as an adhesive having rubber-like elasticity after curing.

接着剤には、弾性系や瞬間系、ホットメルト系など様々あるが、風荷重や積雪荷重で透光性基板4が大きく撓みやすいことや、透光性基板2と支持部材1Bの熱膨張率の差などから、第1の樹脂層8aや、第1の樹脂層8aと被着剤層(裏面保護材5)との界面に大きなせん断荷重が加わりやすいことに鑑みて、弾性系の弾性接着剤を用いることが好ましい。   There are various types of adhesives such as an elastic system, an instantaneous system, and a hot melt system. However, the translucent substrate 4 is easily bent due to wind load or snow load, and the thermal expansion coefficient between the translucent substrate 2 and the support member 1B. In view of the difference between the first resin layer 8a and the interface between the first resin layer 8a and the adherend layer (back surface protective material 5), it is easy to apply a large shear load. It is preferable to use an agent.

特に弾性接着剤は硬化後にゴム状弾性体となることから、変形により熱応力や外力を吸収して、第1の樹脂層8aと裏面保護材5の間の接着の界面の破壊(接着破壊)や、裏面保護材の破壊(基材破壊)を低減することができる点で好ましい。   In particular, since the elastic adhesive becomes a rubber-like elastic body after being cured, it absorbs thermal stress and external force by deformation, and destroys the adhesion interface between the first resin layer 8a and the back surface protective material 5 (adhesion failure). And it is preferable at the point which can reduce destruction (base material destruction) of a back surface protection material.

弾性接着剤を用いた場合、応力を吸収するための変形の余地が必要であり、第1の樹脂層8aの厚みを管理しなくてはならない。例えば、太陽電池モジュール1が約1.5m×1mで透光性基板4に約3mmの強化ガラスを用いた場合は、第2の樹脂層8bを約1.5mm〜4mm、第1の樹脂層8aを約1.5mm〜4mmにするとよい。   When an elastic adhesive is used, there is a need for deformation to absorb stress, and the thickness of the first resin layer 8a must be managed. For example, when the solar cell module 1 is about 1.5 m × 1 m and about 3 mm of tempered glass is used for the translucent substrate 4, the second resin layer 8 b is about 1.5 mm to 4 mm, and the first resin layer 8a may be about 1.5 mm to 4 mm.

また、前記第1の樹脂層8aはシリコーン系接着剤、イソシアネート系接着剤および、エポキシ樹脂系接着剤のいずれか1種からなることが好ましい。   The first resin layer 8a is preferably made of any one of a silicone-based adhesive, an isocyanate-based adhesive, and an epoxy resin-based adhesive.

第1の樹脂層8aは、樹脂と金属を接着可能で耐候性や耐水性、耐湿性に優れた接着剤が好ましく、例えばシリコーン系接着剤やウレタン樹脂系接着剤、エポキシ樹脂系接着剤を用いることができる。   The first resin layer 8a is preferably an adhesive capable of bonding a resin and a metal and having excellent weather resistance, water resistance, and moisture resistance. For example, a silicone adhesive, a urethane resin adhesive, or an epoxy resin adhesive is used. be able to.

これらの接着剤を第1の樹脂層8aとして用いることにより、硬化後の接着剤が柔軟なゴム弾性を示すことから、変形の追従性に優れ、外的な振動や衝撃や剥離に耐える太陽電池モジュールとすることができる。   By using these adhesives as the first resin layer 8a, the cured adhesive exhibits flexible rubber elasticity. Therefore, the solar cell has excellent deformation followability and can withstand external vibration, impact, and peeling. It can be a module.

第2の樹脂層8bは耐候性と耐久性に優れた材質が好適であり、エチレンプロピレンジエンゴムおよびポリウレタンのいずれか1種を用いることができる。   The second resin layer 8b is preferably made of a material excellent in weather resistance and durability, and any one of ethylene propylene diene rubber and polyurethane can be used.

さらに、太陽電池モジュール1によれば、前記支持部材は前記本体部の外縁部以外に配置されていることが好ましい。   Furthermore, according to the solar cell module 1, it is preferable that the support member is disposed other than the outer edge portion of the main body portion.

これにより、太陽電池モジュール(本体部)の外縁部1aと、支持部材8との間で荷重により発生する応力を回避できるので、太陽電池モジュール1の外縁部1aでのひびやクラックを低減できる。   Thereby, since the stress which generate | occur | produces with a load between the outer edge part 1a of a solar cell module (main-body part) and the support member 8 can be avoided, the crack and crack in the outer edge part 1a of the solar cell module 1 can be reduced.

さらに、太陽電池モジュール1によれば、前記支持部材は前記本体部の外縁部に沿って配置されていることが好ましい。   Furthermore, according to the solar cell module 1, it is preferable that the support member is disposed along an outer edge portion of the main body portion.

ここで支持部材1Bは外縁部1aの直上に配置された状態のものではなく、より内側に配置された状態である。   Here, the support member 1B is not in a state of being disposed immediately above the outer edge portion 1a, but in a state of being disposed further inside.

これにより、太陽電池モジュール(本体部)の外縁部1aに対する支持部材1Bからの応力が均一になるので、太陽電池モジュール(本体部)の外縁部1aでのひびやクラックを低減できる。   Thereby, since the stress from the support member 1B with respect to the outer edge part 1a of a solar cell module (main-body part) becomes uniform, the crack and crack in the outer edge part 1a of a solar cell module (main-body part) can be reduced.

図1(a)に示すように第1の樹脂層8aを裏面保護材5の外縁部1aより距離をあけて配置することで、太陽電池モジュールに風荷重や積雪荷重が加わり撓んだ際に、裏面保護材5の端部が支持部材1Bとの応力で剥離することを低減し、裏面保護材5の剥離を抑制することができる。   As shown in FIG. 1A, when the first resin layer 8a is arranged at a distance from the outer edge portion 1a of the back surface protective material 5, the solar cell module is bent due to wind load or snow load. It can reduce that the edge part of back surface protection material 5 peels with the stress with support member 1B, and can control peeling of back surface protection material 5.

次に、図4に示すように太陽電池モジュールは、前記支持部材の両端が前記本体部の外縁部よりも外側に突出していることが好ましい。   Next, as shown in FIG. 4, in the solar cell module, it is preferable that both ends of the support member protrude outward from the outer edge of the main body.

この場合、太陽電池モジュールの外縁部1aと、支持部材1Bとの間での接着はなく、隙間がある状態である。   In this case, there is no adhesion between the outer edge 1a of the solar cell module and the support member 1B, and there is a gap.

本実施形態では、支持部材1Bが裏面保護材5の外縁部1aより突出する長さを有する点で第1の実施形態と相違する。   This embodiment is different from the first embodiment in that the support member 1B has a length that protrudes from the outer edge portion 1a of the back surface protective material 5.

本実施形態において、支持部材1Bが突出していることにより、設置する際の荷役時に壁などに立てかけて置いた際に、支持部材1Bが地面につくことで、裏面保護材5や透光性基板4の外縁部1aが接地しないことから、裏面保護材5が剥離するなどの損傷を低減することができる。   In this embodiment, when the support member 1B protrudes, when the support member 1B is placed against a wall or the like during loading, the support member 1B is attached to the ground, so that the back surface protective material 5 and the translucent substrate Since the outer edge part 1a of 4 is not grounded, damage such as peeling of the back surface protective material 5 can be reduced.

<本発明の接着工程>
以下、図2を用いて、支持部材1Bと裏面保護材5とを接着する工程を説明する。
<Adhesion process of the present invention>
Hereinafter, the process of bonding the supporting member 1B and the back surface protective material 5 will be described with reference to FIG.

まず図2(a)に示すように裏面保護材5の表面に、第1の樹脂層8aを線状に塗布する。このとき第1の樹脂層8aと支持部材1Bの界面に気泡が残留しないように、第1の樹脂層8aを山形に盛って塗布すると良い。   First, as shown in FIG. 2 (a), the first resin layer 8a is linearly applied to the surface of the back surface protective material 5. At this time, the first resin layer 8a is preferably applied in a mountain shape so that bubbles do not remain at the interface between the first resin layer 8a and the support member 1B.

次に図2(b)に示すように第2の樹脂層8bを貼付した支持部材1Bを、第1の樹脂層8aの上に載置する。このとき前述の山状に持った接着剤が、頂上から徐々に潰されることから気泡が残りにくい。そして、第2の樹脂層8bの弾性と第1の樹脂層8aの粘性で支持部材1Bを支持しつつ、第1の樹脂層8aを乾燥する。   Next, as shown in FIG. 2B, the support member 1B to which the second resin layer 8b is attached is placed on the first resin layer 8a. At this time, since the adhesive having the above-described mountain shape is gradually crushed from the top, bubbles are hardly left. Then, the first resin layer 8a is dried while supporting the support member 1B with the elasticity of the second resin layer 8b and the viscosity of the first resin layer 8a.

本実施形態に示す構造とすることにより、第1の樹脂層8aの硬化までの間、第2の樹脂層8bがスペーサーとして機能し、支持部材1Bと裏面保護材5の間に距離を保ち、支持部材1Bの自重で第1の樹脂層8aが周囲にはみ出すことがなく、第1の樹脂層8aを所望の厚さで乾燥して硬化することができる。   By adopting the structure shown in the present embodiment, until the first resin layer 8a is cured, the second resin layer 8b functions as a spacer, keeping a distance between the support member 1B and the back surface protective material 5, The first resin layer 8a does not protrude to the surroundings due to the weight of the support member 1B, and the first resin layer 8a can be dried and cured at a desired thickness.

また第2の樹脂層8bは製造治具のように取り除く必要がないので、次工程にそのまま移すことができることにより、仕掛の状態がなくなり、タクトタイムを短縮することができる。   Further, since it is not necessary to remove the second resin layer 8b as in the manufacturing jig, it can be transferred to the next process as it is, so that the in-process state is eliminated and the tact time can be shortened.

特にフレームレス構造の太陽電池モジュール1の場合、支持部材1Bをフレーム等に固定することができないため、第2の樹脂層8bを用いて第1の樹脂層8aの厚みを保持しつつ乾燥する本発明が有効である。   In particular, in the case of the solar cell module 1 having a frameless structure, since the support member 1B cannot be fixed to a frame or the like, the book is dried using the second resin layer 8b while maintaining the thickness of the first resin layer 8a. The invention is effective.

また所望の厚さの第1の樹脂層8aは変形により、せん断応力や圧縮応力を吸収し、第1の樹脂層8aと裏面保護材5の接着の境界面が破壊する界面破壊や、裏面保護材5が破壊する構造体破壊を抑制することができる。特に前述の弾性接着剤を用いた場合、有効である。   In addition, the first resin layer 8a having a desired thickness absorbs shearing stress and compressive stress due to deformation, and causes interfacial destruction that breaks the interface between the first resin layer 8a and the back surface protective material 5, and back surface protection. Structure destruction that the material 5 breaks can be suppressed. This is particularly effective when the above-mentioned elastic adhesive is used.

さらに第2の樹脂層8bを設けたことにより、支持部材1Bが傾いて接着されることがない。これにより支持部材1Bから透光性基板2に集中荷重が加わり、透光性基板2が破壊するのを低減することができる。   Furthermore, by providing the second resin layer 8b, the support member 1B is not inclined and bonded. Thereby, a concentrated load is applied from the support member 1 </ b> B to the translucent substrate 2, and it is possible to reduce the destruction of the translucent substrate 2.

さらに、前記第1の樹脂層は前記太陽電池モジュールの外縁部よりも内側に配置されることが好ましい。   Furthermore, it is preferable that the first resin layer is disposed inside the outer edge portion of the solar cell module.

これにより外縁部1aでの応力による割れを低減することができる。   Thereby, the crack by the stress in the outer edge part 1a can be reduced.

以下で図3を用いて、太陽電池モジュール1を架台10に設置した一例を説明する。   Hereinafter, an example in which the solar cell module 1 is installed on the mount 10 will be described with reference to FIG.

架台10は、ステンレス鋼や溶融亜鉛メッキ鋼板の溝型や山型、I型、H型、角パイプなどの構造材よりなる。そして、太陽電池モジュール1が、支持部材1Bで架台10にボルトやナットで締結して固定される。   The gantry 10 is made of a structural material such as a groove shape, a mountain shape, an I shape, an H shape, or a square pipe made of stainless steel or hot dip galvanized steel plate. Then, the solar cell module 1 is fastened and fixed to the gantry 10 with bolts and nuts by the support member 1B.

1:太陽電池モジュール
1A:本体部
1a:外縁部
1B:支持部材
2:太陽電池素子
3:インナーリード
4:透光性基板
5:裏面保護材
6:充填材
6a:裏面側充填層
6b:表面側充填層
7:端子ボックス
8a:第1の樹脂層
8b:第2の樹脂層
10:架台
DESCRIPTION OF SYMBOLS 1: Solar cell module 1A: Main-body part 1a: Outer edge part 1B: Support member 2: Solar cell element 3: Inner lead 4: Translucent substrate 5: Back surface protective material 6: Filler 6a: Back surface side filling layer 6b: Surface Side filling layer 7: terminal box 8a: first resin layer 8b: second resin layer 10: mount

Claims (10)

太陽電池素子、ならびに該太陽電池素子の受光面側に位置する第1の充填材および非受光面側に位置する第2の充填材を有して前記太陽電池素子を挟持する充填材を有する本体部と、
該本体部を前記非受光面側から支持する棒状の支持部材と、
前記本体部と前記支持部材との間に配置される樹脂層と、を備え、
該樹脂層の弾性係数をG、厚みをL、前記第2の充填材の弾性係数をG、厚みをLとしたとき、
(G/L)<(G/L
である太陽電池モジュール。
A main body having a solar cell element and a filler that sandwiches the solar cell element with a first filler located on the light-receiving surface side of the solar cell element and a second filler located on the non-light-receiving surface side And
A rod-like support member that supports the main body from the non-light-receiving surface side;
A resin layer disposed between the main body and the support member,
When the elastic modulus of the resin layer is G 1 , the thickness is L 1 , the elastic modulus of the second filler is G 2 , and the thickness is L 2 ,
(G 1 / L 1) < (G 2 / L 2)
Is a solar cell module.
前記樹脂層は、シリコーン系接着剤、イソシアネート系接着剤、エポキシ樹脂系接着剤、エチレンプロピレンジエンゴムおよびポリウレタンの少なくとも1種からなる請求項1に記載の太陽電池モジュール。   2. The solar cell module according to claim 1, wherein the resin layer is made of at least one of a silicone-based adhesive, an isocyanate-based adhesive, an epoxy resin-based adhesive, ethylene propylene diene rubber, and polyurethane. 前記樹脂層は、第1の樹脂層と、該第1の樹脂層に比べて弾性係数が小さい第2の樹脂層とが前記支持部材に沿って交互に配置されている請求項1または2に記載の太陽電池モジュール。   3. The resin layer according to claim 1, wherein the first resin layer and the second resin layer having a smaller elastic coefficient than the first resin layer are alternately arranged along the support member. The solar cell module described. 前記支持部材は、前記本体部の外縁部以外に配置されている請求項1から3のいずれかに記載の太陽電池モジュール。   The solar cell module according to any one of claims 1 to 3, wherein the support member is disposed at a portion other than an outer edge portion of the main body portion. 前記支持部材は、前記本体部の外縁部に沿って配置されている請求項1から3のいずれかに記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the support member is disposed along an outer edge portion of the main body portion. 前記支持部材の両端が前記本体部の外縁部よりも外側に突出している請求項1から3のいずれかに記載の太陽電池モジュール。   The solar cell module according to any one of claims 1 to 3, wherein both ends of the support member protrude outward from the outer edge of the main body. 前記第1の樹脂層は弾性接着剤からなる請求項3から6のいずれかに記載の太陽電池モジュール。   The solar cell module according to claim 3, wherein the first resin layer is made of an elastic adhesive. 前記第1の樹脂層は前記太陽電池モジュールの外縁部よりも内側に配置される請求項3から7のいずれかに記載の太陽電池モジュール。   The solar cell module according to any one of claims 3 to 7, wherein the first resin layer is disposed inside an outer edge portion of the solar cell module. 前記第1の樹脂層は、シリコーン系接着剤、イソシアネート系接着剤およびエポキシ樹脂系接着剤のいずれか1種からなる請求項3から8のいずれかに記載の太陽電池モジュール。   The solar cell module according to any one of claims 3 to 8, wherein the first resin layer is made of any one of a silicone adhesive, an isocyanate adhesive, and an epoxy resin adhesive. 前記第2の樹脂層は、エチレンプロピレンジエンゴムおよびポリウレタンのいずれか1種からなる請求項3から9のいずれかに記載の太陽電池モジュール。   The solar cell module according to any one of claims 3 to 9, wherein the second resin layer is made of any one of ethylene propylene diene rubber and polyurethane.
JP2010212217A 2009-10-19 2010-09-22 Solar cell module Active JP5582936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212217A JP5582936B2 (en) 2009-10-19 2010-09-22 Solar cell module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009239987 2009-10-19
JP2009239987 2009-10-19
JP2010212217A JP5582936B2 (en) 2009-10-19 2010-09-22 Solar cell module

Publications (2)

Publication Number Publication Date
JP2011109072A true JP2011109072A (en) 2011-06-02
JP5582936B2 JP5582936B2 (en) 2014-09-03

Family

ID=44232188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212217A Active JP5582936B2 (en) 2009-10-19 2010-09-22 Solar cell module

Country Status (1)

Country Link
JP (1) JP5582936B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222930A (en) * 2010-03-25 2011-11-04 Sharp Corp Mounting structure of solar battery module
JP2012069660A (en) * 2010-09-22 2012-04-05 Sharp Corp Solar battery module
WO2013108468A1 (en) * 2012-01-17 2013-07-25 シャープ株式会社 Solar cell module
JP2013175601A (en) * 2012-02-24 2013-09-05 Kyocera Corp Photoelectric conversion module
WO2013157380A1 (en) * 2012-04-18 2013-10-24 シャープ株式会社 Solar cell module, production method for solar cell module, support structure for solar cell module, and solar power generation system
JP2013222722A (en) * 2012-04-12 2013-10-28 Showa Shell Sekiyu Kk Solar cell panel support member fixing structure and support member fixing method
WO2013168593A1 (en) * 2012-05-11 2013-11-14 シャープ株式会社 Solar cell module manufacturing method
WO2014011791A1 (en) * 2012-07-10 2014-01-16 Dow Corning Corporation Fixture for assembling a solar module assembly
JP2014143915A (en) * 2014-03-28 2014-08-07 Sharp Corp Solar battery module
JP2014143916A (en) * 2014-03-28 2014-08-07 Sharp Corp Solar battery module and photovoltaic power generation system
JP2014152497A (en) * 2013-02-07 2014-08-25 Kumagai Gumi Co Ltd Reinforcement structure of structural member
WO2014175222A1 (en) * 2013-04-22 2014-10-30 京セラ株式会社 Solar cell module
JP2015503317A (en) * 2011-11-30 2015-01-29 サン−ゴバン グラス フランスSaint−Gobain Glass France Frameless solar module with module carrier and method for manufacturing the solar module
JPWO2013157381A1 (en) * 2012-04-18 2015-12-21 シャープ株式会社 SOLAR CELL MODULE, SOLAR CELL MODULE MANUFACTURING METHOD, SOLAR CELL MODULE SUPPORT STRUCTURE, AND SOLAR POWER GENERATION SYSTEM
CN105489661A (en) * 2015-07-27 2016-04-13 友达光电股份有限公司 Solar cell
US11411530B2 (en) * 2016-10-11 2022-08-09 Greenti Sagl Photovoltaic element and mounted surface comprising such photovoltaic elements
WO2023199005A1 (en) * 2022-04-15 2023-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Lightweight photovoltaic module having an integrated composite frame

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019016965A1 (en) * 2017-07-21 2019-01-24 ネクストエナジー・アンド・リソース株式会社 Solar photovoltaic generation panel installation frame, solar cell array, and solar photovoltaic generation panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054118A (en) * 1996-08-08 1998-02-24 Canon Inc Solar cell module
WO2006121013A1 (en) * 2005-05-11 2006-11-16 Kaneka Corporation Solar cell module, and solar cell installation surface
JP2009071274A (en) * 2007-08-21 2009-04-02 Sanyo Electric Co Ltd Solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054118A (en) * 1996-08-08 1998-02-24 Canon Inc Solar cell module
WO2006121013A1 (en) * 2005-05-11 2006-11-16 Kaneka Corporation Solar cell module, and solar cell installation surface
JP2009071274A (en) * 2007-08-21 2009-04-02 Sanyo Electric Co Ltd Solar cell module

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222930A (en) * 2010-03-25 2011-11-04 Sharp Corp Mounting structure of solar battery module
JP2012069660A (en) * 2010-09-22 2012-04-05 Sharp Corp Solar battery module
JP2015503317A (en) * 2011-11-30 2015-01-29 サン−ゴバン グラス フランスSaint−Gobain Glass France Frameless solar module with module carrier and method for manufacturing the solar module
CN104054183A (en) * 2012-01-17 2014-09-17 夏普株式会社 Solar cell module
WO2013108468A1 (en) * 2012-01-17 2013-07-25 シャープ株式会社 Solar cell module
JPWO2013108468A1 (en) * 2012-01-17 2015-05-11 シャープ株式会社 Solar cell module
JP2013175601A (en) * 2012-02-24 2013-09-05 Kyocera Corp Photoelectric conversion module
JP2013222722A (en) * 2012-04-12 2013-10-28 Showa Shell Sekiyu Kk Solar cell panel support member fixing structure and support member fixing method
JPWO2013157381A1 (en) * 2012-04-18 2015-12-21 シャープ株式会社 SOLAR CELL MODULE, SOLAR CELL MODULE MANUFACTURING METHOD, SOLAR CELL MODULE SUPPORT STRUCTURE, AND SOLAR POWER GENERATION SYSTEM
WO2013157380A1 (en) * 2012-04-18 2013-10-24 シャープ株式会社 Solar cell module, production method for solar cell module, support structure for solar cell module, and solar power generation system
WO2013168593A1 (en) * 2012-05-11 2013-11-14 シャープ株式会社 Solar cell module manufacturing method
WO2014011791A1 (en) * 2012-07-10 2014-01-16 Dow Corning Corporation Fixture for assembling a solar module assembly
JP2014152497A (en) * 2013-02-07 2014-08-25 Kumagai Gumi Co Ltd Reinforcement structure of structural member
WO2014175222A1 (en) * 2013-04-22 2014-10-30 京セラ株式会社 Solar cell module
JP6042977B2 (en) * 2013-04-22 2016-12-14 京セラ株式会社 Solar cell module
JP2014143916A (en) * 2014-03-28 2014-08-07 Sharp Corp Solar battery module and photovoltaic power generation system
JP2014143915A (en) * 2014-03-28 2014-08-07 Sharp Corp Solar battery module
CN105489661A (en) * 2015-07-27 2016-04-13 友达光电股份有限公司 Solar cell
US11411530B2 (en) * 2016-10-11 2022-08-09 Greenti Sagl Photovoltaic element and mounted surface comprising such photovoltaic elements
WO2023199005A1 (en) * 2022-04-15 2023-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Lightweight photovoltaic module having an integrated composite frame

Also Published As

Publication number Publication date
JP5582936B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5582936B2 (en) Solar cell module
JP5176268B2 (en) Solar cell module
JPWO2008136095A1 (en) Solar cell module
JP6608910B2 (en) Photoelectric module for rigid carrier
JP6395020B1 (en) Solar cell module
US10381498B2 (en) Flexible laminates for solar modules
JP6152796B2 (en) Solar cell module
JP5542499B2 (en) Solar cell module
JP5506295B2 (en) Solar cell module and manufacturing method thereof
CA2948560A1 (en) Semi-flexible solar module using crystaline solar cells and method for fabrication thereof
JP2006100639A (en) Solar cell module
US9373738B2 (en) Solar module
JP2000114569A (en) Solar battery module
JP5279330B2 (en) Solar cell module
WO2018150794A1 (en) Solar cell module
JP2015065303A (en) Solar cell module and method of manufacturing the same
JP6655828B2 (en) Solar cell module
JP2011233702A (en) Solar cell module and method for manufacturing the same
JP2006086390A (en) Solar cell module
US20180309003A1 (en) Lightweight solar panels with solar cell structural protection
WO2017145663A1 (en) Solar cell module
JP7330879B2 (en) solar module
JP6042977B2 (en) Solar cell module
KR101283142B1 (en) Solar apparatus and method of fabricating the same
WO2019087802A1 (en) Solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5582936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150