JP2011105520A - Ceramic hollow particles and method for manufacturing the same - Google Patents
Ceramic hollow particles and method for manufacturing the same Download PDFInfo
- Publication number
- JP2011105520A JP2011105520A JP2009258924A JP2009258924A JP2011105520A JP 2011105520 A JP2011105520 A JP 2011105520A JP 2009258924 A JP2009258924 A JP 2009258924A JP 2009258924 A JP2009258924 A JP 2009258924A JP 2011105520 A JP2011105520 A JP 2011105520A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- ceramic
- resin powder
- hollow particles
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
本発明は、セラミックス粉末同士で結合してなる多孔質殻層を形成して中空構造をなすセラミックス中空粒子及びその製造方法に関する。 The present invention relates to ceramic hollow particles that form a hollow shell layer formed by bonding ceramic powders to form a hollow structure, and a method for producing the same.
例えば、材料の軽量化や強度の増強等を目的として、金属等の母材にアルミナ粒子等のセラミックス粒子を分散させた複合材料が広く使用されている。また、今日では、さらなる軽量化のために、セラミックス粉末同士が結合して略球状の多孔質殻層を形成し、内部を中空としたセラミックス中空粒子も使用されるようになってきている。 For example, composite materials in which ceramic particles such as alumina particles are dispersed in a base material such as metal are widely used for the purpose of reducing the weight of the material and increasing the strength. In addition, today, ceramic hollow particles having a substantially spherical porous shell layer formed by bonding ceramic powders and having a hollow inside have been used for further weight reduction.
このセラミックス中空粒子は、芯材となる大径の樹脂粉末の全面を、樹脂粉末よりも小径のセラミックス粉末からなる粉末層で被覆した前駆体を形成し、前駆体から樹脂粉末を除去するとともに、セラミックス粉末同士が結合した多孔質殻層を形成して製造するのが一般的である。例えば、特許文献1には、吸水膨潤した高吸水性ポリマー粉末と、アルミナ粉末とを接触させて高吸水性ポリマー粉末の全表面にアルミナ粉末による粉末層を形成して前駆体とし、この前駆体を高温乾燥あるいは焼成することにより高吸水性ポリマーを除去して中空構造とするアルミナ中空粒子の製造する方法が記載されている。 This ceramic hollow particle forms a precursor in which the entire surface of a large-diameter resin powder as a core material is coated with a powder layer made of a ceramic powder having a smaller diameter than the resin powder, and removes the resin powder from the precursor. In general, it is produced by forming a porous shell layer in which ceramic powders are bonded together. For example, in Patent Document 1, a superabsorbent polymer powder swollen with water and an alumina powder are brought into contact with each other to form a powder layer of the alumina powder on the entire surface of the superabsorbent polymer powder. Describes a method for producing alumina hollow particles having a hollow structure by removing a superabsorbent polymer by drying or baking at a high temperature.
しかしながら、特許文献1に記載の製造方法では、図4に模式的に示すように、前駆体は、樹脂粉末10の表面にセラミックス粉末11が付着しているだけであるため、高温乾燥や焼成の際に、セラミックス粉末11が樹脂粉末10から容易に剥がれ落ち、粉末層を均一に保持し難いという問題がある。しかも、高温乾燥や焼成により樹脂粉末10が熱膨張したり、気化したりするため、セラミックス粉末11が外方に向かう圧力を受けて粉末層が崩壊し易くなる。このようなセラミックス粉末11の剥離や粉末層の崩壊の結果、均質な多孔質殻層が形成されず、セラミックス中空粒子の生産性を高める上で大きな障害となっている。 However, in the manufacturing method described in Patent Document 1, as schematically shown in FIG. 4, since the precursor is only the ceramic powder 11 attached to the surface of the resin powder 10, high temperature drying or firing is performed. At this time, there is a problem that the ceramic powder 11 is easily peeled off from the resin powder 10 and it is difficult to hold the powder layer uniformly. Moreover, since the resin powder 10 is thermally expanded or vaporized by high-temperature drying or firing, the powder layer is likely to collapse due to the ceramic powder 11 receiving an outward pressure. As a result of the peeling of the ceramic powder 11 and the collapse of the powder layer, a homogeneous porous shell layer is not formed, which is a great obstacle to increasing the productivity of the ceramic hollow particles.
また、今日では、軽量化をさらに進めるために、粒径が20μm以下という微細なセラミックス中空粒子への要望も高くなってきており、そのためにはサブミクロンオーダーのセラミックス微粉末の使用が余儀なくされる。しかし、このようなセラミックス微粉末による均一な粉末層を維持し、良好な多孔質殻層を形成するのはさらに困難となる。 In addition, today, in order to further reduce the weight, there is an increasing demand for fine ceramic hollow particles having a particle size of 20 μm or less. For this purpose, it is necessary to use submicron ceramic fine powder. . However, it becomes more difficult to maintain a uniform powder layer of such ceramic fine powder and to form a good porous shell layer.
このような背景から本出願人は、特許文献2において、図2に示すような製造工程を経てセラミックス中空粒子を製造することを提案している。即ち、同図(a)、(b)に示すように、樹脂粉末10とセラミックス粉末11とを混合し、混合粉末5を同図(c)に示す圧接混合装置1のチャンバ2に投入して樹脂粉末10とセラミックス粉末11とを圧接混合する。この圧接混合装置1は、回転自在でドラム状を呈するチャンバ2の中心軸に、インナー3とスクレーバー4とを所定距離おいて配設して概略構成されている。インナー3は、混合粉体5の取り入れ及び送り出しを円滑に行えるように、チャンバ2の内壁と対向する側の面が断面略半円状を呈しており、またチャンバ2の内壁との間で僅かな隙間を形成している。そして、樹脂粉末10とセラミックス粉末11とを混合した混合粉末5をチャンバ2に投入してチャンバ2を高速で矢印方向に回転させることにより、混合粉末5は遠心力によりチャンバ2の内壁に押し付けられ、次いでインナー3とチャンバ2の内壁との隙間を通過する。この通過の際に、剪断力により樹脂粉末とセラミックス粉末とが相互に押し付け合い、セラミックス粉末の一部が樹脂粉末の表面に埋め込まれる。そして、インナー3を通過した混合粉末5はスクレーバー4により削り取られ、同様のプロセスが繰り返し行われ、最終的に、図3に示したように、樹脂粉末10の全表面を覆うようにセラミックス粉末11の一部が埋め込まれる。次いで、このセラミックス粉末11がその一部を埋込んだ状態で樹脂粉末10の表面を被覆している前駆体を焼成し、樹脂粉末10を焼失させるとともにセラミックス粉末11同士を焼結させて多孔質殻層を形成する。 From such a background, the present applicant has proposed to manufacture ceramic hollow particles through a manufacturing process as shown in FIG. That is, as shown in FIGS. 4A and 4B, the resin powder 10 and the ceramic powder 11 are mixed, and the mixed powder 5 is put into the chamber 2 of the press-contact mixing apparatus 1 shown in FIG. The resin powder 10 and the ceramic powder 11 are pressed and mixed. This press-contact mixing apparatus 1 is schematically configured by disposing an inner 3 and a scraper 4 at a predetermined distance on a central axis of a chamber 2 that is rotatable and has a drum shape. The inner 3 has a substantially semicircular cross section on the side facing the inner wall of the chamber 2 so that the mixed powder 5 can be taken in and out smoothly, and slightly between the inner wall of the chamber 2 Gaps are formed. Then, the mixed powder 5 obtained by mixing the resin powder 10 and the ceramic powder 11 is put into the chamber 2 and the chamber 2 is rotated at high speed in the direction of the arrow, so that the mixed powder 5 is pressed against the inner wall of the chamber 2 by centrifugal force. Then, it passes through the gap between the inner 3 and the inner wall of the chamber 2. During this passage, the resin powder and the ceramic powder are pressed against each other by a shearing force, and a part of the ceramic powder is embedded in the surface of the resin powder. Then, the mixed powder 5 that has passed through the inner 3 is scraped off by the scraper 4, and the same process is repeated. Finally, as shown in FIG. 3, the ceramic powder 11 covers the entire surface of the resin powder 10. Part of it is embedded. Next, a precursor covering the surface of the resin powder 10 with the ceramic powder 11 embedded therein is fired, the resin powder 10 is burned off, and the ceramic powders 11 are sintered together to form a porous material. Form a shell layer.
しかしながら、特許文献2に記載の製造方法では、樹脂粉末10とセラミックス粉末11とを事前に混合する工程が別途必要であり、また、混合に用いる混合装置に樹脂粉末10やセラミックス粉末11が付着して材料ロスにもなる。 However, the manufacturing method described in Patent Document 2 requires a separate step of mixing the resin powder 10 and the ceramic powder 11 in advance, and the resin powder 10 and the ceramic powder 11 adhere to the mixing device used for mixing. It also causes material loss.
本発明はこのような状況に鑑みてなされたものであり、圧接混合装置を用いてセラミックス中空粒子を製造する方法において、樹脂粉末とセラミックス粉末とを混合する工程が不要で材料ロスもなく、これまでよりも安価に製造することを目的とする。 The present invention has been made in view of such a situation, and in the method for producing ceramic hollow particles using a pressure mixing device, a step of mixing resin powder and ceramic powder is unnecessary, and there is no material loss. The purpose is to manufacture at a lower cost than before.
上記目的を達成するために、本発明は、セラミックス粉末同士が結合してなる多孔質殻層を形成して中空構造をなすセラミックス中空粒子の製造方法において、回転自在でドラム状を呈するチャンバの内壁と、スクレーバーとの微小隙間に粉末を通過させて粉末同士を圧接しながら混合する圧接混合装置に、樹脂粉末と、樹脂粉末よりも小径のセラミックス粉末とを個別に投入し、チャンバを圧接混合時の回転速度よりも低速で回転させて樹脂粉末とセラミックス粉末とを混合し、次いで圧接混合を行いセラミックス粉末がその一部を埋込んだ状態で樹脂粉末の表面を被覆している前駆体を形成し、次いで前駆体を焼成して樹脂粉末を焼失させるとともにセラミックス粉末同士を焼結させることを特徴とするセラミックス中空粒子の製造方法を提供する。また、本発明は、前記製造方法により得られ、完全中空粒子65〜100%と、破片粒子、中実粒子及び不完全中空粒子0〜35%とからなることを特徴とするセラミックス中空粒子を提供する。 In order to achieve the above object, the present invention provides an inner wall of a chamber that is rotatable and has a drum shape in a method for producing a hollow ceramic hollow ceramic layer formed by bonding ceramic powders to form a hollow structure. In addition, resin powder and ceramic powder with a smaller diameter than the resin powder are separately put into a pressure mixing device that passes the powder through a minute gap with the scraper and mixes the powders together, and the chamber is pressed and mixed. The resin powder and the ceramic powder are mixed by rotating at a lower speed than the rotation speed, followed by pressure welding to form a precursor that covers the surface of the resin powder with the ceramic powder partially embedded. And then firing the precursor to burn out the resin powder and to sinter the ceramic powder together. To provide. The present invention also provides a ceramic hollow particle obtained by the above production method and comprising 65 to 100% of complete hollow particles and 0 to 35% of debris particles, solid particles and incomplete hollow particles. To do.
本発明によれば、圧接混合装置を用いてセラミックス中空粒子を製造する方法において、セラミックス粉末と樹脂粉末とを混合することなく直接チャンバに投入するため、混合工程が無くなり、混合に伴う材料ロスも無くなることから、これまでよりも安価にセラミックス中空粒子を製造することができる。また、得られるセラミックス中空粒子は、完全中空粒子を65〜100%含んでおり、歩留まりも高い。 According to the present invention, in the method for producing ceramic hollow particles using the pressure mixing device, the ceramic powder and the resin powder are directly put into the chamber without mixing, so that the mixing step is eliminated, and material loss due to mixing is also eliminated. Since it becomes nonexistent, ceramic hollow particles can be produced at a lower cost than before. Moreover, the obtained ceramic hollow particles contain 65 to 100% of complete hollow particles and have a high yield.
以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明のセラミックス中空粒子の製造方法では、図1に示すように、樹脂粉末10と、セラミックス粉末11とを混合することなく、そのまま圧接混合装置1のチャンバ2に投入する。圧接混合装置1は図2(c)に示したとおりである。尚、圧接混合装置1として、例えばメカノフュージョンシステム(ホソカワミクロン(株)製AMS−Lab)が知られている。 In the method for producing ceramic hollow particles according to the present invention, as shown in FIG. 1, the resin powder 10 and the ceramic powder 11 are not mixed and are directly put into the chamber 2 of the press-contact mixing apparatus 1. The pressure welding mixing apparatus 1 is as shown in FIG. As the pressure mixing device 1, for example, a mechano-fusion system (AMS-Lab manufactured by Hosokawa Micron Corporation) is known.
圧接混合装置1では、混合粉末5を投入した後、圧接混合時よりも低速でチャンバ2を回転させる。この低速回転により、樹脂粉末10とセラミックス粉末11とが適度に混合される。尚、この混合のための回転数は、低すぎると混合に長時間を要するため、圧接混合時の回転数の65%〜95%が適当である。 In the press-contact mixing apparatus 1, after the mixed powder 5 is charged, the chamber 2 is rotated at a lower speed than during press-contact mixing. By this low speed rotation, the resin powder 10 and the ceramic powder 11 are appropriately mixed. In addition, since the rotation speed for this mixing requires a long time if mixing is too low, 65% to 95% of the rotation speed during pressure welding mixing is appropriate.
次いで、チャンバ2を、通常の圧接混合時と同様の回転数にて回転させ、圧接混合を行う。この圧接混合により、図3に示すような、セラミックス粉末11の一部が埋め込まれた状態で樹脂粉末10を被覆した前駆体が得られる。 Next, the chamber 2 is rotated at the same rotational speed as in the normal pressure-contact mixing to perform pressure-contact mixing. By this pressure mixing, a precursor coated with the resin powder 10 in a state where a part of the ceramic powder 11 is embedded as shown in FIG. 3 is obtained.
このときのセラミックス粉末11の樹脂粉末10への埋込量としては、高温乾燥や焼成の際の剥離防止をより確実にするために粉末体積の50〜80%程度が好ましく、処理時間やチャンバ2の内壁とインナー3との隙間を適宜調整する。 The amount of the ceramic powder 11 embedded in the resin powder 10 at this time is preferably about 50 to 80% of the powder volume in order to more reliably prevent delamination during high temperature drying or firing. The gap between the inner wall and the inner 3 is appropriately adjusted.
また、圧接混合に際してチャンバ2を加熱してもよい。加熱により樹脂粉末10が軟化し、セラミックス粉末11が埋込まれ易くなる。但し、インナー3による押圧作用により若干発熱するため、特に時間の短縮等の必要がない場合には、常温で行うことができる。 Further, the chamber 2 may be heated during the pressure mixing. The resin powder 10 is softened by heating, and the ceramic powder 11 is easily embedded. However, a slight amount of heat is generated by the pressing action of the inner 3, so that it is possible to carry out at room temperature when there is no need to shorten the time.
樹脂粉末10とセラミックス粉末11との混合比は特に制限されるものではなく、それぞれの粒径にもよるが、例えば樹脂粉末10とセラミックス粉末11とを重量比で等量ずつ投入すればよい。 The mixing ratio of the resin powder 10 and the ceramic powder 11 is not particularly limited and depends on the respective particle diameters. For example, the resin powder 10 and the ceramic powder 11 may be added in equal amounts by weight.
次いで、得られた前駆体を焼成して、樹脂粉末10をガス化して消失させるとともに、セラミックス粉末11同士を結合させる。焼成条件は、樹脂粉末10が完全に消失させるのに十分な温度、時間を、樹脂の種類に応じて適宜設定する。 Next, the obtained precursor is fired to gasify the resin powder 10 to disappear, and the ceramic powders 11 are bonded together. As the firing conditions, a temperature and a time sufficient for the resin powder 10 to completely disappear are appropriately set according to the type of the resin.
上記の前駆体の焼成工程において、前駆体を電気炉等に入れ、室温から徐々に昇温してガス化及び焼成する温度プロセスを採用してもよいし、樹脂粉末10が完全にガス化する温度に加熱された電気炉に前駆体を入れて処理した後、セラミックス粉末11同士が結合する温度に昇温する温度プロセスを採用してもよい。特に、後者の温度プロセスを採用することにより、樹脂粉末10が瞬時にガス化して消失するため、より真球に近いセラミックス中空粒子が得られる。また、後者の温度プロセスにおける前駆体の処理温度は、樹脂粉末10の種類にもよるが、700〜800℃が適当である。 In the precursor firing step, a temperature process in which the precursor is placed in an electric furnace or the like and gradually heated from room temperature to be gasified and fired may be employed, or the resin powder 10 is completely gasified. You may employ | adopt the temperature process heated up to the temperature which ceramic powder 11 couple | bonds, after putting a precursor in the electric furnace heated to temperature and processing. In particular, by adopting the latter temperature process, since the resin powder 10 is instantaneously gasified and disappears, ceramic hollow particles closer to a true sphere can be obtained. Moreover, although the processing temperature of the precursor in the latter temperature process is based on the kind of the resin powder 10, 700-800 degreeC is suitable.
上記焼成により本発明のセラミックス中空粒子が得られるが、焼成に際してセラミックス粉末11が樹脂粉末10から剥がれ落ちることがないことから、均質で強固な多孔質殻層が形成される。 Although the ceramic hollow particles of the present invention are obtained by the firing, the ceramic powder 11 is not peeled off from the resin powder 10 during firing, so that a homogeneous and strong porous shell layer is formed.
尚、本発明において、樹脂粉末10の種類には制限がないが、セラミックス粉末11を埋め込むことができるように軟質の樹脂であることが好ましい。例えば、ポリスチレン、ポリメチルメタクリレート、ポリエチレン、ポリプロピレン等からなる粉末を好適に使用することができる。中でも、ポリメチルメタクリレート(PMMA)はポリスチレン(PS)やポリエチレン(PE)に比べて、より低温側で急激に分解して約350℃で略完全に残存物も無くなるため好ましい。このポリメチルメタクリレート粉末を使用することにより、より真球に近いセラミックス中空粒子が得られる。 In the present invention, the type of the resin powder 10 is not limited, but is preferably a soft resin so that the ceramic powder 11 can be embedded. For example, a powder made of polystyrene, polymethyl methacrylate, polyethylene, polypropylene, or the like can be suitably used. Among them, polymethyl methacrylate (PMMA) is preferable because it decomposes more rapidly on the lower temperature side and almost completely has no residue at about 350 ° C. as compared with polystyrene (PS) or polyethylene (PE). By using this polymethyl methacrylate powder, ceramic hollow particles closer to a true sphere can be obtained.
また、樹脂粉末10の粒径は、目的とするセラミックス中空粒子の粒径に応じて適宜選択される。本発明においては、粒径20μm以下のセラミックス中空粒子を生成することを目的の一つとしており、その際に樹脂粉末10として粒径20μm以下に分級されたものを使用する。 The particle size of the resin powder 10 is appropriately selected according to the particle size of the target ceramic hollow particles. In the present invention, one of the objects is to produce ceramic hollow particles having a particle size of 20 μm or less. At that time, the resin powder 10 classified to a particle size of 20 μm or less is used.
一方、セラミックス粉末11にも制限はなく、目的に応じて適宜選択できる。セラミックス粉末は1種類でもよく、2種以上を用いてもよい。また、粒径の異なる粉末を用いると、大径粉末と大径粉末とが結合して形成される隙間に、小径の粉末が入り込み、より緻密なセラミックス中空粒子が得られる。その際の大径粉末と小径粉末との混合比は、小径粉末を50質量%未満とすることが好ましく、セラミックス中空粒子の強度の点からは3〜20質量%とすることがより好ましい。 On the other hand, there is no restriction | limiting also in the ceramic powder 11, According to the objective, it can select suitably. One kind of ceramic powder may be used, or two or more kinds may be used. In addition, when powders having different particle diameters are used, the small-diameter powder enters a gap formed by combining the large-diameter powder and the large-diameter powder, and finer ceramic hollow particles can be obtained. The mixing ratio of the large diameter powder and the small diameter powder is preferably less than 50% by mass of the small diameter powder, and more preferably 3 to 20% by mass from the viewpoint of the strength of the ceramic hollow particles.
このようにして得られるセラミックス中空粒子は、完全中空粒子の割合が65〜100%で、破片粒子、中実粒子及び不完全中空粒子の割合が0〜35%となり、完全中空粒子の割合が高くなる。尚、このような割合は、得られたセラミックス中空粒子を適量採取し、電子顕微鏡で観察して、視野内における完全中空粒子、破片粒子、中実粒子及び不完全中空粒子の数を数えることにより求められる。 The ceramic hollow particles thus obtained have a ratio of complete hollow particles of 65 to 100%, a ratio of fragment particles, solid particles and incomplete hollow particles of 0 to 35%, and a high ratio of complete hollow particles. Become. Such ratio is obtained by collecting an appropriate amount of the obtained ceramic hollow particles, observing with an electron microscope, and counting the number of complete hollow particles, fragment particles, solid particles and incomplete hollow particles in the field of view. Desired.
以下に実施例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。 The present invention will be further described below with reference to examples, but the present invention is not limited thereto.
〔試験1:混合方法の検証〕
(実施例1)
圧接混合装置として、メカノフュージョンシステム(ホソカワミクロン(株)製AMS−Lab;図1、2参照)を用意し、インナーとチャンバとの隙間を3mmに調整した。そして、平均粒径15μmに分級されたポリメチルメタクリレート粉末と、平均粒径0.2μmに分級されたアルミナ粉末と、平均粒径0.01μmに分級されたシリカ粉末とを表1に示す配合にてチャンバに投入し、1740rpmで低速回転して混合した後、2600rpmで高速回転して圧接混合した。
[Test 1: Verification of mixing method]
Example 1
A mechano-fusion system (AMS-Lab manufactured by Hosokawa Micron Co., Ltd .; see FIGS. 1 and 2) was prepared as a pressure mixing device, and the gap between the inner and the chamber was adjusted to 3 mm. And the polymethylmethacrylate powder classified to the average particle diameter of 15 μm, the alumina powder classified to the average particle diameter of 0.2 μm, and the silica powder classified to the average particle diameter of 0.01 μm are blended as shown in Table 1. The mixture was put into the chamber, mixed by rotating at a low speed of 1740 rpm, and then mixed by pressure by rotating at a high speed of 2600 rpm.
圧接混合終了後にチャンバから粉末の一部を取り出して電子顕微鏡観察(3000倍)し、視野内の粒子を観察した。そして、アルミナ粉末で完全に被覆され、表面が露出している部分の無いポリメチルメタクリレート粉末の割合(コーティング率)を求めたところ、コーティング率は92.3%であった。 After completion of the pressure mixing, a part of the powder was taken out of the chamber and observed with an electron microscope (3000 times), and particles in the field of view were observed. And when the ratio (coating rate) of the polymethylmethacrylate powder which was completely coat | covered with the alumina powder and the surface did not have an exposed part was calculated | required, the coating rate was 92.3%.
また、図5に混合前のポリメチルメタクリレート粉末を撮影した電子顕微鏡写真(5000倍)、図6に圧接混合後の粉末を撮影した電子顕微鏡写真(5000倍)を示すが、低速での混合後に高速での圧接混合を行うことにより、ポリメチルメタクリレート粉末表面が,アルミナ粉末で完全に被覆されていることがわかる。 FIG. 5 shows an electron micrograph (5000 times) of the polymethylmethacrylate powder before mixing, and FIG. 6 shows an electron micrograph (5000 times) of the powder after pressure mixing, after mixing at low speed. It can be seen that the surface of the polymethyl methacrylate powder is completely covered with the alumina powder by performing pressure welding mixing at high speed.
(比較例1)
1500rpmで圧接混合した以外は、実施例1と同様の操作を行った。同様にしてコーティング率を求めたが、6.28%であり、アルミナ粉末による被覆は不十分であった。
(Comparative Example 1)
The same operation as in Example 1 was performed except that the pressure contact mixing was performed at 1500 rpm. Similarly, the coating rate was determined to be 6.28%, and the coating with alumina powder was insufficient.
(比較例2)
ポリメチルメタクリレート粉末と、アルミナ粉末とを個別に圧接混合装置に投入後、低速での混合を経ずに2600rpmにて圧接混合を行った。同様にしてコーティング率を求めたが、43.9%であり、アルミナ粉末による被覆は不十分であった。
(Comparative Example 2)
After the polymethyl methacrylate powder and the alumina powder were individually put into a pressure mixing device, pressure mixing was performed at 2600 rpm without mixing at a low speed. The coating rate was determined in the same manner, but it was 43.9%, and the coating with alumina powder was insufficient.
〔試験2:アルミナ中空粒子の作製〕
(実施例2)
実施例1で得られた圧接混合後の粉末を800℃に加熱した電気炉に投入してポリメチルメタクリレートをガス化させた後、1600℃まで約5℃/分の昇温速度で昇温し、1600℃にて3時間保持して焼成した。次いで5℃/分の降温速度で室温まで冷却した。
[Test 2: Preparation of alumina hollow particles]
(Example 2)
The pressure-mixed powder obtained in Example 1 was put into an electric furnace heated to 800 ° C. to gasify polymethyl methacrylate, and then heated to 1600 ° C. at a heating rate of about 5 ° C./min. Baking was carried out at 1600 ° C. for 3 hours. Then, it was cooled to room temperature at a rate of 5 ° C./min.
冷却後に電気炉から粉末を取り出し、電子顕微鏡で観察したところ、視野内において、完全中空粒子の割合が78%で、破片粒子、中実粒子及び不完全中空粒子の割合が22%であった。 After cooling, the powder was taken out of the electric furnace and observed with an electron microscope. As a result, the ratio of complete hollow particles was 78%, and the ratio of debris particles, solid particles, and incomplete hollow particles was 22%.
また、実施例2の実験を10回繰り返して行い、同様にして求めたところ、完全中空粒子の割合が65〜100%の範囲で、破片粒子、中実粒子及び不完全中空粒子の割合が0〜35%の範囲であった。 In addition, when the experiment of Example 2 was repeated 10 times and obtained in the same manner, the ratio of debris particles, solid particles, and incomplete hollow particles was 0 in the range of 65-100% of complete hollow particles. It was in the range of ˜35%.
(比較例3)
比較例1で得られた圧接混合後の粉末に対し、実施例2と同様の操作を行った。同様にして求めたところ、完全中空粒子の割合が5%で、破片粒子、中実粒子、及び不完全中空粒子の割合が95%であった。
(Comparative Example 3)
The same operation as in Example 2 was performed on the powder after pressure welding obtained in Comparative Example 1. When determined in the same manner, the ratio of complete hollow particles was 5%, and the ratio of fragment particles, solid particles, and incomplete hollow particles was 95%.
(比較例4)
比較例2で得られた圧接混合後の粉末に対し,実施例2と同様の操作を行った。同様にして求めたところ,完全中空粒子の割合が35%で,破片粒子,中実粒子,及び不完全中空粒子の割合が65%であった。
(Comparative Example 4)
The same operation as in Example 2 was performed on the powder after pressure mixing obtained in Comparative Example 2. When determined in the same manner, the ratio of complete hollow particles was 35%, and the ratio of fragment particles, solid particles, and incomplete hollow particles was 65%.
(比較例5)
同じポリメチルメタクリレート粉末とアルミナ粉末とシリカ粉末とを混合装置にて混合して混合粉末とし,この混合粉末を用いて実施例1及び実施例2と同様の圧接混合、焼成を行った。同様にして求めたところ、完全中空粒子の割合が62%で、破片粒子、中実粒子及び不完全中空粒子の割合が38%であった。
(Comparative Example 5)
The same polymethyl methacrylate powder, alumina powder, and silica powder were mixed with a mixing device to obtain a mixed powder, and this mixed powder was used for pressure contact mixing and firing in the same manner as in Example 1 and Example 2. When determined in the same manner, the ratio of complete hollow particles was 62%, and the ratio of fragment particles, solid particles, and incomplete hollow particles was 38%.
1 圧接混合装置
2 チャンバ
3 インナー
4 スクレーバー
5 混合粉末
10 樹脂粉末
11 セラミックス粉末
DESCRIPTION OF SYMBOLS 1 Pressure welding apparatus 2 Chamber 3 Inner 4 Scraper 5 Mixed powder 10 Resin powder 11 Ceramic powder
Claims (3)
回転自在でドラム状を呈するチャンバの内壁と、スクレーバーとの微小隙間に粉末を通過させて粉末同士を圧接しながら混合する圧接混合装置に、樹脂粉末と、樹脂粉末よりも小径のセラミックス粉末とを個別に投入し、チャンバを圧接混合時の回転速度よりも低速で回転させて樹脂粉末とセラミックス粉末とを混合し、次いで圧接混合を行いセラミックス粉末がその一部を埋込んだ状態で樹脂粉末の表面を被覆している前駆体を形成し、次いで前駆体を焼成して樹脂粉末を焼失させるとともにセラミックス粉末同士を焼結させることを特徴とするセラミックス中空粒子の製造方法。 In the method for producing ceramic hollow particles in which a porous shell layer formed by bonding ceramic powders to form a hollow structure is formed,
Resin powder and ceramic powder having a smaller diameter than the resin powder are mixed in a pressure mixing device that mixes powder while passing the powder through a minute gap between the inner wall of the chamber that is rotatable and has a drum shape, and a scraper. The resin powder and the ceramic powder are mixed by rotating individually and rotating the chamber at a speed lower than the rotational speed at the time of the pressure mixing, and then the pressure mixing is performed and the ceramic powder is partially embedded in the resin powder. A method for producing hollow ceramic particles, comprising: forming a precursor covering a surface; then firing the precursor to burn out the resin powder and sintering the ceramic powder together.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009258924A JP2011105520A (en) | 2009-11-12 | 2009-11-12 | Ceramic hollow particles and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009258924A JP2011105520A (en) | 2009-11-12 | 2009-11-12 | Ceramic hollow particles and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011105520A true JP2011105520A (en) | 2011-06-02 |
Family
ID=44229470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009258924A Abandoned JP2011105520A (en) | 2009-11-12 | 2009-11-12 | Ceramic hollow particles and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011105520A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021126836A (en) * | 2020-02-14 | 2021-09-02 | Tdk株式会社 | Manufacturing method of composite material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005029437A (en) * | 2003-07-08 | 2005-02-03 | Yazaki Corp | Manufacturing method of ferrite hollow particle |
-
2009
- 2009-11-12 JP JP2009258924A patent/JP2011105520A/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005029437A (en) * | 2003-07-08 | 2005-02-03 | Yazaki Corp | Manufacturing method of ferrite hollow particle |
Non-Patent Citations (1)
Title |
---|
JPN6013014831; KATO, Takayuki et al.: 'Effect of Core Materials on the Formation of Hollow Alumina Microshperes by Mechanofusion Process' Journal of the American Ceramic Society Vol.87, No.1, pp.60-67, 200401, Wiley;American Ceramic Society;Hoboken, N.J.;Weste * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021126836A (en) * | 2020-02-14 | 2021-09-02 | Tdk株式会社 | Manufacturing method of composite material |
JP7469901B2 (en) | 2020-02-14 | 2024-04-17 | Tdk株式会社 | Composite manufacturing methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200829719A (en) | Thermal spray powder, method for forming thermal spray coating, and plasma resistant member | |
JP6547309B2 (en) | Negative electrode material for lithium ion secondary battery, paste for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP2018532613A (en) | Additive manufacturing method and apparatus | |
JP6892122B2 (en) | Powder particles and a method for producing a green body using them | |
JP5086681B2 (en) | Carrier core material for electrophotographic developer and method for producing the same, carrier for electrophotographic developer, and electrophotographic developer | |
WO2018211626A1 (en) | Composite particle material, and production method therefor | |
CN104671751B (en) | The preparation method of the closed pore alumina-based ceramic that a kind of aperture is controlled | |
JP2011105520A (en) | Ceramic hollow particles and method for manufacturing the same | |
JP3955477B2 (en) | Method for producing alumina hollow particles | |
JP2005029437A (en) | Manufacturing method of ferrite hollow particle | |
CN109071357B (en) | Method of adding graphene-based additives to targets used in coatings applying laser ablation | |
JP2005263600A (en) | Method for producing zirconia hollow particle | |
JP6584213B2 (en) | Hollow particles, method for producing the hollow particles, and friction material containing the hollow particles | |
JP5996408B2 (en) | Method for producing spheroidized graphite particles | |
JP2004002195A (en) | Method for manufacturing ceramic hollow particle | |
TW201010825A (en) | A diamond abrasive tool and manufacture method thereof | |
JP5748991B2 (en) | Powder production disc | |
JP5881148B2 (en) | Porous metal manufacturing method | |
JP2008223072A (en) | METHOD FOR PRODUCING Co BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLE | |
JP4350400B2 (en) | Sliding member and manufacturing method thereof | |
JP2013119663A (en) | Rotary disk, method for producing silver powder by centrifugal atomization process, and centrifugal atomization device | |
JP7099257B2 (en) | Manufacturing method of metal structure | |
CN111960465A (en) | Spherical ZrO2Method for preparing powder | |
JP2004284864A (en) | Hollow ceramic particle | |
JP2009057584A (en) | Aluminum porous body having superior water absorbability, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121016 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20130522 |