JP2011106569A - Power transmission member - Google Patents

Power transmission member Download PDF

Info

Publication number
JP2011106569A
JP2011106569A JP2009261939A JP2009261939A JP2011106569A JP 2011106569 A JP2011106569 A JP 2011106569A JP 2009261939 A JP2009261939 A JP 2009261939A JP 2009261939 A JP2009261939 A JP 2009261939A JP 2011106569 A JP2011106569 A JP 2011106569A
Authority
JP
Japan
Prior art keywords
shaft
power transmission
members
stub
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009261939A
Other languages
Japanese (ja)
Other versions
JP5335647B2 (en
Inventor
Minoru Ishijima
実 石島
Akira Nakagawa
亮 中川
Masaya Inoue
昌矢 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009261939A priority Critical patent/JP5335647B2/en
Priority to PCT/JP2010/069193 priority patent/WO2011062040A1/en
Publication of JP2011106569A publication Critical patent/JP2011106569A/en
Application granted granted Critical
Publication of JP5335647B2 publication Critical patent/JP5335647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/023Shafts; Axles made of several parts, e.g. by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/02Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like
    • F16D1/027Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like non-disconnectable, e.g. involving gluing, welding or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/30Material joints
    • F16C2226/36Material joints by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/06Drive shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22323Attachments to the shaft of the inner joint member whereby the attachments are distanced from the core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/224Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/226Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part
    • F16D3/227Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part the joints being telescopic

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission member highly accurate and excelling in torque transmission performance, while being manufacturable at low cost. <P>SOLUTION: An intermediate shaft 1 works as the power transmission member A having a hollow part Is extending along the axis O. The hollow part Is is formed by welding a stub member 3 as a second shaft member A2 to one end of a pipe member 2 as a first shaft member A1 forming the hollow and a stub member 4 as a third shaft member A3 to the other end of the pipe member 2, respectively. The pipe member 2 and the stub members 3, 4 are welded with the ends butting against each other, respectively. The butting face 3a of the stub member 3 against the pipe member 2 and the butting face 4a of the stub member 4 against the pope member 2 are formed in protruded tapered faces 7, respectively, and the butted faces 2a, 2a of the pipe member 2 against the stub members 3, 4 are formed in recessed tapered faces 8 fittable to the protruded tapered faces 7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車や各種産業機械の動力伝達装置に組み込まれる動力伝達部材に関し、特に中空部を有する動力伝達部材に関する。   The present invention relates to a power transmission member incorporated in a power transmission device of an automobile or various industrial machines, and more particularly to a power transmission member having a hollow portion.

例えば、自動車の動力伝達装置として、2つの等速自在継手をシャフト(中間シャフト)で連結して構成されるドライブシャフトやプロペラシャフトがある。これらドライブシャフトやプロペラシャフトに組み込まれる動力伝達部材としての中間シャフトは、中実の棒材を加工して得られる中実タイプと、軸線に沿って延びる中空部を有する中空タイプとに大別される。但し、近時においては、足回り部品の軽量化やNVH特性向上の要請に対応するために中空タイプが多用される傾向にある。   For example, there are a drive shaft and a propeller shaft configured by connecting two constant velocity universal joints with a shaft (intermediate shaft) as a power transmission device of an automobile. Intermediate shafts as power transmission members incorporated in these drive shafts and propeller shafts are roughly divided into solid types obtained by processing solid bar materials and hollow types having hollow portions extending along the axis. The However, recently, the hollow type tends to be frequently used to meet the demand for weight reduction of the underbody parts and the improvement of NVH characteristics.

中空タイプのシャフトとして、例えば以下に示す特許文献1に記載されているように、中空をなす第1の軸部材(パイプ)の一端及び他端に、トルク伝達用の連結部(スプライン又はセレーション)が形成された第2及び第3の軸部材(スタブ)をそれぞれ摩擦圧接したものがある。部材同士を摩擦圧接すると、接合部の内外径端にそれぞれバリが形成されるが、接合部の外径端に形成されるバリを放置しておくと、パイプの外周に弾性ダンパ等の環状部材を装着する際の妨げとなる。そのため、接合部外径端に形成されるバリは、通常、旋削加工等を施すことによってある程度又は完全に除去される。しかしながら、摩擦圧接に伴って形成されるバリは、圧接時の摩擦熱によって焼入れされて高い硬度を有することから、除去加工に多大な手間を要するという問題がある。また、接合部内径端に形成されるバリは、接合部の接合状態を検査する際に、超音波探傷法の適用を不可にするという問題もある。   As a hollow type shaft, for example, as described in Patent Document 1 shown below, a torque transmission connecting portion (spline or serration) is connected to one end and the other end of a hollow first shaft member (pipe). There is a structure in which the second and third shaft members (stubs) formed with are respectively friction-welded. When the members are friction-welded, burrs are formed at the inner and outer diameter ends of the joint, but if the burrs formed at the outer diameter of the joint are left unattended, an annular member such as an elastic damper is provided on the outer periphery of the pipe. It becomes a hindrance when wearing. Therefore, burr formed at the outer diameter end of the joint is usually removed to some extent or completely by performing a turning process or the like. However, the burrs formed along with the friction welding are hardened by the frictional heat at the time of pressure welding and have a high hardness, so that there is a problem that a great deal of labor is required for removal processing. In addition, the burr formed at the inner diameter end of the joint has a problem that the ultrasonic flaw detection method cannot be applied when inspecting the joint state of the joint.

そこで、隣り合う2つの軸部材を、端部同士を突き合わせた状態で溶接(溶融溶接)する試みがなされている。このように隣り合う2つの軸部材を溶接すれば、接合過程におけるバリの形成を回避することができる。そのため、バリ取り加工等の後加工が基本的に不要となって製造コストを低廉化することができ、また、接合部の接合状態の検査に超音波探傷を適用することが可能となるので品質保証レベルが向上する。   Therefore, an attempt has been made to weld (melt welding) two adjacent shaft members in a state where the end portions are butted. If two adjacent shaft members are welded in this way, formation of burrs in the joining process can be avoided. For this reason, post-processing such as deburring is basically unnecessary, and the manufacturing cost can be reduced. Also, ultrasonic inspection can be applied to the inspection of the bonding state of the bonded portion, so that the quality can be reduced. The level of assurance is improved.

特開平10−267027号公報Japanese Patent Laid-Open No. 10-267027 特開2009−103210号公報JP 2009-103210 A

ところで、上記のように、隣り合う2つの軸部材を突き合わせ状態で溶接することによって動力伝達部材を形成する際には、各軸部材の接合端部の形状や、溶接時における軸部材相互間の位置決め(芯出し)方法に検討を要する。例えば、各軸部材の接合端部(突き合わせ面)を軸線と直交する方向の平坦面に形成すれば、接合端部の加工は容易に行い得るが、軸部材相互間の芯出しを高精度に行うことが難しくなるという問題がある。この他、例えば特許文献2に記載のように、各軸部材の接合端部を互いに嵌合するインロー形状に形成することが考えられる。この場合には、軸部材相互間の芯出しを精度良く行うことができるが、接合端部の形状が複雑化する分、接合端部の加工に多大な手間とコストを要するという問題がある。   By the way, as described above, when forming a power transmission member by welding two adjacent shaft members in a butted state, the shape of the joint end portion of each shaft member and between the shaft members at the time of welding Consideration of positioning (centering) method. For example, if the joint end (butting surface) of each shaft member is formed on a flat surface in a direction perpendicular to the axis, the joint end can be easily processed, but the centering between the shaft members can be performed with high accuracy. There is a problem that it is difficult to do. In addition, as described in Patent Document 2, for example, it is conceivable that the joint end portions of the shaft members are formed in an inlay shape that fits each other. In this case, centering between the shaft members can be performed with high accuracy, but there is a problem that a great deal of labor and cost are required for processing of the joining end as the shape of the joining end becomes complicated.

そこで、本発明は、複数の軸部材を接合して中空部が形成される動力伝達部材を製作するに際し、各軸部材の接合端部の加工を比較的容易に行いつつ、軸部材相互間の位置決めを容易かつ高精度に行うことを可能とし、もって安価に製作可能でありながら、トルク伝達性能に優れた高精度の動力伝達部材を提供することを目的とする。   Therefore, when manufacturing a power transmission member in which a hollow portion is formed by joining a plurality of shaft members, the present invention can relatively easily process the joining end portions of the shaft members and An object of the present invention is to provide a highly accurate power transmission member that can be positioned easily and with high accuracy, and can be manufactured at a low cost, yet has excellent torque transmission performance.

上記の目的を達成するため、本発明は、軸線に沿って延びる中空部を有し、中空部が複数の軸部材を接合することで形成された動力伝達部材であって、隣り合う2つの軸部材が、端部同士を突き合わせた状態で溶接されたものにおいて、隣り合う2つの軸部材において、一方の軸部材に形成した突き合わせ面、および他方の軸部材に形成した突き合わせ面を、互いに嵌合可能なテーパ形状に形成したことを特徴とする動力伝達部材を提供する。   In order to achieve the above object, the present invention is a power transmission member that has a hollow portion extending along an axis, and the hollow portion is formed by joining a plurality of shaft members. When the members are welded in a state where the end portions are butted together, in two adjacent shaft members, the butted surfaces formed on one shaft member and the butted surfaces formed on the other shaft member are fitted together. Provided is a power transmission member characterized by being formed into a possible tapered shape.

上記のように、隣り合う2つの軸部材において、一方の軸部材に形成した突き合わせ面、および他方の軸部材に形成した突き合わせ面を、互いに嵌合可能なテーパ形状に形成すれば、各軸部材の接合端部を互いに嵌合するインロー形状に形成する場合に比べて、各軸部材の接合端部の形状が簡素化される。またこの場合、隣り合う2つの軸部材の端部同士を突き合わせるだけで軸部材相互間の芯出しを行うことができる。そのため、中空部を有する動力伝達部材を形成するに際して、各軸部材の接合端部の加工を比較的容易に行いつつ、軸部材相互間の位置決めを容易かつ高精度に行うことが可能となる。従って、安価に製作可能でありながら、トルク伝達性能に優れた高精度の動力伝達部材を提供することができる。   As described above, in two adjacent shaft members, if the abutting surface formed on one shaft member and the abutting surface formed on the other shaft member are formed in a tapered shape that can be fitted to each other, each shaft member The shape of the joint end portion of each shaft member is simplified as compared with the case where the joint end portions are formed in an inlay shape that fits together. Further, in this case, centering between the shaft members can be performed only by abutting the ends of the two adjacent shaft members. Therefore, when forming the power transmission member having the hollow portion, it is possible to easily and highly accurately position the shaft members while processing the joint end portions of the shaft members relatively easily. Therefore, it is possible to provide a highly accurate power transmission member that is excellent in torque transmission performance while being inexpensively manufactured.

さらに、本発明のように、テーパ面同士を突き合わせるようにすれば、軸線と直交する方向の平坦面同士を突き合わせる場合に比べ、隣り合う2つの軸部材の接触面積を増大することができる。そのため、軸部材相互間の接合強度を高めて、動力伝達部材の信頼性向上を図ることもできる。   Furthermore, if the tapered surfaces are abutted as in the present invention, the contact area between two adjacent shaft members can be increased as compared with the case where the flat surfaces in the direction orthogonal to the axis are abutted. . Therefore, the joint strength between the shaft members can be increased to improve the reliability of the power transmission member.

隣り合う2つの軸部材は、レーザ溶接又は電子ビーム溶接によって溶接することができる。これらの溶接手法は、母材同士を溶融・溶接する手法であり、これによれば、バリを生じることなく隣り合う2つの軸部材を容易かつ高精度に接合することができる。   Two adjacent shaft members can be welded by laser welding or electron beam welding. These welding techniques are techniques for melting and welding the base materials, and according to this, two adjacent shaft members can be joined easily and with high accuracy without generating burrs.

隣り合う2つの軸部材の突き合わせ部外径に周方向溝を設け、この周方向溝にレーザ又は電子ビームを照射することにより、隣り合う2つの軸部材を溶接することができる。このようにすれば、レーザ又は電子ビームの照射に伴って生成される溶解物が、軸部材の外径面に飛散・付着等し難くなる。また溶接痕(ビード)の軸部材外径側への突出量を小さくすることができる。そのため、溶接後の仕上げ加工を簡略化あるいは省略することができ、望ましい。   Two adjacent shaft members can be welded by providing a circumferential groove in the outer diameter of the butted portion of the two adjacent shaft members and irradiating the circumferential groove with a laser or an electron beam. If it does in this way, it will become difficult for the melt | dissolution produced | generated with irradiation of a laser or an electron beam to scatter and adhere to the outer diameter surface of a shaft member. Moreover, the protrusion amount of the welding mark (bead) to the shaft member outer diameter side can be reduced. Therefore, finishing after welding can be simplified or omitted, which is desirable.

上記本発明の構成は、複数の軸部材のうち、最も一端側及び他端側に位置する軸部材の双方が、トルク伝達用の連結部を有するものである動力伝達部材に適用することができる。この場合におけるトルク伝達用の連結部は、等速自在継手の内側継手部材をトルク伝達可能に連結するためのものとすることができる。つまり、本発明の構成は、例えば、軸方向両端部に等速自在継手の内側継手部材との連結部を有するドライブシャフトやプロペラシャフト用の中間シャフトに好ましく適用することができる。   The configuration of the present invention can be applied to a power transmission member in which both of the shaft members located on the most end side and the other end side of the plurality of shaft members have connecting portions for torque transmission. . The connecting portion for torque transmission in this case can be used for connecting the inner joint member of the constant velocity universal joint so that torque can be transmitted. That is, the configuration of the present invention can be preferably applied to, for example, an intermediate shaft for a drive shaft or a propeller shaft that has a connection portion with an inner joint member of a constant velocity universal joint at both axial end portions.

また、上記本発明の構成は、複数の軸部材のうち、最も一端側に位置する軸部材が、トルク伝達用の連結部を有し、最も他端側に位置する軸部材が、内周に等速自在継手の内側継手部材を収容可能なカップ状のマウス部を有するものである動力伝達部材に適用することができる。つまり、本発明の構成は、軸状の部分とマウス部とを備える等速自在継手用の外側継手部材にも好ましく適用することができる。   In the configuration of the present invention, the shaft member located on the most end side of the plurality of shaft members has a torque transmission connecting portion, and the shaft member located on the other end side is located on the inner periphery. The present invention can be applied to a power transmission member having a cup-shaped mouth portion that can accommodate an inner joint member of a constant velocity universal joint. That is, the configuration of the present invention can be preferably applied to an outer joint member for a constant velocity universal joint including a shaft-shaped portion and a mouse portion.

上記の構成において、トルク伝達用の連結部はスプラインとすることができる。なお、本発明でいうスプラインとは、山部と谷部が円周方向に交互に形成された軸方向に延びる多数の歯からなるものであり、セレーションも含む概念である。   In the above configuration, the torque transmission connecting portion may be a spline. In addition, the spline as used in the field of this invention consists of many teeth extended in the axial direction in which the peak part and the valley part were alternately formed in the circumferential direction, and is a concept including serration.

以上に示すように、本発明によれば、軸線に沿って延びる中空部を有する動力伝達部材を形成するに際し、各軸部材の接合端部の加工を比較的容易に行うことができ、しかも軸部材相互間の芯出しを容易かつ高精度に行うことができる。従って、安価に製作可能でありながら、トルク伝達性能に優れた高精度の動力伝達部材を提供することができる。   As described above, according to the present invention, when forming a power transmission member having a hollow portion extending along the axis, the joint end portion of each shaft member can be processed relatively easily, and the shaft Centering between members can be performed easily and with high accuracy. Therefore, it is possible to provide a highly accurate power transmission member that is excellent in torque transmission performance while being inexpensively manufactured.

本発明の一実施形態に係る動力伝達部材を具備するドライブシャフトの全体構造を示す正面図である。It is a front view which shows the whole structure of the drive shaft which comprises the power transmission member which concerns on one Embodiment of this invention. 図1に示す中間シャフトの正面図である。It is a front view of the intermediate shaft shown in FIG. 中間シャフトの要部拡大断面図であり、(a)〜(d)図は、何れも、隣り合う軸部材の接合態様の変形例を示す拡大断面図である。It is a principal part expanded sectional view of an intermediate shaft, and (a)-(d) figure is all an expanded sectional view showing a modification of a joint mode of an adjacent shaft member. 中間シャフトの要部拡大断面図であり、(a)及び(b)図は、何れも、隣り合う軸部材の接合態様の変形例を示す拡大断面図である。It is a principal part expanded sectional view of an intermediate shaft, and (a) and (b) figure are both expanded sectional views which show the modification of the joining aspect of an adjacent shaft member. 中間シャフトの要部拡大断面図であり、(a)及び(b)図は、何れも、隣り合う軸部材の接合態様の変形例を示す拡大断面図である。It is a principal part expanded sectional view of an intermediate shaft, and (a) and (b) figure are both expanded sectional views which show the modification of the joining aspect of an adjacent shaft member. 中間シャフトの要部拡大断面図であり、(a)及び(b)図は、何れも、隣り合う軸部材の接合態様の変形例を示す拡大断面図である。It is a principal part expanded sectional view of an intermediate shaft, and (a) and (b) figure are both expanded sectional views which show the modification of the joining aspect of an adjacent shaft member. 本発明の他の実施形態に係る動力伝達部材を具備するドライブシャフトの正面図である。It is a front view of the drive shaft which comprises the power transmission member which concerns on other embodiment of this invention.

以下、本発明の実施の形態を図1〜7に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る動力伝達部材Aを具備する動力伝達装置の全体構造を示す正面図である。図示例の動力伝達装置は、エンジンから駆動車輪に動力を伝達するドライブシャフトDSであり、エンジン側(図中右側:以下インボード側ともいう)に配置される摺動式等速自在継手10と、駆動車輪側(図中左側:以下アウトボード側ともいう)に配置される固定式等速自在継手20と、両等速自在継手10,20をトルク伝達可能に連結する動力伝達部材Aとしての中間シャフト1とを主要な構成として備える。   FIG. 1 is a front view showing an overall structure of a power transmission device including a power transmission member A according to an embodiment of the present invention. The power transmission device in the illustrated example is a drive shaft DS that transmits power from an engine to driving wheels, and a sliding constant velocity universal joint 10 disposed on the engine side (right side in the figure: hereinafter also referred to as inboard side) and The fixed constant velocity universal joint 20 arranged on the drive wheel side (left side in the figure: hereinafter also referred to as the outboard side) and the two constant velocity universal joints 10 and 20 are connected as a power transmission member A for torque transmission. The intermediate shaft 1 is provided as a main configuration.

図示例の摺動式等速自在継手10は、いわゆるダブルオフセット型等速自在継手(DOJ)である。この摺動式等速自在継手10は、一端(アウトボード側の一端)が開口したカップ状のマウス部11a、およびマウス部11aの奥側底部から軸方向に延びた軸部11bを有する外側継手部材11と、外側継手部材11の内径側に配置された内側継手部材12と、マウス部11aの内径面に形成したトラック溝11a1と内側継手部材12の外径面に形成したトラック溝12aとの間に介在してトルクを伝達する複数のボール13と、外側継手部材11のマウス部11aの内径面と内側継手部材12の外径面との間に配され、複数のボール13を円周方向等間隔に保持する保持器14とを主要な構成として備える。なお、この摺動式等速自在継手10として、トリポード型等速自在継手(TJ)が用いられる場合もある。   The illustrated sliding type constant velocity universal joint 10 is a so-called double offset type constant velocity universal joint (DOJ). This sliding type constant velocity universal joint 10 is an outer joint having a cup-shaped mouth portion 11a having one end (one end on the outboard side) opened and a shaft portion 11b extending in the axial direction from the bottom on the back side of the mouse portion 11a. A member 11, an inner joint member 12 disposed on the inner diameter side of the outer joint member 11, a track groove 11a1 formed on the inner diameter surface of the mouth portion 11a, and a track groove 12a formed on the outer diameter surface of the inner joint member 12. The plurality of balls 13 that are interposed between the plurality of balls 13 to transmit torque and the inner diameter surface of the mouth portion 11a of the outer joint member 11 and the outer diameter surface of the inner joint member 12 are arranged in the circumferential direction. A retainer 14 that is held at equal intervals is provided as a main configuration. As the sliding type constant velocity universal joint 10, a tripod type constant velocity universal joint (TJ) may be used.

図示例の固定式等速自在継手20は、いわゆるバーフィールド型等速自在継手(BJ)である。この固定式等速自在継手20は、一端(インボード側の一端)が開口したカップ状のマウス部21a、およびマウス部21aの外側底部から軸方向に延びた軸部21bを有する外側継手部材21と、外側継手部材21の内径側に配置された内側継手部材22と、マウス部21aの内径面に形成したトラック溝21a1と内側継手部材22の外径面に形成したトラック溝22aとの間に介在してトルクを伝達する複数のボール23と、外側継手部材21のマウス部21aの内径面と内側継手部材22の外径面との間に配され、複数のボール23を円周方向等間隔に保持する保持器24とを主要な構成として備える。なお、この固定式等速自在継手20として、アンダーカットフリー型等速自在継手(UJ)が用いられる場合もある。   The fixed type constant velocity universal joint 20 in the illustrated example is a so-called Barfield type constant velocity universal joint (BJ). The fixed type constant velocity universal joint 20 includes an outer joint member 21 having a cup-shaped mouth portion 21a having an open end (one end on the inboard side) and a shaft portion 21b extending in the axial direction from the outer bottom portion of the mouse portion 21a. Between the inner joint member 22 disposed on the inner diameter side of the outer joint member 21, the track groove 21 a 1 formed on the inner diameter surface of the mouth portion 21 a, and the track groove 22 a formed on the outer diameter surface of the inner joint member 22. The plurality of balls 23 that transmit torque by being interposed between the inner diameter surface of the mouth portion 21a of the outer joint member 21 and the outer diameter surface of the inner joint member 22 are arranged at equal intervals in the circumferential direction. And a retainer 24 to be held as a main component. An undercut-free type constant velocity universal joint (UJ) may be used as the fixed type constant velocity universal joint 20.

動力伝達部材Aとしての中間シャフト1は、その両端部外径に、トルク伝達用の連結部としてのスプライン5,5を有する。そして、インボード側のスプライン5を摺動式等速自在継手10の内側継手部材12の孔部とスプライン嵌合させることにより、中間シャフト1と摺動式等速自在継手10の内側継手部材12とがトルク伝達可能に連結される。またアウトボード側のスプライン5を固定式等速自在継手20の内側継手部材22の孔部とスプライン嵌合させることにより、中間シャフト1と固定式等速自在継手20の内側継手部材22とがトルク伝達可能に連結される。   The intermediate shaft 1 as the power transmission member A has splines 5 and 5 as connecting portions for torque transmission at outer diameters at both ends. Then, the spline 5 on the inboard side is spline-fitted with the hole of the inner joint member 12 of the sliding type constant velocity universal joint 10, whereby the inner joint member 12 of the intermediate shaft 1 and the sliding type constant velocity universal joint 10. Are coupled so that torque can be transmitted. Further, the spline 5 on the outboard side is spline-fitted with the hole of the inner joint member 22 of the fixed type constant velocity universal joint 20, so that the intermediate shaft 1 and the inner joint member 22 of the fixed type constant velocity universal joint 20 are torqued. It is connected so that it can be transmitted.

各等速自在継手10,20の内部にはグリース等の潤滑剤が封入されている。潤滑剤の外部漏洩や継手外部からの異物侵入を防止するため、摺動式等速自在継手10の外側継手部材11と中間シャフト1との間、および固定式等速自在継手20の外側継手部材21と中間シャフト1との間には、筒状のブーツ31,32がそれぞれ装着されている。   Each constant velocity universal joint 10, 20 is filled with a lubricant such as grease. In order to prevent external leakage of the lubricant and entry of foreign matter from the outside of the joint, the outer joint member between the outer joint member 11 of the sliding type constant velocity universal joint 10 and the intermediate shaft 1 and the outer joint member of the fixed type constant velocity universal joint 20. Cylindrical boots 31 and 32 are respectively mounted between the intermediate shaft 21 and the intermediate shaft 1.

以下、動力伝達部材Aとしての中間シャフト1の構成について詳述する。   Hereinafter, the configuration of the intermediate shaft 1 as the power transmission member A will be described in detail.

図2に示すように、中間シャフト1は、軸線Oに沿って延びる中空部Isを有する中空タイプである。中空部Isは、中空をなす第1の軸部材A1としてのパイプ部材2のインボード側端部に第2の軸部材A2としてのスタブ部材3を、また、パイプ部材2のアウトボード側端部に第3の軸部材A3としてのスタブ部材4をそれぞれ接合することで形成される。スタブ部材3のインボード側端部には、当該中間シャフト1と摺動式等速自在継手10の内側継手部材12(図1参照)とをトルク伝達可能に連結するためのスプライン5が形成されている。また、スタブ部材4のアウトボード側端部には、当該中間シャフト1と固定式等速自在継手20の内側継手部材22(図1参照)とをトルク伝達可能に連結するためのスプライン5が形成されている。   As shown in FIG. 2, the intermediate shaft 1 is a hollow type having a hollow portion Is extending along the axis O. The hollow portion Is includes a stub member 3 as the second shaft member A2 at the end portion on the inboard side of the pipe member 2 as the hollow first shaft member A1, and an end portion on the outboard side of the pipe member 2. The stub member 4 as the third shaft member A3 is joined to each other. A spline 5 is formed at the inboard side end of the stub member 3 to connect the intermediate shaft 1 and the inner joint member 12 (see FIG. 1) of the sliding type constant velocity universal joint 10 so as to transmit torque. ing. Further, a spline 5 for connecting the intermediate shaft 1 and the inner joint member 22 (see FIG. 1) of the fixed type constant velocity universal joint 20 so as to be able to transmit torque is formed at the end of the stub member 4 on the outboard side. Has been.

図2の拡大図に示すように、パイプ部材2とスタブ部材3,4とは端部同士を突き合わせた状態でそれぞれ接合され、詳しくは、パイプ部材2とスタブ部材3,4の突き合わせ部にそれぞれ形成した溶接部6で隣り合う2つの部材が接合されている。   As shown in the enlarged view of FIG. 2, the pipe member 2 and the stub members 3 and 4 are joined in a state in which the end portions are in contact with each other. Two adjacent members are joined at the formed weld 6.

パイプ部材2に形成したスタブ部材3,4との突き合わせ面2a,2aは、中間シャフト1の中間部に向かって内径寸法が徐々に縮小した凹テーパ面8に形成される。一方、スタブ部材3,4に形成したパイプ部材2との突き合わせ面3a,4aは、中間シャフト1の中間部に向かって外径寸法が徐々に縮小し、凹テーパ面8と嵌合可能な凸テーパ面7に形成される。本実施形態において、凹テーパ面8は、パイプ部材2の端面に外径側の始点を設けるようにして形成され、凸テーパ面7は、スタブ部材3,4の端面に内径側の始点を設けるようにして形成されている。そのため、上記のパイプ部材2とスタブ部材3,4の端部同士を突き合わせると(凸テーパ面7と凹テーパ面8とを嵌合すると)、突き合わせ部の外径端および内径端には、それぞれ周方向溝9a,9bが形成される。このように、各部材の端面に始点を設けるようにして凸テーパ面7および凹テーパ面8を形成すれば、テーパ端部が鋭利な尖頭形状となるのを回避することができる。従って、人手作業でパイプ部材2等を運搬等する際の安全性を確保することができ、望ましい。   The abutting surfaces 2 a and 2 a that are formed on the pipe member 2 with the stub members 3 and 4 are formed as a concave tapered surface 8 whose inner diameter is gradually reduced toward the intermediate portion of the intermediate shaft 1. On the other hand, the abutting surfaces 3 a and 4 a formed on the stub members 3 and 4 with the pipe member 2 gradually decrease in outer diameter toward the intermediate portion of the intermediate shaft 1, and can be fitted to the concave tapered surface 8. It is formed on the tapered surface 7. In the present embodiment, the concave taper surface 8 is formed so as to provide an outer diameter side start point on the end surface of the pipe member 2, and the convex taper surface 7 is provided with an inner diameter side start point on the end surfaces of the stub members 3, 4. It is formed in this way. Therefore, when the ends of the pipe member 2 and the stub members 3 and 4 are abutted (when the convex taper surface 7 and the concave taper surface 8 are fitted), the outer diameter end and the inner diameter end of the abutting portion are Circumferential grooves 9a and 9b are formed, respectively. Thus, if the convex taper surface 7 and the concave taper surface 8 are formed so that the starting point is provided on the end surface of each member, it is possible to avoid the tapered end portion from having a sharp pointed shape. Therefore, it is possible to secure safety when the pipe member 2 or the like is transported manually, which is desirable.

そして、パイプ部材2とスタブ部材3を接合してなる溶接部6は、パイプ部材2のインボード側の凹テーパ面8とスタブ部材3の凸テーパ面7とを嵌合することで形成される周方向溝9aに、レーザ又は電子ビームを照射することにより形成される。また、パイプ部材2とスタブ部材4を接合してなる溶接部6は、パイプ部材2のアウトボード側の凹テーパ面8とスタブ部材4の凸テーパ面7とを嵌合することで形成される周方向溝9aに、レーザ又は電子ビームを照射することにより形成される。   And the welding part 6 formed by joining the pipe member 2 and the stub member 3 is formed by fitting the concave taper surface 8 on the inboard side of the pipe member 2 and the convex taper surface 7 of the stub member 3. It is formed by irradiating the circumferential groove 9a with a laser or an electron beam. The welded portion 6 formed by joining the pipe member 2 and the stub member 4 is formed by fitting the concave tapered surface 8 on the outboard side of the pipe member 2 and the convex tapered surface 7 of the stub member 4. It is formed by irradiating the circumferential groove 9a with a laser or an electron beam.

本発明では、上記のように、中間シャフト1を形成する隣り合う2つの軸部材において、一方側の軸部材(ここではスタブ部材3,4)に形成した他方側(ここではパイプ部材2)との突き合わせ面3a,4aを凸テーパ面7に形成し、パイプ部材2に形成したスタブ部材3,4との突き合わせ面2a,2aを凸テーパ面7と嵌合する凹テーパ面8に形成した。このようにすれば、各軸部材の接合端部を互いに嵌合するインロー形状に形成する場合に比べて、各軸部材の接合端部の形状を簡素化することができる。またこの場合、隣り合う2つの軸部材の端部同士を突き合わせるだけで軸部材相互間の位置決め(芯出し)を行うことができる。従って、安価に製作可能でありながら、トルク伝達性能に優れた高精度の中間シャフト1を提供することができる。   In the present invention, as described above, in the two adjacent shaft members forming the intermediate shaft 1, the other side (here, the pipe member 2) formed on the one side shaft member (here, the stub members 3 and 4) and The abutting surfaces 3 a and 4 a are formed on the convex taper surface 7, and the abutting surfaces 2 a and 2 a with the stub members 3 and 4 formed on the pipe member 2 are formed on the concave taper surface 8 that fits the convex taper surface 7. In this way, the shape of the joint end portion of each shaft member can be simplified as compared with the case where the joint end portions of the shaft members are formed in an inlay shape that fits together. Further, in this case, the positioning (centering) between the shaft members can be performed only by abutting the ends of the two adjacent shaft members. Accordingly, it is possible to provide a highly accurate intermediate shaft 1 that is excellent in torque transmission performance while being inexpensively manufactured.

さらに、上記のように、凸テーパ面7と凹テーパ面8とを突き合わせ、隣り合う2つの軸部材をテーパ嵌合するようにすれば、軸線と直交する方向の平坦面同士を突き合わせる場合に比べ、隣り合う2つの軸部材の接触面積を増大することができる。そのため、軸部材相互間の接合強度を高めて、中間シャフト1の信頼性向上を図ることもできる。   Further, as described above, when the convex taper surface 7 and the concave taper surface 8 are abutted and two adjacent shaft members are taper-fitted, the flat surfaces in the direction orthogonal to the axis line are abutted. In comparison, the contact area between two adjacent shaft members can be increased. Therefore, the joint strength between the shaft members can be increased, and the reliability of the intermediate shaft 1 can be improved.

また、突き合わせ部の外径端に形成した周方向溝9aにレーザ又は電子ビームを照射することで隣り合う2つの部材同士を溶接すれば、レーザ又は電子ビームの照射に伴って生成される溶解物が、パイプ部材2やスタブ部材3,4の外径面に飛散・付着等し難くなる。また溶接部6を形成するのに伴って形成される溶接痕(ビード)の外径側への突出量を小さくすることができる。そのため、溶接後の仕上げ加工を簡略化あるいは省略することができる。さらに、突き合わせ部の内径端にも周方向溝9bを形成していることから、溶接痕の内径側への突出量も小さくすることができる。   Moreover, if two adjacent members are welded by irradiating the circumferential groove 9a formed at the outer diameter end of the butted portion with a laser or an electron beam, a melt generated along with the laser or electron beam irradiation However, it becomes difficult to scatter and adhere to the outer diameter surfaces of the pipe member 2 and the stub members 3 and 4. Moreover, the protrusion amount to the outer-diameter side of the welding trace (bead) formed in connection with forming the welding part 6 can be made small. Therefore, finishing after welding can be simplified or omitted. Furthermore, since the circumferential groove 9b is also formed at the inner diameter end of the abutting portion, the amount of protrusion of the welding mark toward the inner diameter side can be reduced.

なお、パイプ部材2及びスタブ部材3,4には、必要に応じて強度向上のための表面硬化処理を施すことができる。表面硬化処理は、単体のパイプ部材2及びスタブ部材3,4に施すようにしても良いし、パイプ部材2とスタブ部材3,4とを接合(溶接)して中間シャフト1を構成した後に施すようにしても良い。表面硬化処理の手法に特段の限定はなく、例えば、浸炭処理、窒化処理あるいは高周波焼入れを採用することができる。なお、表面硬化処理は、中間シャフト1全体に施すようにしても良いし、特に高強度が必要とされる部位(例えばスプライン5が形成される部位)に部分的に施すようにしても良い。   In addition, the pipe member 2 and the stub members 3 and 4 can be subjected to a surface hardening treatment for improving the strength as necessary. The surface hardening treatment may be performed on the single pipe member 2 and the stub members 3 and 4 or after the pipe member 2 and the stub members 3 and 4 are joined (welded) to form the intermediate shaft 1. You may do it. There is no particular limitation on the method of the surface hardening treatment, and for example, carburizing treatment, nitriding treatment, or induction hardening can be employed. The surface hardening process may be performed on the entire intermediate shaft 1 or may be partially performed on a part that requires particularly high strength (for example, a part where the spline 5 is formed).

上記した実施形態の中間シャフト1は、パイプ部材2とスタブ部材3,4の内外径寸法が同一のものを接合することによって中空部Isを形成したものであるが、本発明はかかる形態に限定適用されるものではなく、要求品質や加工設備に応じて種々の変更を施した中間シャフト1にも適用することができる。以下に示す各実施形態(各図)では、以上で説明した中間シャフト1のうち、パイプ部材2とアウトボード側のスタブ部材4の接合部(溶接部6)近傍を抜き取って示すが、パイプ部材2とインボード側のスタブ部材3の接合態様についても、以下に示す構成と同様の構成を採用可能であることは言うまでもない。   The intermediate shaft 1 of the above-described embodiment is formed by joining the pipe member 2 and the stub members 3 and 4 having the same inner and outer diameter dimensions to form the hollow portion Is, but the present invention is limited to such a form. The present invention is not applied but can be applied to the intermediate shaft 1 subjected to various changes according to required quality and processing equipment. In the following embodiments (each figure), the vicinity of the joint portion (welded portion 6) between the pipe member 2 and the stub member 4 on the outboard side is extracted from the intermediate shaft 1 described above. Needless to say, a configuration similar to the configuration described below can be adopted for the joining mode of the stub member 3 on the inboard side.

例えば、図3(a)〜(d)に示すように、内径寸法及び外径寸法の何れか一方又は双方が互いに異なる軸部材同士を接合して構成される中間シャフト1にも好ましく適用することができる。図3(a)は、パイプ部材2に、内径寸法がパイプ部材2と同一で、外径寸法がパイプ部材2よりも大径のスタブ部材4を接合したものであり、図3(b)は、パイプ部材2に、外径寸法がパイプ部材2と同一で、内径寸法がパイプ部材2よりも小径のスタブ部材4を接合したものである。また、図3(c)は、パイプ部材2に、内径寸法及び外径寸法の双方がパイプ部材2のそれよりも小径のスタブ部材4を接合したものであり、図3(d)は、パイプ部材2に、外径寸法がパイプ部材2のそれよりも大径の、また内径寸法がパイプ部材2のそれよりも小径のスタブ部材4を接合したものである。   For example, as shown in FIGS. 3A to 3D, the present invention is preferably applied to the intermediate shaft 1 configured by joining shaft members having different inner diameter dimensions or outer diameter dimensions or both. Can do. FIG. 3A shows a stub member 4 having an inner diameter dimension identical to that of the pipe member 2 and an outer diameter dimension larger than that of the pipe member 2 joined to the pipe member 2. FIG. The stub member 4 whose outer diameter is the same as that of the pipe member 2 and whose inner diameter is smaller than that of the pipe member 2 is joined to the pipe member 2. FIG. 3C shows a pipe member 2 joined with a stub member 4 having an inner diameter dimension and an outer diameter dimension smaller than that of the pipe member 2, and FIG. A stub member 4 having an outer diameter larger than that of the pipe member 2 and an inner diameter smaller than that of the pipe member 2 is joined to the member 2.

また、図4(a)(b)に示すように、スタブ部材4との突き合わせ面2aを凸テーパ面7に形成したパイプ部材2と、パイプ部材2との突き合わせ面4aを凹テーパ面8に形成したスタブ部材4とを溶接することによって中間シャフト1を形成することももちろん可能である。図4(a)は、かかる構成を、内外径寸法が同一のパイプ部材2とスタブ部材4を接合する場合に適用したものであり、図4(b)は、かかる構成を、パイプ部材2に、外径寸法がパイプ部材2と同一で、内径寸法がパイプ部材2よりも小径のスタブ部材4を接合する場合に適用したものである。   Further, as shown in FIGS. 4A and 4B, the pipe member 2 in which the butt surface 2a with the stub member 4 is formed on the convex taper surface 7 and the butt surface 4a with the pipe member 2 are made into the concave taper surface 8. It is of course possible to form the intermediate shaft 1 by welding the formed stub member 4. FIG. 4A shows an application of this configuration to the case where the pipe member 2 and the stub member 4 having the same inner and outer diameter dimensions are joined. FIG. 4B shows the configuration applied to the pipe member 2. The stub member 4 having the same outer diameter as that of the pipe member 2 and having an inner diameter smaller than that of the pipe member 2 is applied.

また、図5(a)(b)に示すように、パイプ部材2に設けるべき凹テーパ面8(又は凸テーパ面7)、およびスタブ部材4に設けるべき凸テーパ面7(又は凹テーパ面8)の傾斜角θを変更することも可能である。図5(a)は、図2に示す実施形態に比べて傾斜角θを鈍角にしたものであり、図5(b)は、図3(b)に示す実施形態に比べて傾斜角θを鈍角にしたものである。このように傾斜角θを一層鈍角に形成すれば、加工を容易化することができるというメリットがある。一方、図示は省略するが、傾斜角θを一層鋭角に形成すれば、軸部材相互間の接合(接触)面積を一層増大して、接合強度を一層向上することができるというメリットがある。   5A and 5B, the concave taper surface 8 (or convex taper surface 7) to be provided on the pipe member 2 and the convex taper surface 7 (or concave taper surface 8 to be provided on the stub member 4). It is also possible to change the inclination angle θ. FIG. 5A shows the obtuse angle θ as compared with the embodiment shown in FIG. 2, and FIG. 5B shows the inclination angle θ as compared with the embodiment shown in FIG. It is an obtuse angle. Thus, if the inclination angle θ is formed to be a more obtuse angle, there is an advantage that the processing can be facilitated. On the other hand, although not shown in the drawings, if the inclination angle θ is formed at an acute angle, there is an advantage that the bonding (contact) area between the shaft members can be further increased and the bonding strength can be further improved.

さらに、図6(a)(b)に示すように、パイプ部材2の端部外径に面取り2a1を設けるようにしても良い。このようにすれば、突き合わせ部外径に形成される周方向溝9aの開口寸法及び容積を拡大することができる。そのため、レーザ又は電子ビームを周方向溝9a内に照射し易くなるというメリットや、溶接痕の外径側への突出量を一層小さくすることができるというメリットがある。図6(a)は、図2に示す実施形態のパイプ部材2の端部外径に面取り2a1を設けたものであり、図6(b)は、図5(a)に示す実施形態のパイプ部材2の端部外径に面取り2a1を設けたものである。   Further, as shown in FIGS. 6A and 6B, a chamfer 2 a 1 may be provided on the outer diameter of the end of the pipe member 2. If it does in this way, the opening dimension and volume of the circumferential groove | channel 9a formed in the butt | matching part outer diameter can be expanded. Therefore, there are advantages that it becomes easier to irradiate the laser or electron beam into the circumferential groove 9a, and that the amount of protrusion of the welding trace to the outer diameter side can be further reduced. FIG. 6A is a diagram in which a chamfer 2a1 is provided on the end outer diameter of the pipe member 2 of the embodiment shown in FIG. 2, and FIG. 6B is a pipe of the embodiment shown in FIG. 5A. A chamfer 2 a 1 is provided on the outer diameter of the end of the member 2.

以上に示す実施形態では、隣り合う2つの軸部材のうち、何れか一方の軸部材の端部外径形状に工夫を凝らすことによって、凸テーパ面7と凹テーパ面8の突き合わせ部外径に周方向溝9aを形成したが、これに併せて他方の軸部材の端部外径に、例えば凹部(段差部)を形成するようにしても良い(図示は省略する)。このようにすれば、周方向溝9aの開口寸法及び容積をより一層拡大することができる。そのため、レーザ又は電子ビームを周方向溝9a内により一層照射し易くなるというメリットや、溶接痕の外径側への突出量をより一層小さくすることが出来るというメリットがある。   In the embodiment described above, the outer diameter of the butted portion of the convex taper surface 7 and the concave taper surface 8 is adjusted by devising the outer diameter shape of the end of one of the two adjacent shaft members. Although the circumferential groove 9a is formed, a concave portion (stepped portion), for example, may be formed on the outer diameter of the end of the other shaft member (not shown). In this way, the opening size and volume of the circumferential groove 9a can be further expanded. Therefore, there is an advantage that it becomes easier to irradiate the laser or electron beam into the circumferential groove 9a, and an advantage that the amount of protrusion of the welding mark to the outer diameter side can be further reduced.

図7は他の実施形態に係るドライブシャフトDSの全体構造を示すものである。なお、図7に示すドライブシャフトDSにおいて、図1に示すものに準ずる構成には共通の参照番号を付して重複説明を省略することとし、異なる構成についてのみ詳述する。   FIG. 7 shows the overall structure of a drive shaft DS according to another embodiment. In the drive shaft DS shown in FIG. 7, components similar to those shown in FIG. 1 are denoted by common reference numerals and redundant description will be omitted, and only different components will be described in detail.

図示例のドライブシャフトDSは、摺動式等速自在継手10の一構成部材である外側継手部材51が、上述した本発明に係る動力伝達部材Aの構成を具備する。すなわち、摺動式等速自在継手10の外側継手部材51が、軸線Oに沿って延びる中空部Isを有し、中空部Isは、中空をなす第1の軸部材A1としてのパイプ部材52のインボード側端部に第2の軸部材A2としてのスタブ部材53を、また、パイプ部材52のアウトボード側端部に第3の軸部材A3としてのカップ部材54をそれぞれ接合して構成される。   In the illustrated drive shaft DS, the outer joint member 51 which is one constituent member of the sliding type constant velocity universal joint 10 has the configuration of the power transmission member A according to the present invention described above. That is, the outer joint member 51 of the sliding type constant velocity universal joint 10 has a hollow portion Is extending along the axis O, and the hollow portion Is is a pipe member 52 as a first shaft member A1 that is hollow. The stub member 53 as the second shaft member A2 is joined to the inboard side end portion, and the cup member 54 as the third shaft member A3 is joined to the outboard side end portion of the pipe member 52, respectively. .

パイプ部材52及びスタブ部材53の構成は、図1及び図2に示すパイプ部材2及びスタブ部材3と実質的に同一であり、カップ部材54のみが図1および図2に示す実施形態と構成を異にしている。詳しくは、カップ部材54は、アウトボード側の端部に、内周に摺動式等速自在継手10の内側継手部材12(さらには、ボール13および保持器14)を収容し、内径面にトラック溝54a1が形成されたカップ状のマウス部54aと、マウス部54aの外側底部から軸方向に延びた軸部54bとを有する。そして、凸テーパ面7に形成したスタブ部材53のパイプ部材52との突き合わせ面53aおよびカップ部材54のパイプ部材52との突き合わせ面54b1と、凹テーパ面8に形成したパイプ部材52のスタブ部材53,カップ状部材54との突き合わせ面52a,52aとを互いに嵌合させた状態で隣り合う2つの部材が溶接される。詳細な図示は省略しているが、以上で説明した実施形態と同様に、凸テーパ面7と凹テーパ面8の各突き合わせ部外径に周方向溝9aを設け、この周方向溝9aにレーザ又は電子ビームを照射することによって隣り合う2つの軸部材を溶接するのが望ましい。   The configuration of the pipe member 52 and the stub member 53 is substantially the same as that of the pipe member 2 and the stub member 3 shown in FIGS. 1 and 2, and only the cup member 54 has the embodiment and configuration shown in FIGS. 1 and 2. It is different. Specifically, the cup member 54 accommodates the inner joint member 12 (and the ball 13 and the cage 14) of the sliding type constant velocity universal joint 10 on the inner periphery at the end on the outboard side, and on the inner diameter surface. It has a cup-shaped mouth portion 54a in which a track groove 54a1 is formed, and a shaft portion 54b extending in the axial direction from the outer bottom portion of the mouse portion 54a. Then, the butt surface 53 a of the stub member 53 formed on the convex taper surface 7 and the butt surface 54 b 1 of the cup member 52 with the pipe member 52, and the stub member 53 of the pipe member 52 formed on the concave taper surface 8. The two adjacent members are welded in a state where the butted surfaces 52a and 52a with the cup-shaped member 54 are fitted to each other. Although detailed illustration is omitted, similar to the embodiment described above, a circumferential groove 9a is provided in the outer diameter of each butted portion of the convex taper surface 7 and the concave taper surface 8, and a laser is provided in the circumferential groove 9a. Or it is desirable to weld two adjacent shaft members by irradiating an electron beam.

また、図示は省略するが、動力伝達部材Aとしての外側継手部材51に、図3〜図6に示す構成を適用することももちろん可能である。   Moreover, although illustration is abbreviate | omitted, of course, it is also possible to apply the structure shown in FIGS. 3-6 to the outer joint member 51 as the power transmission member A. FIG.

以上の構成を採用することにより、軸線Oに沿って延びる中空部Isを有する動力伝達部材Aとしての外側継手部材51を形成するに際し、各部材の接合端部の加工を比較的容易に行いつつ、部材相互間の位置決めを容易かつ高精度に行うことができる。これにより、安価に製作可能でありながら、トルク伝達性能に優れた高精度の外側継手部材51を提供することが可能となる。   By adopting the above configuration, when forming the outer joint member 51 as the power transmission member A having the hollow portion Is extending along the axis O, it is relatively easy to process the joint end portion of each member. And, positioning between members can be performed easily and with high accuracy. As a result, it is possible to provide the highly accurate outer joint member 51 that is excellent in torque transmission performance while being inexpensively manufactured.

以上では、3つの軸部材A1〜A3を接合することによって中空部Isが形成される動力伝達部材Aに本発明を適用した場合について説明を行ったが、本発明は、2つの軸部材、あるいは4つ以上の軸部材を接合することで中空部Isが形成される動力伝達部材Aにも好ましく適用することができる。また、以上では、本発明に係る動力伝達部材AをドライブシャフトDSに組み込んで用いる場合について説明を行ったが、本発明は、プロペラシャフト等、その他の動力伝達装置を構成する各種動力伝達部材にも好ましく適用することができる。   In the above description, the case where the present invention is applied to the power transmission member A in which the hollow portion Is is formed by joining the three shaft members A1 to A3 has been described. It can be preferably applied to the power transmission member A in which the hollow portion Is is formed by joining four or more shaft members. Further, the case where the power transmission member A according to the present invention is incorporated in the drive shaft DS has been described above, but the present invention is applicable to various power transmission members constituting other power transmission devices such as a propeller shaft. Can also be preferably applied.

1 中間シャフト(動力伝達部材)
2 パイプ部材
2a 突き合わせ面
3,4 スタブ部材
3a,4a 突き合わせ面
5 スプライン(トルク伝達用の連結部)
6 溶接部
7 凸テーパ面
8 凹テーパ面
9a 突き合わせ部外径の周方向溝
51 外側継手部材(動力伝達部材)
54a マウス部
A 動力伝達部材
A1 第1の軸部材
A2 第2の軸部材
A3 第3の軸部材
Is 中空部
O 軸線
1 Intermediate shaft (power transmission member)
2 Pipe member 2a Abutting surface 3, 4 Stub member 3a, 4a Abutting surface 5 Spline (connecting portion for torque transmission)
6 Welded portion 7 Convex taper surface 8 Concave taper surface 9a Circumferential groove with butt portion outer diameter 51 Outer joint member (power transmission member)
54a Mouse part A Power transmission member A1 1st shaft member A2 2nd shaft member A3 3rd shaft member Is Hollow part O Axis line

Claims (7)

軸線に沿って延びる中空部を有し、該中空部が複数の軸部材を接合することで形成された動力伝達部材であって、隣り合う2つの軸部材が、端部同士を突き合わせた状態で溶接されたものにおいて、
隣り合う2つの軸部材において、一方の軸部材に形成した突き合わせ面、および他方の軸部材に形成した突き合わせ面を、互いに嵌合可能なテーパ形状に形成したことを特徴とする動力伝達部材。
A power transmission member having a hollow portion extending along the axis, the hollow portion being formed by joining a plurality of shaft members, in a state where two adjacent shaft members are in contact with each other. In the welded one,
A power transmission member characterized in that, in two adjacent shaft members, a butting surface formed on one shaft member and a butting surface formed on the other shaft member are formed in a tapered shape that can be fitted to each other.
レーザ溶接又は電子ビーム溶接により、隣り合う2つの軸部材が溶接された請求項1に記載の動力伝達部材。   The power transmission member according to claim 1, wherein two adjacent shaft members are welded by laser welding or electron beam welding. 隣り合う2つの軸部材の突き合わせ部外径に周方向溝を設け、この周方向溝にレーザ又は電子ビームを照射することにより、隣り合う2つの軸部材を溶接した請求項2に記載の動力伝達部材。   The power transmission according to claim 2, wherein a circumferential groove is provided in an outer diameter of abutting portions of two adjacent shaft members, and the two adjacent shaft members are welded by irradiating the circumferential groove with a laser or an electron beam. Element. 複数の軸部材のうち、最も一端側及び他端側に位置する軸部材の双方が、トルク伝達用の連結部を有するものである請求項1〜3の何れか一項に記載の動力伝達部材。   The power transmission member according to any one of claims 1 to 3, wherein, among the plurality of shaft members, both of the shaft members positioned at one end side and the other end side have a torque transmission connecting portion. . 前記トルク伝達用の連結部は、等速自在継手の内側継手部材をトルク伝達可能に連結するためのものである請求項4に記載の動力伝達部材。   The power transmission member according to claim 4, wherein the connecting portion for torque transmission is for connecting the inner joint member of the constant velocity universal joint so that torque can be transmitted. 複数の軸部材のうち、最も一端側に位置する軸部材が、トルク伝達用の連結部を有するものであり、最も他端側に位置する軸部材が、内周に等速自在継手の内側継手部材を収容可能なカップ状のマウス部を有するものである請求項1〜3の何れか一項に記載の動力伝達部材。   Of the plurality of shaft members, the shaft member located on the most end side has a torque transmission connecting portion, and the shaft member located on the most other end side is an inner joint of a constant velocity universal joint on the inner periphery. The power transmission member according to any one of claims 1 to 3, wherein the power transmission member has a cup-shaped mouth portion capable of accommodating the member. 前記トルク伝達用の連結部がスプラインである請求項4〜6の何れか一項に記載の動力伝達部材。   The power transmission member according to any one of claims 4 to 6, wherein the connecting portion for torque transmission is a spline.
JP2009261939A 2009-11-17 2009-11-17 Power transmission member Expired - Fee Related JP5335647B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009261939A JP5335647B2 (en) 2009-11-17 2009-11-17 Power transmission member
PCT/JP2010/069193 WO2011062040A1 (en) 2009-11-17 2010-10-28 Power transmitting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261939A JP5335647B2 (en) 2009-11-17 2009-11-17 Power transmission member

Publications (2)

Publication Number Publication Date
JP2011106569A true JP2011106569A (en) 2011-06-02
JP5335647B2 JP5335647B2 (en) 2013-11-06

Family

ID=44059523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261939A Expired - Fee Related JP5335647B2 (en) 2009-11-17 2009-11-17 Power transmission member

Country Status (2)

Country Link
JP (1) JP5335647B2 (en)
WO (1) WO2011062040A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194305A1 (en) * 2014-06-18 2015-12-23 Ntn株式会社 Method for manufacturing outer joint member for constant-velocity universal joint and outer joint member
WO2018135205A1 (en) * 2017-01-18 2018-07-26 Ntn株式会社 Hollow power transmission shaft

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901940B2 (en) * 2011-11-08 2016-04-13 Ntn株式会社 Welding method for outer joint member of constant velocity universal joint
CN108515311B (en) * 2017-09-19 2020-10-27 万向钱潮股份有限公司 Light-weight long-handle three-column groove shell and processing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968214A (en) * 1995-08-30 1997-03-11 Mitsubishi Motors Corp Propeller shaft
JP2001355626A (en) * 2000-06-09 2001-12-26 Fuji Heavy Ind Ltd Drive shaft made of composite material
JP2008137023A (en) * 2006-11-30 2008-06-19 Nippon Sharyo Seizo Kaisha Ltd Connecting joint for laser welding, and connected body
JP2008149330A (en) * 2006-12-14 2008-07-03 Nippon Sharyo Seizo Kaisha Ltd Laser welding joint and joined body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968214A (en) * 1995-08-30 1997-03-11 Mitsubishi Motors Corp Propeller shaft
JP2001355626A (en) * 2000-06-09 2001-12-26 Fuji Heavy Ind Ltd Drive shaft made of composite material
JP2008137023A (en) * 2006-11-30 2008-06-19 Nippon Sharyo Seizo Kaisha Ltd Connecting joint for laser welding, and connected body
JP2008149330A (en) * 2006-12-14 2008-07-03 Nippon Sharyo Seizo Kaisha Ltd Laser welding joint and joined body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194305A1 (en) * 2014-06-18 2015-12-23 Ntn株式会社 Method for manufacturing outer joint member for constant-velocity universal joint and outer joint member
US10539193B2 (en) 2014-06-18 2020-01-21 Ntn Corporation Method for manufacturing outer joint member for constant-velocity universal joint and outer joint member
WO2018135205A1 (en) * 2017-01-18 2018-07-26 Ntn株式会社 Hollow power transmission shaft

Also Published As

Publication number Publication date
WO2011062040A1 (en) 2011-05-26
JP5335647B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5901940B2 (en) Welding method for outer joint member of constant velocity universal joint
JP5921825B2 (en) Outer joint member of constant velocity universal joint
JP5335647B2 (en) Power transmission member
JP5586929B2 (en) Method for manufacturing constant velocity universal joint
JP2009103210A (en) Power transmission shaft and power transmission device
US10920831B2 (en) Propshaft assembly having yoke friction welded to propshaft tube
WO2010024083A1 (en) Tripod uniform-motion universal joint and method for manufacturing the same
JP6505364B2 (en) Friction stir welding method
JP2007064264A (en) Fixed type constant velocity universal joint
EP1493510A1 (en) Method of manufacturing a combined driveshaft tube and yoke assembly
JP5410163B2 (en) Drive shaft and drive shaft assembly method
JP2007040320A (en) Cold-forged bevel gear spindle
JP2017003027A (en) Outer joint member of constant velocity universal joint
JP2007247847A (en) Power transmission shaft
JP2007138192A (en) Method for joining parts
JP2008151153A (en) Propeller shaft structure
WO2017061208A1 (en) Outer joint member for constant-velocity universal joint
JP2008232292A (en) Constant velocity universal joint
JP6486694B2 (en) Constant velocity universal joint
JP2006064060A (en) Constant velocity universal joint
US7611415B1 (en) Shaft assembly with integrated constant velocity joint
JP2020148281A (en) Manufacturing method for constant velocity universal joint
JP2008051221A (en) Two member connecting structure
JP2023017270A (en) shaft structure
JP2006144944A (en) Friction pressure welded shaft and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees