JP2011102253A - Method of producing carboxylic acid - Google Patents
Method of producing carboxylic acid Download PDFInfo
- Publication number
- JP2011102253A JP2011102253A JP2009257201A JP2009257201A JP2011102253A JP 2011102253 A JP2011102253 A JP 2011102253A JP 2009257201 A JP2009257201 A JP 2009257201A JP 2009257201 A JP2009257201 A JP 2009257201A JP 2011102253 A JP2011102253 A JP 2011102253A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- gold
- carrier
- carboxylic acid
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title abstract description 39
- 150000001732 carboxylic acid derivatives Chemical class 0.000 title abstract description 37
- 239000010931 gold Substances 0.000 claims abstract description 107
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 104
- 229910052737 gold Inorganic materials 0.000 claims abstract description 104
- 239000003054 catalyst Substances 0.000 claims abstract description 95
- 239000002245 particle Substances 0.000 claims abstract description 72
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 239000007791 liquid phase Substances 0.000 claims abstract description 19
- 230000001590 oxidative effect Effects 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims description 43
- 150000001299 aldehydes Chemical class 0.000 claims description 37
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical group C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims description 20
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical group CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 claims description 12
- 150000001735 carboxylic acids Chemical class 0.000 claims description 10
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 26
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 20
- 239000011148 porous material Substances 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- 239000007864 aqueous solution Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 10
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- -1 osnium Chemical compound 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- MUZDXNQOSGWMJJ-UHFFFAOYSA-N 2-methylprop-2-enoic acid;prop-2-enoic acid Chemical compound OC(=O)C=C.CC(=C)C(O)=O MUZDXNQOSGWMJJ-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 230000008093 supporting effect Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000012018 catalyst precursor Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 5
- 239000011268 mixed slurry Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052728 basic metal Inorganic materials 0.000 description 3
- 150000003818 basic metals Chemical class 0.000 description 3
- 238000006757 chemical reactions by type Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 150000002484 inorganic compounds Chemical group 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 2
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000003934 aromatic aldehydes Chemical class 0.000 description 1
- YNKMHABLMGIIFX-UHFFFAOYSA-N benzaldehyde;methane Chemical compound C.O=CC1=CC=CC=C1 YNKMHABLMGIIFX-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 229910001922 gold oxide Inorganic materials 0.000 description 1
- IZLAVFWQHMDDGK-UHFFFAOYSA-N gold(1+);cyanide Chemical compound [Au+].N#[C-] IZLAVFWQHMDDGK-UHFFFAOYSA-N 0.000 description 1
- 229910021505 gold(III) hydroxide Inorganic materials 0.000 description 1
- WDZVNNYQBQRJRX-UHFFFAOYSA-K gold(iii) hydroxide Chemical compound O[Au](O)O WDZVNNYQBQRJRX-UHFFFAOYSA-K 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- ZXPXXYCBWQCVNK-UHFFFAOYSA-M hydroxy(oxo)gold Chemical compound O[Au]=O ZXPXXYCBWQCVNK-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- MBHINSULENHCMF-UHFFFAOYSA-N n,n-dimethylpropanamide Chemical compound CCC(=O)N(C)C MBHINSULENHCMF-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940080262 sodium tetrachloroaurate Drugs 0.000 description 1
- 239000008234 soft water Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、液相中でアルデヒドを酸化してカルボン酸を製造する方法に関する。 The present invention relates to a method for producing a carboxylic acid by oxidizing an aldehyde in a liquid phase.
従来、カルボン酸を製造する方法として、貴金属触媒を用いて液相でオレフィンやアルデヒドを酸化してカルボン酸を製造する方法が盛んに研究されている。
特許文献1には、金を担体上に担持した触媒を用いて、80〜200℃の反応温度において低級オレフィンであるプロピレンやイソブテン、ブテン−1或いはブテン−2、或いはこれらの混合物からそれぞれアクリル酸、メタアクリル酸、クロトン酸を製造する方法が記載されている。
また、特許文献2には、活性炭に貴金属を担持した触媒の存在下で、オレフィン又はα,β−不飽和アルデヒドを液相中で酸化するα,β−不飽和カルボン酸の製造方法が記載されている。具体的には、活性炭にパラジウムを担持した触媒を用いて、90℃においてメタクロレインからメタクリル酸を製造する方法が記載されている。
さらに、特許文献3には、含有ナトリウム量が5000ppm以下の無機化合物である担体に貴金属が担持された貴金属含有触媒の存在下で、オレフィン又はα,β−不飽和アルデヒドを液相中で酸化するα,β−不飽和カルボン酸の製造方法が記載されている。具体的には、シリカ担体にパラジウム及びテルルを担持した触媒を用いて、110℃においてイソブチレンからメタクリル酸を製造する方法が記載されている。
Conventionally, as a method for producing a carboxylic acid, a method for producing a carboxylic acid by oxidizing an olefin or an aldehyde in a liquid phase using a noble metal catalyst has been actively studied.
Patent Document 1 discloses acrylic acid from propylene, isobutene, butene-1, butene-2, or a mixture thereof, which is a lower olefin at a reaction temperature of 80 to 200 ° C., using a catalyst in which gold is supported on a carrier. , Methods for producing methacrylic acid and crotonic acid are described.
Patent Document 2 describes a method for producing an α, β-unsaturated carboxylic acid in which an olefin or an α, β-unsaturated aldehyde is oxidized in a liquid phase in the presence of a catalyst in which a precious metal is supported on activated carbon. ing. Specifically, a method for producing methacrylic acid from methacrolein at 90 ° C. using a catalyst in which palladium is supported on activated carbon is described.
Furthermore, Patent Document 3 discloses that an olefin or an α, β-unsaturated aldehyde is oxidized in a liquid phase in the presence of a noble metal-containing catalyst in which a noble metal is supported on a carrier that is an inorganic compound having a sodium content of 5000 ppm or less. A process for the production of α, β-unsaturated carboxylic acids is described. Specifically, a method for producing methacrylic acid from isobutylene at 110 ° C. using a catalyst in which palladium and tellurium are supported on a silica carrier is described.
しかしながら、本発明者らが検討したところ、上記特許文献1〜3に記載された方法による場合、いずれも得られるカルボン酸の選択率が充分でないことが分かった。目的生成物であるカルボン酸の選択率が低いと、原料が無駄になるのは当然のことながら、精製系の負荷も大きく、実用化における障害となる。
従って、本発明の目的は、液相中でアルデヒドからカルボン酸を製造する方法に関して、カルボン酸を高選択率で製造することのできる製造方法を提供することにある。
However, when the present inventors examined, when the method described in the said patent documents 1-3 was carried out, all turned out that the selectivity of the carboxylic acid obtained is not enough. When the selectivity of the target product carboxylic acid is low, the raw material is naturally wasted, and the load on the purification system is large, which impedes practical application.
Therefore, the objective of this invention is providing the manufacturing method which can manufacture carboxylic acid with high selectivity regarding the method of manufacturing carboxylic acid from an aldehyde in a liquid phase.
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、金粒子を担体に担持した金触媒の存在下、水を含む液相中でアルデヒドを酸化してカルボン酸を製造することによって、アルデヒドからカルボン酸を高選択率で得ることができることを見出し、本発明を完成するに至った。すなわち、本発明は以下のとおりである。 As a result of intensive studies to solve the above problems, the present inventors produce carboxylic acid by oxidizing aldehyde in a liquid phase containing water in the presence of a gold catalyst having gold particles supported on a support. Thus, it was found that carboxylic acid can be obtained from aldehyde with high selectivity, and the present invention has been completed. That is, the present invention is as follows.
[1]
金粒子を担体に担持した金触媒の存在下、水を含む液相中でアルデヒドを酸化してカルボン酸を製造するカルボン酸の製造方法。
[2]
前記金粒子の平均粒子径が2〜10nmである、上記[1]記載のカルボン酸の製造方法。
[3]
前記アルデヒドがメタクロレインであり、前記カルボン酸がメタクリル酸である、上記[1]又は[2]記載のカルボン酸の製造方法。
[4]
前記アルデヒドがアクロレインであり、前記カルボン酸がアクリル酸である、上記[1]又は[2]記載のカルボン酸の製造方法。
[5]
担体と、前記担体に担持された金粒子とを含み、水を含む液相中でアルデヒドを酸化してカルボン酸を製造するためのカルボン酸製造用触媒。
[1]
A method for producing a carboxylic acid, wherein a carboxylic acid is produced by oxidizing an aldehyde in a liquid phase containing water in the presence of a gold catalyst having gold particles supported on a carrier.
[2]
The method for producing a carboxylic acid according to the above [1], wherein the gold particles have an average particle diameter of 2 to 10 nm.
[3]
The method for producing a carboxylic acid according to the above [1] or [2], wherein the aldehyde is methacrolein and the carboxylic acid is methacrylic acid.
[4]
The method for producing a carboxylic acid according to the above [1] or [2], wherein the aldehyde is acrolein and the carboxylic acid is acrylic acid.
[5]
A carboxylic acid production catalyst for producing a carboxylic acid by oxidizing an aldehyde in a liquid phase containing water, comprising a carrier and gold particles supported on the carrier.
本発明のカルボン酸の製造方法により、アルデヒドからカルボン酸を高選択率で製造することができる。 By the method for producing carboxylic acid of the present invention, carboxylic acid can be produced from aldehyde with high selectivity.
以下、本発明を実施するための形態(以下、「本実施形態」とも称する。)について詳細に説明する。なお、本発明は、本実施形態に限定されるものではなく、要旨の範囲内で種々変形して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described in detail. The present invention is not limited to this embodiment, and can be implemented with various modifications within the scope of the gist.
本実施形態のカルボン酸の製造方法は、金を担体に担持した金触媒の存在下、水を含む液相中でアルデヒドを酸化してカルボン酸を製造する方法である。 The method for producing a carboxylic acid according to this embodiment is a method for producing a carboxylic acid by oxidizing an aldehyde in a liquid phase containing water in the presence of a gold catalyst in which gold is supported on a carrier.
[1]触媒
(1)金粒子を担体に担持した金触媒
本実施形態の金触媒は、金粒子と前記金粒子を担持する担体とを含む。
(1−1)金の状態
金粒子に含まれる金(元素)の化学状態としては、金属状態の金、酸化金、水酸化金、酸化水酸化金、金と1種以上の金属元素を含む複合化合物、又はこれらの混合物のいずれでもよいが、カルボン酸を高選択率かつ高生産性で製造する観点から金属状態の金であることが好ましい。金が金属状態であることは、粉末X線回折(XRD)を測定し、金属状態の金に帰属される回折ピークを観察することで確認できる。
[1] Catalyst (1) Gold catalyst in which gold particles are supported on a carrier The gold catalyst of the present embodiment includes gold particles and a carrier on which the gold particles are supported.
(1-1) Gold state The chemical state of gold (element) contained in the gold particles includes gold in a metal state, gold oxide, gold hydroxide, gold oxide hydroxide, gold and one or more metal elements. Either a composite compound or a mixture thereof may be used, but gold in a metal state is preferable from the viewpoint of producing a carboxylic acid with high selectivity and high productivity. It can be confirmed that gold is in a metal state by measuring powder X-ray diffraction (XRD) and observing a diffraction peak attributed to gold in the metal state.
(1−2)金粒子の平均粒子径及び担持量
金粒子の平均粒子径は、2〜10nmの範囲にあることが好ましく、2〜6nmの範囲にあることがより好ましい。金粒子の平均粒子径が2〜10nmであると反応活性が向上する傾向にあり、より高生産性でアルデヒドからカルボン酸を製造することが可能となる。ここで、本実施形態における「平均粒子径」とは、透過型電子顕微鏡(TEM)により測定された数平均粒子径を意味する。具体的には、透過型電子顕微鏡で観察される画像において、黒いコントラストの部分が金粒子であり、その画像内での各粒子の直径を全て測定してその数平均として算出される。
(1-2) Average particle diameter and supported amount of gold particles The average particle diameter of the gold particles is preferably in the range of 2 to 10 nm, and more preferably in the range of 2 to 6 nm. When the average particle diameter of the gold particles is 2 to 10 nm, the reaction activity tends to be improved, and carboxylic acid can be produced from aldehyde with higher productivity. Here, the “average particle diameter” in the present embodiment means the number average particle diameter measured by a transmission electron microscope (TEM). Specifically, in an image observed with a transmission electron microscope, the black contrast portion is a gold particle, and the diameter of each particle in the image is all measured and calculated as the number average.
(1−3)金以外の金属成分について
金触媒は、金属成分として金の他に第2成分元素を含有してもよい。第2成分元素としては、周期律表第4周期、第5周期及び第6周期の4〜16族元素からなる群より選択される少なくとも1種の金属が挙げられる。第2成分元素の具体例としては、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、スズ、アンチモン、テルル、ハフニウム、タングステン、レニウム、オスニウム、イリジウム、白金、水銀、タリウム、鉛、ビスマス等が挙げられる。更に、第2成分元素として、アルカリ金属、アルカリ土類金属及び希土類金属を含有してもよい。
(1-3) About metal components other than gold The gold catalyst may contain a second component element in addition to gold as a metal component. Examples of the second component element include at least one metal selected from the group consisting of Group 4 to 16 elements of the 4th, 5th, and 6th periods of the periodic table. Specific examples of the second component element include titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, Antimony, tellurium, hafnium, tungsten, rhenium, osnium, iridium, platinum, mercury, thallium, lead, bismuth, and the like can be given. Furthermore, you may contain an alkali metal, alkaline-earth metal, and rare earth metal as a 2nd component element.
これらの金属元素は1種を単独で又は2種以上を組み合わせて用いられる。これらの金属元素の化学状態は、金属単体、酸化物、水酸化物、2種以上の金属元素を含む複合物、又はこれらの混合物のいずれでもよいが、好ましい化学状態としては金属単体又は金属酸化物である。 These metal elements are used alone or in combination of two or more. The chemical state of these metal elements may be any of simple metals, oxides, hydroxides, composites containing two or more metal elements, or a mixture thereof. Preferred chemical states include simple metals or metal oxides. It is a thing.
周期律表第4周期、第5周期及び第6周期の4〜16族元素からなる群より選択される少なくとも1種の金属元素及び/又はその金属元素の化合物が担持される場合のそれらの担持量は、触媒の質量あたり、合計で好ましくは0.01〜20質量%、より好ましくは0.05〜10質量%であり、アルカリ金属、アルカリ土類金属、希土類金属が担持される場合それらの担持量は、触媒の質量あたり、合計で好ましくは0.5〜30質量%、より好ましくは1〜15質量%である。 Supporting at least one metal element selected from the group consisting of Group 4 to 16 elements of the 4th period, 5th period and 6th period of the periodic table and / or a compound of the metal element is supported The total amount is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, based on the mass of the catalyst, and when an alkali metal, alkaline earth metal or rare earth metal is supported, The supported amount is preferably 0.5 to 30% by mass and more preferably 1 to 15% by mass in total per mass of the catalyst.
第2成分元素は、触媒の製造や反応の際に触媒中に含有させてもよいし、あらかじめ担体に含有させておいてもよい。なお、第2成分元素が金触媒中でどのような構造をとるかは特に制限されず、金粒子と合金又は金属間化合物を形成していてもよいし、金粒子とは別に担体に担持されていてもよい。 The second component element may be contained in the catalyst during the production or reaction of the catalyst, or may be previously contained in the support. The structure of the second component element in the gold catalyst is not particularly limited, and may form an alloy or intermetallic compound with the gold particles, or may be supported on a carrier separately from the gold particles. It may be.
(2)担体
担体の材料としては、担体として一般的に使用される材料であれば特に限定なく使用できる。好ましい担体材料は、シリカ、アルミナ、マグネシア、チタニア、ジルコニア、炭酸カルシウム、ゼオライト、及び活性炭である。また、これらの2種以上組み合わせた無機化合物、例えば、シリカ−アルミナ、シリカ−ジルコニア、シリカ−チタニア、シリカ−アルミナ−マグネシアを好適に用いることができる。担体は1種からなるものでも、2種以上からなるものでもよい。
(2) Carrier The material for the carrier can be used without particular limitation as long as it is a material generally used as a carrier. Preferred carrier materials are silica, alumina, magnesia, titania, zirconia, calcium carbonate, zeolite, and activated carbon. Moreover, inorganic compounds such as silica-alumina, silica-zirconia, silica-titania, and silica-alumina-magnesia, which are a combination of two or more of these, can be suitably used. The carrier may be one type or two or more types.
シリカ及びアルミナを含む担体は、シリカに比べて高い耐水性を有し、アルミナに比べ耐酸性が高い。また、シリカ及びアルミナを含む担体は、活性炭に比べて硬く、機械的強度が高い等、従来の一般的に使用される担体に比べて優れた物性を備えることから特に好ましい。シリカ及びアルミナを含む担体の元素組成は、Si/Al原子比で、好ましくは2〜30、より好ましくは4〜20、さらに好ましくは5〜20の範囲である。Si/Al原子比が上記範囲内であると、耐酸性、機械的強度が良好となる傾向にある。 The carrier containing silica and alumina has higher water resistance than silica and higher acid resistance than alumina. Further, a carrier containing silica and alumina is particularly preferable because it has excellent physical properties as compared with conventional carriers that are generally used, such as being harder than activated carbon and having higher mechanical strength. The elemental composition of the support containing silica and alumina is preferably in the range of 2-30, more preferably 4-20, and even more preferably 5-20 in terms of Si / Al atomic ratio. When the Si / Al atomic ratio is within the above range, acid resistance and mechanical strength tend to be good.
担体がシリカ−アルミナ−マグネシアである場合、SiO2として50〜92質量%、Al2O3として5〜40質量%、MgOとして3〜30質量%の範囲でシリカ、アルミナ、マグネシアが含有されていることが好ましい。 Support is silica - alumina - if magnesia, 50-92% by mass as SiO 2, 5 to 40 wt% as Al 2 O 3, in the range of 3 to 30 mass% as MgO silica, alumina, magnesia is contained Preferably it is.
担体の比表面積は、金の担持しやすさ、触媒の反応活性の観点から、BET窒素吸着法による測定で10m2/g以上が好ましく、20m2/g以上がより好ましく、50m2/g以上が特に好ましい。また、触媒活性の観点からは特に要請はないものの、機械的強度及び耐水性の観点から700m2/g以下が好ましく、350m2/g以下がより好ましく、300m2/g以下が特に好ましい。 The specific surface area of the support is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, more preferably 50 m 2 / g or more, as measured by the BET nitrogen adsorption method, from the viewpoint of the ease of supporting gold and the reaction activity of the catalyst. Is particularly preferred. Although no particular requirement in terms of catalytic activity, preferably 700 meters 2 / g or less from the viewpoint of mechanical strength and water resistance, more preferably not more than 350 meters 2 / g, and particularly preferably 300m 2 / g.
担体の細孔構造は、強度以外の金の担持特性、剥離等を含めた長期安定性、反応特性から重要な物性の一つである。触媒を液相反応で使用する場合に、反応基質の拡散過程を律速にしないよう細孔内拡散抵抗を大きくし過ぎず、反応活性を高く維持する観点から、細孔径は3nm以上であることが好ましい。一方、触媒の割れ難さ、担持した金の剥離し難さの観点から、50nm以下であることが好ましい。従って、好ましくは3〜50nmであり、より好ましくは3〜30nmである。細孔容積は金粒子を担持する細孔が存在するために必要である。細孔容積は、強度、担持特性の観点から0.1〜1.0mL/gの範囲が好ましく、より好ましくは0.1〜0.5mL/gの範囲である。本実施形態の担体は、細孔径及び細孔容積が共に上記範囲を満たすものが好ましい。 The pore structure of the carrier is one of the important physical properties from the viewpoint of the long-term stability and reaction characteristics including gold support characteristics, exfoliation and the like other than strength. When the catalyst is used in a liquid phase reaction, the pore diameter should be 3 nm or more from the viewpoint of maintaining a high reaction activity without increasing the diffusion resistance in the pores so as not to limit the diffusion process of the reaction substrate. preferable. On the other hand, the thickness is preferably 50 nm or less from the viewpoint of difficulty in cracking the catalyst and difficulty in peeling the supported gold. Therefore, it is preferably 3 to 50 nm, more preferably 3 to 30 nm. The pore volume is necessary because there are pores carrying gold particles. The pore volume is preferably in the range of 0.1 to 1.0 mL / g, more preferably in the range of 0.1 to 0.5 mL / g, from the viewpoint of strength and supporting properties. The carrier of the present embodiment is preferably one in which both the pore diameter and the pore volume satisfy the above ranges.
担体の形状は、反応形式によって選択され、固定床では圧力損失の少ない構造の中空円柱状、ハニカム状形態が好ましく、液相スラリー懸濁条件となる流動床では一般的に球状で、反応性と分離方法から最適な粒子径を選択して使用する形態が選ばれる。反応後、生成物等から触媒を分離するプロセスにおいて沈降分離を採用する場合は、反応特性とのバランスから10〜200μmの粒子径が好ましく、より好ましくは20〜150μm、さらに好ましくは30〜150μmの粒子径が選定される。クロスフィルター方式を採用する場合は、0.1〜20μmの粒子がより高い反応性を示すことから好ましい。上記のように、利用目的に合わせた形状の担体を使用することができる。 The shape of the carrier is selected according to the reaction type, and in the fixed bed, a hollow cylindrical shape and a honeycomb shape having a structure with little pressure loss are preferable, and in the fluidized bed in which the liquid phase slurry is suspended, the shape is generally spherical and reactive. A form to be used by selecting an optimum particle size from the separation method is selected. When the precipitation separation is employed in the process of separating the catalyst from the product after the reaction, the particle size is preferably 10 to 200 μm, more preferably 20 to 150 μm, still more preferably 30 to 150 μm from the balance with the reaction characteristics. The particle size is selected. In the case of adopting a cross filter method, particles having a size of 0.1 to 20 μm are preferable because of higher reactivity. As described above, a carrier having a shape suited to the purpose of use can be used.
担体の製造方法としては、例えば、シリカ−アルミナ−マグネシア担体の場合、以下に示す方法により製造することができる。
硝酸アルミニウム9水和物、硝酸マグネシウム、60%硝酸を純水に溶解した水溶液を、15℃に保持した攪拌状態のシリカゾル溶液中へ徐々に滴下し、シリカゾル、硝酸アルミニウム、硝酸マグネシウムの混合スラリーを得た後、混合スラリーを50℃で24時間保持し熟成させる。室温に冷却した後、出口温度130℃に設定したスプレードライヤー装置で噴霧乾燥し固形物を得る。
次いで、得られた固形物を上部が開放したステンレス製容器に厚さ約1cm程充填し、電気炉で室温から300℃まで2時間かけ昇温後3時間保持し、さらに600℃まで2時間で昇温後3時間保持した後徐冷することにより、シリカ−アルミナ−マグネシア担体を得ることができる。
For example, in the case of a silica-alumina-magnesia carrier, the carrier can be produced by the following method.
An aqueous solution in which aluminum nitrate nonahydrate, magnesium nitrate and 60% nitric acid are dissolved in pure water is gradually dropped into a stirred silica sol solution maintained at 15 ° C., and a mixed slurry of silica sol, aluminum nitrate and magnesium nitrate is added. After being obtained, the mixed slurry is kept at 50 ° C. for 24 hours for aging. After cooling to room temperature, the solid is obtained by spray drying with a spray dryer set at an outlet temperature of 130 ° C.
Next, the obtained solid material is filled in a stainless steel container with an open top to a thickness of about 1 cm, heated in an electric furnace from room temperature to 300 ° C. over 2 hours, held for 3 hours, and further up to 600 ° C. in 2 hours. A silica-alumina-magnesia carrier can be obtained by holding for 3 hours after the temperature rise and then cooling slowly.
担体は、市販のシリカ、アルミナ、マグネシア、チタニア、ジルコニア、炭酸カルシウム、ゼオライト、及び活性炭等を用いてもよい。また、これらの2種以上組み合わせた無機化合物、例えば、シリカ−アルミナ、シリカ−ジルコニア、シリカ−チタニア、シリカ−アルミナ−マグネシアについても、市販のものを用いることができる。 As the carrier, commercially available silica, alumina, magnesia, titania, zirconia, calcium carbonate, zeolite, activated carbon and the like may be used. Commercially available inorganic compounds such as silica-alumina, silica-zirconia, silica-titania, and silica-alumina-magnesia can also be used in combination of two or more of these.
(3)金触媒の構造
担体に担持された金の粒子は、反応活性を向上させて高選択率及び高生産性でアルデヒドからカルボン酸を製造する観点から、担体上に高分散の状態で担持されている形態が好ましく、ナノレベルで高分散に担持される形態が特に好ましい。具体的には、金粒子は、粒子が担体との積層方向に互いに重ならないような状態で担持されていることが好ましく、微粒子状(すなわち、粒子同士が接していない状態)又は薄膜状(すなわち、粒子同士が互いに接しているが、担体との積層方向に重なっていない状態)で分散して担持されていることがより好ましい。金粒子が担体上に高分散の状態で担持されている形態は、透過型電子顕微鏡(TEM)によって観察することができる。
(3) Gold catalyst structure The gold particles supported on the carrier are supported in a highly dispersed state on the carrier from the viewpoint of improving the reaction activity and producing carboxylic acid from aldehyde with high selectivity and high productivity. The form supported is highly preferred at a nano level. Specifically, the gold particles are preferably supported in a state in which the particles do not overlap each other in the stacking direction with the carrier, and are in the form of fine particles (that is, the particles are not in contact with each other) or in the form of a thin film (that is, More preferably, the particles are in contact with each other but are dispersed and supported in a state where the particles do not overlap in the stacking direction with the carrier. The form in which the gold particles are supported in a highly dispersed state on the carrier can be observed with a transmission electron microscope (TEM).
金の担持量は特に制限されないが、金が凝集せずに高分散の状態で担持される観点から、担体質量に対して0.01〜10質量%の範囲が好ましく、0.1〜3質量%の範囲がより好ましい。 The amount of gold supported is not particularly limited, but from the viewpoint that gold is supported in a highly dispersed state without agglomeration, a range of 0.01 to 10% by mass with respect to the carrier mass is preferable, and 0.1 to 3% by mass. % Range is more preferred.
[2]触媒の製造方法
(1)原料
金触媒は、金を含む溶液に担体を接触させることによって製造することができる。金粒子の原料としては、テトラクロロ金酸、テトラクロロ金酸ナトリウム、ジシアノ金酸カリウム、ジエチルアミン金三塩化物、シアン化金等を用いることができる。
[2] Catalyst Production Method (1) Raw Material A gold catalyst can be produced by bringing a carrier into contact with a solution containing gold. As a raw material for the gold particles, tetrachloroauric acid, sodium tetrachloroaurate, potassium dicyanoaurate, diethylaminegold trichloride, gold cyanide, or the like can be used.
金触媒が第2成分元素を含む場合、第2成分元素の原料としては、一般に市販されている化合物を用いることができる。好ましくは水溶性の化合物であり、より好ましくは水酸化物、炭酸塩、硝酸塩、酢酸塩である。 When the gold catalyst contains the second component element, a commercially available compound can be used as the raw material for the second component element. Preferred are water-soluble compounds, and more preferred are hydroxides, carbonates, nitrates and acetates.
(2)製造方法
触媒の製造方法としては、上記のような触媒が得られる限り特に限定はされず、一般的に用いられる担持金属触媒の製造方法、例えば、含浸法(吸着法、ポアフィリング法、蒸発乾固法、スプレー法)、沈殿法(共沈法、沈着法、混錬法)、イオン交換法、気相蒸着法を適用することができる。本実施形態においては、好ましくは含浸法、沈殿法、より好ましくは沈殿法を用いる。
(2) Production method The production method of the catalyst is not particularly limited as long as the above-described catalyst can be obtained. For example, a commonly used supported metal catalyst production method such as an impregnation method (adsorption method, pore filling method). , Evaporating and drying methods, spraying methods), precipitation methods (coprecipitation methods, deposition methods, kneading methods), ion exchange methods, and vapor deposition methods can be applied. In the present embodiment, an impregnation method, a precipitation method, and more preferably a precipitation method is used.
(2−1)製造例
本実施形態の金触媒の製造方法の一例を以下に示す。
まず、金が含まれる可溶性金属塩の水溶液と担体を混合して攪拌しながら、担体に含まれる塩基や添加する塩基の作用によって担体上に金の沈殿を析出させ触媒前駆体を得る。
金が含まれる可溶性金属塩の水溶液と担体を混合するとスラリー状態の混合物が得られる。スラリー中の固形成分濃度は、通常4〜50質量%、好ましくは10〜35質量%の範囲内に収まるようにする。金が含まれる可溶性金属塩の水溶液と担体を混合してスラリーとする方法は特に限定されず、例えば、金が含まれる可溶性金属塩の水溶液に担体を投入する方法、担体を水に予め分散させスラリーとし、そこへ金が含まれる可溶性金属塩の水溶液を投入する方法を適用することができる。
(2-1) Production Example An example of a method for producing the gold catalyst of the present embodiment is shown below.
First, an aqueous solution of a soluble metal salt containing gold and a carrier are mixed and stirred, and then a gold precipitate is deposited on the carrier by the action of a base contained in the carrier or a base to be added to obtain a catalyst precursor.
When an aqueous solution of a soluble metal salt containing gold and a carrier are mixed, a mixture in a slurry state is obtained. The solid component concentration in the slurry is usually 4 to 50% by mass, preferably 10 to 35% by mass. The method of mixing the aqueous solution of the soluble metal salt containing gold and the carrier into a slurry is not particularly limited. For example, the method of introducing the carrier into the aqueous solution of the soluble metal salt containing gold, the carrier is dispersed in water in advance. A method in which an aqueous solution of a soluble metal salt containing gold is added to a slurry can be applied.
金触媒が第2成分元素を含む場合の製造方法は特に限定されないが、例えば、前述の第2成分元素を金が含まれる可溶性金属塩の水溶液に溶解させる方法、担体を分散させる水に前述の第2成分元素を溶解させる方法、前述の第2成分元素が含まれる水溶液と金が含まれる可溶性金属塩の水溶液と担体を混合する方法を適用することができる。 The production method in the case where the gold catalyst contains the second component element is not particularly limited. A method of dissolving the second component element, a method of mixing the aqueous solution containing the second component element and the aqueous solution of the soluble metal salt containing gold and the carrier can be applied.
金を析出させる際には、金の担持量や粒子径に応じて金水溶液の濃度、塩基、水溶液のpH、温度等の条件を適宜選択すればよい。金水溶液の濃度は、通常0.0001〜1.0mol/L、好ましくは0.001〜0.05mol/L、より好ましくは0.005〜0.2mol/Lの範囲である。水溶液のpHは通常5〜10、好ましくは6〜8の範囲内になるように塩基で調整すればよい。 When gold is deposited, conditions such as the concentration of the aqueous gold solution, the base, the pH of the aqueous solution, and the temperature may be appropriately selected according to the amount of gold supported and the particle diameter. The density | concentration of gold | metal aqueous solution is 0.0001-1.0 mol / L normally, Preferably it is 0.001-0.05 mol / L, More preferably, it is the range of 0.005-0.2 mol / L. What is necessary is just to adjust pH of aqueous solution with a base so that it may become normally in the range of 5-10, preferably 6-8.
金が含まれる可溶性金属塩の水溶液と担体を混合したスラリーの温度は、通常0〜100℃、好ましくは30〜90℃、より好ましくは60〜90℃である。また、金を析出させる際の時間は特に限定されるものではなく、担体の種類、金の担持量等の条件により異なるが、通常1分〜5時間、好ましくは5分〜3時間、より好ましくは5分〜1時間である。 The temperature of the slurry obtained by mixing the aqueous solution of the soluble metal salt containing gold and the carrier is usually 0 to 100 ° C, preferably 30 to 90 ° C, more preferably 60 to 90 ° C. The time for depositing gold is not particularly limited, and varies depending on conditions such as the type of carrier and the amount of gold supported, but is usually 1 minute to 5 hours, preferably 5 minutes to 3 hours, more preferably. Is 5 minutes to 1 hour.
触媒の製造に用いる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、アンモニア等が用いられる。担体にアルカリ金属、アルカリ土類金属及び希土類金属からなる群から選ばれる少なくとも1種の塩基性金属成分が含まれている場合、担体中の塩基性金属成分が塩基として作用するので、スラリーに別途塩基を添加しなくても水溶液のpHを上述の好ましい範囲に調整し得る。もちろん、担体が塩基性金属成分を含有する場合であっても、必要に応じて、スラリーに塩基を添加しても差し支えない。 As the base used for the production of the catalyst, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia and the like are used. When the support contains at least one basic metal component selected from the group consisting of alkali metal, alkaline earth metal and rare earth metal, the basic metal component in the support acts as a base, so Even without adding a base, the pH of the aqueous solution can be adjusted to the above-mentioned preferable range. Of course, even if the carrier contains a basic metal component, a base may be added to the slurry as necessary.
続いて、得られた触媒前駆体を必要に応じて水洗、乾燥した後、焼成するか還元剤と接触させることで金触媒を得ることができる。触媒前駆体の焼成温度は、通常200〜800℃、好ましくは300〜600℃、より好ましくは350〜550℃である。焼成の雰囲気は、空気中、酸化性雰囲気中又はヘリウム、アルゴン、窒素等の不活性ガス雰囲気中で行われる。焼成時間は、一般的に1〜48時間の範囲であり、熱処理温度、触媒前駆体の量に応じて適宜選択すればよい。 Subsequently, the obtained catalyst precursor is washed with water and dried as necessary, and then calcined or brought into contact with a reducing agent to obtain a gold catalyst. The calcination temperature of the catalyst precursor is usually 200 to 800 ° C, preferably 300 to 600 ° C, more preferably 350 to 550 ° C. The firing atmosphere is performed in air, in an oxidizing atmosphere, or in an inert gas atmosphere such as helium, argon, or nitrogen. The firing time is generally in the range of 1 to 48 hours, and may be appropriately selected according to the heat treatment temperature and the amount of the catalyst precursor.
還元剤を用いて還元する場合、還元剤としては、ホルマリン、蟻酸、ヒドラジン、水素化ホウ素ナトリウム、分子状水素等を用いることができる。ホルマリン、蟻酸、ヒドラジン等を使用して還元を行う場合は、5℃〜100℃の温度で還元し、その後、上澄みをデカント、水洗後に乾燥して金が担持された触媒を得ることができる。還元方法は、金を担持した後の触媒前駆体を、水もしくはメタノール中にて加温しながら、ホルマリン、蟻酸、ヒドラジン等をそのまま、もしくはこれらの物質を含む溶液として添加することによって還元できる。ホルマリン、蟻酸、ヒドラジン等の使用量は、一般的には金担持量に対して0.5〜100倍モル、実用的には1〜10倍モルが使用されるが、この量を超えても特に問題はない。分子状水素を使用して還元を行う場合は、希釈していない水素ガス又は窒素あるいはメタン等の不活性なガスで希釈されたものを用いることができる。水素濃度は0.1vol%以上とし、気相中、もしくは触媒製造時の分散液中に吹き込む等して行われる。還元する際の温度は、好ましくは室温〜600℃、より好ましくは室温〜400℃である。還元する際の圧力は、常圧〜数気圧であることが好ましい。さらに、還元処理時間は、触媒種、処理条件により変わるが、およそ数分〜100時間であり、数時間以内に処理が完了するように条件を設定するのが好ましい。 When reducing with a reducing agent, as the reducing agent, formalin, formic acid, hydrazine, sodium borohydride, molecular hydrogen, or the like can be used. When reduction is performed using formalin, formic acid, hydrazine, etc., reduction is performed at a temperature of 5 ° C. to 100 ° C., and then the supernatant is decanted, washed with water and dried to obtain a catalyst on which gold is supported. In the reduction method, the catalyst precursor after supporting gold can be reduced by adding formalin, formic acid, hydrazine or the like as it is or in the form of a solution containing these substances while heating in water or methanol. Formalin, formic acid, hydrazine, etc. are generally used in an amount of 0.5 to 100 times mol and practically 1 to 10 times mol of the amount of gold supported. There is no particular problem. When performing reduction using molecular hydrogen, undiluted hydrogen gas or one diluted with an inert gas such as nitrogen or methane can be used. The hydrogen concentration is 0.1 vol% or more, and it is carried out by blowing it into the gas phase or into the dispersion during the production of the catalyst. The temperature at the time of reduction is preferably room temperature to 600 ° C, more preferably room temperature to 400 ° C. The pressure during the reduction is preferably from normal pressure to several atmospheres. Furthermore, although the reduction treatment time varies depending on the catalyst type and treatment conditions, it is about several minutes to 100 hours, and it is preferable to set the conditions so that the treatment is completed within several hours.
[3]カルボン酸の製造方法
(1)反応場及び原料
上記の方法により得られた金粒子を担体に担持した金触媒を用いて、水を含む液相中でアルデヒドを酸化してカルボン酸を製造することができる。
液相に含まれる水としては、特に限定されないが、例えば、軟水、精製された工業用水、イオン交換水等を挙げることができる。通常の水質を持つ水であればよいが、あまり不純物(Fe、Ca、Mg等のイオン)を多く含むものは好ましくない。カルボン酸の製造において使用するアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、イソブチルアルデヒド、グリオキサール等のC1−C10脂肪族飽和アルデヒド;アクロレイン、メタクロレイン、クロトンアルデヒド等のC3−C10脂肪族α,β−不飽和アルデヒド;ベンズアルデヒド、トリルアルデヒド、ベンジルアルデヒド、フタルアルデヒド等のC6−C20芳香族アルデヒド及びこれらのアルデヒドの誘導体が挙げられる。なかでもメタクロレイン、アクロレインの使用が好ましい。これらのアルデヒドは単独もしくは任意の2種以上の混合物として用いることができる。
[3] Method for Producing Carboxylic Acid (1) Reaction Field and Raw Material Using a gold catalyst in which gold particles obtained by the above method are supported on a carrier, an aldehyde is oxidized in a liquid phase containing water to produce a carboxylic acid. Can be manufactured.
Although it does not specifically limit as water contained in a liquid phase, For example, soft water, refined industrial water, ion-exchange water etc. can be mentioned. Water having normal water quality may be used, but water containing a large amount of impurities (ions such as Fe, Ca, and Mg) is not preferable. Examples of the aldehyde used in the production of the carboxylic acid include C 1 -C 10 aliphatic saturated aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, isobutyraldehyde, glyoxal; C 3 -C 10 such as acrolein, methacrolein, and crotonaldehyde. Aliphatic α, β-unsaturated aldehydes; C 6 -C 20 aromatic aldehydes such as benzaldehyde, tolylaldehyde, benzylaldehyde, phthalaldehyde and derivatives of these aldehydes. Of these, use of methacrolein and acrolein is preferable. These aldehydes can be used alone or as a mixture of two or more kinds.
アルデヒドと水の量比に特に限定はなく、例えば、アルデヒド/水のモル比で1/10〜1/1000のような広い範囲で実施できるが、一般的には1/2〜1/100の範囲で実施される。 The amount ratio of aldehyde and water is not particularly limited. For example, the molar ratio of aldehyde / water can be carried out in a wide range such as 1/10 to 1/1000, but is generally 1/2 to 1/100. Implemented in a range.
(2)溶媒
アルデヒドと水からなる混合液相中、すなわち無溶媒の条件下でアルデヒドを酸化することも可能であるが、アルデヒドと水からなる混合液に溶媒を添加し、アルデヒド、水、溶媒からなる混合液としても差し支えない。溶媒としては、例えば、ケトン類、ニトリル類、アルコール類、有機酸エステル類、炭化水素類、有機酸類、アミド類を使用することができる。ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトンが挙げられる。ニトリル類としては、例えば、アセトニトリル、プロピオニトリルが挙げられる。アルコール類としては、例えば、ターシャリーブタノール、シクロヘキサノールが挙げられる。有機酸エステル類としては、例えば、酢酸エチル、プロピオン酸メチルが挙げられる。炭化水素類としては、例えば、ヘキサン、シクロヘキサン、トルエンが挙げられる。有機酸類としては、例えば、酢酸、プロピオン酸、n−酪酸、イソ酪酸、n−吉草酸、イソ吉草酸が挙げられる。アミド類としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホアミドが挙げられる。また、溶媒は1種類でも、2種類以上の混合溶媒でもよい。水と溶媒を混合する場合、その混合比は反応原料であるアルデヒドの種類、触媒の組成や調製法、反応条件、反応形式等によって大幅に変更することができ、特に限定はされないが、高選択性及び高生産性でアルデヒドからカルボン酸を製造する観点から、溶媒の量は水の質量に対して8〜65質量%が好ましく、8〜55質量%がより好ましい。アルデヒドと水からなる混合液、もしくはアルデヒド、水、溶媒からなる混合液は均一であることが好ましいが、不均一な状態で用いても差し支えない。
(2) Solvent It is possible to oxidize aldehyde in a mixed liquid phase consisting of aldehyde and water, that is, under solvent-free conditions. However, a solvent is added to the mixed liquid consisting of aldehyde and water, and aldehyde, water and solvent are added. There is no problem even as a mixed solution consisting of. As the solvent, for example, ketones, nitriles, alcohols, organic acid esters, hydrocarbons, organic acids, amides can be used. Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone. Examples of nitriles include acetonitrile and propionitrile. Examples of alcohols include tertiary butanol and cyclohexanol. Examples of the organic acid esters include ethyl acetate and methyl propionate. Examples of the hydrocarbons include hexane, cyclohexane, and toluene. Examples of organic acids include acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, and isovaleric acid. Examples of amides include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropionamide, and hexamethylphosphoamide. Further, the solvent may be one type or a mixed solvent of two or more types. When water and solvent are mixed, the mixing ratio can be changed greatly depending on the type of aldehyde that is the reaction raw material, the composition and preparation method of the catalyst, reaction conditions, reaction type, etc. From the viewpoint of producing carboxylic acids from aldehydes with high productivity and high productivity, the amount of the solvent is preferably 8 to 65% by mass, more preferably 8 to 55% by mass with respect to the mass of water. A mixed solution composed of aldehyde and water, or a mixed solution composed of aldehyde, water and solvent is preferably uniform, but may be used in a non-uniform state.
(3)触媒の濃度
触媒の使用量については、反応原料の種類、触媒の組成や調製法、反応条件、反応形式等によって大幅に変更することができ、特に限定はされないが、触媒をスラリー状態で反応させる場合は、スラリー中の触媒濃度として、好ましくは4〜50質量/容量%、より好ましくは4〜30質量/容量%、さらに好ましくは10〜25質量/容量%の範囲内に収まるように使用する。すなわち、液体成分の体積(L)に対する触媒の質量(kg)が、好ましくは4〜50%、より好ましくは4〜30%、さらに好ましくは10〜25%の範囲内に収まるように使用する。
(3) Concentration of catalyst The amount of catalyst used can be changed greatly depending on the type of reaction raw material, the composition and preparation method of the catalyst, reaction conditions, reaction type, etc., and is not particularly limited. When the reaction is carried out, the catalyst concentration in the slurry is preferably 4 to 50 mass / volume%, more preferably 4 to 30 mass / volume%, still more preferably 10 to 25 mass / volume%. Used for. That is, the catalyst is used such that the mass (kg) of the catalyst with respect to the volume (L) of the liquid component falls within the range of preferably 4 to 50%, more preferably 4 to 30%, and still more preferably 10 to 25%.
(4)反応形式
液相におけるカルボン酸の製造は、連続式、バッチ式のいずれの形式で行ってもよいが、生産性を考慮すると工業的には連続式が好ましい。
(4) Reaction format The carboxylic acid in the liquid phase may be produced in either a continuous type or a batch type, but in view of productivity, the continuous type is preferred industrially.
(5)酸素
酸化のための酸素源としては、反応器に酸素ガス自体を供給してもよいし、酸素ガスを反応に不活性な希釈剤、例えば、窒素、炭酸ガス等で希釈した混合ガスを供給してもよいが、酸素源としては空気を用いるのが操作性、経済性等の面から好適である。
(5) Oxygen As an oxygen source for oxidation, oxygen gas itself may be supplied to the reactor, or a mixed gas obtained by diluting oxygen gas with a diluent inert to the reaction, such as nitrogen or carbon dioxide gas However, it is preferable to use air as the oxygen source from the viewpoints of operability and economy.
好ましい酸素分圧は、アルデヒド種や溶媒種、反応条件や反応器形式等により異なるが、実用的には反応器出口の酸素分圧は、爆発範囲の下限以下の濃度となる範囲で、例えば、20〜80kPaに管理することが好ましい。反応圧力は、減圧から加圧下の任意の広い圧力範囲で実施することができるが、通常は0.05〜5MPaの圧力で実施される。安全性の観点から、反応器流出ガスの酸素濃度が爆発限界(8%)を超えないように全圧を設定することが好ましい。 The preferred oxygen partial pressure varies depending on the aldehyde species, solvent species, reaction conditions, reactor type, etc., but practically, the oxygen partial pressure at the reactor outlet is in a range where the concentration is below the lower limit of the explosion range, for example, It is preferable to manage to 20-80 kPa. The reaction pressure can be carried out in any wide pressure range from reduced pressure to increased pressure, but is usually carried out at a pressure of 0.05 to 5 MPa. From the viewpoint of safety, it is preferable to set the total pressure so that the oxygen concentration of the reactor effluent gas does not exceed the explosion limit (8%).
(6)反応温度及び反応時間
カルボン酸を製造する際の反応温度は30〜200℃が好ましく、40〜150℃がより好ましく、60〜120℃がさらに好ましい。反応時間は特に限定されず、通常1〜20時間である。
(6) Reaction temperature and reaction time 30-200 degreeC is preferable, the reaction temperature at the time of manufacturing carboxylic acid has more preferable 40-150 degreeC, and 60-120 degreeC is further more preferable. The reaction time is not particularly limited, and is usually 1 to 20 hours.
以下、実施例及び比較例によって本実施形態をより具体的に説明するが、本実施形態はこれらによって何ら限定されるものではない。当業者は、以下に示す実施例のみならず様々な変更を加えて実施することが可能であり、かかる変更も本特許請求の範囲に包含される。 Hereinafter, the present embodiment will be described more specifically with reference to examples and comparative examples, but the present embodiment is not limited to these. Those skilled in the art can implement various modifications as well as the following embodiments, and such modifications are also included in the scope of the claims.
実施例及び比較例において、Auの担持量、担体成分元素(Mg、Al、Si)の含有量の決定、粉末X線回折(XRD)の測定、担体の比表面積、細孔容量の測定、及び触媒の形状観察は次の方法により実施した。 In Examples and Comparative Examples, the amount of Au supported, the content of carrier component elements (Mg, Al, Si), the measurement of powder X-ray diffraction (XRD), the specific surface area of the carrier, the measurement of pore volume, and The shape of the catalyst was observed by the following method.
[Auの担持量の決定]
触媒中の金濃度は、サーモフィッシャーサイエンティフィック社製XシリーズX7 ICP−MSを用いて定量した。試料調製は、触媒をテフロン製分解容器に秤取り、硝酸及びフッ化水素を加えてマイクロウェーブ分解装置(マイルストーンゼネラル社製ETHOS TC)に加熱分解後、ヒーター上で蒸発乾固し、次いで析出した残留物に硝酸及び塩酸を加えてマイクロウェーブ分解装置にて加圧分解し、得られた分解液を純水で一定容にしたものを検液とした。定量方法はICP−MSにて内標準法で定量を行い、同時に実施した操作ブランク値を差し引いて触媒中の金含有量を求め、Auの担持量を算出した。
[Determination of Au loading]
The gold concentration in the catalyst was quantified using X series X7 ICP-MS manufactured by Thermo Fisher Scientific. For sample preparation, the catalyst was weighed in a Teflon decomposition vessel, nitric acid and hydrogen fluoride were added, and the mixture was thermally decomposed in a microwave decomposition apparatus (ETHOS TC manufactured by Milestone General), then evaporated to dryness on a heater, and then precipitated. Nitric acid and hydrochloric acid were added to the residue, and pressure decomposition was performed with a microwave decomposition apparatus, and the obtained decomposition solution was made up to a constant volume with pure water to obtain a test solution. The quantitative method was determined by ICP-MS using the internal standard method, and the gold content in the catalyst was determined by subtracting the operation blank value performed at the same time, and the supported amount of Au was calculated.
[Mg、Al、Siの含有量の決定]
担体を王水で溶解させた試料と、アルカリ溶融塩で溶解させた試料を調製した。ICP(セイコー電子工業社製 JY−38P2)を使用し、王水で溶解させた試料でMgの含有量を測定し、アルカリ溶融塩で溶解させた試料でAl、Siの含有量を測定した。
[Determination of Mg, Al, Si content]
A sample in which the carrier was dissolved in aqua regia and a sample in which the carrier was dissolved in an alkali molten salt were prepared. Using ICP (Seiko Denshi Kogyo JY-38P2), the content of Mg was measured with a sample dissolved in aqua regia, and the content of Al and Si was measured with a sample dissolved with an alkali molten salt.
[平均粒子径の測定]
JEOL社製の3100FEF型透過型電子顕微鏡(TEM)[加速電圧300kV]を用いて、TEMの明視野像を観察した。TEM像解析のデータ解析ソフトとして、DigitalMicrograph(登録商標)Ver.1.70.16,Gatanを用いた。測定試料は、金触媒を乳鉢で破砕後、エタノールに分散させ、超音波洗浄を約1分間行った後、Mo製マイクログリット上に滴下・乾燥し、TEM観察用試料として得た。
[Measurement of average particle size]
The bright field image of TEM was observed using 3100FEF type transmission electron microscope (TEM) [acceleration voltage 300kV] made from JEOL. As data analysis software for TEM image analysis, Digital Micrograph (registered trademark) Ver. 1.7.16, Gatan was used. The measurement sample was obtained by crushing a gold catalyst in a mortar, dispersing it in ethanol, performing ultrasonic cleaning for about 1 minute, dropping and drying on a Mo microgrit, and obtaining a sample for TEM observation.
[担体の比表面積及び細孔容量の測定]
ユアサ・アイオニクス社製オートソーブ3MP装置により、吸着ガスとして窒素を用いて測定した。比表面積はBET法、細孔容積はP/P0、Maxでの吸着量を採用した。
[Measurement of specific surface area and pore volume of support]
Measurement was performed using an autosorb 3MP apparatus manufactured by Yuasa Ionics Co., using nitrogen as an adsorbed gas. The specific surface area was the BET method, the pore volume was P / P 0 , and the adsorption amount was Max.
[触媒の形状観察]
日立製作所社製X−650走査型電子顕微鏡(SEM)を用いて触媒粒子を観察した。
[Observation of catalyst shape]
The catalyst particles were observed using an X-650 scanning electron microscope (SEM) manufactured by Hitachi, Ltd.
実施例及び比較例におけるメタクロレイン(アクロレイン)転化率、メタクリル酸(アクリル酸)選択率、メタクリル酸(アクリル酸)収率は以下のとおりに算出した。
使用したメタクロレイン(アクロレイン)のモル数を(1)、反応したメタクロレイン(アクロレイン)のモル数を(2)、生成したメタクリル酸(アクリル酸)のモル数を(3)とした場合、
メタクロレイン(アクロレイン)転化率[%]=((2)/(1))×100
メタクリル酸(アクリル酸)選択率[%]=((3)/(2))×100
メタクリル酸(アクリル酸)収率[%]=((3)/(1))×100
The methacrolein (acrolein) conversion rate, methacrylic acid (acrylic acid) selectivity, and methacrylic acid (acrylic acid) yield in Examples and Comparative Examples were calculated as follows.
When the number of moles of methacrolein (acrolein) used is (1), the number of moles of reacted methacrolein (acrolein) is (2), and the number of moles of generated methacrylic acid (acrylic acid) is (3),
Conversion rate of methacrolein (acrolein) [%] = ((2) / (1)) × 100
Methacrylic acid (acrylic acid) selectivity [%] = ((3) / (2)) × 100
Methacrylic acid (acrylic acid) yield [%] = ((3) / (1)) × 100
[担体製造参考例]
硝酸アルミニウム9水和物3.75kg、硝酸マグネシウム2.56kg、60%硝酸540gを純水5.0Lに溶解した水溶液を15℃に保持した攪拌状態のコロイド粒子径10〜20nmのシリカゾル溶液(日産化学社製、スノーテックスN−30、SiO2含有量30質量%)20.0kg中へ徐々に滴下し、シリカゾル、硝酸アルミニウム、硝酸マグネシウムの混合スラリーを得た。その後、混合スラリーを50℃で24時間保持し熟成させた。室温に冷却した後、出口温度130℃に設定したスプレードライヤー装置で噴霧乾燥し固形物を得た。
次いで、得られた固形物を上部が開放したステンレス製容器に厚さ約1cm程充填し、電気炉で室温から300℃まで2時間かけ昇温後3時間保持した。さらに600℃まで2時間で昇温後3時間保持した後徐冷し、担体を得た。得られた担体は、ケイ素、アルミニウム及びマグネシウムの合計モル量に対し、ケイ素、アルミニウム及びマグネシウムをそれぞれ83.3モル%、8.3モル%、8.3モル%含んでいた。窒素吸着法による比表面積は148cm2/g、細孔容積は0.26mL/g、平均細孔径は8nmであった。走査型電子顕微鏡(SEM)による観察から平均粒子径は約60μmであり、形状はほぼ球状であった。
[Example of carrier production]
An aqueous solution prepared by dissolving 3.75 kg of aluminum nitrate nonahydrate, 2.56 kg of magnesium nitrate, and 540 g of 60% nitric acid in 5.0 L of pure water, maintained at 15 ° C., and a silica sol solution having a colloidal particle size of 10 to 20 nm in a stirred state (Nissan) (Chemical Co., Snowtex N-30, SiO 2 content 30% by mass) was gradually dropped into 20.0 kg to obtain a mixed slurry of silica sol, aluminum nitrate and magnesium nitrate. Thereafter, the mixed slurry was kept at 50 ° C. for 24 hours and aged. After cooling to room temperature, the solid was obtained by spray drying with a spray dryer set at an outlet temperature of 130 ° C.
Next, the obtained solid was filled in a stainless steel container having an open top with a thickness of about 1 cm, heated from room temperature to 300 ° C. for 2 hours and held for 3 hours in an electric furnace. Further, the temperature was raised to 600 ° C. for 2 hours, held for 3 hours, and then gradually cooled to obtain a carrier. The obtained carrier contained 83.3 mol%, 8.3 mol%, and 8.3 mol% of silicon, aluminum, and magnesium, respectively, with respect to the total molar amount of silicon, aluminum, and magnesium. The specific surface area determined by the nitrogen adsorption method was 148 cm 2 / g, the pore volume was 0.26 mL / g, and the average pore diameter was 8 nm. From observation with a scanning electron microscope (SEM), the average particle size was about 60 μm and the shape was almost spherical.
[実施例1]
(触媒調製)
原料としてシリカゾル溶液(日産化学社製、商品名「スノーテックスN−40」、SiO2含有量:40質量%)を使用し、硝酸アルミニウム、硝酸マグネシウムを添加せずにシリカ単独の組成にした以外は担体製造参考例と同様にして、スプレードライヤー装置による混合スラリーの噴霧乾燥まで行い固形物を得た。次に、得られた固形物をロータリーキルンで室温から300℃まで2時間かけて昇温後、300℃で1時間保持した。さらに600℃まで2時間で昇温後、600℃で1時間保持して焼成した。その後、徐冷してシリカ担体を得た。
窒素吸着法による比表面積は215m2/g、細孔容積は0.26mL/g、平均細孔径は5.5nmであった。走査型電子顕微鏡(SEM)による観察から平均粒子径は約60μmであり、形状はほぼ球状であった。
上記で得られた担体30gを、蒸留水100mLを入れたガラス容器に添加し、60℃で攪拌しながら、所定量のテトラクロロ金酸水溶液を素早く滴下した。次いで、0.5N水酸化ナトリウム水溶液を更に添加して上記水溶液のpHを8に調整し、そのまま1時間攪拌を続けた。その後、ガラス容器を静置してから上澄みを除去して沈殿物を回収し、その沈殿物をClイオンが検出されなくなるまで蒸留水で洗浄し、これを105℃で16時間乾燥した後、さらに空気中400℃で5時間焼成して、金5.1質量%を担持した触媒を得た。透過型電子顕微鏡(TEM)を用いて上記金触媒を観察したところ、粒子径が12〜14nmの金粒子が担体表面上に均一に担持されていた。金粒子の数平均粒子径は13nmであった(算出個数:100)。
(反応評価)
上記の方法で得た触媒0.11g、メタクロレイン0.5g、水6.3g、溶媒としてアセトニトリル3.2gをマグネチックスターラーを備えたSUS316製の高圧オートクレーブ式反応器(総容量120ml)に仕込み、オートクレーブを閉じて、系内を窒素ガスで置換した後、7体積%の酸素を含有する窒素の混合ガスを気相部に導入し、系内全圧を3.0MPaまで昇圧した。
次いで、オイルバスに反応器を固定し、攪拌下に反応温度を100℃にして4時間反応させた。冷却後、残留圧を除いてオートクレーブを開放した後、触媒を濾別し、濾液をガスクロマトグラフによって分析した。結果は表1に示した。
[Example 1]
(Catalyst preparation)
A silica sol solution (trade name “Snowtex N-40”, manufactured by Nissan Chemical Co., Ltd., SiO 2 content: 40% by mass) is used as a raw material, and the composition is made of silica alone without adding aluminum nitrate or magnesium nitrate. In the same manner as in the carrier production reference example, the mixed slurry was spray-dried with a spray dryer to obtain a solid. Next, the obtained solid was heated from room temperature to 300 ° C. with a rotary kiln over 2 hours and then held at 300 ° C. for 1 hour. Further, the temperature was raised to 600 ° C. in 2 hours, and then held at 600 ° C. for 1 hour for firing. Thereafter, it was gradually cooled to obtain a silica carrier.
The specific surface area determined by the nitrogen adsorption method was 215 m 2 / g, the pore volume was 0.26 mL / g, and the average pore diameter was 5.5 nm. From observation with a scanning electron microscope (SEM), the average particle size was about 60 μm and the shape was almost spherical.
30 g of the carrier obtained above was added to a glass container containing 100 mL of distilled water, and a predetermined amount of a tetrachloroauric acid aqueous solution was quickly added dropwise with stirring at 60 ° C. Subsequently, 0.5N aqueous sodium hydroxide solution was further added to adjust the pH of the aqueous solution to 8, and the stirring was continued for 1 hour. Thereafter, the glass container is allowed to stand, and then the supernatant is removed to collect the precipitate. The precipitate is washed with distilled water until no Cl ions are detected, and is dried at 105 ° C. for 16 hours. The catalyst was calcined in air at 400 ° C. for 5 hours to obtain a catalyst supporting 5.1% by mass of gold. When the gold catalyst was observed using a transmission electron microscope (TEM), gold particles having a particle diameter of 12 to 14 nm were uniformly supported on the support surface. The number average particle diameter of the gold particles was 13 nm (calculated number: 100).
(Reaction evaluation)
Charge 0.11 g of the catalyst obtained by the above method, 0.5 g of methacrolein, 6.3 g of water, and 3.2 g of acetonitrile as a solvent into a SUS316 high-pressure autoclave reactor (total volume 120 ml) equipped with a magnetic stirrer. After closing the autoclave and replacing the inside of the system with nitrogen gas, a mixed gas of nitrogen containing 7% by volume of oxygen was introduced into the gas phase portion, and the total pressure in the system was increased to 3.0 MPa.
Subsequently, the reactor was fixed to the oil bath, and the reaction temperature was set to 100 ° C. with stirring for 4 hours. After cooling, the autoclave was removed by removing the residual pressure, the catalyst was filtered off, and the filtrate was analyzed by gas chromatography. The results are shown in Table 1.
[実施例2]
(触媒調製)
硝酸アルミニウム9水和物4.16kgとし、硝酸マグネシウムを添加せずにシリカとアルミナのみの組成にした以外は担体製造参考例と同様にして、シリカ−アルミナ担体を得た。得られた担体のシリカとアルミナの組成比はSi/Al原子比で9.0であった。窒素吸着法による比表面積は145m2/g、細孔容積は0.27mL/g、平均細孔径は8nmであった。走査型電子顕微鏡(SEM)による観察から平均粒子径は約60μmであり、担体の形状はほぼ球状であった。
担体を、上記シリカ−アルミナに替えた以外は実施例1の触媒調製と同様にして、金4.5質量%を担持した触媒を得た。透過型電子顕微鏡(TEM)を用いて上記金触媒を観察したところ、粒子径が10〜12nmの金粒子が担体表面上に均一に担持されていた。金粒子の数平均粒子径は11nmであった(算出個数:100)。
(反応評価)
上記の方法で得た触媒0.12gを用いて、実施例1と同様の方法で反応評価を行った。結果は表1に示した。
[Example 2]
(Catalyst preparation)
A silica-alumina carrier was obtained in the same manner as in the carrier production reference example except that the aluminum nitrate nonahydrate was 4.16 kg and the composition of silica and alumina alone was not added. The composition ratio of silica and alumina in the obtained support was 9.0 in terms of Si / Al atomic ratio. The specific surface area determined by the nitrogen adsorption method was 145 m 2 / g, the pore volume was 0.27 mL / g, and the average pore diameter was 8 nm. From observation with a scanning electron microscope (SEM), the average particle size was about 60 μm, and the shape of the carrier was almost spherical.
A catalyst carrying 4.5% by mass of gold was obtained in the same manner as in the preparation of the catalyst of Example 1 except that the support was changed to the silica-alumina. When the gold catalyst was observed using a transmission electron microscope (TEM), gold particles having a particle diameter of 10 to 12 nm were uniformly supported on the support surface. The number average particle diameter of the gold particles was 11 nm (calculated number: 100).
(Reaction evaluation)
The reaction was evaluated in the same manner as in Example 1 using 0.12 g of the catalyst obtained by the above method. The results are shown in Table 1.
[実施例3]
(触媒調製)
担体を、担体製造参考例で得られたシリカ−アルミナ−マグネシアに替えた以外は実施例1の触媒調製と同様にして、金4.5質量%を担持した触媒を得た。透過型電子顕微鏡(TEM)を用いて上記金触媒を観察したところ、粒子径が10〜12nmの金粒子が担体表面上に均一に担持されていた。金粒子の数平均粒子径は11nmであった(算出個数:100)。
(反応評価)
上記の方法で得た触媒0.12gを用いて、実施例1と同様の方法で反応評価を行った。結果は表1に示した。
[Example 3]
(Catalyst preparation)
A catalyst carrying 4.5% by mass of gold was obtained in the same manner as in the preparation of the catalyst of Example 1, except that the carrier was changed to the silica-alumina-magnesia obtained in the carrier production reference example. When the gold catalyst was observed using a transmission electron microscope (TEM), gold particles having a particle diameter of 10 to 12 nm were uniformly supported on the support surface. The number average particle diameter of the gold particles was 11 nm (calculated number: 100).
(Reaction evaluation)
The reaction was evaluated in the same manner as in Example 1 using 0.12 g of the catalyst obtained by the above method. The results are shown in Table 1.
[実施例4]
(触媒調製)
実施例2と同様にして、金2.0質量%を担持した触媒を得た。透過型電子顕微鏡(TEM)を用いて上記金触媒を観察したところ、粒子径が4〜5nmの金粒子が担体表面上に均一に担持されていた。金粒子の数平均粒子径は4.7nmであった(算出個数:100)。
(反応評価)
上記の方法で得た触媒0.28gを用いて、実施例1と同様の方法で反応評価を行った。結果は表1に示した。
[Example 4]
(Catalyst preparation)
In the same manner as in Example 2, a catalyst supporting 2.0% by mass of gold was obtained. When the gold catalyst was observed using a transmission electron microscope (TEM), gold particles having a particle diameter of 4 to 5 nm were uniformly supported on the support surface. The number average particle diameter of the gold particles was 4.7 nm (calculated number: 100).
(Reaction evaluation)
The reaction was evaluated in the same manner as in Example 1 using 0.28 g of the catalyst obtained by the above method. The results are shown in Table 1.
[実施例5]
(触媒調製)
実施例3と同様にして、金1.1質量%を担持した触媒を得た。透過型電子顕微鏡(TEM)を用いて上記金触媒を観察したところ、粒子径が2〜4nmの金粒子が担体表面上に均一に担持されていた。金粒子の数平均粒子径は3nmであった(算出個数:100)。
(反応評価)
上記の方法で得た触媒0.5gを用いて、実施例1と同様の方法で反応評価を行った。結果は表1に示した。
[Example 5]
(Catalyst preparation)
In the same manner as in Example 3, a catalyst carrying 1.1% by mass of gold was obtained. When the gold catalyst was observed using a transmission electron microscope (TEM), gold particles having a particle diameter of 2 to 4 nm were uniformly supported on the support surface. The number average particle diameter of the gold particles was 3 nm (calculated number: 100).
(Reaction evaluation)
The reaction was evaluated in the same manner as in Example 1 using 0.5 g of the catalyst obtained by the above method. The results are shown in Table 1.
[実施例6]
World Gold Council社製のTiO2に金を担持した触媒を購入し、使用した。添付のデータシートによると、析出沈殿法で調製した触媒であり、金の担持量は1.6質量%、TEMによる測定結果より金の平均粒子径は3.5nmであった。
この触媒0.35gを用いて、実施例1と同様の方法で反応評価を行った。結果は表1に示した。
[Example 6]
A catalyst in which gold was supported on TiO 2 manufactured by World Gold Council was purchased and used. According to the attached data sheet, the catalyst was prepared by the precipitation method, the amount of gold supported was 1.6% by mass, and the average particle size of gold was 3.5 nm from the result of measurement by TEM.
Reaction evaluation was performed in the same manner as in Example 1 using 0.35 g of this catalyst. The results are shown in Table 1.
[実施例7]
実施例5と同じ触媒を用いて、反応評価に使用する水を6.5gとし、溶媒を用いなかった以外は実施例5と同様の方法で反応評価を行った。結果は表1に示した。
[Example 7]
Using the same catalyst as in Example 5, the reaction was evaluated in the same manner as in Example 5 except that the amount of water used for the reaction evaluation was 6.5 g and no solvent was used. The results are shown in Table 1.
[実施例8]
実施例5と同じ触媒を用いて、溶媒をアセトンとした以外は実施例5と同様の方法で反応評価を行った。結果は表1に示した。
[Example 8]
The same catalyst as in Example 5 was used, and the reaction was evaluated in the same manner as in Example 5 except that the solvent was acetone. The results are shown in Table 1.
[実施例9]
実施例5と同じ触媒を用いて、溶媒を酢酸エチルとした以外は実施例5と同様の方法で反応評価を行った。結果は表1に示した。
[Example 9]
Reaction evaluation was performed in the same manner as in Example 5 except that the same catalyst as in Example 5 was used and the solvent was changed to ethyl acetate. The results are shown in Table 1.
[実施例10]
実施例5と同じ触媒を用いて、溶媒をターシャリーブタノールとした以外は実施例5と同様の方法で反応評価を行った。結果は表1に示した。
[Example 10]
Using the same catalyst as in Example 5, the reaction was evaluated in the same manner as in Example 5 except that the solvent was tertiary butanol. The results are shown in Table 1.
[実施例11]
実施例5と同じ触媒を用いて、溶媒をヘキサンとした以外は実施例5と同様の方法で反応評価を行った。結果は表1に示した。
[Example 11]
Using the same catalyst as in Example 5, the reaction was evaluated in the same manner as in Example 5 except that the solvent was hexane. The results are shown in Table 1.
[実施例12]
実施例6と同じ触媒を用いて、溶媒をアセトンとした以外は実施例6と同様の方法で反応評価を行った。結果は表1に示した。
[Example 12]
The same catalyst as in Example 6 was used, and the reaction was evaluated in the same manner as in Example 6 except that the solvent was acetone. The results are shown in Table 1.
[実施例13]
実施例6と同じ触媒を用いて、溶媒を酢酸エチルとした以外は実施例6と同様の方法で反応評価を行った。結果は表1に示した。
[Example 13]
Reaction evaluation was performed in the same manner as in Example 6 except that the same catalyst as in Example 6 was used and the solvent was changed to ethyl acetate. The results are shown in Table 1.
[実施例14]
実施例6と同じ触媒を用いて、溶媒をターシャリーブタノールとした以外は実施例6と同様の方法で反応評価を行った。結果は表1に示した。
[Example 14]
Using the same catalyst as in Example 6, the reaction was evaluated in the same manner as in Example 6 except that the solvent was tertiary butanol. The results are shown in Table 1.
[実施例15]
実施例5と同じ触媒を用いて、メタクロレインをアクロレインとした以外は実施例5と同様の方法で反応評価を行った。結果は表1に示した。
[Example 15]
Reaction evaluation was performed in the same manner as in Example 5 except that methacrolein was changed to acrolein using the same catalyst as in Example 5. The results are shown in Table 1.
[比較例1]
(触媒調製)
担体製造参考例で得られた担体30gを、蒸留水100mLを入れたガラス容器に添加し、60℃で攪拌しながら、所定量の塩化パラジウムの希塩酸溶液を素早く滴下した。次いで、0.5N水酸化ナトリウム水溶液を更に添加して上記水溶液のpHを8に調整し、そのまま1時間攪拌を続けた。その後、ガラス容器の内容物にヒドラジンを化学量論量の1.2倍添加して還元した。次いで、静置して還元後の内容物から上澄みを除去して沈殿物を回収し、その沈殿物をClイオンが検出されなくなるまで蒸留水で洗浄し、さらに60℃で真空乾燥して、パラジウム1.0質量%を担持した触媒を得た。透過型電子顕微鏡(TEM)を用いて上記金触媒を観察したところ、粒子径が2〜4nmの金粒子が担体表面上に均一に担持されていた。金粒子の数平均粒子径は3nmであった(算出個数:100)。
(反応評価)
上記の方法で得た触媒を用いて、実施例5と同様の方法で反応評価を行った。結果は表1に示した。
[Comparative Example 1]
(Catalyst preparation)
30 g of the carrier obtained in Reference Example for Carrier Production was added to a glass container containing 100 mL of distilled water, and a predetermined amount of dilute hydrochloric acid solution of palladium chloride was rapidly added dropwise with stirring at 60 ° C. Subsequently, 0.5N aqueous sodium hydroxide solution was further added to adjust the pH of the aqueous solution to 8, and the stirring was continued for 1 hour. Thereafter, hydrazine was added to the contents of the glass container 1.2 times the stoichiometric amount and reduced. Next, the supernatant is removed from the reduced content by collecting the precipitate, and the precipitate is recovered. The precipitate is washed with distilled water until Cl ions are no longer detected, and further vacuum-dried at 60 ° C. to obtain palladium. A catalyst carrying 1.0% by mass was obtained. When the gold catalyst was observed using a transmission electron microscope (TEM), gold particles having a particle diameter of 2 to 4 nm were uniformly supported on the support surface. The number average particle diameter of the gold particles was 3 nm (calculated number: 100).
(Reaction evaluation)
Reaction evaluation was performed by the same method as Example 5 using the catalyst obtained by said method. The results are shown in Table 1.
表1の結果から明らかなように、本実施形態のカルボン酸の製造方法(実施例1〜15)により、メタクロレイン(アクロレイン)から、高選択率でメタクリル酸(アクリル酸)を製造することが可能であった。 As is apparent from the results in Table 1, methacrylic acid (acrylic acid) can be produced with high selectivity from methacrolein (acrolein) by the carboxylic acid production method of the present embodiment (Examples 1 to 15). It was possible.
本発明のカルボン酸の製造方法により、アルデヒドからカルボン酸を高選択率で製造することができる。 By the method for producing carboxylic acid of the present invention, carboxylic acid can be produced from aldehyde with high selectivity.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009257201A JP5588657B2 (en) | 2009-11-10 | 2009-11-10 | Method for producing carboxylic acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009257201A JP5588657B2 (en) | 2009-11-10 | 2009-11-10 | Method for producing carboxylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011102253A true JP2011102253A (en) | 2011-05-26 |
JP5588657B2 JP5588657B2 (en) | 2014-09-10 |
Family
ID=44192764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009257201A Active JP5588657B2 (en) | 2009-11-10 | 2009-11-10 | Method for producing carboxylic acid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5588657B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2518570A2 (en) | 2011-04-28 | 2012-10-31 | Ricoh Company, Ltd. | Image forming apparatus |
JP2013253073A (en) * | 2012-02-17 | 2013-12-19 | Japan Advanced Institute Of Science & Technology Hokuriku | Method for producing d-glucosamic acid or its analogue, and catalyst composition therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001172222A (en) * | 1999-12-21 | 2001-06-26 | Mitsui Chemicals Inc | Method for producing carboxylic acid |
JP2003192632A (en) * | 2001-12-26 | 2003-07-09 | Nippon Shokubai Co Ltd | Method for producing mixture of unsaturated carboxylic acid ester with unsaturated carboxylic acid |
JP2003284954A (en) * | 2002-03-28 | 2003-10-07 | Nippon Shokubai Co Ltd | Gold ultra-fine particle carrier, manufacture method therefor and catalyst comprising the carrier |
JP2004141828A (en) * | 2002-10-28 | 2004-05-20 | Mitsubishi Rayon Co Ltd | CATALYST FOR PRODUCTION OF alpha,beta-UNSATURATED CARBOXYLIC ACID |
JP2009502491A (en) * | 2005-08-05 | 2009-01-29 | ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト | Supported gold catalyst |
-
2009
- 2009-11-10 JP JP2009257201A patent/JP5588657B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001172222A (en) * | 1999-12-21 | 2001-06-26 | Mitsui Chemicals Inc | Method for producing carboxylic acid |
JP2003192632A (en) * | 2001-12-26 | 2003-07-09 | Nippon Shokubai Co Ltd | Method for producing mixture of unsaturated carboxylic acid ester with unsaturated carboxylic acid |
JP2003284954A (en) * | 2002-03-28 | 2003-10-07 | Nippon Shokubai Co Ltd | Gold ultra-fine particle carrier, manufacture method therefor and catalyst comprising the carrier |
JP2004141828A (en) * | 2002-10-28 | 2004-05-20 | Mitsubishi Rayon Co Ltd | CATALYST FOR PRODUCTION OF alpha,beta-UNSATURATED CARBOXYLIC ACID |
JP2009502491A (en) * | 2005-08-05 | 2009-01-29 | ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト | Supported gold catalyst |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2518570A2 (en) | 2011-04-28 | 2012-10-31 | Ricoh Company, Ltd. | Image forming apparatus |
JP2013253073A (en) * | 2012-02-17 | 2013-12-19 | Japan Advanced Institute Of Science & Technology Hokuriku | Method for producing d-glucosamic acid or its analogue, and catalyst composition therefor |
Also Published As
Publication number | Publication date |
---|---|
JP5588657B2 (en) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101169137B1 (en) | Catalyst for carboxylic acid ester production, method for producing the same, and method for producing carboxylic acid ester | |
US9480973B2 (en) | Silica-based material and process for producing the same, noble metal supported material and process for producing carboxylic acids by using the same as catalyst | |
EP2500093B1 (en) | Use of a supported composite particle material, production process of said material and process for producing compounds using supported composite particle material as catalyst for chemical synthesis | |
JP5336235B2 (en) | Noble metal support and method for producing carboxylic acid ester using the same as catalyst | |
JP5188034B2 (en) | Gold-supported particles with excellent wear resistance | |
JP2001026422A (en) | Production of gold-containing combined body | |
JP5588657B2 (en) | Method for producing carboxylic acid | |
JP6031562B2 (en) | Silica-based material and method for producing the same, noble metal support and method for producing carboxylic acids using the same as a catalyst | |
RU2428251C1 (en) | Catalyst for synthesis of carboxylic esters, preparation method thereof and method for synthesis of carboxylic esters | |
JP2007296429A (en) | Metal-carrying particle excellent in abrasion resistance and reactivity | |
JP4069242B2 (en) | Metal particle carrier and method for producing carboxylic acid ester | |
JP4908332B2 (en) | Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid | |
JP2024040113A (en) | Catalyst, method for producing carboxylic acid, and method for producing carboxylate | |
WO2022049740A1 (en) | Carboxylate ester production catalyst and carboxylate ester production method | |
JP7573627B2 (en) | CATALYST FOR PRODUCING CARBOXYLIC ACID ESTER AND PRODUCTION METHOD FOR CARBOXY | |
JP5479939B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP2009297634A (en) | NOBLE METAL-CONTAINING CATALYST, METHOD OF MANUFACTURING THE SAME AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP2022062421A (en) | Method for producing carboxylate ester | |
JP5019586B2 (en) | Process for producing α, β-unsaturated carboxylic acid | |
JP5609394B2 (en) | Method for producing palladium-containing supported catalyst and method for producing α, β-unsaturated carboxylic acid | |
JP2009029729A (en) | METHOD FOR PRODUCING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP2009254956A (en) | PALLADIUM-SUPPORTING CATALYST, ITS MANUFACTURING METHOD AND METHOD OF MANUFACTURING alpha,beta-UNSATURATED CARBOXYLIC ACID | |
JP2012176399A (en) | PALLADIUM-CONTAINING SUPPORTED CATALYST, METHOD FOR MANUFACTURING THE SAME AND METHOD OF MANUFACTURING α,β-UNSATURATED CARBOXYLIC ACID |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140722 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140728 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5588657 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |