JP2011107594A - Imaging optical system and imaging device - Google Patents

Imaging optical system and imaging device Download PDF

Info

Publication number
JP2011107594A
JP2011107594A JP2009265005A JP2009265005A JP2011107594A JP 2011107594 A JP2011107594 A JP 2011107594A JP 2009265005 A JP2009265005 A JP 2009265005A JP 2009265005 A JP2009265005 A JP 2009265005A JP 2011107594 A JP2011107594 A JP 2011107594A
Authority
JP
Japan
Prior art keywords
optical system
element group
imaging
optical element
imaging optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009265005A
Other languages
Japanese (ja)
Inventor
Takeshi Hirokawa
武志 廣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP2009265005A priority Critical patent/JP2011107594A/en
Publication of JP2011107594A publication Critical patent/JP2011107594A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a more inexpensive imaging optical system which can obtain a wider angle of view while holding a sharp image and compact form, and can securely and also easily achieve focusing. <P>SOLUTION: The imaging optical system includes: a refraction type optical element group 2 having negative refractive power; and a reflection type optical element group 3 having positive refractive power. The refraction type optical element group 2 is arranged on the side of a subject and is supported movably along a rotationally symmetric axis S1, and the reflection type optical element group 3 is arranged in such a manner that an optical axis S is reflected in a folded way. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、携帯電話用、車載用、監視用、工業用等の、被写体を撮像する撮像装置に用いられる撮像光学系及びこの撮像光学系を用いた撮像装置に関する。   The present invention relates to an imaging optical system used for an imaging device for imaging a subject such as a cellular phone, a vehicle, a monitoring device, and an industrial device, and an imaging device using the imaging optical system.

CCDやCMOSといった撮像素子は、携帯電話用、車載用、監視用、工業用等に多く利用されている。これら各用途に組み合わされる光学系は、鮮明な画像であること、小型であること、低価格であること等が要求される。鮮明な画像を得るという点に関しては、低ノイズ光であり、色収差が発生しない反射面を採用することが好ましい。また、小型とする点についても、複数の反射面を光軸が折り畳まれるように配置することにより、レンズ等の屈折光学系に比べて光学系全体をコンパクトにすることができる。   Imaging devices such as CCDs and CMOSs are widely used for mobile phones, in-vehicle use, monitoring use, industrial use, and the like. An optical system combined with each of these uses is required to have a clear image, a small size, and a low price. In terms of obtaining a clear image, it is preferable to employ a reflecting surface that is low-noise light and does not generate chromatic aberration. Moreover, also about the point made small, the whole optical system can be made compact compared with refractive optical systems, such as a lens, by arrange | positioning a some reflective surface so that an optical axis may be folded.

反射面の利点を備えた撮像光学系に関連する先行技術文献情報として、例えば、次の特許文献1、2がある。   As prior art document information related to an imaging optical system having an advantage of a reflecting surface, for example, there are the following Patent Documents 1 and 2.

特許第3043583号公報Japanese Patent No. 3043583 特開2005−62803号公報Japanese Patent Laid-Open No. 2005-62803

特許文献1、2には、複数の反射面を利用した反射型光学系の撮像装置が開示されている。このような撮像装置は、低ノイズ光(低フレア、低ゴースト)であって、色収差が発生しない反射面を使用しているため、鮮明な画像を得ることができる。さらに、複数の反射面が光軸を折り畳むように配置されているため、レンズ等の屈折光学系に比べて、撮像装置全体をコンパクトにすることができる。   Patent Documents 1 and 2 disclose an imaging device of a reflective optical system using a plurality of reflecting surfaces. Such an image pickup apparatus uses a reflecting surface that is low noise light (low flare, low ghost) and does not generate chromatic aberration, and thus can obtain a clear image. Furthermore, since the plurality of reflecting surfaces are arranged so as to fold the optical axis, the entire imaging apparatus can be made compact compared to a refractive optical system such as a lens.

しかしながら、特許文献1、2のような反射型光学系は、撮像装置全体をコンパクトにできるという反面、画角が狭いという問題があった。広い画角を得る手段として入射口を拡げることが挙げられる。ただし、入射口を拡げられる範囲は、入射口と反射面が光線の入射方向で重ならない範囲である。すなわち、入射口と反射面が光線の入射方向で重なってしまうと、重なった反射面に入射した光線が当たり、結像した画像に当たった部分の影が生じてしまうためである。また、この場合、反射面を拡げた入射口に対応させて径方向にずらして配置することで影の発生を防ぐことができるが、このずらした距離分、撮像装置が大きくなってしまう。すなわち、撮像装置の小型化という点を考慮すると、入射口を拡げて広い画角を得る手段には、おのずと限界がある。   However, the reflection type optical systems as disclosed in Patent Documents 1 and 2 have a problem that the angle of view is narrow while the entire imaging apparatus can be made compact. One way to obtain a wide angle of view is to widen the entrance. However, the range in which the entrance can be expanded is a range in which the entrance and the reflecting surface do not overlap in the incident direction of the light beam. That is, if the entrance and the reflecting surface overlap in the incident direction of the light beam, the light beam incident on the overlapping reflecting surface hits and a shadow of a portion that hits the formed image is generated. Further, in this case, the occurrence of shadows can be prevented by shifting in the radial direction so as to correspond to the entrance where the reflecting surface is expanded, but the imaging apparatus becomes larger by this shifted distance. That is, in view of the downsizing of the image pickup apparatus, there is a limit to means for widening the entrance and obtaining a wide angle of view.

また、特許文献1、2には、焦点調節の構造について開示されていないが、このような反射型光学系の焦点調節構造として、一般的に用いられている、反射面を前後に移動させて焦点調節を行う全体操出法を用いた場合、繰出機構により撮像装置が大きくなる上に、重くなってしまう。さらに、反射面単体を移動させて焦点調節することが考えられるが、この場合、反射時において画像のずれが生じ、このずれを補正することが困難であった。   In addition, Patent Documents 1 and 2 do not disclose a focus adjustment structure, but a reflection surface that is generally used as a focus adjustment structure of such a reflective optical system is moved back and forth. When the entire operation method for adjusting the focus is used, the image pickup apparatus becomes large and heavy due to the feeding mechanism. Further, it is conceivable to adjust the focus by moving the reflecting surface alone, but in this case, an image shift occurs during reflection, and it is difficult to correct the shift.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、鮮明な画像及びコンパクトな形態を保持した上で、より広い画角を得ること、確実、かつ簡単に焦点調節をすること等が本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, it is an object of the present invention to obtain a wider angle of view while maintaining a clear image and a compact form, and to reliably and easily perform focus adjustment.

このような目的を達成するために、本発明による開閉装置及び開閉装置の基準位置補正方法は、以下の構成を少なくとも具備するものである。   In order to achieve such an object, the switchgear and the reference position correction method for the switchgear according to the present invention include at least the following configurations.

本発明に係る撮像光学系は、負の屈折力を有する屈折型光学素子群と、正の屈折力を有する反射型光学素子群と、を備え、この屈折型光学素子群は、被写体側に配置されている。   An imaging optical system according to the present invention includes a refractive optical element group having a negative refractive power and a reflective optical element group having a positive refractive power, and the refractive optical element group is disposed on the subject side. Has been.

前述の反射型光学素子群が複数の反射鏡部材で構成され、この複数の反射鏡部材は、光軸を折り畳むように配置されている。   The above-described reflective optical element group is composed of a plurality of reflecting mirror members, and the plurality of reflecting mirror members are arranged so as to fold the optical axis.

前述の屈折型光学素子群は、アッベ数が異なる複数のレンズ部材である。   The above-described refractive optical element group is a plurality of lens members having different Abbe numbers.

前述の複数のレンズ部材は、互いに接合されている。   The plurality of lens members described above are bonded to each other.

前述の屈折型光学素子群は、共通する回転対称軸を有するとともに、この回転対称軸に沿って移動可能に支持されている。   The above-described refractive optical element group has a common rotational symmetry axis and is supported so as to be movable along this rotational symmetry axis.

前述の撮像光学系を備えた撮像装置であって、この撮像光学系により被写体の光学像が結像される撮像素子を備えている。   The imaging apparatus includes the imaging optical system described above, and includes an imaging device on which an optical image of a subject is formed by the imaging optical system.

本発明によれば、鮮明な画像及びコンパクトな形態を保持でき、しかもより広い画角を得ることができるとともに、確実、かつ簡単に焦点調節をすることができる。   According to the present invention, a clear image and a compact form can be maintained, a wider angle of view can be obtained, and focus adjustment can be performed reliably and easily.

本発明に係る第1実施形態の撮像光学系を用いた撮像装置の断面図。1 is a cross-sectional view of an imaging apparatus using an imaging optical system according to a first embodiment of the present invention. 図1の撮像光学系の断面光路を示す模式図(側面視)。The schematic diagram (side view) which shows the cross-section optical path of the imaging optical system of FIG. 図1の撮像光学系の断面光路を示す模式図(平面視)。The schematic diagram (plan view) which shows the cross-section optical path of the imaging optical system of FIG. 第1実施形態の撮像光学系の仕様諸元。Specifications of the imaging optical system according to the first embodiment. 同、撮像光学系の構成データ。Same as above, configuration data of the imaging optical system. 同、撮像光学系の横収差。Same as above, lateral aberration of imaging optical system. 第2実施形態の撮像光学系の断面光路を示す模式図(側面視)。FIG. 6 is a schematic diagram (side view) showing a cross-sectional optical path of an imaging optical system according to a second embodiment. 同、撮像光学系の断面光路を示す模式図(平面視)。FIG. 2 is a schematic diagram (plan view) showing a cross-sectional optical path of the imaging optical system. 第2実施形態の撮像光学系の仕様諸元。Specifications of the imaging optical system according to the second embodiment. 同、撮像光学系の構成データ。Same as above, configuration data of the imaging optical system. 同、撮像光学系の横収差。Same as above, lateral aberration of imaging optical system.

以下、本発明に係る撮像光学系及び撮像装置の実施形態を図面に基づいて説明する。図1は、本発明に係る撮像光学系を用いた撮像装置の第1実施形態を示す断面図であり、図2及び図3は、図1の撮像光学系の断面光路を示す模式図であり、図2は側面視の光路を示し、図3は平面視の光路を示す。   Hereinafter, embodiments of an imaging optical system and an imaging apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a first embodiment of an image pickup apparatus using an image pickup optical system according to the present invention, and FIGS. 2 and 3 are schematic views showing a cross-sectional optical path of the image pickup optical system of FIG. 2 shows an optical path in a side view, and FIG. 3 shows an optical path in a plan view.

撮像装置Aは、筐体1に、負の屈折力を有する屈折型光学素子群2及び正の屈折力を有する反射型光学素子群3を内蔵してなる撮像光学系Bと、筐体1に内蔵され、撮像光学系Bにより被写体の光学像を結像する撮像素子4を備えている。   The imaging apparatus A includes an imaging optical system B in which a refracting optical element group 2 having negative refracting power and a reflecting optical element group 3 having positive refracting power are built in a housing 1. A built-in image pickup device 4 for forming an optical image of a subject by the image pickup optical system B is provided.

筐体1は、屈折型光学素子群2を支持するとともに、光線Rを撮像光学系Bに取り込む入射口10と、入射口10から入射する光線Rが撮像素子4に到達するまで確保された光路空間11とが形成されている。入射口10の開口方向は、その軸線が中心の光線Rにおける光軸Sと同軸となる方向である。   The housing 1 supports the refractive optical element group 2 and has an entrance 10 for taking the light R into the imaging optical system B, and an optical path secured until the light R entering from the entrance 10 reaches the image sensor 4. A space 11 is formed. The opening direction of the entrance 10 is a direction in which the axis is coaxial with the optical axis S of the central light ray R.

また、筐体1は、光路空間11の内面で、少なくとも、撮像素子4への反射成分に影響を与える内面を反射防止処理(図示せず)している。この反射防止処理により、反射成分を吸収し、撮像素子4へ到達させないようにしてフレアの低減を図っている。   In addition, the housing 1 has an antireflection process (not shown) on the inner surface of the optical path space 11 and at least the inner surface that affects the reflection component to the image sensor 4. By this antireflection treatment, flare is reduced by absorbing the reflection component and preventing it from reaching the image sensor 4.

光路空間11内には、被写体に対して赤外光線又は可視光線を照射する光源12が設けられている。光源12は、この光源12からの光線(図示せず)が屈折型光学素子群2に向かうように配置してあり、この光線が屈折型光学素子郡2を通過して被写体(図示せず)に照射されるようにしている。屈折型光学素子郡2を通過する光線の光軸(図示せず)は、屈折型光学素子群2の負の屈折力により広がる方向に拡散するため、被写体に対する照射が広範囲に行われるようになっている。   In the optical path space 11, a light source 12 for irradiating the subject with infrared rays or visible rays is provided. The light source 12 is arranged so that a light beam (not shown) from the light source 12 is directed to the refractive optical element group 2, and this light beam passes through the refractive optical element group 2 and is a subject (not shown). To be irradiated. Since the optical axis (not shown) of the light beam passing through the refractive optical element group 2 is diffused in the direction of spreading due to the negative refractive power of the refractive optical element group 2, the object is irradiated over a wide range. ing.

屈折型光学素子群2は、接合された2枚のレンズ部材20、21から構成される素子群である。レンズ部材20は、被写体側に配した平凸レンズであり、レンズ部材21は、撮像素子4側に配した平凹レンズであって、互いの平坦面を重ね合わせて接合することにより、負の屈折力を有した屈折型光学素子群2を構成している。すなわち、屈折型光学素子群2の負の屈折力により、入射する光軸Sを集束する方向に屈折させることができる(図2及び図3参照)。   The refractive optical element group 2 is an element group composed of two lens members 20 and 21 that are joined. The lens member 20 is a plano-convex lens disposed on the subject side, and the lens member 21 is a plano-concave lens disposed on the imaging element 4 side, and has a negative refractive power by overlapping and joining each other's flat surfaces. The refraction type optical element group 2 having That is, the incident optical axis S can be refracted in the converging direction by the negative refractive power of the refractive optical element group 2 (see FIGS. 2 and 3).

また、レンズ部材20、21同士の接合により空気界面数が減少するため、レンズ部材20、21の表面反射が低減してこの表面反射による光損失が抑制され、鮮明な画像を結像することができる。   In addition, since the number of air interfaces is reduced by joining the lens members 20 and 21, the surface reflection of the lens members 20 and 21 is reduced, light loss due to the surface reflection is suppressed, and a clear image can be formed. it can.

また、屈折型光学素子群2は、屈折による色収差の補正をするために、夫々、適切に選択された異なるアッベ数のレンズ部材20、21を用いており、この異なるアッベ数のレンズ部材20、21により色収差の補正を行って、赤外光線〜可視光線の広い波長域に亘って良好な画像を得るようにしている。   Further, the refractive optical element group 2 uses lens members 20 and 21 having different Abbe numbers that are appropriately selected in order to correct chromatic aberration due to refraction, respectively. 21 corrects the chromatic aberration to obtain a good image over a wide wavelength range from infrared rays to visible rays.

さらに、屈折型光学素子群2は、レンズ部材20、21の回転対称軸S1を共通とするとともに、回転対称軸S1に沿って移動可能に支持されており、この回転対称軸S1に沿う移動により焦点調節を行うようにしている。   Further, the refractive optical element group 2 has the rotational symmetry axis S1 of the lens members 20 and 21 in common, and is supported so as to be movable along the rotational symmetry axis S1, and by movement along the rotational symmetry axis S1. Focus adjustment is performed.

屈折型光学素子群2の焦点調節構造を具体的に説明する。屈折型光学素子群2は、筐体1の入射口10に対し、入射口10の軸線と同軸として螺合取り付けされたレンズ鏡筒5内に嵌合支持されている。屈折型光学素子群2は、回転対称軸S1がレンズ鏡筒5の軸線に対して同軸線となるように配置され、レンズ鏡筒5の被写体側の内周に螺合されるレンズ押さえリング50により固定されている。レンズ鏡筒5は、入射口10の内周に螺合されるとともに、レンズ鏡筒5の外周に螺合された鏡筒固定リング51により固定されている。   The focus adjustment structure of the refractive optical element group 2 will be specifically described. The refractive optical element group 2 is fitted and supported in a lens barrel 5 that is screwed to the incident port 10 of the housing 1 so as to be coaxial with the axis of the incident port 10. The refractive optical element group 2 is arranged such that the rotationally symmetric axis S1 is coaxial with the axis of the lens barrel 5, and a lens holding ring 50 that is screwed onto the inner periphery of the lens barrel 5 on the subject side. It is fixed by. The lens barrel 5 is screwed to the inner circumference of the entrance 10 and is fixed by a barrel fixing ring 51 screwed to the outer circumference of the lens barrel 5.

このような焦点調節構造によると、鏡筒固定リング51が締め付け螺合しているときには、レンズ鏡筒5が入射口10に対して固定状態である。この固定状態から鏡筒固定リング51を緩める方向(螺合を外す方向)に回転させることにより、レンズ鏡筒5のねじ回転が可能となる。そして、レンズ鏡筒5をねじ回転させることにより、このレンズ鏡筒5の繰出し量を調整して焦点を調節する。焦点調節後には、再度鏡筒固定リング51を締め付け方向に回転させて締め付け螺合することにより、レンズ鏡筒5が入射口10に対して固定状態となる。   According to such a focus adjustment structure, when the lens barrel fixing ring 51 is tightened and screwed, the lens barrel 5 is fixed to the entrance 10. By rotating the lens barrel fixing ring 51 from this fixed state in the direction of loosening (the direction of unscrewing), the lens barrel 5 can be screwed. Then, the focus of the lens barrel 5 is adjusted by rotating the lens barrel 5 by adjusting the feed amount of the lens barrel 5. After the focus adjustment, the lens barrel 5 is fixed to the entrance 10 by rotating the barrel fixing ring 51 again in the tightening direction and tightening and screwing.

本実施形態では、入射口10とレンズ鏡筒5及びレンズ鏡筒5と鏡筒固定リング51の螺合に、ヘリコイドねじを用いている。ヘリコイドねじは送り動作が円滑で力も強く、一方送りから逆に戻すときにも「あそび」がないため、焦点調節のような精密な動きが要求される構造に適している。   In this embodiment, a helicoid screw is used for screwing the entrance 10 and the lens barrel 5 and between the lens barrel 5 and the barrel fixing ring 51. The helicoid screw has a smooth feeding force and a strong force. On the other hand, there is no “play” when returning from feeding, so it is suitable for structures that require precise movements such as focusing.

なお、本発明は、焦点調節を行う構成において例示したヘリコイドねじに限られず、ヘリコイドねじ以外の構成による焦点調節が含まれる。   In addition, this invention is not restricted to the helicoid screw illustrated in the structure which performs a focus adjustment, The focus adjustment by structures other than a helicoid screw is included.

本実施形態では、レンズ鏡筒5に固定された屈折型光学素子群2で入射口10を閉塞することにより、光路空間11内への埃等の侵入を防いでいる。この構成により、光路空間11内に面するレンズ部材21の面、反射型光学素子群3、撮像素子4、光源12等の汚れを防ぎ、この汚れによる不鮮明な画像が発生しないようにしている。   In the present embodiment, the entrance 10 is closed with the refractive optical element group 2 fixed to the lens barrel 5, thereby preventing dust and the like from entering the optical path space 11. With this configuration, the surface of the lens member 21 facing the optical path space 11, the reflective optical element group 3, the image pickup element 4, the light source 12, and the like are prevented from being stained, and an unclear image due to this stain is not generated.

なお、屈折型光学素子群2は、レンズ部材20、21を接合してなる構成に限られず、レンズ部材20、21を離間させた構成も含まれる。この場合、レンズ部材20、21の表面に、表面反射を抑制するための多層膜コーティングを施すことにより、表面反射による光損失を抑制するとよい(図示せず)。前述の多層膜コーティングは、レンズ部材20、21同士を接合する構成に行ってもよい(図示せず)。   The refractive optical element group 2 is not limited to the configuration in which the lens members 20 and 21 are joined, and includes a configuration in which the lens members 20 and 21 are separated. In this case, it is preferable to suppress light loss due to surface reflection (not shown) by applying a multilayer coating on the surfaces of the lens members 20 and 21 to suppress surface reflection. The multilayer coating described above may be performed in a configuration in which the lens members 20 and 21 are joined to each other (not shown).

反射型光学素子群3は、第1反射鏡部材30、第2反射鏡部材31、第3反射鏡部材32、第4反射鏡部材33の4枚の反射鏡部材から構成される素子群である。各反射鏡部材は、入射口10から入射した光軸Sが、第1反射鏡部材30〜第4反射鏡部材33へ順次折り畳まれるように反射して撮像素子4に到達するように、各反射鏡部材の反射面30A、31A、32A、33Aの反射面中心(中心の光線Rの光軸Sが反射する面)を合わせて配置されている。また、各反射鏡部材は、筐体1に形成された保持部13に、反射面30A、31A、32A、33Aの反射面中心の精度を確保できるように固定して保持されている。   The reflective optical element group 3 is an element group composed of four reflecting mirror members: a first reflecting mirror member 30, a second reflecting mirror member 31, a third reflecting mirror member 32, and a fourth reflecting mirror member 33. . Each reflecting mirror member reflects the optical axis S incident from the entrance 10 so that the optical axis S is sequentially folded to the first reflecting mirror member 30 to the fourth reflecting mirror member 33 and reaches the image sensor 4. The reflecting surfaces 30A, 31A, 32A, and 33A of the mirror member are arranged so that the reflecting surface centers (surfaces on which the optical axis S of the central light ray R is reflected) are aligned. Each reflecting mirror member is fixedly held by the holding portion 13 formed in the housing 1 so as to ensure the accuracy of the reflecting surface centers of the reflecting surfaces 30A, 31A, 32A, and 33A.

本実施形態では、入射口10に最も近い位置の第2反射鏡部材31の一部分を、入射口10と光線Rの入射方向で重なるように配置することにより、撮像装置Aの小型化に貢献している。通常であれば、入射する光線Rが第2反射鏡部材31の一部分に当たるが、本実施形態の撮像光学系Bにおいては、光軸Sが屈折型光学素子群2の負の屈折力により集束する方向に屈折して、重なっている第2反射鏡部材31の一部分をよけて第1反射鏡部材30に到達するようにしている(図2参照)。したがって、第2反射鏡部材31の一部分を、入射口10と光線Rの入射方向で重なるように配置しても結像した画像に影が生じない。   In the present embodiment, a part of the second reflecting mirror member 31 closest to the entrance 10 is arranged so as to overlap with the entrance 10 in the incident direction of the light beam R, thereby contributing to the downsizing of the imaging device A. ing. Normally, the incident light ray R hits a part of the second reflecting mirror member 31, but in the imaging optical system B of the present embodiment, the optical axis S is focused by the negative refractive power of the refractive optical element group 2. The second reflecting mirror member 31 is refracted in the direction so as to avoid a part of the second reflecting mirror member 31 and reach the first reflecting mirror member 30 (see FIG. 2). Accordingly, even if a part of the second reflecting mirror member 31 is arranged so as to overlap the incident port 10 in the incident direction of the light ray R, no shadow is generated in the formed image.

本実施形態では、第1反射鏡部材30、第2反射鏡部材31、第4反射鏡部材33の反射面30A、31A、33Aをアナモルフィック非球面とし、第3反射鏡部材32の反射面32Aを球面としている。また、第3反射鏡部材32の反射面32Aは、絞り面を兼用しており、この絞り面によりコントラスト性能の向上を図っている。   In the present embodiment, the reflecting surfaces 30A, 31A, and 33A of the first reflecting member 30, the second reflecting member 31, and the fourth reflecting member 33 are anamorphic aspheric surfaces, and the reflecting surfaces of the third reflecting member 32 are used. 32A is a spherical surface. Further, the reflecting surface 32A of the third reflecting mirror member 32 also serves as a diaphragm surface, and this diaphragm surface improves the contrast performance.

本実施形態の撮像素子4は、撮像光学系Bを通って撮像素子4に到達した光線を、電気信号に変換するCCDやCMOS等の感光素子である。そして、変換された電気信号は、筐体1に設けられた電気基板14で各種処理されるとともに、表示装置(図示せず)に送信されて画像として表示される。   The image sensor 4 of the present embodiment is a photosensitive element such as a CCD or CMOS that converts a light beam that has reached the image sensor 4 through the imaging optical system B into an electrical signal. The converted electrical signal is variously processed by the electrical board 14 provided in the housing 1 and transmitted to a display device (not shown) to be displayed as an image.

本実施形態の第1反射鏡部材30、第2反射鏡部材31、第4反射鏡部材33のアナモルフィック非球面は、次の数式1で定義される。   The anamorphic aspheric surfaces of the first reflector member 30, the second reflector member 31, and the fourth reflector member 33 of the present embodiment are defined by the following formula 1.

Figure 2011107594
Figure 2011107594

ただし、数式1において各係数は次のとおりである。

Rx:面中心におけるX方向の曲率半径 Kx:X方向のコーニック係数
Ry:面中心におけるY方向の曲率半径 Ky:Y方向のコーニック係数

Ay:回転対称成分の4次非球面係数 Ax:非回転対称成分の4次非球面係数
By:回転対称成分の6次非球面係数 Bx:非回転対称成分の6次非球面係数
Cy:回転対称成分の8次非球面係数 Cx:非回転対称成分の8次非球面係数
Dy:回転対称成分の10次非球面係数 Dx:非回転対称成分の10次非球面係数
However, each coefficient in Formula 1 is as follows.

Rx: radius of curvature in the X direction at the center of the plane Kx: conic coefficient in the X direction Ry: radius of curvature in the Y direction at the center of the plane Ky: conic coefficient in the Y direction

Ay: Fourth-order aspheric coefficient of rotationally symmetric component Ax: Fourth-order aspherical coefficient of non-rotational symmetric component By: Sixth-order aspherical coefficient of rotationally symmetric component Bx: Sixth-order aspherical coefficient of non-rotational symmetric component Cy: Rotational symmetry 8th-order aspheric coefficient of component Cx: 8th-order aspheric coefficient of non-rotation symmetric component Dy: 10th-order aspheric coefficient of rotation-symmetric component Dx: 10th-order aspheric coefficient of non-rotation symmetric component

図4は、撮像光学系Bの仕様諸元、図5は、撮像光学系Bの構成データ、図6は、撮像光学系Bの横収差である。   4 shows specifications of the imaging optical system B, FIG. 5 shows configuration data of the imaging optical system B, and FIG. 6 shows lateral aberrations of the imaging optical system B.

本実施形態の撮像装置A及び撮像光学系Bによれば、鮮明な画像及びコンパクトな形態を保持でき、しかもより広い画角を得ることができるとともに、確実、かつ簡単に焦点調節をすることができる。   According to the imaging apparatus A and the imaging optical system B of the present embodiment, a clear image and a compact form can be maintained, and a wider angle of view can be obtained, and focus adjustment can be performed reliably and easily. it can.

すなわち、入射口10側に配置された負の屈折力を有する屈折型光学素子群2により、広い画角を得ることができ、光路空間11側に配置された正の屈折力を有する反射型光学素子群3により、光軸Sを折り畳みコンパクトな形態にできるとともに、低ノイズ光での鮮明な画像を結像できる。さらに、焦点調節が屈折型光学素子群2の回転対称軸S1に沿う移動によるものであり、しかも、この移動がねじ回転によるものであるので、焦点調節を簡単な構造で、確実に行うことができる上に、全体操出法のように撮像装置Aが大きくなったり、重くなったりするようなことも防ぐことができる。また、レンズ部材20、21におけるアッベ数の適切な選択やレンズ表面への多層膜コーティングにより、屈折面による色収差の補正、フレアの発生を最小限に抑制できる。   That is, a wide angle of view can be obtained by the refractive optical element group 2 having negative refractive power arranged on the entrance 10 side, and reflective optical having positive refractive power arranged on the optical path space 11 side. The element group 3 can fold the optical axis S into a compact form and can form a clear image with low noise light. Further, since the focus adjustment is performed by the movement of the refractive optical element group 2 along the rotational symmetry axis S1, and the movement is performed by screw rotation, the focus adjustment can be reliably performed with a simple structure. In addition, it is possible to prevent the imaging apparatus A from becoming large or heavy as in the overall operation method. Further, by appropriately selecting the Abbe number in the lens members 20 and 21, and by coating the lens surface with a multilayer film, it is possible to minimize the correction of chromatic aberration due to the refractive surface and the occurrence of flare.

図7〜図11は、本発明に係る撮像光学系の第2実施形態を示している。図7及び図8は、本実施形態の撮像光学系Cの断面光路を示す模式図である(図7は側面視、図8は平面視)。図9は、撮像光学系Cの仕様諸元、図10は、撮像光学系Cの構成データ、図11は、撮像光学系Cの横収差である。   7 to 11 show a second embodiment of the imaging optical system according to the present invention. 7 and 8 are schematic views showing a cross-sectional optical path of the imaging optical system C of the present embodiment (FIG. 7 is a side view and FIG. 8 is a plan view). 9 shows specifications of the imaging optical system C, FIG. 10 shows configuration data of the imaging optical system C, and FIG. 11 shows lateral aberrations of the imaging optical system C.

撮像光学系Cは、前述の撮像光学系Bよりも、屈折型光学素子群2及び反射型光学素子群3並びに撮像素子4の外形寸法を小さくして、よりコンパクトな形態にしたものである。これら、屈折型光学素子群2及び反射型光学素子群3並びに撮像素子4の構造は、第1実施形態の撮像光学系Bと同様であるので、同符号を付すことにより説明は省略する。   The imaging optical system C is smaller than the above-described imaging optical system B in that the external dimensions of the refractive optical element group 2, the reflective optical element group 3, and the imaging element 4 are reduced to a more compact form. Since the structures of the refractive optical element group 2, the reflective optical element group 3, and the imaging element 4 are the same as those of the imaging optical system B of the first embodiment, the description thereof is omitted by attaching the same reference numerals.

本実施形態の撮像光学系Cによれば、第1実施形態の撮像光学系Bと同様の効果を有する上に、よりコンパクトな形態にできる。そして、第1実施形態の撮像装置Aと同構造、かつより小型の撮像装置(図示せず)に適用することができる。   According to the imaging optical system C of the present embodiment, the same effect as the imaging optical system B of the first embodiment can be obtained, and a more compact form can be achieved. And it can apply to the same structure as the imaging device A of 1st Embodiment, and a smaller imaging device (not shown).

なお、本発明の撮像光学系は、例示したようなカメラ等の撮像装置に用いるのに限られず、プロジェクタ等の投影装置に用いることができる。また、撮像素子は、CCDやCMOSに限られず、これ以外の感光素子とすることができる。また、撮像装置及び撮像光学系は、例示した実施形態に限られず、特許請求の範囲の各項に記載された内容から逸脱しない範囲の構成による実施が可能である。   The imaging optical system of the present invention is not limited to use in an imaging apparatus such as a camera as illustrated, but can be used in a projection apparatus such as a projector. Further, the image pickup device is not limited to a CCD or a CMOS, and other photosensitive devices can be used. In addition, the imaging apparatus and the imaging optical system are not limited to the illustrated embodiment, and can be implemented with a configuration in a range that does not deviate from the contents described in the claims.

A:撮像装置 B:撮像光学系 C:撮像光学系 2:屈折型光学素子群
3:反射型光学素子群 30〜33:反射鏡部材 20、21:レンズ部材
4:撮像素子 S:光軸 S1:回転対称軸
A: Imaging device B: Imaging optical system C: Imaging optical system 2: Refraction type optical element group 3: Reflection type optical element group 30-33: Reflective mirror member 20, 21: Lens member 4: Imaging element S: Optical axis S1 : Axis of rotation

Claims (6)

負の屈折力を有する屈折型光学素子群と、
正の屈折力を有する反射型光学素子群と、
を備え、
前記屈折型光学素子群は、被写体側に配置されている撮像光学系。
A refractive optical element group having negative refractive power;
A reflective optical element group having positive refractive power;
With
The refractive optical element group is an imaging optical system arranged on the subject side.
前記反射型光学素子群が複数の反射鏡部材で構成され、前記複数の反射鏡部材は、光軸を折り畳むように配置されている請求項1記載の撮像光学系。   The imaging optical system according to claim 1, wherein the reflective optical element group includes a plurality of reflecting mirror members, and the plurality of reflecting mirror members are arranged to fold an optical axis. 前記屈折型光学素子群は、アッベ数が異なる複数のレンズ部材である請求項1又は2記載の撮像光学系。   The imaging optical system according to claim 1, wherein the refractive optical element group is a plurality of lens members having different Abbe numbers. 前記複数のレンズ部材は、互いに接合されている請求項3記載の撮像光学系。   The imaging optical system according to claim 3, wherein the plurality of lens members are bonded to each other. 前記屈折型光学素子群は、共通する回転対称軸を有するとともに、該回転対称軸に沿って移動可能に支持されている請求項1ないし4いずれか1項記載の撮像光学系。   5. The imaging optical system according to claim 1, wherein the refractive optical element group has a common rotational symmetry axis and is movably supported along the rotational symmetry axis. 6. 前記請求項1ないし5いずれか記載の撮像光学系を備えた撮像装置であって、該撮像光学系により被写体の光学像が結像される撮像素子を備えていることを特徴とする撮像装置。   6. An image pickup apparatus comprising the image pickup optical system according to claim 1, further comprising an image pickup element on which an optical image of a subject is formed by the image pickup optical system.
JP2009265005A 2009-11-20 2009-11-20 Imaging optical system and imaging device Pending JP2011107594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265005A JP2011107594A (en) 2009-11-20 2009-11-20 Imaging optical system and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265005A JP2011107594A (en) 2009-11-20 2009-11-20 Imaging optical system and imaging device

Publications (1)

Publication Number Publication Date
JP2011107594A true JP2011107594A (en) 2011-06-02

Family

ID=44231101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265005A Pending JP2011107594A (en) 2009-11-20 2009-11-20 Imaging optical system and imaging device

Country Status (1)

Country Link
JP (1) JP2011107594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092116A (en) * 2016-12-05 2018-06-14 キヤノン株式会社 Catadioptric optical system, illumination optical system, exposure apparatus and article manufacturing method
JP7244129B1 (en) 2021-10-13 2023-03-22 株式会社クロスエッジラボ night vision camera

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197797A (en) * 1997-01-06 1998-07-31 Olympus Optical Co Ltd Image formation optical system
JPH10307260A (en) * 1997-03-06 1998-11-17 Olympus Optical Co Ltd Image pickup optical system and image pickup device using the same
JP2002196243A (en) * 2000-12-25 2002-07-12 Olympus Optical Co Ltd Image-formation optical system
WO2009060962A1 (en) * 2007-11-09 2009-05-14 Nalux Co., Ltd. Image-forming optical system and distance measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197797A (en) * 1997-01-06 1998-07-31 Olympus Optical Co Ltd Image formation optical system
JPH10307260A (en) * 1997-03-06 1998-11-17 Olympus Optical Co Ltd Image pickup optical system and image pickup device using the same
JP2002196243A (en) * 2000-12-25 2002-07-12 Olympus Optical Co Ltd Image-formation optical system
WO2009060962A1 (en) * 2007-11-09 2009-05-14 Nalux Co., Ltd. Image-forming optical system and distance measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018092116A (en) * 2016-12-05 2018-06-14 キヤノン株式会社 Catadioptric optical system, illumination optical system, exposure apparatus and article manufacturing method
JP7244129B1 (en) 2021-10-13 2023-03-22 株式会社クロスエッジラボ night vision camera
JP2023058116A (en) * 2021-10-13 2023-04-25 株式会社クロスエッジラボ night vision camera

Similar Documents

Publication Publication Date Title
US10394000B2 (en) Optical image capturing system
CN108254859B (en) Catadioptric optical system and imaging apparatus
US20130057971A1 (en) Panoramic imaging lens and panoramic imaging system using the same
JP5599093B2 (en) Optical system lens and lens unit using the optical system lens
US9229200B2 (en) Panoramic optical systems
US10338345B2 (en) Optical image capturing system
US10606050B2 (en) Portrait lens system suitable for use in a mobile camera
CN102177468A (en) Three-mirror panoramic camera
JP2010186120A (en) Projection optical system and projection image display device
TWI475245B (en) Optics lens assembly for image capture and image capture device thereof
WO2016021228A1 (en) Image-forming optical system and optical device provided with same
JP2016126254A (en) Imaging lens, imaging apparatus, and projection device
US10338347B2 (en) Optical image capturing system
US10852506B2 (en) Optical image capturing system
JP2013242594A (en) Projection optical system and projection image display device
US10690883B2 (en) Optical image capturing system
JP2010145828A (en) Imaging lens
US9372328B2 (en) Projection system and projector
US10042142B2 (en) Optical image capturing system
JP7248014B2 (en) Imaging optical system and imaging device
WO2019198432A1 (en) Optical system and projector
JP2011107594A (en) Imaging optical system and imaging device
CN114072715A (en) Compact catadioptric optical system for mobile phone
KR101493928B1 (en) Image capturing lens system
JP6296803B2 (en) Optical system and imaging apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140415