JP2011102759A - Method and apparatus for inspecting coating adhesive - Google Patents
Method and apparatus for inspecting coating adhesive Download PDFInfo
- Publication number
- JP2011102759A JP2011102759A JP2009257975A JP2009257975A JP2011102759A JP 2011102759 A JP2011102759 A JP 2011102759A JP 2009257975 A JP2009257975 A JP 2009257975A JP 2009257975 A JP2009257975 A JP 2009257975A JP 2011102759 A JP2011102759 A JP 2011102759A
- Authority
- JP
- Japan
- Prior art keywords
- light
- adhesive
- substrate
- reflected
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 134
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 134
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000011248 coating agent Substances 0.000 title claims abstract description 20
- 238000000576 coating method Methods 0.000 title claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 105
- 238000007689 inspection Methods 0.000 claims abstract description 36
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 238000001514 detection method Methods 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 description 9
- 230000001788 irregular Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
本発明は、基板の表面に塗布された接着剤の検査方法及び検査装置に関する。 The present invention relates to an inspection method and an inspection apparatus for an adhesive applied to a surface of a substrate.
液晶ディスプレーや液晶テレビのバックライトにLEDが多用されている。近年、LEDチップの出射効率を高めるため、基板またはリードフレームへの接着時に透明な接着剤が使用されつつある。その接着のために、基板におけるLEDチップの接着箇所には予め接着剤が点状に塗布されるが、塗布の有無、位置、塗布量等の塗布状態が正確に行なわれないと、接着不良による寿命低下や出射効率の低下等の問題を引き起こす。特に、LEDチップの接着のための接着剤塗布量は、径及び高さが0.1〜0.2mm程度であるので、精度の高い塗布とその検査が要求される。 LEDs are frequently used in the backlights of liquid crystal displays and liquid crystal televisions. In recent years, a transparent adhesive is being used for bonding to a substrate or a lead frame in order to increase the emission efficiency of the LED chip. For the adhesion, an adhesive is preliminarily applied to the bonding points of the LED chip on the substrate in a dot shape. This causes problems such as a reduction in lifetime and a decrease in emission efficiency. In particular, since the diameter and height of the adhesive application amount for adhering the LED chip is about 0.1 to 0.2 mm, highly accurate application and inspection thereof are required.
従来から接着剤等の塗布状態をCCDカメラ等の撮像装置を用いて検査する技術が知られている(例えば、特許文献1及び2参照)。LEDチップ接着時の接着剤塗布状態の検査にこの技術を用いる場合、以下に説明するように、基板表面が鏡面であれば検査が可能であるが、粗面であると検査を行なうのが困難である。 2. Description of the Related Art Conventionally, a technique for inspecting the application state of an adhesive or the like using an imaging device such as a CCD camera is known (for example, see Patent Documents 1 and 2). When this technique is used for the inspection of the adhesive application state at the time of LED chip bonding, as will be described below, it is possible to inspect if the substrate surface is a mirror surface, but it is difficult to inspect if the surface is rough. It is.
図6は基板表面が鏡面及び粗面の各々の場合について、照射光の反射状態を概略的に示している。図6(a) は、鏡面の基板S及び該基板に塗布された接着剤Lに対して検査用の光を照射した状態を示している。基板Sは平面状であるのに対し、接着剤Lは微小な液滴として塗布され、表面張力によってドーム状の丸味をもった凸曲面を呈している。基板Sの上方から照射された光の内、基板Sに到達した入射光ISは基板面により正反射して上方へ向かう反射光RSとなる。一方、接着剤Lに照射された入射光ILは、一部が透明な接着剤内に進行し基板面で反射され反射光RL’となって上方に向かうが、接着剤の湾曲面での反射光RLは斜めに反射される。なお、接着剤Lの中央への入射光ICのみは、局部的な水平面で反射されて真上に向かう反射光RCとなる。したがって、基板上方のカメラに到達する反射光は、基板面での反射光RS及び接着剤中央での反射光RCが強く、接着剤Lの大部分の箇所での反射光RLは弱くなる。その結果、撮像時に接着剤塗布箇所が暗く見えて判別されることとなる。 FIG. 6 schematically shows the reflected state of irradiation light when the substrate surface is a mirror surface or a rough surface. FIG. 6A shows a state in which inspection light is irradiated to the mirror-surface substrate S and the adhesive L applied to the substrate. Whereas the substrate S is flat, the adhesive L is applied as fine droplets, and has a dome-like rounded convex surface due to surface tension. Of the light emitted from above the substrate S, the incident light I S reaching the substrate S becomes reflection light R S directed upward regularly reflected by the substrate surface. On the other hand, the incident light I L applied to the adhesive L partially travels into the transparent adhesive and is reflected by the substrate surface to be reflected light R L ′. The reflected light RL is reflected obliquely. In addition, only the incident light I C to the center of the adhesive L becomes reflected light R C which is reflected by a local horizontal plane and goes directly upward. Therefore, the reflected light reaching the camera above the substrate has a strong reflected light R S on the substrate surface and a reflected light R C at the center of the adhesive, and a weak reflected light R L at the most part of the adhesive L. Become. As a result, the location where the adhesive is applied appears to be dark at the time of imaging.
一方、基板Sの表面が粗面の場合は、図6(b) に示すように、基板Sに到達した入射光ISは基板面により乱反射されて反射光RSとなる。接着剤Lの湾曲面への入射光ILは、一部が表面での反射光RLとなり、一部が接着剤内に進行し基板面で乱反射されて反射光RL’となる。なお、接着剤Lの中央への入射光ICは、接着剤の局部的な水平面で反射されて真上に向かう反射光RCとなり、接着剤内に進行した光は乱反射して反射光RL’となる。したがって、基板Sに入射した光は乱反射光となり、接着剤Lに入射した光は、接着剤中央での反射光を除き、斜めへの反射光及び到達した基板面による乱反射光となる。こうして、基板及び接着剤の双方では反射光の一部がカメラに到達することとなり、その結果、カメラの像において基板と接着剤とのコントラストが弱く、境界が不明確になり、接着剤塗布状態の検査を確実に行ない難くなる。 On the other hand, when the surface of the substrate S is rough, as shown in FIG. 6B, the incident light I S that reaches the substrate S is irregularly reflected by the substrate surface to become reflected light R S. Incident light I L to the curved surface of the adhesive L is reflected light R L next to the part surface, a portion is advanced and has been reflected light R L 'irregular reflection at the substrate surface in the adhesive. The incident light I C to the center of the adhesive L is reflected by the local horizontal surface of the adhesive and becomes reflected light R C directed upward, and the light traveling in the adhesive is irregularly reflected and reflected by the reflected light R C. L '. Therefore, the light incident on the substrate S becomes irregularly reflected light, and the light incident on the adhesive L becomes obliquely reflected light and irregularly reflected light by the reached substrate surface except for the reflected light at the center of the adhesive. Thus, in both the substrate and the adhesive, a part of the reflected light reaches the camera. As a result, the contrast between the substrate and the adhesive is weak in the image of the camera, the boundary becomes unclear, and the adhesive is applied. It will be difficult to ensure the inspection of
特に、LEDチップは高輝度化が進むと共に発熱量が大きくなり、基板及び接着剤に耐熱性が要求される。これに応えるには、基板をセラミック製とし、シリコン系接着剤を使用するのが有利であるが、一方では、セラミック表面が粗面であるために上述の問題が生じるのであり、その解決が望まれる。 In particular, LED chips increase in luminance and heat generation increases, and heat resistance is required for substrates and adhesives. In order to respond to this, it is advantageous to use a ceramic substrate and use a silicon-based adhesive, but on the other hand, since the ceramic surface is rough, the above-mentioned problems arise, and it is desirable to solve the problem. It is.
また、同様の問題は、LEDチップのための接着剤塗布状態の検査のみならず、液滴状に塗布される接着剤の塗布状態についての種々の検査において生じる。 The same problem occurs not only in the inspection of the adhesive application state for the LED chip but also in various inspections regarding the application state of the adhesive applied in the form of droplets.
本発明は、上記のような従来技術の問題を解決し、粗面上の透明な接着剤の塗布状態を確実に検査し得る塗布接着剤の検査方法及び検査装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a coating adhesive inspection method and inspection apparatus capable of reliably inspecting the application state of a transparent adhesive on a rough surface. .
本発明は、前記目的を達成するため、基板の粗面に塗布された透明な接着剤の検査方法であって、基板表面に沿う方向に光を照射して接着剤に到達させ、少なくとも接着剤によって反射された光を接着剤塗布箇所の上方で受光し、受光した光の強度分布に基づいて基板上の接着剤の位置情報を取得することを特徴とする塗布接着剤の検査方法を提供するものである。 In order to achieve the above object, the present invention is a method for inspecting a transparent adhesive applied to a rough surface of a substrate, and irradiates light in a direction along the surface of the substrate to reach the adhesive, and at least the adhesive A coating adhesive inspection method is provided, in which light reflected by a light is received above an adhesive application location, and positional information of the adhesive on the substrate is obtained based on an intensity distribution of the received light. Is.
本発明はまた、前記目的を達成するため、基板の粗面に塗布された透明な接着剤の検査装置であって、基板を保持する保持部と、該保持部上の基板表面に沿う方向に光を照射し得る光照射装置と、少なくとも接着剤によって反射された光を接着剤塗布箇所の上方で受光し、受光した光の強度分布情報を出力する光検出装置とを備えたことを特徴とする塗布接着剤の検査装置を提供するものである。 In order to achieve the above object, the present invention is also an inspection apparatus for a transparent adhesive applied to a rough surface of a substrate, in which a holding portion for holding the substrate and a direction along the substrate surface on the holding portion are provided. A light irradiating device capable of irradiating light, and a light detecting device that receives at least light reflected by the adhesive above the adhesive application portion and outputs intensity distribution information of the received light. An inspection apparatus for coating adhesive is provided.
本発明に係る塗布接着剤の検査方法においては、基板における接着剤塗布箇所を粗面(乱反射面)とし、基板表面に沿う方向に光を照射して接着剤に到達させる。したがって、光は塗布厚さを有する接着剤を側方から照射することとなり、一部は表面で反射し、一部は接着剤の透明性に基づき内部へ進入する。接着剤内へ進入した光は、基板表面に達し、その粗面により乱反射して、一部が上方へ向かう。接着剤への進入光は接着剤に入射するときの屈折により、基板面に対して垂直に近い側(入射角が小さくなる側)へ角度が変化している。その結果、接着剤内へ進入した光の反射光は、直接基板面に到達した光の反射光より強度が高くなる。光は接着剤表面の広い範囲から内部へ進入するので、基板における接着剤塗布領域の広い範囲で乱反射が生じ、これを上方で受光すると、接着剤の塗布範囲に対応して高い光強度の分布が得られる。また、接着剤の表面では、表面張力等による湾曲形状と入射角とに応じて、上方へ正反射する光が生じる。この反射光は局所的に高い反射強度を呈する。一方、基板面に対しては照射が表面に平行またはこれに近い角度で行なわれるので、上方へ向かう反射光量が少ない。その結果、上方で受光する光の強度分布は低いものとなる。なお、照射光の角度によっては、基板面に直接照射される光は零となり、反射光及び受光強度分布も零となり、この場合は上方での受光は接着剤での反射光のみとなる。 In the coating adhesive inspection method according to the present invention, the adhesive coating portion on the substrate is a rough surface (irregular reflection surface), and light is irradiated in a direction along the substrate surface to reach the adhesive. Therefore, light irradiates the adhesive having a coating thickness from the side, part of which is reflected from the surface, and part of the light enters the inside based on the transparency of the adhesive. The light that has entered the adhesive reaches the substrate surface, is irregularly reflected by the rough surface, and part of the light goes upward. The light entering the adhesive changes in angle to the side close to perpendicular to the substrate surface (side where the incident angle becomes smaller) due to refraction when entering the adhesive. As a result, the reflected light of the light that has entered the adhesive has a higher intensity than the reflected light of the light that directly reaches the substrate surface. Since light enters the interior from a wide area of the adhesive surface, irregular reflection occurs in a wide area of the adhesive application area on the substrate, and when this is received above, a high light intensity distribution corresponding to the adhesive application area Is obtained. In addition, on the surface of the adhesive, light that is regularly reflected upward is generated according to the curved shape due to surface tension or the like and the incident angle. This reflected light locally exhibits high reflection intensity. On the other hand, since the irradiation is performed on the substrate surface at an angle parallel to or close to the surface, the amount of reflected light upward is small. As a result, the intensity distribution of the light received above is low. Depending on the angle of the irradiated light, the light directly irradiated onto the substrate surface becomes zero, and the reflected light and the received light intensity distribution also become zero. In this case, the light received upward is only the reflected light from the adhesive.
したがって、接着剤塗布箇所の上方で反射光を受光すると、その接着剤の位置で強い強度分布が得られることになり、これに基づいて基板上の接着剤の位置情報を取得することにより、接着剤の有無、位置、面積等の塗布状態の検査を確実に行なうことができる。 Therefore, when the reflected light is received above the adhesive application location, a strong intensity distribution is obtained at the position of the adhesive, and based on this, the position information of the adhesive on the substrate is acquired, and adhesion is obtained. The application state such as the presence / absence of the agent, position, and area can be reliably checked.
本発明に係る検査装置によれば、保持部によって保持した基板の基板表面に沿う方向に光照射装置が光を照射し、基板及び接着剤による反射光を接着剤塗布箇所の上方に位置する光検出装置が受光し、その強度分布情報を出力する。したがって、上記検査方法で述べたのと同様にして、受光する反射光は、接着剤の位置で強い強度分布となる。その結果、光検出装置の出力に基づいて基板上の接着剤の位置情報を取得することにより、接着剤の有無、位置、面積等の塗布状態の検査を確実に行なうことができる。 According to the inspection apparatus of the present invention, the light irradiation device irradiates light in a direction along the substrate surface of the substrate held by the holding unit, and the light reflected by the substrate and the adhesive is positioned above the adhesive application portion. The detection device receives light and outputs the intensity distribution information. Therefore, in the same manner as described in the above inspection method, the received reflected light has a strong intensity distribution at the position of the adhesive. As a result, by acquiring the position information of the adhesive on the substrate based on the output of the light detection device, it is possible to reliably inspect the application state such as the presence / absence, position, and area of the adhesive.
以下、本発明の実施形態について添付図面を参照しつつ説明する。図面中の同一又は同種の部分については、同じ番号を付して説明を一部省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The same or similar parts in the drawings are denoted by the same reference numerals and description thereof is partially omitted.
図1は、本発明に係る塗布接着剤の検査方法の実施に使用する光検出装置を概略的に示している。この検査装置は、基台1上で基板Sを保持する保持部2と、該保持部上の基板表面に沿う方向に光を照射し得る光照射装置3と、基板S及び接着剤Lによる反射光を接着剤塗布箇所の上方で受光し、受光した光の強度分布情報を出力する光検出装置4とを備えている。 FIG. 1 schematically shows a photodetection device used for carrying out a coating adhesive inspection method according to the present invention. This inspection apparatus includes a holding unit 2 that holds a substrate S on a base 1, a light irradiation device 3 that can irradiate light in a direction along the substrate surface on the holding unit, and reflection by the substrate S and an adhesive L. And a light detection device 4 that receives light above the adhesive application portion and outputs intensity distribution information of the received light.
この装置の検査対象は、液晶ディスプレーのバックライト等に用いられるLEDチップAであり、該LEDチップは、ウェハーをダイシングして多数のペレット状とされ各々にLEDを接着するための接着剤Lが点状に塗布された状態となっている。 The inspection object of this apparatus is an LED chip A used for a backlight of a liquid crystal display, etc. The LED chip is diced into a number of pellets by dicing the wafer, and an adhesive L for adhering the LED to each is provided. It is in a state of being applied in the form of dots.
基台1は、保持部2を隣り合う工程間等に移動させるガイド11を備えている。保持部2は、LEDチップを水平に保持し、ガイド11上を図外の駆動部の作用を受けて移動する。図は、保持部2が検査位置にある状態を示している。 The base 1 includes a guide 11 that moves the holding unit 2 between adjacent processes. The holding unit 2 holds the LED chip horizontally and moves on the guide 11 under the action of a driving unit (not shown). The figure shows a state in which the holding unit 2 is in the inspection position.
光照射装置3は、この実施形態では、1対の湾曲状フレーム31に多数のLED32を配置したものとなっている。フレーム31は、検査位置に到達した保持部2を囲むように配置されており、ガイド11を挟んで位置し、1対のフレームはLEDチップAを搭載した保持部2を通し得る間隙をおいて配置されている。LED32は、光軸(照射光の中心軸線)が基板面(水平面)に対して同じ角度となるように配置され、この実施形態では、基板面に平行とされている。 In this embodiment, the light irradiation device 3 has a plurality of LEDs 32 arranged on a pair of curved frames 31. The frame 31 is disposed so as to surround the holding unit 2 that has reached the inspection position, and is positioned with the guide 11 interposed therebetween. The pair of frames have a gap through which the holding unit 2 on which the LED chip A is mounted can be passed. Has been placed. The LEDs 32 are arranged such that the optical axis (the central axis of the irradiation light) is at the same angle with respect to the substrate surface (horizontal plane). In this embodiment, the LEDs 32 are parallel to the substrate surface.
LED32から発せられる光は、反射光により接着剤Lと基板Sとの明度差が得られる光であれば特に限定されず、種々の色(波長)のものを使用し得る。また、LED以外の種々の光源を使用することができ、光強度の検知が可能であれば、自然光の他、赤外線、紫外線等の光を使用することができる。 The light emitted from the LED 32 is not particularly limited as long as the brightness difference between the adhesive L and the substrate S can be obtained by reflected light, and various colors (wavelengths) can be used. Various light sources other than LEDs can be used, and light such as infrared rays and ultraviolet rays can be used in addition to natural light as long as the light intensity can be detected.
接着剤Lへの照射は、コントラストを明確に得る上で、接着剤Lの周囲全体またはこれに近い範囲から行なうのが望ましい。このために、接着剤Lを囲むように、LED等の多数の点光源を配置するか、線光源を用いるのが望ましい。尤も、検査に必要なコントラストが得られるのであれば、接着剤Lの周囲全体を囲む必要はなく、例えば、1対のフレーム31の一方のみを用いるようにしてもよいし、フレームを含め光源の配置を直線状としてもよい。また、照射光の形態は、拡散光の他、平行光とすることもでき、光源から光学部品等を経て所望の出射形態で基板及び接着剤に照射してもよい。 In order to obtain a clear contrast, it is desirable that the adhesive L is irradiated from the entire periphery of the adhesive L or from a range close thereto. For this purpose, it is desirable to arrange a large number of point light sources such as LEDs or use a line light source so as to surround the adhesive L. However, if the contrast necessary for the inspection can be obtained, it is not necessary to surround the entire periphery of the adhesive L. For example, only one of the pair of frames 31 may be used, or the light source including the frame may be used. The arrangement may be linear. The form of the irradiation light may be parallel light as well as diffused light, and the substrate and the adhesive may be irradiated from the light source through the optical components and the like in a desired emission form.
光検出装置4は、この実施形態においてはCCDカメラを備えており、基台1における検査位置の上方に設置されている。CCDカメラは、保持部2に保持された基板S及び接着剤Lからの反射光を受光し、画像として表示すると共に、光強度分布を検出する。なお、光検出装置としては、CCDカメラの他、光強度分布を検知し得る種々の装置を用いることができる。 In this embodiment, the light detection device 4 includes a CCD camera, and is installed above the inspection position on the base 1. The CCD camera receives the reflected light from the substrate S and the adhesive L held by the holding unit 2 and displays it as an image and detects the light intensity distribution. In addition to the CCD camera, various devices that can detect the light intensity distribution can be used as the light detection device.
基台1は図外の駆動装置により、水平面内で保持部2の移動方向(X軸)及びこれに垂直な方向(Y軸)に移動させられるようになっており、固定された光検出装置4に対して保持部2を基板Sと共に移動させることにより、LEDチップA上の接着剤Lの位置情報を次々と取得することができる。光検出装置4及び光照射装置3は制御装置10に接続されており、制御装置10は、光検出装置4から送られてくる光強度信号の画像処理や光強度の検知、並びに光照射装置3の照射光の制御等を行なう。 The base 1 can be moved in a horizontal plane in the moving direction (X axis) and the direction perpendicular to the holding unit 2 (Y axis) by a driving device (not shown). 4, the position information of the adhesive L on the LED chip A can be acquired one after another by moving the holding unit 2 together with the substrate S. The light detection device 4 and the light irradiation device 3 are connected to the control device 10, and the control device 10 performs image processing of the light intensity signal transmitted from the light detection device 4, detection of the light intensity, and the light irradiation device 3. The irradiation light is controlled.
図2は、図1の装置におけるLED32によりLEDチップAの基板S上の接着剤Lに光照射をしている状態を示している。図示のように照射は、基板表面に沿う方向に行なわれる。接着剤Lに到達した入射光I1は一部が接着剤Lの表面で反射して反射光R10となり、一部は接着剤の透明性に基づき内部へ進入して進入光I1'となる。進入光I1'は基板S表面に達した所で乱反射し、一部の反射光R11が上方の光検出装置4(図1)へ向かう。接着剤Lにおける他の箇所に到達した入射光I2も同様に、進入光I2'となり、基板Sで乱反射して一部の反射光R21が光検出装置4へ向かう。基板Sに直接到達した光も基板面で乱反射し、一部が光検出装置4に向かう。乱反射により上方の光検出装置4に向かう光の内、反射光R11及びR21は、接着剤L内への進入光I1'及びI2'の反射光であり、これらの進入光は接着剤Lに入射するときの屈折により、基板面に対して垂直に近い側(入射角が小さくなる側)へ角度が変化している。そして、照射面が受ける単位面積あたりの光量は、入射角が大きいほど(照射面となす角度が小さいほど)小さくなる。したがって、接着剤内へ進入した光の反射光は、直接基板面に到達した反射光より強度が高くなる。その結果、光検出装置4においては、接着剤Lの部分が周囲より明るくなり、明確なコントラストをもって検知される。こうして、本装置及び方法によれば、接着剤の位置情報を確実に得ることができる。 FIG. 2 shows a state in which the adhesive L on the substrate S of the LED chip A is irradiated with light by the LED 32 in the apparatus of FIG. As shown in the figure, irradiation is performed in a direction along the substrate surface. A part of the incident light I 1 that has reached the adhesive L is reflected by the surface of the adhesive L to become reflected light R 10 , and a part of the incident light I 1 enters the inside based on the transparency of the adhesive to enter the incoming light I 1 ′. Become. The incoming light I 1 ′ is diffusely reflected when it reaches the surface of the substrate S, and a part of the reflected light R 11 is directed to the upper light detection device 4 (FIG. 1). Similarly, the incident light I 2 arriving at another part of the adhesive L is also entered light I 2 ′, diffusely reflected by the substrate S, and a part of the reflected light R 21 is directed to the light detection device 4. The light that directly reaches the substrate S is also irregularly reflected on the substrate surface, and a part thereof is directed to the light detection device 4. Of the light traveling toward the upper light detection device 4 due to irregular reflection, the reflected light R 11 and R 21 are reflected light of the incoming lights I 1 ′ and I 2 ′ into the adhesive L, and these incoming lights are bonded. Due to refraction when entering the agent L, the angle changes to a side close to perpendicular to the substrate surface (side where the incident angle becomes smaller). And the light quantity per unit area which an irradiation surface receives becomes small, so that an incident angle is large (the angle which makes with an irradiation surface is small). Therefore, the reflected light of the light that has entered the adhesive has a higher intensity than the reflected light that directly reaches the substrate surface. As a result, in the light detection device 4, the portion of the adhesive L becomes brighter than the surroundings and is detected with a clear contrast. Thus, according to the present apparatus and method, the position information of the adhesive can be obtained with certainty.
また、基板面によっては、粗面による乱反射であっても、反射強度は正反射に近い角度範囲において高くなる傾向を示す場合がある。この場合も、接着剤L内に進入した光は、基板面に対して垂直に近い側(入射角が小さくなる側)へ角度が変化しているので、その正反射の角度及びこれに近い高反射強度の範囲も基板面に垂直に近づいている。したがって、基板面の真上に位置する光検出装置4に到達する光は、直接基板面に入射した反射光より強くなる。この点においても、接着剤に進入した光の反射光が、直接基板面に到達した反射光より光強度が高くなり、光検出装置4においては、接着剤Lの部分がより明るく、より強いコントラストで検知される。 Further, depending on the substrate surface, even with irregular reflection due to a rough surface, the reflection intensity may tend to increase in an angular range close to regular reflection. In this case as well, the light that has entered the adhesive L changes in angle to the side that is nearly perpendicular to the substrate surface (the side on which the incident angle becomes smaller). The range of reflection intensity is also approaching perpendicular to the substrate surface. Therefore, the light that reaches the light detection device 4 located directly above the substrate surface is stronger than the reflected light that is directly incident on the substrate surface. Also in this respect, the reflected light of the light that has entered the adhesive has a higher light intensity than the reflected light that directly reaches the substrate surface. In the light detection device 4, the portion of the adhesive L is brighter and has a stronger contrast. Is detected.
さらに、接着剤Lにおける特定箇所への入射光I3は、接着剤表面での正反射光R3が光検出装置4向かう。その結果、光検出装置4においては、接着剤Lにおける正反射光R3の部分が周囲より際だって明るく検知される。 Furthermore, as for the incident light I 3 to the specific location in the adhesive L, the regular reflection light R 3 on the adhesive surface is directed to the light detection device 4. As a result, in the optical detector 4, portions of the specularly reflected light R 3 at adhesive L is detected bright pronounced than the surrounding.
このようにして得られる接着剤と基板面の反射光のコントラストは、照射光と基板面とのなす角度が小さいほど強く得られる。図3は、照射光と基板面とのなす角度が0度、すなわち、照射光が基板面平行な場合を示している。図2の場合と同様に、接着剤Lに到達した入射光I1,I2は一部が接着剤Lの表面で反射して反射光R10,R20となり、一部は接着剤の内部への進入光I1',I2'となり、基板S表面で乱反射され、上方への反射光R11,R21が光検出装置へ向かう。基板Sの面に対して照射光の光軸は平行であるので、照射光が平行光であれば基板面による上方への反射光は理論上存在しない。実際には、粗面による凹凸や、拡散光である照射光の拡がり角度によって基板面から上方へ向かう反射光が存在するが、その量は僅かである。したがって、接着剤に進入して基板面に到達した光の反射光が、直接基板面に到達した反射光よりも、より強いコントラストで検知される。 The contrast between the adhesive obtained in this way and the reflected light on the substrate surface becomes stronger as the angle formed between the irradiation light and the substrate surface is smaller. FIG. 3 shows a case where the angle formed between the irradiation light and the substrate surface is 0 degree, that is, the irradiation light is parallel to the substrate surface. As in the case of FIG. 2, the incident lights I 1 and I 2 that have reached the adhesive L are partially reflected on the surface of the adhesive L to become reflected lights R 10 and R 20 , and some of them are inside the adhesive. Lights I 1 ′ and I 2 ′ enter the light and are irregularly reflected on the surface of the substrate S, and the upward reflected light R 11 and R 21 are directed to the light detection device. Since the optical axis of the irradiation light is parallel to the surface of the substrate S, if the irradiation light is parallel light, there is theoretically no reflected light upward from the substrate surface. Actually, although there is unevenness due to the rough surface and reflected light upward from the substrate surface depending on the spread angle of the irradiation light that is diffused light, the amount is small. Therefore, the reflected light of the light that has entered the adhesive and reached the substrate surface is detected with a stronger contrast than the reflected light that has directly reached the substrate surface.
図4(a) 〜(c) は、図1の装置を使用して塗布接着剤の検査を行なった際に、光検出装置4(CCDカメラ)によって撮影された画像を示している。3つの画像は、図5に示すように、光照射装置3の照射光軸Cが基板Sの面から離れる高さHを設定し、この高さHを変えて撮影したものである。図の(a), (b), (c) は各々、高さHが3mm,0mm,−3mmに設定されたときの画像である。これらの画像は、高さHが3〜−3mmの範囲であれば、光照射装置3の位置が低くなるほど、光検出装置4による画像のコントラストが強くなることを示している。 FIGS. 4A to 4C show images taken by the light detection device 4 (CCD camera) when the coating adhesive is inspected using the apparatus of FIG. As shown in FIG. 5, the three images are obtained by setting the height H at which the irradiation optical axis C of the light irradiation device 3 is separated from the surface of the substrate S and changing the height H. (A), (b), and (c) in the figure are images when the height H is set to 3 mm, 0 mm, and −3 mm, respectively. These images indicate that when the height H is in the range of 3 to -3 mm, the lower the position of the light irradiation device 3, the stronger the contrast of the image by the light detection device 4.
この関係は、次のようにして成立すると考えられる。光照射装置3のLED32は、所定の角度をもって拡散しているので、光軸Cが水平であっても対象物には拡散角に基づく斜めからの光も照射される。したがって、光軸Cの高さHが基板面から0mm,−3mmとなっても、拡散した斜めからの光が接着剤L及び基板Sの面に照射される。但し、拡散光の範囲内であれば、光照射装置3の高さが低くなるほど、接着剤Lに照射される光の量に比べて、基板面に照射される光の量が著しく減少する。その結果、光軸Cの位置が基板面に対して3〜−3mmの範囲であれば、光照射装置3の位置が低くなるほど、光検出装置4による画像のコントラストが強くなるのである。 This relationship is considered to be established as follows. Since the LED 32 of the light irradiation device 3 diffuses at a predetermined angle, even if the optical axis C is horizontal, the object is also irradiated with oblique light based on the diffusion angle. Therefore, even if the height H of the optical axis C is 0 mm and −3 mm from the substrate surface, the diffused oblique light is applied to the surfaces of the adhesive L and the substrate S. However, within the range of diffused light, the lower the height of the light irradiation device 3, the more the amount of light irradiated on the substrate surface is remarkably reduced as compared with the amount of light irradiated on the adhesive L. As a result, if the position of the optical axis C is in the range of 3 to -3 mm with respect to the substrate surface, the lower the position of the light irradiation device 3, the stronger the contrast of the image by the light detection device 4.
このようにして、基板面に沿う方向に光照射をすることにより、接着剤と基板面とで光検出装置に到達する反射光強度に明確な差を持たせることができる。このための適切な、基板面に対する光照射の角度は、照射光の拡散角や拡散の角度毎の強度分布等によって異なるので、光照射装置に応じて決められる。照射角(基板面に対する光軸の傾き)が大きすぎると反射光のコントラストが不十分となり、照射角が小さすぎると接着剤に到達する照射光の光量が不足する。 In this way, by irradiating light in the direction along the substrate surface, it is possible to give a clear difference in the reflected light intensity reaching the photodetecting device between the adhesive and the substrate surface. An appropriate angle of light irradiation with respect to the substrate surface for this purpose varies depending on the diffusion angle of the irradiation light, the intensity distribution for each diffusion angle, and the like, and thus is determined according to the light irradiation apparatus. If the irradiation angle (the inclination of the optical axis with respect to the substrate surface) is too large, the contrast of the reflected light becomes insufficient, and if the irradiation angle is too small, the amount of irradiation light reaching the adhesive is insufficient.
接着剤を塗布する基板面が粗面であると、塗布後の時間経過と共に接着剤が粗面の凹凸に対して染み込みながら周囲へ広がって行くことがある。これに伴って基板の表面は平滑性を増し、反射率が高くなる。したがって、接着剤塗布箇所の上方から光を照射し上方で受光する場合は、基板面からの反射光が接着剤の染み込みと共に強くなる。これに対し、本願発明方法及び装置では、基板面に沿う方向に光照射を行なうので、基板面での反射量が少ない。したがって、接着剤の染み込みにより反射率が増しても、反射光強度はさほど高くならず、接着剤での反射光との強度差への影響が少ない。この点からも、接着剤の塗布状態の確実な検査が可能となる。 If the substrate surface to which the adhesive is applied is a rough surface, the adhesive may spread to the surroundings while soaking into the irregularities of the rough surface as time passes after application. As a result, the surface of the substrate increases in smoothness and the reflectance increases. Therefore, when light is irradiated from above the adhesive application location and received above, the reflected light from the substrate surface becomes stronger as the adhesive penetrates. On the other hand, in the method and apparatus of the present invention, since light irradiation is performed in the direction along the substrate surface, the amount of reflection on the substrate surface is small. Therefore, even if the reflectance increases due to the penetration of the adhesive, the reflected light intensity is not so high, and the influence on the intensity difference from the reflected light from the adhesive is small. Also from this point, it is possible to reliably inspect the application state of the adhesive.
以上、本発明の一実施形態について説明したが、本発明はこれに限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。例えば、複数の接着剤塗布箇所の検査を行なうには、上記のように基板の保持部2を移動させるのに変えて光検出装置4を移動し、或いはその双方を移動させるようにしてもよい。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, A various change is possible unless it deviates from the meaning. For example, in order to inspect a plurality of adhesive application locations, the light detection device 4 may be moved instead of moving the substrate holding portion 2 as described above, or both of them may be moved. .
接着剤の塗布形状は、接着剤とこれに覆われない基板面とに照射した光の反射光の強度さを検知し得るものであればよく、点状以外に直線状、曲線状、面的な広がりのあるもの等、種々の形状であってもよい。 The shape of the adhesive applied is not limited as long as it can detect the intensity of the reflected light of the light applied to the adhesive and the substrate surface not covered by the adhesive. Various shapes such as a wide one may be used.
1: 基台
2: 保持部
3: 光照射装置
4: 光検出装置
10: 制御装置
I1’: 進入光
I1,I2,I3:入射光
L: 接着剤
R1: 正反射光
R10,R20:正反射光
R11,R21:反射光
S: 基板
1: Base 2: Holding unit 3: Light irradiation device 4: Light detection device 10: Control device I 1 ': Incoming light I 1 , I 2 , I 3 : Incident light L: Adhesive R 1 : Regular reflection light R 10 , R 20 : Regular reflection light R 11 , R 21 : Reflection light S: Substrate
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009257975A JP5474498B2 (en) | 2009-11-11 | 2009-11-11 | Coating adhesive inspection method and inspection apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009257975A JP5474498B2 (en) | 2009-11-11 | 2009-11-11 | Coating adhesive inspection method and inspection apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011102759A true JP2011102759A (en) | 2011-05-26 |
JP5474498B2 JP5474498B2 (en) | 2014-04-16 |
Family
ID=44193146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009257975A Active JP5474498B2 (en) | 2009-11-11 | 2009-11-11 | Coating adhesive inspection method and inspection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5474498B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06334319A (en) * | 1993-05-27 | 1994-12-02 | Matsushita Electric Ind Co Ltd | Adhesive coater |
JP2000275186A (en) * | 1999-03-26 | 2000-10-06 | Toppan Forms Co Ltd | Paste-inspecting apparatus and method |
-
2009
- 2009-11-11 JP JP2009257975A patent/JP5474498B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06334319A (en) * | 1993-05-27 | 1994-12-02 | Matsushita Electric Ind Co Ltd | Adhesive coater |
JP2000275186A (en) * | 1999-03-26 | 2000-10-06 | Toppan Forms Co Ltd | Paste-inspecting apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
JP5474498B2 (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101140072B1 (en) | Device and method for detecting defect at glass sheet end surface | |
JP6042402B2 (en) | Illumination module and visual inspection system using the same | |
US8396281B2 (en) | Apparatus and method for inspecting substrate internal defects | |
KR101588937B1 (en) | Pattern inspection apparatus and pattern inspection method | |
JP2010107254A (en) | Device and method for inspecting led chip | |
KR100578560B1 (en) | Automated optical inspection machine | |
US20120044346A1 (en) | Apparatus and method for inspecting internal defect of substrate | |
TWI700473B (en) | Method and system for measuring thickness of glass article | |
KR101577119B1 (en) | Pattern inspection apparatus and pattern inspection method | |
JP5830229B2 (en) | Wafer defect inspection system | |
JP2010519516A (en) | Method and apparatus for illuminating a film for automatic inspection | |
JP7208233B2 (en) | Method and apparatus for detecting surface defects in glass sheets | |
JP2007279047A (en) | Optical inspection system | |
US8110804B2 (en) | Through substrate optical imaging device and method | |
JP2009174857A (en) | Illuminating device and defect inspection device using same | |
TW382061B (en) | Carrier for substrate and defect inspection apparatus for substrate | |
JP5474498B2 (en) | Coating adhesive inspection method and inspection apparatus | |
JP2006242814A (en) | Surface inspection device | |
JP2011106912A (en) | Imaging illumination means and pattern inspection device | |
JP2012068211A (en) | Distortion inspection device for sheet member and distortion inspection method for sheet member | |
KR102199314B1 (en) | Apparatus for inspecting display panel | |
KR102540780B1 (en) | Die bonding apparatus and manufacturing method of semiconductor device | |
JP2002014058A (en) | Method and apparatus for checking | |
KR100480490B1 (en) | Multi bonded wafer void inspection system | |
JP7274312B2 (en) | Optical system for automated optical inspection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5474498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |