JP2011106136A - Vertical vibration control system of base-isolated building - Google Patents

Vertical vibration control system of base-isolated building Download PDF

Info

Publication number
JP2011106136A
JP2011106136A JP2009260708A JP2009260708A JP2011106136A JP 2011106136 A JP2011106136 A JP 2011106136A JP 2009260708 A JP2009260708 A JP 2009260708A JP 2009260708 A JP2009260708 A JP 2009260708A JP 2011106136 A JP2011106136 A JP 2011106136A
Authority
JP
Japan
Prior art keywords
base
vertical
isolated building
seismic isolation
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009260708A
Other languages
Japanese (ja)
Inventor
Keiichi Hirose
景一 広瀬
Kazuhiko Isoda
和彦 磯田
Kazuhiko Kobayashi
和彦 小林
Takashi Tsujii
孝 辻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2009260708A priority Critical patent/JP2011106136A/en
Publication of JP2011106136A publication Critical patent/JP2011106136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical vibration control system being applicable to a base-isolated building having a three-dimensional base isolation structure and capable of reducing vibration, in particular, in the vertical direction effectively and properly. <P>SOLUTION: A three-dimensional base isolation device 3 for supporting the base-isolated building in both of the horizontal direction and the vertical direction by base-isolation manner is installed between the base-isolated building 1 and its foundation 2, and a TMD mechanism 10 is arranged in parallel with the three-dimensional base isolation device. The TMD mechanism is constituted to support an inertia mass damper operating when the base-isolated building causes relative vibration in the vertical direction for the foundation by a support member and synchronize a natural period of the TMD mechanism to be fixed by inertia mass generated by the inertia mass damper and rigidity of the support member with a natural period in the vertical direction of the base-isolated building. Such a TMD mechanism that has a configuration supporting a central part of an oscillating arm 12 having a weight 11 mounted in each of both end parts and arranging the oscillating arm within a vertical face in substantially horizontally to oscillate freely is used in this vertical vibration control system. This system includes a damping device 17 for damping the oscillation generated in the oscillating arm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は建物の水平振動と上下振動をともに低減させるための3次元免震構造に係り、特に免震建物の上下振動を効果的に減衰させ得る上下制振システムに関する。   The present invention relates to a three-dimensional seismic isolation system for reducing both horizontal and vertical vibrations of a building, and more particularly to a vertical vibration control system that can effectively attenuate vertical vibrations of a base-isolated building.

建物を水平方向と上下方向の双方に免震支持するための3次元免震装置として、特許文献1や特許文献2に示されるものが提案されている。前者は積層ゴムからなる水平免震装置と皿ばね積層体からなる上下免震装置とを上下方向に積み重ねて一体に直列配置したものであり、後者はそれらを横方向に並設して並列配置したものである。
それらの3次元免震装置ではいずれも上下免震装置としての皿ばね積層体それ自体が振動減衰機能を有するものであって、それによる上下方向の減衰効果が自ずと得られるとされている。また、特許文献2には上下方向の振動エネルギーを吸収して必要な減衰を確保するとともに、減衰量の設定を容易に行うために、油圧ダンパー等のエネルギー吸収装置を上下免震装置と並列に別途設けるとの記載もある。
As a three-dimensional seismic isolation device for isolating and supporting a building in both the horizontal direction and the vertical direction, those shown in Patent Document 1 and Patent Document 2 have been proposed. The former is a horizontal seismic isolation device made of laminated rubber and a vertical seismic isolation device made of a disc spring laminate, which are stacked in series in the vertical direction, and arranged in series, and the latter are arranged in parallel by arranging them side by side in the horizontal direction. It is a thing.
In any of these three-dimensional seismic isolation devices, the disc spring laminate itself as a vertical seismic isolation device has a vibration damping function, and it is said that a vertical damping effect is naturally obtained. In Patent Document 2, in order to absorb the vibration energy in the vertical direction and ensure the necessary damping, and to easily set the amount of damping, an energy absorbing device such as a hydraulic damper is arranged in parallel with the vertical seismic isolation device. There is also a description that it is provided separately.

特開平8−218678号公報JP-A-8-218678 特開2001−41283号公報JP 2001-41283 A

しかし、特許文献1〜2に示される従来の3次元免震装置による場合には、特に上下方向の振動に対する充分な免震効果や減衰効果が得られず、したがってそれを可能とするより有効適切な上下制振システムの開発が望まれているのが実情である。   However, in the case of the conventional three-dimensional seismic isolation device shown in Patent Documents 1 and 2, sufficient seismic isolation effect and damping effect for vertical vibrations in particular cannot be obtained, and therefore more effective and appropriate to enable it. In fact, the development of a simple vertical vibration control system is desired.

上記事情に鑑み、本発明の免震建物の上下制振システムは、免震建物とその基礎との間に、該免震建物を水平方向と上下方向の双方に対して免震支持するための3次元免震装置を介装するとともに、該3次元免震装置と並列にTMD機構を設置し、前記TMD機構は、前記免震建物が基礎に対して上下方向に相対振動を生じた際に作動する慣性質量ダンパーを支持部材により支持してなり、前記慣性質量ダンパーによる慣性質量と前記支持部材の剛性により定まる前記TMD機構の固有周期を免震建物の上下方向の固有周期に同調させてなることを特徴とする。   In view of the above circumstances, the vertical vibration control system for a base-isolated building according to the present invention is provided between the base-isolated building and its foundation for base-isolating and supporting the base-isolated building in both the horizontal and vertical directions. A three-dimensional seismic isolation device is installed and a TMD mechanism is installed in parallel with the three-dimensional seismic isolation device. When the TMD mechanism generates a relative vibration in the vertical direction with respect to the foundation, The inertial mass damper that operates is supported by a support member, and the natural period of the TMD mechanism determined by the inertial mass by the inertial mass damper and the rigidity of the support member is synchronized with the natural period in the vertical direction of the base-isolated building. It is characterized by that.

前記慣性質量ダンパーとしては、両端部に錘を装着した揺動アームの中心部を前記支持部材により支持して該揺動アームを鉛直面内において揺動自在に略水平に配設し、該揺動アームが免震建物の上下方向の相対振動に追随して揺動することによって前記錘の上下方向振動による慣性質量効果を生じる構成のものが好適に採用可能である。
また、そのような揺動アームによる慣性質量ダンパーを用いる場合においては、揺動アームに生じる揺動を減衰させるための減衰装置を備えることがより好ましい。
As the inertia mass damper, the central portion of a swing arm having weights attached to both ends is supported by the support member, and the swing arm is swingably arranged in a vertical plane substantially horizontally. A structure in which an inertial mass effect due to the vertical vibration of the weight is generated when the moving arm swings following the vertical relative vibration of the base-isolated building can be suitably employed.
In addition, when an inertial mass damper using such a swing arm is used, it is more preferable to provide a damping device for damping the swing generated in the swing arm.

本発明によれば、地震時における免震建物の水平方向と上下方向の応答加速度を3次元免震装置によって充分に低減可能であり、特に慣性質量ダンパーによるTMD機構を3次元免震装置と並列に設置してそのTMD機構の固有周期を免震建物の固有周期に同調させることによって、免震建物の上下方向の応答加速度を大幅に低減させることができる。
また、慣性質量ダンパーとして揺動アームの両端部に錘を装着した形式のものを用いることにより、小質量の錘であっても大きな慣性質量効果が得られて優れた振動低減効果が得られる。
さらに、慣性質量ダンパーとしての揺動アームの揺動を減衰させるための減衰装置を備えることにより、上下方向の振動低減効果をより高めることができる。
According to the present invention, the horizontal and vertical response accelerations of a base-isolated building during an earthquake can be sufficiently reduced by a three-dimensional seismic isolation device. In particular, a TMD mechanism using an inertial mass damper is parallel to the three-dimensional base isolation device. The vertical acceleration of the base-isolated building can be greatly reduced by installing it on the base station and synchronizing the natural period of the TMD mechanism with the natural period of the base-isolated building.
Further, by using a type in which weights are attached to both ends of the swing arm as the inertial mass damper, a large inertial mass effect can be obtained even with a small mass, and an excellent vibration reduction effect can be obtained.
Furthermore, the vibration reducing effect in the vertical direction can be further enhanced by providing a damping device for damping the swing of the swing arm as the inertia mass damper.

本発明の一実施形態である免震建物の上下制振システムの概要図である1 is a schematic diagram of a vertical vibration control system for a base-isolated building that is an embodiment of the present invention. 同、TMD機構による振動低減効果を示す図である。It is a figure which shows the vibration reduction effect by a TMD mechanism similarly.

本発明の一実施形態を図1〜図2に示す。図1は免震建物1の底部と基礎2との間に設けた免震ピットを示すもので、その免震ピット内には、免震建物1を水平方向と上下方向の双方に対して免震支持するための3次元免震装置3が設置されている。   One embodiment of the present invention is shown in FIGS. FIG. 1 shows a seismic isolation pit provided between the bottom of the base isolation building 1 and the foundation 2, and the base isolation building 1 is exempted in both horizontal and vertical directions. A three-dimensional seismic isolation device 3 is installed to support the earthquake.

本例における3次元免震装置3は、水平免震装置3Aと上下免震装置3Bとを上下に積み重ねて一体に直列配置したものである。
下段の水平免震装置3Aは通常の積層ゴムからなり、鉛直剛性が高く水平剛性が低いという特性により免震建物1の水平方向の固有周期を増大させる(長周期化する)ものである。
一方、上段の上下免震装置3Bは、積層ゴムと同様に鋼板とゴムとを交互に積層して一体に接着したものであるが、通常の積層ゴムに比べて鉛直剛性が低く設定され、それにより免震建物1の上下方向(鉛直方向)の固有周期を増大させるものである。
その上下免震装置3Bは、水平免震装置3Aとしての積層ゴムの上部フランジ4と、免震建物1の底面に固定されたホルダ5との間に介装されているが、ホルダ5の周縁部に形成されたストッパ6が水平免震装置3Aの上部フランジ4に係合することによって、それら上部フランジ4とホルダ5は上下方向の相対変位が許容されつつ水平方向の相対変位は拘束されるようになっており、これにより上下免震装置3Bは水平方向の剪断力を受けることなく鉛直力のみを支持し得るものとなっている。
The three-dimensional seismic isolation device 3 in this example is obtained by stacking a horizontal seismic isolation device 3A and a vertical seismic isolation device 3B vertically and integrally arranging them in series.
The lower horizontal seismic isolation device 3A is made of an ordinary laminated rubber, and increases (longens) the natural period in the horizontal direction of the base-isolated building 1 due to the characteristic of high vertical rigidity and low horizontal rigidity.
On the other hand, the upper vertical seismic isolation device 3B, like the laminated rubber, is made by alternately laminating steel plates and rubber and integrally bonding them. However, the vertical rigidity is set lower than that of the ordinary laminated rubber, This increases the natural period of the base-isolated building 1 in the vertical direction (vertical direction).
The vertical seismic isolation device 3 </ b> B is interposed between an upper flange 4 of laminated rubber as the horizontal seismic isolation device 3 </ b> A and a holder 5 fixed to the bottom surface of the seismic isolation building 1. When the stopper 6 formed in the portion engages with the upper flange 4 of the horizontal seismic isolation device 3A, the upper flange 4 and the holder 5 are allowed to move in the vertical direction while being allowed to move in the vertical direction. Thus, the vertical seismic isolation device 3B can support only a vertical force without receiving a horizontal shearing force.

上記の3次元免震装置3は、特許文献1〜2に示される従来の3次元免震装置と同様に機能して水平方向と上下方向の双方に対して免震効果が得られるものであるが、特に上下免震装置3Bを積層ゴムと同様の形態のものとしたので、それを構成する鋼板とゴムとの積層枚数やそれらの厚みを調整することで上下方向の固有周期を自由にかつ幅広く調整することが可能なものである。   The three-dimensional seismic isolation device 3 functions in the same manner as the conventional three-dimensional seismic isolation devices disclosed in Patent Documents 1 and 2, and provides a seismic isolation effect in both the horizontal and vertical directions. However, since the vertical seismic isolation device 3B has the same configuration as the laminated rubber, the natural period in the vertical direction can be freely adjusted by adjusting the number of laminated steel plates and rubber and the thickness thereof. It can be adjusted widely.

したがって本実施形態の制振システムでは、地震時における免震建物1の水平方向と上下方向の応答加速度を上記の3次元免震装置3によって充分に低減可能であるが、本実施形態ではそれに加えて上下方向の応答加速度をさらに低減させるべく、3次元免震装置3と並列にTMD機構(チューンドマスダンパー機構)10を設置している。   Therefore, in the vibration damping system of the present embodiment, the horizontal and vertical response accelerations of the base-isolated building 1 at the time of an earthquake can be sufficiently reduced by the above-described three-dimensional seismic isolation device 3, but in this embodiment, in addition to that In order to further reduce the response acceleration in the vertical direction, a TMD mechanism (tuned mass damper mechanism) 10 is installed in parallel with the three-dimensional seismic isolation device 3.

周知のように、TMD機構は錘の質量効果を利用して振動低減効果を得るものであって、その固有周期を振動低減対象物の固有周期に同調させることによって優れた振動低減効果が得られるものであるが、本実施形態では3次元免震装置3により免震支持した免震建物1が上下方向に振動した際にそれに追随してTMD機構10を作動させるとともに、その固有周期を免震建物1の上下方向の固有周期に同調させることによって、免震建物1の上下方向の応答加速度を大幅に低減させることが可能である。
特に本実施形態におけるTMD機構10は、両端部に錘11を有する揺動アーム12を揺動させるといういわば天秤式の形式の慣性質量ダンパーを用いたものとされており、それにより小質量の錘11であっても大きな慣性質量効果が得られて優れた振動低減効果が得られるものである。
As is well known, the TMD mechanism obtains a vibration reduction effect by utilizing the mass effect of the weight, and an excellent vibration reduction effect can be obtained by synchronizing its natural period with the natural period of the vibration reduction object. However, in this embodiment, when the seismic isolation building 1 supported by the three-dimensional seismic isolation device 3 vibrates in the vertical direction, the TMD mechanism 10 is operated following the seismic isolation building 1 and the natural period is isolated. By synchronizing with the natural period of the building 1 in the vertical direction, the response acceleration in the vertical direction of the base-isolated building 1 can be significantly reduced.
In particular, the TMD mechanism 10 according to the present embodiment uses a so-called balance-type inertia mass damper that swings a swing arm 12 having weights 11 at both ends. Even if it is 11, a large inertial mass effect is obtained and an excellent vibration reduction effect is obtained.

すなわち、図1に示すように本実施形態のTMD機構10は、両端部に錘11を装着した揺動アーム12による慣性質量ダンパーを主体とするものであり、その揺動アーム12の中心に支点13aを設定するとともに、そこから若干偏心する位置に支点13bを設定し、免震建物1の底面に固定した上部支持部材14の先端に一方の支点13aを軸支し、他方の支点13bには下部支持部材15の先端を連結してその下端を基礎2上面に設けた滑り面16上に水平方向に滑動自在に支持させている。また、揺動アーム12の両端部に装着した錘11にはそれぞれオイルダンパー等の減衰装置17の先端を連結し、それら減衰装置17の基端を免震建物1の底面に対して固定している。   That is, as shown in FIG. 1, the TMD mechanism 10 of the present embodiment is mainly composed of an inertia mass damper with a swing arm 12 having weights 11 attached to both ends, and a fulcrum at the center of the swing arm 12. 13a is set, and a fulcrum 13b is set at a position slightly deviated therefrom. One fulcrum 13a is pivotally supported at the tip of the upper support member 14 fixed to the bottom surface of the base isolation building 1, and the other fulcrum 13b The tip of the lower support member 15 is connected, and the lower end thereof is supported on a sliding surface 16 provided on the upper surface of the foundation 2 so as to be slidable in the horizontal direction. Further, the weights 11 mounted on both ends of the swing arm 12 are connected to the distal ends of damping devices 17 such as oil dampers, and the base ends of the damping devices 17 are fixed to the bottom surface of the seismic isolation building 1. Yes.

上記構成のTMD機構10は、免震建物1が水平方向に振動した際(3次元免震装置3における水平免震装置3Aが作動した際)にはそのまま免震建物1とともに水平方向に振動し、その際には下部支持部材15の下端が滑り面16上を水平方向に滑動してTMD機構10全体の水平方向の変位が拘束されることはない。
また、免震建物1が上下方向に振動した際(3次元免震装置3における上下免震装置3Bが作動した際)には、上部支持部材14と下部支持部材15を介してそれぞれの支点13a、13bが上下方向に離接する方向に変位し、したがって揺動アーム12はその全体が鉛直面内において揺動して図示しているようにその両端部が上下方向に振動することになる。その際、免震建物1と基礎2との間の上下方向の相対変位が「てこの原理」により拡大されて錘11に伝達され、それら錘11により生じる慣性質量は錘11の実際の質量に比べて遙かに大きなものとなる。
具体的には、揺動アーム12の中心から錘11までの距離をLとし、支点13a、13b間の距離をeとすると、錘11の上下方向の振動加速度は免震建物1と基礎2との間の相対加速度に対してL/e倍に拡大される。したがって、錘11の実際の質量をWとすると、免震建物1には(L/e)×Wの慣性質量に相対加速度を乗じた反力が伝達され、このような慣性質量をもつTMD機構10により免震建物1の上下方向の加速度を効果的に低減させることができる。
The TMD mechanism 10 configured as described above vibrates in the horizontal direction together with the seismic isolation building 1 when the seismic isolation building 1 vibrates in the horizontal direction (when the horizontal seismic isolation device 3A in the three-dimensional seismic isolation device 3 operates). In this case, the lower end of the lower support member 15 does not slide on the sliding surface 16 in the horizontal direction, and the horizontal displacement of the entire TMD mechanism 10 is not restricted.
When the seismic isolation building 1 vibrates in the vertical direction (when the vertical seismic isolation device 3B in the three-dimensional seismic isolation device 3 is activated), each fulcrum 13a is interposed via the upper support member 14 and the lower support member 15. , 13b are displaced in a direction to be separated from each other in the vertical direction. Therefore, the swing arm 12 swings in the vertical plane as shown in the figure, and both ends thereof vibrate in the vertical direction. At that time, the relative displacement in the vertical direction between the base-isolated building 1 and the foundation 2 is expanded by the “lever principle” and transmitted to the weights 11, and the inertial mass generated by these weights 11 is the actual mass of the weights 11. It is much bigger than that.
Specifically, if the distance from the center of the swing arm 12 to the weight 11 is L and the distance between the fulcrums 13a and 13b is e, the vibration acceleration in the vertical direction of the weight 11 is the seismic isolation building 1 and the foundation 2 Is enlarged by L / e times with respect to the relative acceleration between. Accordingly, when the actual mass of the weight 11 is W, a reaction force obtained by multiplying the inertial mass of (L / e) 2 × W by the relative acceleration is transmitted to the seismic isolation building 1, and the TMD having such an inertial mass is transmitted. The acceleration in the vertical direction of the base-isolated building 1 can be effectively reduced by the mechanism 10.

そして、このような形式のTMD機構10では、錘11が生じる慣性質量を実際の質量Wの数百倍にも増大させることができ、したがって錘11が充分に小型軽量であっても大きな慣性質量効果を発揮させることができる。
しかも、このTMD機構10の固有周期は、慣性質量ダンパーとしての揺動アーム12による慣性質量と、上部支持部材14および下部支持部材15の鉛直剛性とにより定まるものであり、揺動アーム12による慣性質量は錘11の質量Wや、揺動アーム12に対する錘11の装着位置(中心からの距離L)、支点13a、13b間の距離eを調整することにより自由にかつ幅広く設定可能であるから、TMD機構10の固有周期を免震建物1の上下方向の固有周期に容易にかつ高精度で同調させることができる。
In the TMD mechanism 10 of this type, the inertial mass generated by the weight 11 can be increased by several hundred times the actual mass W. Therefore, even if the weight 11 is sufficiently small and light, a large inertial mass is obtained. The effect can be demonstrated.
Moreover, the natural period of the TMD mechanism 10 is determined by the inertial mass of the swing arm 12 as an inertial mass damper and the vertical rigidity of the upper support member 14 and the lower support member 15. The mass can be freely and widely set by adjusting the mass W of the mass 11, the mounting position of the mass 11 with respect to the swing arm 12 (distance L from the center), and the distance e between the fulcrums 13a and 13b. The natural period of the TMD mechanism 10 can be easily and accurately tuned to the natural period in the vertical direction of the base-isolated building 1.

さらに、錘11と免震建物1との間にオイルダンパー等の減衰装置17を設置して、それら減衰装置17により揺動アーム12の揺動に対して適切な減衰を与えることにより、上下方向の制振システムとしてより効果的なものとなる。   Further, by installing an attenuation device 17 such as an oil damper between the weight 11 and the base-isolated building 1 and giving appropriate attenuation to the swing of the swing arm 12 by using the damper 17, the vertical direction It becomes more effective as a vibration control system.

図2は具体的な一設計例の場合における振動低減効果の検討結果を示す。
検討対象の諸元は、公知のG4タイプの積層ゴムを3次元免震装置と見なし、長期荷重M=2000ton、鉛直剛性K=10000ton/cm、上下方向の固有振動数を11.1Hzと想定し、建物の上下振動での減衰定数h=0.01とした。
TMD機構10における錘11の実際の質量Wを1ton(片側)、L=150cm、e=15cmとすると、揺動による慣性質量m=0.1M=200ton、上部支持部材14および下部支持部材15の鉛直剛性k=550ton/cm、減衰c=2.8ton/kineとした。
FIG. 2 shows the examination result of the vibration reduction effect in the case of one specific design example.
The specifications to be studied are based on the assumption that the known G4 type laminated rubber is a three-dimensional seismic isolation device, long-term load M = 2000 tons, vertical stiffness K = 10000 tons / cm, and the natural frequency in the vertical direction is 11.1 Hz. The damping constant h = 0.01 in the vertical vibration of the building.
Assuming that the actual mass W of the weight 11 in the TMD mechanism 10 is 1 ton (one side), L = 150 cm, and e = 15 cm, the inertial mass m due to swinging is 0.1 M = 200 ton, and the upper support member 14 and the lower support member 15 The vertical stiffness k was set to 550 ton / cm, and the damping c was set to 2.8 ton / kine.

上記諸元の場合、3次元免震装置のみでTMD機構なしの場合には応答倍率が50倍程度であるのに対し、TMD機構を設置した場合には減衰装置がない場合であっても応答倍率を35〜40倍程度まで低減させることができ、さらに減衰装置を備えた場合には応答倍率を5倍程度にまで激減(TMD機構なしの場合に比べて最大応答値が88%低下)させることができる。   In the case of the above specifications, the response magnification is about 50 times in the case of only the three-dimensional seismic isolation device and no TMD mechanism, whereas the response even when there is no attenuation device when the TMD mechanism is installed. The magnification can be reduced to about 35 to 40 times, and when a damping device is provided, the response magnification is drastically reduced to about 5 times (the maximum response value is reduced by 88% compared to the case without the TMD mechanism). be able to.

以上で本発明の実施形態を説明したが、本発明の要旨は慣性質量ダンパーを用いたTMD機構を3次元免震装置と並列に設置して免震建物の上下振動を低減させることにあり、その限りにおいて具体的な構成については上記実施形態に限定されることなく、たとえば以下に列挙するような設計的変更や応用が可能である。   Although the embodiment of the present invention has been described above, the gist of the present invention is to reduce the vertical vibration of the seismic isolation building by installing the TMD mechanism using the inertial mass damper in parallel with the three-dimensional seismic isolation device, To that extent, the specific configuration is not limited to the above-described embodiment, and for example, design changes and applications listed below can be made.

本発明におけるTMD機構としては、上記実施形態のような揺動アームによる天秤式の慣性質量ダンパーを用いるものが好適ではあるが、それに限るものでもなく、たとえばフライホイールを回転させることにより得られる回転慣性質量を利用する形式のもの等、他の形式の慣性質量ダンパーを採用することも考えられる。   As the TMD mechanism in the present invention, a balance type inertial mass damper using a swing arm as in the above-described embodiment is suitable, but is not limited to this. For example, rotation obtained by rotating a flywheel It is also conceivable to employ other types of inertial mass dampers, such as those utilizing inertial mass.

慣性質量ダンパーとして揺動アームによる天秤式のものを採用する場合においては、免震建物が基礎に対して相対的に上下振動を生じた際にそれに追随して揺動アームが上下方向に揺動し、かつ揺動アームやそれを支持する上下の支持部材に無用な水平力が作用しないように設置すれば良く、その限りにおいて揺動アームの形状や寸法、設置位置、揺動中心点となる支点の位置の設定、支持部材による支持の形態、その他の具体的な構成は適宜で良い。
たとえば上記実施形態では揺動アーム12を上部支持部材14を介して免震建物1に対して取り付け、下部支持部材15は基礎2に対して滑り面16により水平方向に変位可能としたが、全体の天地を逆にしてTMD機構を基礎2に対して取り付けて免震建物1に対しては水平方向に変位可能に構成しても同様に機能させることができる。
When using a balance type with a swing arm as the inertial mass damper, the swing arm swings up and down following the vertical motion of the base-isolated building relative to the foundation. In addition, the swing arm and the upper and lower support members that support it may be installed so that unnecessary horizontal force does not act on them. The setting of the position of the fulcrum, the form of support by the support member, and other specific configurations may be appropriate.
For example, in the above embodiment, the swing arm 12 is attached to the base-isolated building 1 via the upper support member 14, and the lower support member 15 can be displaced in the horizontal direction by the sliding surface 16 with respect to the foundation 2. Even if the TMD mechanism is attached to the foundation 2 with the top and bottom of the structure being reversed and the seismic isolation building 1 can be displaced in the horizontal direction, it can function in the same manner.

TMD機構にはその作動を減衰させるための減衰装置を設置することが好ましく、上記実施形態の場合には慣性質量ダンパーとしての揺動アーム(すなわち錘)の揺動を減衰させるための減衰装置としてオイルダンパー等を付加することが好ましいが、それに限るものでもなく、慣性質量ダンパーの回転摩擦抵抗力のみで所望の減衰効果が得られる場合には減衰装置は省略可能である。
勿論、減衰装置を設置する場合にはオイルダンパーに限らず各種の減衰装置を採用可能であることはいうまでもないし、必ずしも揺動アームの両端部に設けることもない。
It is preferable to install a damping device for damping the operation of the TMD mechanism, and in the case of the above embodiment, as a damping device for damping the swing of the swing arm (ie, the weight) as the inertia mass damper. Although it is preferable to add an oil damper or the like, the present invention is not limited to this, and the damping device can be omitted when a desired damping effect can be obtained only by the rotational friction resistance force of the inertia mass damper.
Of course, when installing a damping device, it is needless to say that various damping devices can be employed in addition to the oil damper, and they are not necessarily provided at both ends of the swing arm.

本発明における3次元免震装置は、上記実施形態のように水平免震装置としての積層ゴムの上部に、同じく積層ゴムの形態の上下免震装置を一体に組み付けた構成のものが好適に採用可能であるが、水平振動と上下振動の双方に対する免震効果が得られる(双方に対して長周期化し得る)ものであれば良く、その限りにおいて水平免震装置と上下免震装置とを別体としても良いし、それぞれの構成も任意である。   The three-dimensional seismic isolation device according to the present invention preferably employs a configuration in which a vertical seismic isolation device in the form of a laminated rubber is integrally assembled on top of a laminated rubber as a horizontal seismic isolation device as in the above embodiment. It is possible to use a seismic isolation effect for both horizontal vibrations and vertical vibrations (which can increase the period for both). It is good also as a body, and each structure is also arbitrary.

1 免震建物
2 基礎
3 3次元免震装置
3A 水平免震装置
3B 上下免震装置
4 上部フランジ
5 ホルダ
6 ストッパ
10 TMD機構
11 錘
12 揺動アーム(慣性質量ダンパー)
13a,13b 支点
14 上部支持部材(支持部材)
15 下部支持部材(支持部材)
16 滑り面
17 減衰装置
DESCRIPTION OF SYMBOLS 1 Seismic isolation building 2 Foundation 3 3D seismic isolation device 3A Horizontal seismic isolation device 3B Vertical seismic isolation device 4 Upper flange 5 Holder 6 Stopper 10 TMD mechanism 11 Weight 12 Swing arm (Inertial mass damper)
13a, 13b Support point 14 Upper support member (support member)
15 Lower support member (support member)
16 Sliding surface 17 Damping device

Claims (3)

免震建物とその基礎との間に、該免震建物を水平方向と上下方向の双方に対して免震支持するための3次元免震装置を介装するとともに、該3次元免震装置と並列にTMD機構を設置し、
前記TMD機構は、前記免震建物が基礎に対して上下方向に相対振動を生じた際に作動する慣性質量ダンパーを支持部材により支持してなり、前記慣性質量ダンパーによる慣性質量と前記支持部材の剛性により定まる前記TMD機構の固有周期を免震建物の上下方向の固有周期に同調させてなることを特徴とする免震建物の上下制振システム。
A three-dimensional seismic isolation device is interposed between the base isolation building and its foundation to support the seismic isolation building in both the horizontal and vertical directions. A TMD mechanism was installed in parallel,
The TMD mechanism includes a support member that supports an inertial mass damper that operates when the base-isolated building generates a relative vibration in a vertical direction with respect to a foundation, and the inertial mass by the inertial mass damper and the support member A vertical vibration control system for a base-isolated building, wherein the natural period of the TMD mechanism determined by rigidity is synchronized with the natural period in the vertical direction of the base-isolated building.
請求項1記載の免震建物の上下制振システムであって、
前記慣性質量ダンパーは、両端部に錘を装着した揺動アームの中心部を前記支持部材により支持して該揺動アームを鉛直面内において揺動自在に略水平に配設してなり、該揺動アームが免震建物の上下方向の相対振動に追随して揺動することによって前記錘の上下方向振動による慣性質量効果を生じることを特徴とする免震建物の上下制振システム。
A vertical vibration control system for a base-isolated building according to claim 1,
The inertia mass damper is configured such that a center portion of a swing arm having weights attached to both ends thereof is supported by the support member, and the swing arm is swingably arranged in a vertical plane substantially horizontally. A vertical vibration control system for a base-isolated building, wherein an inertial mass effect is generated by the vertical vibration of the weight when the swing arm swings following the vertical relative vibration of the base-isolated building.
請求項2記載の免震建物の上下制振システムであって、
前記慣性質量ダンパーは、前記揺動アームに生じる揺動を減衰させる減衰装置を備えることを特徴とする免震建物の上下制振システム。
A vertical vibration control system for a base-isolated building according to claim 2,
The inertial mass damper includes a damping device for damping the swing generated in the swing arm.
JP2009260708A 2009-11-16 2009-11-16 Vertical vibration control system of base-isolated building Pending JP2011106136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260708A JP2011106136A (en) 2009-11-16 2009-11-16 Vertical vibration control system of base-isolated building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009260708A JP2011106136A (en) 2009-11-16 2009-11-16 Vertical vibration control system of base-isolated building

Publications (1)

Publication Number Publication Date
JP2011106136A true JP2011106136A (en) 2011-06-02

Family

ID=44229914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260708A Pending JP2011106136A (en) 2009-11-16 2009-11-16 Vertical vibration control system of base-isolated building

Country Status (1)

Country Link
JP (1) JP2011106136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109090929A (en) * 2018-10-29 2018-12-28 西南科技大学 Compound earthquake isolating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109090929A (en) * 2018-10-29 2018-12-28 西南科技大学 Compound earthquake isolating equipment
CN109090929B (en) * 2018-10-29 2023-11-03 西南科技大学 Composite shock insulation device

Similar Documents

Publication Publication Date Title
EP3106570A1 (en) High load vibration arrestor
WO2011142980A3 (en) Vibration damping device for vertically cantilevered pump assemblies
JP4729775B2 (en) Tuned pendulum type vibration control device
JP5725331B2 (en) Beam vibration reduction mechanism
JP5516934B2 (en) Vibration control mechanism
JP2008190645A (en) Vibration reducing mechanism and its specification setting method
JP2012042016A (en) Three-dimensional base isolation device
JP5413681B2 (en) 3D seismic isolation system
JP5601488B2 (en) Suspension damping structure
JP2011106136A (en) Vertical vibration control system of base-isolated building
JP2008249122A (en) Vibration damping device
JP2012141005A (en) Damping system
CN111684206A (en) Boiler structure
JP4822132B2 (en) Vertical seismic isolation mechanism
JP2003227540A (en) Vibration isolating device
JP2009052687A (en) Damping device
JP2008082541A (en) Excitation reaction force reducing mechanism and its setting method
JP6726381B2 (en) Installation structure of rotary mass damper
JP2017203297A (en) Base-isolation construction and method of designing base-isolation construction
JP2011012720A (en) Suspending vibration control structure
JP2009085362A (en) Vibration isolation mechanism
JP2019190539A (en) Passive type anti-vibration device of building
JP2012247006A (en) Vibration damping device of long-sized structure
JP2006307537A (en) Vibration control system for building
JP2009030695A (en) Displacement increasing mechanism, and vibration control damper and quake-absorbing mechanism