JP2023017270A - shaft structure - Google Patents

shaft structure Download PDF

Info

Publication number
JP2023017270A
JP2023017270A JP2021121401A JP2021121401A JP2023017270A JP 2023017270 A JP2023017270 A JP 2023017270A JP 2021121401 A JP2021121401 A JP 2021121401A JP 2021121401 A JP2021121401 A JP 2021121401A JP 2023017270 A JP2023017270 A JP 2023017270A
Authority
JP
Japan
Prior art keywords
shaft
constant velocity
stub shaft
velocity universal
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021121401A
Other languages
Japanese (ja)
Inventor
英樹 近藤
Hideki Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2021121401A priority Critical patent/JP2023017270A/en
Publication of JP2023017270A publication Critical patent/JP2023017270A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

To provide a shaft structure which can be used for a constant velocity universal joint which is used under a comparatively-severe load condition by being designed to a specification using back wave welding which does not cause the disadvantage of a weld factor of a tip part.SOLUTION: An inside joint member of a constant velocity universal joint comprises a stub shaft which is inserted with a tip-side insertion shaft part, and a hollow pipe body to which a large-diameter part arranged at a base end side of the stub shaft is connected. A circumferential counterbore groove which is opened in an outside-diameter direction is formed at a large-diameter part of the stub shaft, and a tip side of an opening part of the circumferential counterbore groove is covered with an outside-diameter flange part. An opening end part of the hollow pipe body and an end edge part of the outside-diameter flange part of the stub shaft are brought into an abutment state by fitting the large-diameter part into an opening of the hollow pipe body at the stub shaft side, and the opening end part and the end edge part are integrated to each other by a bevel weld part being back wave welding.SELECTED DRAWING: Figure 1

Description

本発明は、シャフト構造体に関し、特に、自動車や各種産業機械の動力伝達機構として等速自在継手に連結される中間軸であるシャフト構造体に関する。 TECHNICAL FIELD The present invention relates to a shaft structure, and more particularly to a shaft structure that is an intermediate shaft connected to a constant velocity universal joint as a power transmission mechanism for automobiles and various industrial machines.

自動車及び各種産業機械の動力伝達機構として適用される等速自在継手としては、特許文献1や特許文献2などに記載のものがある。特許文献1に記載の等速自在継手は、図7に示すように、内径面1にトラック溝2が形成された外側継手部材3と、外径面4に外側継手部材3のトラック溝2と対をなすトラック溝5が形成された内側継手部材6と、外側継手部材3のトラック溝2と内側継手部材6のトラック溝5との間に介在してトルクを伝達するボール7と、外側継手部材3の内径面1と内側継手部材6の外径面4との間に介在してボール7を保持する保持器8とを備えている。 2. Description of the Related Art Constant velocity universal joints that are applied as power transmission mechanisms for automobiles and various industrial machines are described in Patent Document 1, Patent Document 2, and the like. The constant velocity universal joint described in Patent Document 1, as shown in FIG. An inner joint member 6 in which a pair of track grooves 5 is formed, a ball 7 interposed between the track groove 2 of the outer joint member 3 and the track groove 5 of the inner joint member 6 and transmitting torque, and an outer joint A retainer 8 is interposed between the inner diameter surface 1 of the member 3 and the outer diameter surface 4 of the inner joint member 6 to retain the balls 7 .

内側継手部材6の軸心孔の内径面に雌スプライン10が形成され、この軸心孔にスタブシャフト11の先端部の雄スプライン12が嵌入される。これによって、雌スプライン10と雄スプライン12とが嵌合する。雄スプライン12の先端部及び基端部にはそれぞれ抜け止めの止め輪13、14が装着されている。すなわち、雄スプライン12の先端部に周方向溝12aが形成され、雄スプライン12の基端部に周方向溝12bが形成され、各周方向溝12a、12bに止め輪13、14が装着される。 A female spline 10 is formed on the inner diameter surface of the axial hole of the inner joint member 6, and a male spline 12 at the tip of the stub shaft 11 is fitted into the axial hole. Thereby, the female spline 10 and the male spline 12 are fitted. Retaining rings 13 and 14 are attached to the distal and proximal ends of the male spline 12, respectively. That is, a circumferential groove 12a is formed at the distal end of the male spline 12, a circumferential groove 12b is formed at the proximal end of the male spline 12, and snap rings 13 and 14 are mounted in the respective circumferential grooves 12a and 12b. .

この際、止め輪13が内側継手部材6の一方の端面6a(後述のアダプタ側の端面)に当接し、止め輪14が内側継手部材6の他方の端面6b(反アダプタ側の端面)の内径部に設けられた切欠部15に嵌合している。このため、シャフト11は、内側継手部材6に対してその軸方向の移動が規制される。 At this time, the retaining ring 13 abuts on one end face 6a of the inner joint member 6 (the end face on the adapter side, which will be described later), and the retaining ring 14 contacts the inner diameter of the other end face 6b of the inner joint member 6 (the end face on the side opposite to the adapter). It is fitted in a notch 15 provided in the part. Therefore, the axial movement of the shaft 11 with respect to the inner joint member 6 is restricted.

スタブシャフト11の基端側にはパイプ材(鋼管)16が連設されている。すなわち、スタブシャフト11の基端部にはボス部11bが形成され、このボス部11bにパイプ材16が連結されて、中間軸(シャフト構造体)Sが構成される。この場合、ボス部11bに嵌合部17が形成され、この嵌合部17がパイプ材16の開口部に内嵌され、ボス部11bの大径部18と、パイプ材16との間が溶接等によって接合される。 A pipe material (steel pipe) 16 is continuously provided on the base end side of the stub shaft 11 . That is, a boss portion 11b is formed at the base end portion of the stub shaft 11, and a pipe material 16 is connected to the boss portion 11b to form an intermediate shaft (shaft structure) S. As shown in FIG. In this case, a fitting portion 17 is formed on the boss portion 11b, and this fitting portion 17 is fitted into the opening of the pipe material 16, and the large diameter portion 18 of the boss portion 11b and the pipe material 16 are welded. etc.

外側継手部材3はディスクタイプで、一方の端面3a側にはアダプタ20が装着され、他方の端面3b側にはブーツ固定板21が装着される。すなわち、アダプタ20は、内径面にキー溝20aが形成された筒体からなり、その継手本体側の端面には、外側継手部材3のアダプタ20側の端部が嵌合する嵌合凹部20bが設けられ、端面3aとの間にはパッキン9aが装着される。また、ブーツ固定板21は、平板リング体からなり、その継手本体側の端面には、外側継手部材3の反アダプタ側の端部が嵌合する嵌合凹部21aが設けられ、端面3bとの間にはパッキン9b装着される。 The outer joint member 3 is a disk type, and an adapter 20 is attached to one end surface 3a side, and a boot fixing plate 21 is attached to the other end surface 3b side. That is, the adapter 20 is formed of a tubular body having a key groove 20a formed on its inner diameter surface, and a fitting concave portion 20b into which the end portion of the outer joint member 3 on the adapter 20 side is fitted is formed on the end surface on the side of the joint body. A packing 9a is mounted between the end surface 3a and the end surface 3a. The boot fixing plate 21 is formed of a flat plate ring body, and is provided with a fitting concave portion 21a in the end face on the side of the joint body, into which the end portion of the outer joint member 3 on the side opposite to the adapter is fitted. A packing 9b is mounted therebetween.

そして、ブーツ固定板21及び外側継手部材3には貫通孔22、23が設けられ、アダプタ20にはネジ孔24が設けられている。このため、アダプタ20の嵌合凹部20bに外側継手部材3のアダプタ側の端部を嵌合させるとともに、ブーツ固定板21の嵌合凹部21aに外側継手部材3の反アダプタ側の端部を嵌合させる。この状態で、ブーツ固定板21の貫通孔22及び外側継手部材3の貫通孔23にボルト部材25を嵌入して、このボルト部材25のねじ部25aを、アダプタ20のネジ孔24に螺着すれば、ブーツ固定板21と外側継手部材3とアダプタ20とが一体化される。 Through holes 22 and 23 are provided in the boot fixing plate 21 and the outer joint member 3 , and a screw hole 24 is provided in the adapter 20 . Therefore, the end of the outer joint member 3 on the side opposite to the adapter is fitted into the fitting recess 20 b of the adapter 20 and the end of the outer joint member 3 on the side opposite to the adapter is fitted into the fitting recess 21 a of the boot fixing plate 21 . match. In this state, the bolt member 25 is inserted into the through hole 22 of the boot fixing plate 21 and the through hole 23 of the outer joint member 3, and the threaded portion 25a of the bolt member 25 is screwed into the threaded hole 24 of the adapter 20. For example, the boot fixing plate 21, the outer joint member 3 and the adapter 20 are integrated.

また、等速自在継手のシャフト側の開口部は密封装置30で密封されている。この場合の密封装置は、金属製の内径側筒部30aと、金属製の外径側筒部30bと、内径側筒部30aと外径側筒部30bとを連結する断面U字形の可撓性材からなる屈曲部30cとからなる。 The shaft-side opening of the constant velocity universal joint is sealed with a sealing device 30 . The sealing device in this case includes a metal inner diameter side tubular portion 30a, a metal outer diameter side tubular portion 30b, and a U-shaped cross section connecting the inner diameter side tubular portion 30a and the outer diameter side tubular portion 30b. and a bent portion 30c made of a flexible material.

内径側筒部30aがシャフト11に外嵌され、外径側筒部30bがブーツ固定板21を介して外側継手部材3に固定される。すなわち、外径側筒部30bの継手側の端部に外径方向に延びる鍔部26が設けられ、この鍔部26が、ブーツ固定板21の継手側の端面の内径部に形成された周方向凹所27に嵌合している。 The inner diameter side tubular portion 30 a is fitted onto the shaft 11 , and the outer diameter side tubular portion 30 b is fixed to the outer joint member 3 via the boot fixing plate 21 . That is, a collar portion 26 extending in the outer diameter direction is provided at the joint-side end portion of the outer diameter side cylindrical portion 30b. It fits into the directional recess 27 .

また、ブーツ固定板21には、グリースを追給脂するグリースニップル28が配置され
ている。すなわち、グリースニップル28は、継手本体内部と連通状態となっている。
A grease nipple 28 for replenishing grease is arranged on the boot fixing plate 21 . That is, the grease nipple 28 is in communication with the interior of the joint body.

ところで、産業用固定式ジョイントにおいて、低角度高速回転では図7に示す等速自在継手にて対応できる。しかしながら、鉄鋼設備の圧延、巻取り工程などの使用箇所においては高頻度で衝撃トルクが入力される場合があり、中間軸(スタブシャフト11と中空管体16とが接続されてなる軸)に入った曲げ応力により、ボス部11bの大径部18と、中空管体16との間の溶接部Wの強度確保が難しい場合がある。 By the way, in industrial fixed joints, a constant velocity universal joint shown in FIG. 7 can be used for low-angle, high-speed rotation. However, there are cases where impact torque is frequently input in places of use such as rolling and winding processes of steel equipment, and the intermediate shaft (the shaft formed by connecting the stub shaft 11 and the hollow tubular body 16) Due to the applied bending stress, it may be difficult to ensure the strength of the welded portion W between the large-diameter portion 18 of the boss portion 11b and the hollow tubular body 16 .

このような溶接部Wの溶接は、図8に示すように、アーク溶接で行われる。この場合、V形開先溶接となっている。外径ビード部の切削加工により切欠係数を下げる、突合せ面のルート確保による溶け込み性アップおよび鋼管径寸法アップ等で、強度確保を図っている。また、特許文献2においても、中間軸のスタブシャフト11と中空管体18との連結は、アーク溶接等で行われる。 Welding of such a weld W is performed by arc welding, as shown in FIG. In this case, V-groove welding is performed. Strength is ensured by reducing the notch factor by cutting the outer diameter bead, improving penetration by securing the root of the butt surface, and increasing the steel pipe diameter. Also in Patent Document 2, the connection between the stub shaft 11 of the intermediate shaft and the hollow tubular body 18 is performed by arc welding or the like.

特開2017-227224号公報JP 2017-227224 A 特開2016-217365号公報JP 2016-217365 A

しかしながら、鋼管径寸法アップでは、配置における周辺部品との干渉が問題となる場合があり、大径化を図るのは好ましくない。すなわち、大径とすることなく、必要強度を確保するのが好ましい。 However, increasing the diameter of the steel pipe may cause a problem of interference with surrounding parts in placement, so it is not preferable to increase the diameter. That is, it is preferable to ensure the required strength without increasing the diameter.

そこで、本発明は斯かる実情に鑑み、開先部の溶接係数が不利にならない裏波溶接を用いた仕様に設計することにより、比較的厳しい負荷条件で使用される等速自在継手に用いることができるシャフト構造体を提供しようとするものである。 Therefore, in view of such circumstances, the present invention is designed to a specification using Uranami welding that does not disadvantageously affect the welding coefficient of the groove, so that it can be used for constant velocity universal joints that are used under relatively severe load conditions. An object of the present invention is to provide a shaft structure capable of

本発明のシャフト構造は、外側継手部材と、内側継手部材と、外側継手部材と内側継手部材との間に介在されるトルク伝達部材であるボールとを備えた等速自在継手に連結されるシャフト構造体であって、前記等速自在継手の内側継手部材に、先端側の挿入軸部が挿入されるスタブシャフトと、このスタブシャフトの基端側に設けられる大径部が接続される中空管体とを備え、前記スタブシャフトの大径部に、外径方向に開口する周方向座ぐり溝を設けるとともに、この周方向座ぐり溝の開口部の先端側を外径鍔部にて覆い、前記中空管体の前記スタブシャフト側の開口部に、前記大径部を嵌入してこの中空管体の開口端部と前記スタブシャフトの前記外径鍔部の端縁部とを突き合わせ状として、この開口端部と端縁部とを裏波溶接となる開先溶接部にて一体化したものである。ここで、裏波溶接とは、表面(外面)からの溶接で裏面(内面)にビードを形成する溶接方法である。 A shaft structure of the present invention is a shaft coupled to a constant velocity universal joint including an outer joint member, an inner joint member, and a ball as a torque transmission member interposed between the outer joint member and the inner joint member. A hollow structure in which a stub shaft into which an insertion shaft portion on the distal end side is inserted and a large diameter portion provided on the proximal end side of the stub shaft are connected to the inner joint member of the constant velocity universal joint. a tubular body, wherein a circumferential counterbore groove that opens in the outer diameter direction is provided in the large diameter portion of the stub shaft, and the tip end side of the opening of the circumferential counterbore groove is covered with an outer diameter flange. and inserting the large-diameter portion into the opening of the hollow tubular body on the stub shaft side so that the open end of the hollow tubular body and the edge of the outer diameter flange of the stub shaft are butted against each other. As a shape, the opening end and the edge are integrated at the groove welded portion which is Uranami welding. Here, Uranami welding is a welding method in which a bead is formed on the back surface (inner surface) by welding from the surface (outer surface).

本発明のシャフト構造によれば、中空管体の開口端部とスタブシャフトの前記外径鍔部の端縁部とを突き合わせ状として、この開口端部と端縁部とを裏波溶接となる開先溶接部にて一体化するので、中空管体の開口端部と前記スタブシャフトの外径鍔部の端縁部との接合部の接合強度の向上を図ることができる。 According to the shaft structure of the present invention, the open end portion of the hollow tubular body and the edge portion of the outer diameter flange portion of the stub shaft are butted, and the open end portion and the edge portion are welded by Uranami welding. Since they are integrated at the groove welded portion, it is possible to improve the joint strength of the joint portion between the open end portion of the hollow tubular body and the edge portion of the outer diameter collar portion of the stub shaft.

前記スタブシャフトは軸心孔を備えるとともに、この軸心孔と前記周方向座ぐり溝とを連通孔で連通し、この連通孔及び軸心孔を裏波溶接時のエア抜き孔とするのが好ましい。このように構成することによって、溶接時の内圧上昇を抑えることができ、しかも、安定して裏波ビード部(裏面側のビード部)を形成できる。 The stub shaft is provided with an axial hole, and the axial hole and the circumferential counterbore groove are communicated with each other through a communicating hole, and the communicating hole and the axial hole are used as an air vent during Uranami welding. preferable. By configuring in this way, it is possible to suppress an increase in internal pressure during welding, and to stably form the Uranami bead portion (the bead portion on the back side).

前記スタブシャフトの大径部が嵌入される中空管体の開口部の内径面と、この内径面に対向する大径部の外径面とを溶接部の溶接前に接合手段で接合するのが好ましい。このように構成することによって、中空管体の開口端部と前記スタブシャフトの外径鍔部の端縁部との接合部に隙間を持たせた状態で中空管体とスタブシャフトを強固に固定することができ、適切な隙間を維持したまま溶接部の溶接が可能になる。 The inner diameter surface of the opening of the hollow tubular body into which the large diameter portion of the stub shaft is fitted and the outer diameter surface of the large diameter portion facing the inner diameter surface are joined by a joining means before welding the welded portion. is preferred. With this configuration, the hollow tube and the stub shaft can be firmly connected while leaving a gap at the joint between the open end of the hollow tube and the edge of the outer diameter flange of the stub shaft. , allowing the weld to be welded while maintaining the proper clearance.

前記接合手段にて接合された接合部と前記開先溶接部とを軸方向にずらせるのが好ましい。このような構成とすることによって、溶接部の内径側に座ぐりによる空間が確保でき、裏波ビード部(裏面側のビード部)が形成可能な裏波溶接が可能になる。すなわち、中間軸を構成するシャフト構造体の強度確保を図れるため余分な大径化を防止でき、周辺部品との干渉を回避できる。 It is preferable that the joint portion joined by the joining means and the groove weld portion are shifted in the axial direction. By adopting such a configuration, a space can be secured by counterbore on the inner diameter side of the welded portion, and Uranami welding capable of forming a Uranami bead portion (a bead portion on the back surface side) can be performed. That is, since the strength of the shaft structure that constitutes the intermediate shaft can be ensured, an excessive increase in diameter can be prevented, and interference with peripheral parts can be avoided.

前記接合手段は、焼き嵌めとすることができる。ここで、焼き嵌めは、軸を受ける側の穴を加熱して膨張させて広げ、軸を嵌め入れ、その後に冷却する接合方法である。このため強い接合力や切粉が発生しないことなどがある。また、突合せのルート間隔は規定値に相当する鋼板等を焼嵌め時に挟み込み、位置決めすればよい。 The joining means may be shrink fitting. Here, shrink fitting is a joining method in which a hole on the side of receiving a shaft is heated to expand and widen, the shaft is fitted in, and then cooled. For this reason, there is a strong joining force and no generation of chips. In addition, the root spacing of butt may be determined by sandwiching a steel plate or the like corresponding to a specified value at the time of shrink fitting and positioning.

前記開先溶接部の外径部を前記外径鍔部の外径面と面一の円筒面とするのが好ましい。このように構成することによって、溶接部の外径面に超音波を照射しても、乱反射せず、超音波探傷による検査を行うことができる。 It is preferable that the outer diameter portion of the groove welded portion be a cylindrical surface that is flush with the outer diameter surface of the outer diameter flange portion. With this configuration, even if ultrasonic waves are applied to the outer diameter surface of the welded portion, irregular reflection does not occur, and inspection by ultrasonic flaw detection can be performed.

前記等速自在継手が軸線方向の変位と作動角の変位とを許容する摺動式等速自在継手であっても、作動角の変位のみを許容する固定式等速自在継手であってもよい。摺動式等速自在継手には、ダブルオフセット型、トリポード型、クロスグルーブ型等であり、固定式等速自在継手には、ツェッパ型、アンダーカットフリー型等がある。 The constant velocity universal joint may be a sliding constant velocity universal joint that allows axial displacement and operating angle displacement, or a fixed constant velocity universal joint that allows only operating angle displacement. . Sliding type constant velocity universal joints include double offset type, tripod type, cross groove type and the like, and fixed type constant velocity universal joints include Rzeppa type, undercut free type and the like.

本発明のシャフト構造体は、接合部(溶接部)の疲労強度向上を図ることができ、産業機械用等速自在継手として鉄鋼設備などに使用している高頻度で衝撃トルクが入力されるシャフト構造体(中間軸)に有効に使用できる。 INDUSTRIAL APPLICABILITY The shaft structure of the present invention can improve the fatigue strength of joints (welded parts), and is used as a constant velocity universal joint for industrial machinery in steel equipment and the like, where impact torque is frequently input. It can be effectively used for structures (intermediate axes).

本発明のシャフト構造体が接続されている等速自在継手の断面図である。1 is a cross-sectional view of a constant velocity universal joint to which a shaft structure of the present invention is connected; FIG. 図1のX-X線切断断面図である。FIG. 2 is a sectional view taken along the line XX of FIG. 1; シャフト構造体の要部分解断面図である。FIG. 4 is an exploded cross-sectional view of a main portion of the shaft structure; シャフト構造体の一体化された状態の断面図である。FIG. 4 is a cross-sectional view of the integrated state of the shaft structure; シャフト構造体の溶接直前の断面図である。FIG. 4 is a cross-sectional view of the shaft structure just before welding; 開先形状を示す簡略断面図である。It is a simplified cross-sectional view showing a groove shape. 従来のシャフト構造体が接続されている等速自在継手の断面図である。FIG. 10 is a cross-sectional view of a constant velocity universal joint to which a conventional shaft structure is connected; 従来のシャフト構造体の要部拡大図である。FIG. 3 is an enlarged view of a main portion of a conventional shaft structure;

以下本発明の実施の形態を図1~図5に基づいて説明する。図1及び図2に、本発明に係るシャフト構造体が接続される等速自在継手を示し、この等速自在継手は、内径面31にトラック溝32が形成された外側継手部材33と、外径面34に外側継手部材33のトラック溝32と対をなすトラック溝35が形成された内側継手部材36と、外側継手部材33のトラック溝32と内側継手部材36のトラック溝35との間に介在してトルクを伝達するボール37と、外側継手部材33の内径面31と内側継手部材36の外径面34との間に介在してボール37を保持する保持器38とを備えている。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. FIG. 1 and 2 show a constant velocity universal joint to which a shaft structure according to the present invention is connected. Between the inner joint member 36 in which the track groove 35 paired with the track groove 32 of the outer joint member 33 is formed on the radial surface 34 and the track groove 32 of the outer joint member 33 and the track groove 35 of the inner joint member 36 It is provided with balls 37 interposed to transmit torque, and retainers 38 interposed between the inner diameter surface 31 of the outer joint member 33 and the outer diameter surface 34 of the inner joint member 36 to hold the balls 37 .

スタブシャフト41の基端側にはパイプ材からなる中空管体46が連設されている。すなわち、スタブシャフト41の基端部には大径部41aが形成され、この大径部41aが、中空管体46のスタブシャフト側の開口部46aに嵌入されている。この場合、後述するように、このスタブシャフト41と中空管体46とが一体されて、本発明に係るシャフト構造体Sを構成する。 A hollow tubular body 46 made of a pipe material is connected to the base end side of the stub shaft 41 . That is, a large-diameter portion 41a is formed at the proximal end portion of the stub shaft 41, and this large-diameter portion 41a is fitted into an opening portion 46a of the hollow tubular body 46 on the stub shaft side. In this case, as will be described later, the stub shaft 41 and the hollow tubular body 46 are integrated to form a shaft structure S according to the present invention.

内側継手部材36の軸心孔の内径面に雌スプライン40が形成され、この軸心孔にスタブシャフト41の先端側の挿入軸部である雄スプライン42が嵌入される。これによって、雌スプライン40と雄スプライン42とが嵌合する。雄スプライン42の先端部にはそれぞれ抜け止め用の止め輪43が装着されている。すなわち、内側継手部材36の先端面の螺合されるボルト部材44を介してこの止め輪43が内側継手部材36に装着されている。 A female spline 40 is formed on the inner diameter surface of the axial hole of the inner joint member 36, and a male spline 42, which is an insertion shaft portion on the distal end side of the stub shaft 41, is fitted into the axial hole. Thereby, the female spline 40 and the male spline 42 are fitted. Retaining rings 43 are attached to the distal ends of the male splines 42 to prevent them from coming off. That is, the retaining ring 43 is attached to the inner joint member 36 via a bolt member 44 screwed onto the tip surface of the inner joint member 36 .

外側継手部材33はディスクタイプで、一方の端面33a側にはアダプタ50が装着され、他方の端面33b側にはブーツ固定板51が装着される。すなわち、アダプタ50は、筒状のアダプタ本体50aと、このアダプタ本体50aに等速自在継手側の一体化される平板リング形状の端板部50bとを有する。この端板部50bの端面には、外側継手部材33のアダプタ50側の端部が嵌合する嵌合凹部50b1が設けられ、外側継手部材33の一方の端面33aと嵌合凹部50b1の間にはパッキン39aが装着される。また、ブーツ固定板51は、平板リング体からなり、その継手本体側の端面には、外側継手部材33の反アダプタ側の端部が嵌合する嵌合凹部51aが設けられ、外側継手部材33の他方の端面33bと嵌合凹部51aとの間にはパッキン39bが装着される。パッキン39a,39bは紙+樹脂の合成材料から成形している。また、パッキン39a,39bは使用条件、使用環境によりメタル製(鉄、ステンレス、アルミ等)や液状ガスケットを適用することが可能である。 The outer joint member 33 is a disk type, and an adapter 50 is attached to one end surface 33a side, and a boot fixing plate 51 is attached to the other end surface 33b side. That is, the adapter 50 has a cylindrical adapter main body 50a and a flat ring-shaped end plate portion 50b integrated with the adapter main body 50a on the constant velocity universal joint side. An end face of the end plate portion 50b is provided with a fitting recess 50b1 into which the end of the outer joint member 33 on the side of the adapter 50 is fitted. is equipped with packing 39a. The boot fixing plate 51 is formed of a flat plate ring body, and is provided with a fitting concave portion 51a on the end face of the joint main body side, into which the end portion of the outer joint member 33 on the side opposite to the adapter is fitted. A packing 39b is mounted between the other end face 33b and the fitting recess 51a. The packings 39a and 39b are molded from a synthetic material of paper and resin. The packings 39a and 39b can be made of metal (iron, stainless steel, aluminum, etc.) or liquid gaskets depending on the usage conditions and environment.

そして、ブーツ固定板51及び外側継手部材33には貫通孔52、53が設けられ、アダプタ50の端板部50bにはネジ孔54が設けられている。このため、アダプタ50の嵌合凹部50b1に外側継手部材33のアダプタ側の端部を嵌合させるとともに、ブーツ固定板51の嵌合凹部51aに外側継手部材33の反アダプタ側の端部を嵌合させる。この状態で、ブーツ固定板51の貫通孔52及び外側継手部材33の貫通孔53にボルト部材55を嵌入して、このボルト部材55のねじ部55aを、アダプタ50のネジ孔54に螺着すれば、ブーツ固定板51と外側継手部材33とアダプタ50とが一体化される。 Through holes 52 and 53 are provided in the boot fixing plate 51 and the outer joint member 33, and a screw hole 54 is provided in the end plate portion 50b of the adapter 50. As shown in FIG. Therefore, the end of the outer joint member 33 on the side opposite to the adapter is fitted into the fitting recess 50 b 1 of the adapter 50 and the end of the outer joint member 33 on the side opposite to the adapter is fitted into the fitting recess 51 a of the boot fixing plate 51 . match. In this state, the bolt member 55 is inserted into the through hole 52 of the boot fixing plate 51 and the through hole 53 of the outer joint member 33 , and the threaded portion 55 a of the bolt member 55 is screwed into the threaded hole 54 of the adapter 50 . For example, the boot fixing plate 51, the outer joint member 33 and the adapter 50 are integrated.

なお、ブーツ固定板51には、グリースを追給脂するグリースニップル58が配置され
ている。すなわち、グリースニップル58は、継手本体内部と連通状態となっている。
A grease nipple 58 for replenishing grease is arranged on the boot fixing plate 51 . That is, the grease nipple 58 is in communication with the interior of the joint body.

また、等速自在継手のシャフト側の開口部は密封装置60で密封されている。この場合の密封装置60は、金属製の内径側筒部60aと、金属製の外径側筒部60bと、内径側筒部60aと外径側筒部60bとを連結する断面U字形の可撓性材からなる屈曲部60cとからなる。この場合、内径側筒部60aと外径側筒部60bとの金属環に屈曲部60cが加硫接着されてなる。なお、内径側筒部60a及び外径側筒部60bの金属材と、屈曲部60cの可撓性材とは、この等速自在継手が用いられる環境下で対応することができるものであればよい。 A sealing device 60 seals the opening of the constant velocity universal joint on the shaft side. In this case, the sealing device 60 has a U-shaped cross section connecting the inner diameter side cylindrical portion 60a made of metal, the outer diameter side cylindrical portion 60b made of metal, and the inner diameter side cylindrical portion 60a and the outer diameter side cylindrical portion 60b. and a bent portion 60c made of a flexible material. In this case, the bent portion 60c is vulcanized and bonded to the metal rings of the inner diameter side tubular portion 60a and the outer diameter side tubular portion 60b. The metal material of the inner diameter side cylindrical portion 60a and the outer diameter side cylindrical portion 60b and the flexible material of the bending portion 60c are those that can be used in the environment in which this constant velocity universal joint is used. good.

内径側筒部60aがシャフト41に外嵌され、外径側筒部60bがブーツ固定板51を介して外側継手部材33に固定される。すなわち、外径側筒部60bの継手側の端部に外径方向に延びる鍔部56が設けられ、この鍔部56が、ブーツ固定板51の継手側の端面51aの内径部に形成された周方向凹所に嵌合している。 The inner diameter side tubular portion 60 a is fitted onto the shaft 41 , and the outer diameter side tubular portion 60 b is fixed to the outer joint member 33 via the boot fixing plate 51 . That is, a collar portion 56 extending in the outer diameter direction is provided at the joint-side end portion of the outer diameter side cylindrical portion 60b, and the collar portion 56 is formed on the inner diameter portion of the joint-side end surface 51a of the boot fixing plate 51. It fits in the circumferential recess.

次に、スタブシャフト41と中空管体46との接続方法を説明する。この場合、図3~5で示すように、スタブシャフト41の大径部41aに、外径方向に開口する周方向座ぐり溝70を設けるとともに、この周方向座ぐり溝70の開口部の先端側を外径鍔部71にて覆う。また、外径鍔部の端縁部には、その周方向座ぐり溝70側の径方向端面部72aと、開口側のテーパ面部72bとが形成されている。 Next, a method of connecting the stub shaft 41 and the hollow tubular body 46 will be described. In this case, as shown in Figs. The side is covered with the outer diameter flange portion 71 . In addition, a radial end surface portion 72a on the circumferential counterbore groove 70 side and a tapered surface portion 72b on the opening side are formed at the edge portion of the outer diameter flange portion.

また、中空管体46は、そのスタブシャフト41側の開口部に、その内径が他の部位よりも僅かに大きいシャフト挿入部46aが形成され、その開口端部には、スタブシャフトの外径鍔部71の端縁部と対称の、内径側の径方向端面部73aと、外径側のテーパ面部73bとが形成されている。 The hollow tubular body 46 has a shaft insertion portion 46a whose inner diameter is slightly larger than that of other portions at the opening on the stub shaft 41 side. A radial end surface portion 73a on the inner diameter side and a tapered surface portion 73b on the outer diameter side, which are symmetrical with the edge portion of the collar portion 71, are formed.

このため、中空管体46のシャフト挿入部46aに、スタブシャフト41の大径部41aを嵌入して、図5に示すように突き合わせる。この場合、相対面する径方向端面部間を、所定隙間に設定する。ここで、所定隙間としては、例えば、1.5mmから2.5mm程度に設定される。 For this reason, the large-diameter portion 41a of the stub shaft 41 is fitted into the shaft insertion portion 46a of the hollow tubular body 46 and butted against each other as shown in FIG. In this case, a predetermined gap is set between the facing radial end face portions. Here, the predetermined gap is set to, for example, approximately 1.5 mm to 2.5 mm.

すなわち、この相対面する径方向端面部の突き合わせ面が、V形開先溶接を行うための開先となり、ルート間隔が前記の所定隙間である、1.5mmから2.5mm程度とされる。また、ルート面長さが、例えば、1.0mmから2.0mm程度に設定され、テーパ面部の傾斜角度θ1,θ2が同一に設定され、開先角度θが50°から70°程度に設定される。 That is, the abutting surfaces of the radial end face portions facing each other serve as grooves for performing V-groove welding, and the root interval is about 1.5 mm to 2.5 mm, which is the above-mentioned predetermined gap. Further, the root surface length is set to, for example, about 1.0 mm to 2.0 mm, the inclination angles θ1 and θ2 of the tapered surface portion are set to be the same, and the groove angle θ is set to about 50° to 70°. be.

また、中空管体46のシャフト挿入部46aに、スタブシャフト41の大径部41aを嵌入する場合、接合手段を介して、シャフト挿入部46aの内径面46a1と、スタブシャフト41の大径部41aの外径面41a1とが接合一体化され、この内径面46a1と外径面41a1との間に接合部Jを形成する。この場合の接合手段としては、この実施形態では、焼き嵌めが採用されている。ここで、焼き嵌めは、軸を受ける側の穴を加熱して膨張させて広げ、軸を嵌め入れ、その後に冷却する接合方法である。このため強い接合力や切粉が発生しないことなどがある。 When the large diameter portion 41a of the stub shaft 41 is fitted into the shaft insertion portion 46a of the hollow tubular body 46, the inner diameter surface 46a1 of the shaft insertion portion 46a and the large diameter portion of the stub shaft 41 are connected via a joining means. The outer diameter surface 41a1 of 41a is joined together to form a joint J between the inner diameter surface 46a1 and the outer diameter surface 41a1. As a joining means in this case, shrink fitting is employed in this embodiment. Here, shrink fitting is a joining method in which a hole on the side of receiving a shaft is heated to expand and widen, the shaft is fitted in, and then cooled. For this reason, there is a strong joining force and no generation of chips.

ところで、スタブシャフト41の周方向座ぐり溝70の底面70aの両コーナ部75,76は、アール部とされ、外径鍔部71と、周方向座ぐり溝70との間のコーナ部77もアール部とされる。また、周方向座ぐり溝の反外径鍔部側が、焼き嵌めより、シャフト挿入部46aの内径面46a1と接合される部位(胴部)78であるが、この胴部78の軸方向両端に面取部78a、78bが形成され、この面取部間が接合部Jの接合範囲Hとなる。 By the way, both the corner portions 75 and 76 of the bottom surface 70a of the circumferential counterbore groove 70 of the stub shaft 41 are rounded portions, and the corner portion 77 between the outer diameter flange portion 71 and the circumferential counterbore groove 70 is also rounded. Earl part. Further, the side of the circumferential counterbore groove opposite to the outer diameter flange portion is a portion (body portion) 78 that is joined to the inner diameter surface 46a1 of the shaft insertion portion 46a by shrink fitting. Chamfered portions 78a and 78b are formed, and the joint range H of the joint portion J is between the chamfered portions.

また、スタブシャフト41には、図1と図3に示すように、軸心孔80が設けられ、かつ、周方向座ぐり溝70と軸心孔80とが連通孔81で連通されている。この連通孔81は、周方向座ぐり溝70の底面70aから径方向に延びて軸心孔80に達している。 As shown in FIGS. 1 and 3 , the stub shaft 41 is provided with an axial hole 80 , and the communication hole 81 communicates between the circumferential counterbore groove 70 and the axial hole 80 . The communication hole 81 extends radially from the bottom surface 70 a of the circumferential counterbore groove 70 and reaches the axial hole 80 .

開先部に溶接(V形開先溶接)を行うためのものであるが、この場合、中空管体46の開口端部と端縁部(外径鍔部71の端部)とを裏波溶接となる開先溶接部Wにて一体化することになる。ここで、裏波溶接とは、表面(外面)からの溶接で,図4に示すように、裏面(内面)にビード82を形成する溶接方法である。この場合、連通孔81及び軸心孔80が裏波溶接時のエア抜き孔となる。 It is for welding (V-groove welding) to the groove portion. They are integrated at the groove welded portion W, which is wave welded. Here, Uranami welding is welding from the surface (outer surface), and is a welding method for forming a bead 82 on the back surface (inner surface) as shown in FIG. In this case, the communication hole 81 and the axial hole 80 serve as air vent holes during Uranami welding.

また、通常、このような溶接を行えば、表面側に溶接膨出部Wa(図8参照)が形成されるが、この場合、研削等の溶接膨出部除去作業を行うことによって、開先溶接部Wの外径部を外径鍔部71の外径面71aと面一の円筒面としている。 Normally, if such welding is performed, a weld bulge Wa (see FIG. 8) is formed on the surface side. The outer diameter portion of the welded portion W is a cylindrical surface flush with the outer diameter surface 71 a of the outer diameter flange portion 71 .

本発明のシャフト構造では、中空管体46の開口端部とスタブシャフト41の外径鍔部71の端縁部とを突き合わせ状として、この開口端部と端縁部とを裏波溶接となる開先溶接部にて一体化するので、中空管体46の開口端部とスタブシャフト41の外径鍔部71の端縁部との接合部(溶接部)Wの接合強度の向上を図ることができる。 In the shaft structure of the present invention, the open end of the hollow tubular body 46 and the edge of the outer diameter collar portion 71 of the stub shaft 41 are butted together, and the open end and the edge are welded by Uranami welding. Since they are integrated at the groove welded portion, the joint strength of the joint (welded portion) W between the open end portion of the hollow tubular body 46 and the edge portion of the outer diameter flange portion 71 of the stub shaft 41 can be improved. can be planned.

このため、本発明のシャフト構造体は、接合部(溶接部)Wの疲労強度向上を図ることができ、産業機械用等速自在継手として鉄鋼設備などに使用している高頻度で衝撃トルクが入力されるシャフト構造体(中間軸)に有効に使用できる。 For this reason, the shaft structure of the present invention can improve the fatigue strength of the joint (welded portion) W, and can be used as a constant velocity universal joint for industrial machinery in steel equipment and the like at a high frequency of impact torque. It can be effectively used for the input shaft structure (intermediate shaft).

スタブシャフト41は軸心孔80を備えるとともに、この軸心孔80と周方向座ぐり溝70とを連通孔81で連通し、この連通孔81及び軸心孔80を裏波溶接時のエア抜き孔とすることができるので、溶接時の内圧上昇を抑えることができ、しかも、安定して裏波ビード部(裏面側のビード部)を形成できる。 The stub shaft 41 is provided with an axial hole 80, and the axial hole 80 and the circumferential counterbore groove 70 are communicated with each other through a communicating hole 81. The communicating hole 81 and the axial hole 80 are used for air bleeding during Uranami welding. Since it can be formed as a hole, it is possible to suppress an increase in internal pressure during welding, and moreover, it is possible to stably form the Uranami bead portion (bead portion on the back side).

スタブシャフト41の大径部41aが嵌入される中空管体46の開口部(シャフト挿入部46a)の内径面46a1と、この内径面46a1とに対向する大径部41aの外径面41a1とを溶接部の溶接前に接合手段で接合している。このため、中空管体46の開口端部とスタブシャフト41の外径鍔部71の端縁部との接合部Hに隙間を持たせた状態で中空管体46とスタブシャフト41を強固に固定でき、適切な隙間を維持したまま溶接部の溶接が可能となる。 An inner diameter surface 46a1 of the opening (shaft insertion portion 46a) of the hollow tubular body 46 into which the large diameter portion 41a of the stub shaft 41 is fitted, and an outer diameter surface 41a1 of the large diameter portion 41a facing the inner diameter surface 46a1. are joined by a joining means before welding of the welded part. For this reason, the hollow pipe 46 and the stub shaft 41 are firmly attached to each other while leaving a gap at the junction H between the open end of the hollow pipe 46 and the edge of the outer diameter collar portion 71 of the stub shaft 41 . It is possible to weld the weld while maintaining an appropriate gap.

接合手段にて接合された接合部Jと開先溶接部Wとを軸方向にずらせているので、溶接部の内径側46aに座ぐり溝70による空間が確保でき、裏波ビード部82(裏面側のビード部)が形成可能な裏波溶接が可能となる。すなわち、中間軸を構成するシャフト構造体Sの強度確保を図れるため余分な大径化を防止でき、周辺部品との干渉を回避できる。 Since the joint J joined by the joining means and the groove weld W are offset in the axial direction, a space can be secured by the counterbore groove 70 on the inner diameter side 46 a of the weld, and the Uranami bead portion 82 (back surface Uranami welding that can form a bead portion on the side) is possible. That is, since the strength of the shaft structure S constituting the intermediate shaft can be ensured, it is possible to prevent an excessive increase in diameter and avoid interference with peripheral parts.

前記接合手段は、焼き嵌めであるので、このため強い接合力や切粉が発生しない利点がある。 Since the joining means is shrink fitting, there are advantages such as strong joining force and no generation of cutting chips.

開先溶接部Wの外径部を外径鍔部71の外径面71aと面一の円筒面としている。すなわち、外径側に形成される溶接膨出部を研削もしくは切削することで、面一の円筒面のため、溶接部の外径面に超音波を照射しても、乱反射せず、超音波探傷による検査を行うことができる。 The outer diameter portion of the groove welded portion W is a cylindrical surface that is flush with the outer diameter surface 71 a of the outer diameter flange portion 71 . That is, by grinding or cutting the weld bulge formed on the outer diameter side, even if ultrasonic waves are irradiated to the outer diameter surface of the welded part, the ultrasonic waves are not diffusely reflected because of the flush cylindrical surface. Inspection by flaw detection can be performed.

ところで、本シャフト構造体Sに接続することができる、等速自在継手として、軸線方向の変位と作動角の変位とを許容する摺動式等速自在継手であっても、作動角の変位のみを許容する固定式等速自在継手であっても、摺動式等速自在継手と固定式自在継手の組合せであってもよい。摺動式等速自在継手には、ダブルオフセット型、トリポード型、クロスグルーブ型等であり、固定式等速自在継手には、ツェッパ型、アンダーカットフリー型等がある。 By the way, as a constant velocity universal joint that can be connected to the present shaft structure S, even if it is a sliding constant velocity universal joint that allows axial displacement and operating angle displacement, only operating angle displacement is possible. , or a combination of a sliding constant velocity universal joint and a fixed universal joint. Sliding type constant velocity universal joints include double offset type, tripod type, cross groove type and the like, and fixed type constant velocity universal joints include Rzeppa type, undercut free type and the like.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、V形開先溶接を行う場合、アーク溶接に限るものではなく、裏波溶接が可能な他の溶接方法(例えば、電子ビーム溶接、レーザ溶接等)であってもよい。また、スタブシャフト41の大径部41aが嵌入される中空管体46の開口部46aの内径面46a1と、この内径面46a1に対向する大径部41aの外径面41a1とを接合する接合手段として、焼き嵌めに限るものではなく、他の接合方法(例えば、電磁圧接や超音波圧接等)であってもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be modified in various ways. When performing V-groove welding, it is not limited to arc welding, Other welding methods capable of Uranami welding (for example, electron beam welding, laser welding, etc.) may be used. Also, a joint for joining the inner diameter surface 46a1 of the opening 46a of the hollow tubular body 46 into which the large diameter portion 41a of the stub shaft 41 is fitted and the outer diameter surface 41a1 of the large diameter portion 41a facing the inner diameter surface 46a1. The means is not limited to shrink fitting, and other joining methods (for example, electromagnetic pressure welding, ultrasonic pressure welding, etc.) may be used.

開先形状して、Y形、I形、V形、レ形、K形、J形、X形、U形、両面J形、H(両面U)形などであっってもよい。 The groove shape may be Y-shaped, I-shaped, V-shaped, L-shaped, K-shaped, J-shaped, X-shaped, U-shaped, double-sided J-shaped, H (double-sided U)-shaped, or the like.

33 外側継手部材
36 内側継手部材
37 ボール
41 スタブシャフト
41a 大径部
41a1 外径面
46 中空管体
46a 開口部(シャフト挿入部)
46a1 内径面
70 周方向座ぐり溝
71 外径鍔部
80 軸心孔
81 連通孔
J 接合部
W 開先溶接部
33 outer joint member 36 inner joint member 37 ball 41 stub shaft 41a large diameter portion 41a1 outer diameter surface 46 hollow tubular body 46a opening (shaft insertion portion)
46a1 inner diameter surface 70 circumferential counterbore groove 71 outer diameter collar portion 80 shaft center hole 81 communicating hole
J Joint W Groove weld

Claims (9)

外側継手部材と、内側継手部材と、外側継手部材と内側継手部材との間に介在されるトルク伝達部材であるボールとを備えた等速自在継手に連結されるシャフト構造体であって、
前記等速自在継手の内側継手部材に、先端側の挿入軸部が挿入されるスタブシャフトと、このスタブシャフトの基端側に設けられる大径部が接続される中空管体とを備え、前記スタブシャフトの大径部に、外径方向に開口する周方向座ぐり溝を設けるとともに、この周方向座ぐり溝の開口部の先端側を外径鍔部にて覆い、前記中空管体の前記スタブシャフト側の開口部に、前記大径部を嵌入してこの中空管体の開口端部と前記スタブシャフトの前記外径鍔部の端縁部とを突き合わせ状として、この開口端部と端縁部とを裏波溶接となる開先溶接部にて一体化したことを特徴とするシャフト構造体。
A shaft structure connected to a constant velocity universal joint comprising an outer joint member, an inner joint member, and a ball as a torque transmission member interposed between the outer joint member and the inner joint member,
The inner joint member of the constant velocity universal joint comprises a stub shaft into which an insertion shaft portion on the distal end side is inserted, and a hollow tubular body to which a large diameter portion provided on the proximal end side of the stub shaft is connected, The large-diameter portion of the stub shaft is provided with a circumferential counterbore groove that opens in the outer diameter direction, and the front end side of the opening of the circumferential counterbore groove is covered with an outer diameter flange, and the hollow tubular body The large-diameter portion is inserted into the opening on the stub shaft side of the stub shaft, and the opening end of the hollow tubular body and the edge of the outer diameter flange of the stub shaft are butted together, and the opening end is A shaft structure characterized in that a portion and an edge portion are integrated at a groove welded portion that is Uranami welding.
前記スタブシャフトは軸心孔を備えるとともに、この軸心孔と前記周方向座ぐり溝とを連通孔で連通し、この連通孔及び軸心孔を裏波溶接時のエア抜き孔としたことを特徴とする請求項1に記載のシャフト構造体。 The stub shaft is provided with an axial hole, the axial hole and the circumferential counterbore groove are communicated with each other through a communication hole, and the communication hole and the axial hole are used as air vent holes during Uranami welding. The shaft structure of Claim 1. 前記スタブシャフトの大径部が嵌入される中空管体の開口部の内径面と、この内径面に対向する大径部の外径面とを溶接部の溶接前に接合手段で接合したことを特徴とする請求項1又は請求項2に記載のシャフト構造体。 The inner diameter surface of the opening of the hollow tubular body into which the large diameter portion of the stub shaft is fitted and the outer diameter surface of the large diameter portion facing the inner diameter surface are joined by a joining means before welding the welded portion. 3. The shaft structure according to claim 1 or 2, characterized by: 前記接合手段にて接合された接合部と前記開先溶接部とを軸方向にずらせたことを特徴とする請求項3に記載のシャフト構造体。 4. The shaft structure according to claim 3, wherein the joint portion joined by the joining means and the groove weld portion are axially displaced. 前記接合手段は、焼き嵌めであることを特徴とする請求項3又は請求項4に記載したシャフト構造体。 5. The shaft structure according to claim 3, wherein said joining means is shrink fitting. 前記開先溶接部の外径部を前記外径鍔部の外径面と面一の円筒面としたことを特徴とする請求項1~請求項5のいずれか1項に記載したシャフト構造体。 6. The shaft structure according to any one of claims 1 to 5, wherein the outer diameter portion of the groove welded portion is a cylindrical surface that is flush with the outer diameter surface of the outer diameter flange portion. . 前記等速自在継手が軸線方向の変位と作動角の変位とを許容する摺動式等速自在継手であることを特徴とする請求項1~請求項6のいずれか1項に記載のシャフト構造体。 The shaft structure according to any one of claims 1 to 6, wherein the constant velocity universal joint is a sliding constant velocity universal joint that allows axial displacement and operating angle displacement. body. 前記等速自在継手が作動角の変位のみを許容する固定式等速自在継手であることを特徴とする請求項1~請求項6のいずれか1項に記載のシャフト構造体。 The shaft structure according to any one of claims 1 to 6, wherein the constant velocity universal joint is a fixed constant velocity universal joint that allows only a change in operating angle. 前記等速自在継手が摺動式等速自在継手と固定式自在継手の組合せであることを特徴とした請求項1~請求項6のいずれか1項に記載のシャフト構造体。 7. The shaft structure according to claim 1, wherein the constant velocity universal joint is a combination of a sliding constant velocity universal joint and a fixed universal joint.
JP2021121401A 2021-07-26 2021-07-26 shaft structure Pending JP2023017270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021121401A JP2023017270A (en) 2021-07-26 2021-07-26 shaft structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021121401A JP2023017270A (en) 2021-07-26 2021-07-26 shaft structure

Publications (1)

Publication Number Publication Date
JP2023017270A true JP2023017270A (en) 2023-02-07

Family

ID=85157940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021121401A Pending JP2023017270A (en) 2021-07-26 2021-07-26 shaft structure

Country Status (1)

Country Link
JP (1) JP2023017270A (en)

Similar Documents

Publication Publication Date Title
EP2778453B1 (en) Plug-In CVJ assembly
CA2898794A1 (en) Joint-site design comprising a hub and a shaft or a gear being friction welded
EP2172666B1 (en) Joint for steering
US8328650B2 (en) Constant velocity universal joint
JP2013002586A (en) External joint member for constant velocity universal joint
JP2023017270A (en) shaft structure
US11982319B2 (en) Torque transmission shaft
WO2011062040A1 (en) Power transmitting member
US11035416B2 (en) Propeller shaft tube yoke having a welded joint
KR20160147663A (en) Joint yoke for a universal joint and universal joint
JP2007010029A (en) Outer ring for constant velocity joint
US11767876B2 (en) Power transmission shaft
JP2011185401A (en) Shaft connector and torque limiter
RU2648909C1 (en) Composite propeller shaft assembly
JP2008232292A (en) Constant velocity universal joint
US7611415B1 (en) Shaft assembly with integrated constant velocity joint
US20100248848A1 (en) Constant-Velocity Universal Joint Housing
US20210396276A1 (en) Torsionally Elastic Shaft Joint and Method of Making the Same
JP2024000174A (en) Constant velocity universal joint and method for manufacturing the same
JP2009127762A (en) Constant velocity universal joint
JP2005226812A (en) Constant velocity universal joint
EP3351808B1 (en) Boot band
JP2021025627A (en) Shaft connecting structure of constant velocity universal joint
JP2007138977A (en) End cover installing structure for telescopic shaft
JP2021067296A (en) Annular seal material