JP2011099787A - Apparatus and method for measuring shape - Google Patents

Apparatus and method for measuring shape Download PDF

Info

Publication number
JP2011099787A
JP2011099787A JP2009255328A JP2009255328A JP2011099787A JP 2011099787 A JP2011099787 A JP 2011099787A JP 2009255328 A JP2009255328 A JP 2009255328A JP 2009255328 A JP2009255328 A JP 2009255328A JP 2011099787 A JP2011099787 A JP 2011099787A
Authority
JP
Japan
Prior art keywords
light intensity
optical path
path length
interference light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009255328A
Other languages
Japanese (ja)
Inventor
Tomonori Goto
智徳 後藤
Tsunetaka Miyakura
常太 宮倉
Hidemitsu Asano
秀光 浅野
Tatsuya Nagahama
龍也 長濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2009255328A priority Critical patent/JP2011099787A/en
Publication of JP2011099787A publication Critical patent/JP2011099787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an effect of a noise, and obtain a stable and accurate measurement result. <P>SOLUTION: An interference light intensity distribution image indicates an interference light intensity corresponding to each measurement position in a measurement plane of a to-be-measured object changed by an optical path length difference between a first optical path length from a light source 1 having a wide range spectrum to the to-be-measured object 4 and a second optical path from the light source 4 to a reference plane 5. While the optical path length difference is changed, the interference light intensity distribution image is sequentially stored in an image storage means 9. With regard to an interference light intensity sequence indicating a change in an interference light intensity due to the change in the optical path length difference at each measurement position of the interference light intensity distribution image, a predetermined threshold level is set in the positive and negative directions of an intensity axis from the center of the intensity. Peak position candidates are found as data of the interference light intensity exceeding the threshold level, and a peak value of the interference light intensity sequence is found as a barycenter of an area in which the peak position candidates are congested at the maximum. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、広帯域スペクトルを有する光源から測定面に対して照射された光と参照面に対して照射された光の干渉強度によって測定面の位置を測定する形状測定機及び形状測定方法に関する。   The present invention relates to a shape measuring machine and a shape measuring method for measuring the position of a measurement surface based on the interference intensity of light irradiated on a measurement surface from a light source having a broadband spectrum and light irradiated on a reference surface.

従来、光学系を用いて非接触で被測定物の三次元形状を測定する種々の形状測定装置が知られている。例えば、マイクロマシンやLSI等の微細な被測定物の三次元計測が可能な形状測定装置としては、白色干渉計が知られている。この白色干渉計は、白色光源から被測定物に照射され、被測定物から反射された白色光と、白色光源から参照面に照射され、参照面から反射された白色光とを干渉させると共に、参照面を光軸方向に移動させて最も干渉光強度の大きい参照面位置を検出し、この参照面位置に基づいて被測定物の光軸方向の高さを計測するものである(特許文献1)。   Conventionally, various shape measuring apparatuses that measure the three-dimensional shape of an object to be measured in a non-contact manner using an optical system are known. For example, a white interferometer is known as a shape measuring apparatus capable of three-dimensional measurement of a minute object to be measured such as a micromachine or LSI. This white interferometer irradiates the object to be measured from the white light source and interferes with the white light reflected from the object to be measured and the white light irradiated from the white light source to the reference surface and reflected from the reference surface. The reference surface is moved in the optical axis direction to detect the reference surface position with the highest interference light intensity, and the height of the object to be measured in the optical axis direction is measured based on the reference surface position (Patent Document 1). ).

このような白色干渉計のうち、演算処理を簡素化したものとして、光路長差を所定量変位させる前後の干渉縞強度の差分値の絶対値を重みとする検査位置の加重平均を算出し、この加重平均が示す値を差分値の絶対値が最大となるピーク位置として求めるようにした形状測定装置も知られている(特許文献2)。   Among such white interferometers, as a simplified calculation process, calculating a weighted average of the inspection positions weighted by the absolute value of the difference value of the interference fringe intensity before and after displacing the optical path length difference by a predetermined amount, A shape measuring apparatus is also known in which the value indicated by the weighted average is obtained as a peak position where the absolute value of the difference value is maximum (Patent Document 2).

国際公開2006−068217号International Publication No. 2006-068217 特許第3220955号Japanese Patent No. 3220955

しかしながら、上述した特許文献2に開示の装置は、干渉光強度値の差分絶対値を係数とする重心算出を行うため、雑音の影響を受けてピーク位置検出がずれるという問題がある。このようにノイズの影響を受けやすいと、安定した精度の高い測定結果が得られない。   However, since the apparatus disclosed in Patent Document 2 described above performs centroid calculation using the difference absolute value of the interference light intensity value as a coefficient, there is a problem that peak position detection is shifted due to the influence of noise. Thus, if it is easy to be influenced by noise, a stable and highly accurate measurement result cannot be obtained.

本発明は、このような点に鑑みなされたもので、ノイズの影響を抑えて、安定した精度の高い測定結果を得ることができる形状測定装置を提供することを目的とする。   The present invention has been made in view of these points, and an object of the present invention is to provide a shape measuring apparatus that can suppress the influence of noise and obtain a stable and highly accurate measurement result.

本発明に係る第1の形状測定装置は、広帯域スペクトルを有する光源と、この光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を生成する光学系と、前記光学系から出力される前記干渉光強度分布画像を撮像する撮像手段と、前記第1光路長と第2光路長の光路長差を変化させる光路長差変更手段と、前記撮像手段で撮像され前記光路長差の変化に伴って変化する干渉光強度分布画像を順次記憶する画像記憶手段と、前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列から、そのピーク値を求め、このピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める演算手段とを備えた形状測定装置において、前記演算手段が、前記干渉光強度列の強度の中心から強度軸の正負方向に所定のスレッショルドレベルを設定し、このスレッショルドレベルを超える干渉光強度のデータをピーク位置候補とし、最もピーク候補点が密集している領域の重心を干渉光強度列のピーク値として求めるものであることを特徴としている。   A first shape measuring apparatus according to the present invention is a light source having a broadband spectrum, guides light from the light source to a measurement target and a reference surface, and combines light reflected from the measurement target and the reference surface. And corresponding to each measurement position in the measurement surface of the measurement target that varies depending on the optical path length difference between the first optical path length from the light source to the measurement target and the second optical path length from the light source to the reference surface. An optical system that generates an interference light intensity distribution image indicating the interference light intensity, an imaging unit that captures the interference light intensity distribution image output from the optical system, and an optical path having the first optical path length and the second optical path length. Optical path length difference changing means for changing the length difference, image storage means for sequentially storing an interference light intensity distribution image picked up by the imaging means and changing in accordance with the change in the optical path length difference, and stored in the image storage means The interference light intensity distribution image The peak value is obtained from the interference light intensity sequence indicating the change in the interference light intensity accompanying the change in the optical path length difference at each measurement position, and the peak value is the position in the optical axis direction at each measurement position of the measurement target. In the shape measuring apparatus comprising the calculating means obtained as: the calculating means sets a predetermined threshold level in the positive / negative direction of the intensity axis from the intensity center of the interference light intensity sequence, and the interference light intensity exceeding the threshold level The data is obtained as the peak position candidate, and the center of gravity of the region where the peak candidate points are most densely obtained is obtained as the peak value of the interference light intensity sequence.

本発明に係る第2の形状測定装置は、広帯域スペクトルを有する光源と、この光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を生成する光学系と、前記光学系から出力される前記干渉光強度分布画像を撮像する撮像手段と、前記第1光路長と第2光路長の光路長差を変化させる光路長差変更手段と、前記撮像手段で撮像され前記光路長差の変化に伴って変化する干渉光強度分布画像を順次記憶する画像記憶手段と、前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列から、そのピーク値を求め、このピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める演算手段とを備えた形状測定装置において、前記演算手段が、前記干渉光強度列に対してその振幅が再現されるように幾何要素を当てはめ、当てはめた幾何要素の各端点について、その端点で接続された2つの幾何要素の傾きの絶対値和が最大となる端点位置を前記干渉光強度列のピーク値として求めるものであることを特徴としている。   A second shape measuring apparatus according to the present invention is a light source having a broadband spectrum, and guides light from the light source to a measurement target and a reference surface, and combines light reflected from the measurement target and the reference surface. And corresponding to each measurement position in the measurement surface of the measurement target that varies depending on the optical path length difference between the first optical path length from the light source to the measurement target and the second optical path length from the light source to the reference surface. An optical system that generates an interference light intensity distribution image indicating the interference light intensity, an imaging unit that captures the interference light intensity distribution image output from the optical system, and an optical path having the first optical path length and the second optical path length. Optical path length difference changing means for changing the length difference, image storage means for sequentially storing an interference light intensity distribution image picked up by the imaging means and changing in accordance with the change in the optical path length difference, and stored in the image storage means The interference light intensity distribution image The peak value is obtained from the interference light intensity sequence indicating the change in the interference light intensity accompanying the change in the optical path length difference at each measurement position, and the peak value is the position in the optical axis direction at each measurement position of the measurement target. In the shape measuring apparatus including the calculating means obtained as follows, the calculating means applies the geometric element so that the amplitude is reproduced with respect to the interference light intensity sequence, and for each end point of the applied geometric element, the end point The end point position at which the sum of absolute values of the inclinations of the two geometric elements connected at the maximum is obtained as the peak value of the interference light intensity sequence.

本発明に係る第3の形状測定装置は、広帯域スペクトルを有する光源と、この光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を生成する光学系と、前記光学系から出力される前記干渉光強度分布画像を撮像する撮像手段と、前記第1光路長と第2光路長の光路長差を変化させる光路長差変更手段と、前記撮像手段で撮像され前記光路長差の変化に伴って変化する干渉光強度分布画像を順次記憶する画像記憶手段と、前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列から、そのピーク値を求め、このピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める演算手段とを備えた形状測定装置において、前記演算手段が、前記干渉光強度列に対してその形状を損なわないようにデータの間引きを行い、間引かれたデータに対して、最もデータの密度が高い位置を前記干渉光強度列のピーク値として求めるものである ことを特徴としている。   A third shape measuring apparatus according to the present invention guides light from a light source having a broadband spectrum and light from the light source to a measurement target and a reference surface, and combines light reflected from the measurement target and the reference surface. And corresponding to each measurement position in the measurement surface of the measurement target that varies depending on the optical path length difference between the first optical path length from the light source to the measurement target and the second optical path length from the light source to the reference surface. An optical system that generates an interference light intensity distribution image indicating the interference light intensity, an imaging unit that captures the interference light intensity distribution image output from the optical system, and an optical path having the first optical path length and the second optical path length. Optical path length difference changing means for changing the length difference, image storage means for sequentially storing an interference light intensity distribution image picked up by the imaging means and changing in accordance with the change in the optical path length difference, and stored in the image storage means The interference light intensity distribution image The peak value is obtained from the interference light intensity sequence indicating the change in the interference light intensity accompanying the change in the optical path length difference at each measurement position, and the peak value is the position in the optical axis direction at each measurement position of the measurement target. In the shape measuring apparatus comprising the calculating means to be obtained as the above, the calculating means thins out the data so as not to impair the shape of the interference light intensity sequence, and the thinned data is the most data. This is characterized in that a position having a high density is obtained as a peak value of the interference light intensity sequence.

本発明に係る第1の形状測定方法は、広帯域スペクトルを有する光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を、撮像手段で撮像する工程と、前記第1光路長と第2光路長の光路長差を光路長差変更手段で変化させながら、干渉光強度分布画像を画像記憶手段に順次記憶する工程と、前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列から、その強度の中心から強度軸の正負方向に所定のスレッショルドレベルを設定する工程と、前記スレッショルドレベルを超える干渉光強度のデータをピーク位置候補として求める工程と、最もピーク位置候補が密集している領域の重心を干渉光強度列のピーク値として求める工程と、前記求められたピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める工程とを有することを特徴としている。   The first shape measuring method according to the present invention guides light from a light source having a broadband spectrum to a measurement target and a reference surface, combines light reflected from the measurement target and the reference surface, and the light source Interfering light intensity corresponding to each measurement position in the measurement surface of the measurement object, which varies depending on the optical path length difference between the first optical path length from the light source to the measurement object and the second optical path length from the light source to the reference surface An image of the interference light intensity distribution image is stored while the optical path length difference between the first optical path length and the second optical path length is changed by the optical path length difference changing means. From the interference light intensity sequence indicating the change in the interference light intensity associated with the change in the optical path length difference at each measurement position of the interference light intensity distribution image stored in the image storage means. Of the intensity axis from the center of A step of setting a predetermined threshold level in a direction, a step of obtaining interference light intensity data exceeding the threshold level as a peak position candidate, and a center of gravity of a region where the peak position candidates are most densely peaked. And a step of obtaining the obtained peak value as a position in the optical axis direction at each measurement position of the object to be measured.

本発明に係る第2の形状測定方法は、広帯域スペクトルを有する光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を、撮像手段で撮像する工程と、前記第1光路長と第2光路長の光路長差を光路長差変更手段で変化させながら、干渉光強度分布画像を画像記憶手段に順次記憶する工程と、前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列に対して、その振幅が再現されるように幾何要素を当てはめる工程と、前記当てはめた幾何要素の各端点について、その端点で接続された2つの幾何要素の傾きの絶対値和が最大となる端点位置を前記干渉光強度列のピーク値として求める工程と、前記求められたピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める工程とを有することを特徴としている。   The second shape measurement method according to the present invention guides light from a light source having a broadband spectrum to a measurement target and a reference surface, combines light reflected from the measurement target and the reference surface, and supplies the light source. Interfering light intensity corresponding to each measurement position in the measurement surface of the measurement object, which varies depending on the optical path length difference between the first optical path length from the light source to the measurement object and the second optical path length from the light source to the reference surface An image of the interference light intensity distribution image is stored while the optical path length difference between the first optical path length and the second optical path length is changed by the optical path length difference changing means. A step of sequentially storing in the means, and an interference light intensity sequence indicating a change in the interference light intensity accompanying a change in the optical path length difference at each measurement position of the interference light intensity distribution image stored in the image storage means, So that its amplitude is reproduced The step of applying any element and, for each end point of the fitted geometric element, the end point position where the absolute value sum of the inclinations of the two geometric elements connected at the end point is maximized is obtained as the peak value of the interference light intensity sequence. And a step of obtaining the obtained peak value as a position in the optical axis direction at each measurement position of the measurement object.

本発明に係る第3の形状測定方法は、広帯域スペクトルを有する光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を、撮像手段で撮像する工程と、前記第1光路長と第2光路長の光路長差を光路長差変更手段で変化させながら、干渉光強度分布画像を画像記憶手段に順次記憶する工程と、前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列に対して、その形状を損なわないようにデータの間引きを行う工程と、前記間引かれたデータに対して、最もデータの密度が高い位置を前記干渉光強度列のピーク値として求める工程と、前記求められたピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める工程とを有することを特徴としている。   The third shape measuring method according to the present invention guides light from a light source having a broadband spectrum to a measurement target and a reference surface, combines light reflected from the measurement target and the reference surface, and the light source Interfering light intensity corresponding to each measurement position in the measurement surface of the measurement object, which varies depending on the optical path length difference between the first optical path length from the light source to the measurement object and the second optical path length from the light source to the reference surface An image of the interference light intensity distribution image is stored while the optical path length difference between the first optical path length and the second optical path length is changed by the optical path length difference changing means. A step of sequentially storing in the means, and an interference light intensity sequence indicating a change in the interference light intensity accompanying a change in the optical path length difference at each measurement position of the interference light intensity distribution image stored in the image storage means, So as not to damage its shape A step of thinning out the data, a step of obtaining a position having the highest data density as the peak value of the interference light intensity sequence for the thinned data, and the measured peak value of the measured data And a step of obtaining the position as the position in the optical axis direction at each measurement position of the object.

本発明によれば、ノイズの影響を抑えて、安定した精度の高い測定結果を得ることができる。   According to the present invention, it is possible to obtain a stable and highly accurate measurement result while suppressing the influence of noise.

本発明の第1実施形態に係る形状測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the shape measuring apparatus which concerns on 1st Embodiment of this invention. 同装置における形状測定方法を説明するための図である。It is a figure for demonstrating the shape measuring method in the apparatus. 同装置における形状測定方法を説明するためのフローチャートである。It is a flowchart for demonstrating the shape measuring method in the apparatus. 同装置における演算処理部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the arithmetic processing part in the same apparatus. 同装置における形状測定方法を説明するための図である。するためのフローチャートである。It is a figure for demonstrating the shape measuring method in the apparatus. It is a flowchart for doing. 本発明の第2実施形態に係る形状測定装置における演算処理部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the arithmetic processing part in the shape measuring apparatus which concerns on 2nd Embodiment of this invention. 同装置における演算処理方法を説明するための図である。It is a figure for demonstrating the arithmetic processing method in the same apparatus. 本発明の第3実施形態に係る形状測定装置における演算処理部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the arithmetic processing part in the shape measuring apparatus which concerns on 3rd Embodiment of this invention. 同装置における演算処理方法を説明するための図である。It is a figure for demonstrating the arithmetic processing method in the same apparatus. 本発明の第4実施形態に係る形状測定装置における演算処理部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the arithmetic processing part in the shape measuring apparatus which concerns on 4th Embodiment of this invention. 同装置における演算処理方法を説明するための図である。It is a figure for demonstrating the arithmetic processing method in the same apparatus. 本発明の第5実施形態に係る形状測定装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the shape measuring apparatus which concerns on 5th Embodiment of this invention.

[第1実施形態]
次に、本発明の第1実施形態に係る形状測定装置及び形状測定方法について詳細に説明する。
[First Embodiment]
Next, the shape measuring apparatus and the shape measuring method according to the first embodiment of the present invention will be described in detail.

図1は、本実施形態に係る形状測定装置である白色干渉計の構成を示す図である。なお、ここでは、マイケルソン型の干渉計を示すが、ミラウ型等、他の等光路干渉計を用いることもできる。また、画像測定装置等、他の光学測定装置と併用したものでも良い。   FIG. 1 is a diagram illustrating a configuration of a white light interferometer that is a shape measuring apparatus according to the present embodiment. Although a Michelson interferometer is shown here, other equal optical path interferometers such as a Mirau type can also be used. Further, it may be used in combination with another optical measuring device such as an image measuring device.

光源1は、例えばハロゲンランプ、キセノンランプ、水銀ランプ、メタルハライドランプ、LED等の広帯域スペクトルを有する白色光源である。光源1から出射された白色光は、コリメータレンズ2でコリメートされ、ビームスプリッタ3で2方向に分割される。一方の分割光は、被測定対象であるワーク4の測定面に照射され、他方の分割光は、参照板5の参照面に照射される。測定面及び参照面からそれぞれ反射された白色光は、ビームスプリッタ3で合成され、その際の干渉光が結像レンズ7を介してCCDカメラ8で撮像される。   The light source 1 is a white light source having a broadband spectrum such as a halogen lamp, a xenon lamp, a mercury lamp, a metal halide lamp, or an LED. White light emitted from the light source 1 is collimated by the collimator lens 2 and divided in two directions by the beam splitter 3. One split light is applied to the measurement surface of the workpiece 4 to be measured, and the other split light is applied to the reference surface of the reference plate 5. White light reflected from the measurement surface and the reference surface is combined by the beam splitter 3, and interference light at that time is imaged by the CCD camera 8 via the imaging lens 7.

参照板5は、ピエゾ素子のような駆動手段6によって光軸方向に移動走査され、各走査位置での干渉像がCCDカメラ8によりサンプリングされ、画像メモリ9に記憶される。演算処理部10は、ワーク4の測定面の各測定位置での干渉光の強度とエンコーダ14から入力される参照板5の走査位置情報とに基づいて、ワーク4の測定面の高さ方向の位置を求める。入力部11は、演算処理部10に計測に必要なデータを入力する。出力部12は、演算処理部10で求められた測定結果を出力する。また、表示部13は、入力操作に必要な情報及び測定結果を表示する。   The reference plate 5 is moved and scanned in the optical axis direction by driving means 6 such as a piezo element, and an interference image at each scanning position is sampled by the CCD camera 8 and stored in the image memory 9. The arithmetic processing unit 10 determines the height direction of the measurement surface of the workpiece 4 based on the intensity of interference light at each measurement position on the measurement surface of the workpiece 4 and the scanning position information of the reference plate 5 input from the encoder 14. Find the position. The input unit 11 inputs data necessary for measurement to the arithmetic processing unit 10. The output unit 12 outputs the measurement result obtained by the arithmetic processing unit 10. The display unit 13 displays information necessary for the input operation and measurement results.

次に、この白色干渉計による形状測定方法について説明する。   Next, a shape measuring method using this white interferometer will be described.

光源1からの白色光は、ワーク4の測定面と参照板5の参照面で反射され、ビームスプリッタ3で合成される。そのときの干渉強度は、光源1からワーク4までの第1の光路長と、光源1から参照板5までの第2の光路長との光路長差によって決まる。第1及び第2の光路長が等しいときは、最も干渉光強度が大きくなる。干渉光強度は、参照板5をピエゾ素子6で光軸方向に移動走査することにより変化する。可干渉性の少ない白色光を使用することで、干渉縞の発生する範囲を狭くすることができる。これにより、例えば、図2に示すように、参照面の移動走査により発生する測定面の各位置での干渉光強度の変化は、測定面の高さ(Z方向位置)に応じた位相で発生するので、測定面の各位置での干渉光強度の変化のピーク値が観測される参照面の走査位置を、測定面の対応する部位の高さとして求めることができる。   White light from the light source 1 is reflected by the measurement surface of the workpiece 4 and the reference surface of the reference plate 5 and is combined by the beam splitter 3. The interference intensity at that time is determined by the optical path length difference between the first optical path length from the light source 1 to the workpiece 4 and the second optical path length from the light source 1 to the reference plate 5. When the first and second optical path lengths are equal, the interference light intensity is the highest. The interference light intensity is changed by moving and scanning the reference plate 5 in the direction of the optical axis with the piezo element 6. By using white light with less coherence, the range in which interference fringes are generated can be narrowed. Thereby, for example, as shown in FIG. 2, the change in the interference light intensity at each position on the measurement surface caused by the moving scanning of the reference surface occurs at a phase corresponding to the height (Z-direction position) of the measurement surface. Therefore, the scanning position of the reference surface where the peak value of the change in interference light intensity at each position on the measurement surface is observed can be obtained as the height of the corresponding portion of the measurement surface.

図3は、形状測定方法を示すフローチャートである。   FIG. 3 is a flowchart showing the shape measuring method.

参照板5を光軸方向に所定量移動し(S1)、測定面の干渉光強度の二次元の分布画像を画像メモリ9に記憶する(S2)。これを所定サンプリング数だけ繰り返し(S3)、所定枚の分布画像が画像メモリ9に蓄積されたら、図2に示すような、測定面の各測定位置における光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列のピーク位置を検出する(S4)。そして、検出した各測定位置のピーク位置を測定点における高さとして表示、出力する(S5)。   The reference plate 5 is moved by a predetermined amount in the optical axis direction (S1), and a two-dimensional distribution image of the interference light intensity on the measurement surface is stored in the image memory 9 (S2). This is repeated a predetermined number of samplings (S3), and when a predetermined number of distribution images are stored in the image memory 9, the interference light intensity associated with the change in optical path length difference at each measurement position on the measurement surface as shown in FIG. The peak position of the interference light intensity sequence indicating the change is detected (S4). Then, the detected peak position of each measurement position is displayed and output as the height at the measurement point (S5).

図4は、各位置での干渉光強度列からそのピーク位置を求める処理の一例を示すフローチャート、図5は、その処理を説明するための干渉光強度列を示す図である。この処理では、参照面を移動走査して得られた干渉光強度列に対して、所定の幾何要素(例えば、直線又は曲線)Aを当てはめる(S11)。ここで、幾何要素を当てはめる干渉光強度列のデータ数は、所定数以上とする。具体的には、例えば図5に示すように、バースト状データ列の開始から終了までをほぼ2分割する長さの区間のデータに対して当てはめを行う。データ数があまり少ないと、平均レベルの検出ができなくなるからである。次に、得られた幾何要素Aをそれぞれ強度軸のプラス方向とマイナス方向にシフトさせて、スレッショルドレベルB,Cを設定する(S12)。このスレッショルドレベルB,Cを超える干渉光強度をピーク位置候補点として求める(S13)。そして、ピーク位置候補点が最も密集している領域の重心をピーク位置Pとして求める(S14)。又は、その領域内でスレッショルド範囲の外れ度合いを指標としてピーク位置とする。このような処理により、処理点数を削減して高速でピーク位置Pを求めることが出来る。   FIG. 4 is a flowchart showing an example of processing for obtaining the peak position from the interference light intensity sequence at each position, and FIG. 5 is a diagram showing the interference light intensity sequence for explaining the processing. In this process, a predetermined geometric element (for example, a straight line or a curve) A is applied to the interference light intensity sequence obtained by moving and scanning the reference surface (S11). Here, the number of data of the interference light intensity sequence to which the geometric element is applied is a predetermined number or more. Specifically, for example, as shown in FIG. 5, fitting is performed on data in a section having a length substantially divided into two from the start to the end of the burst-like data string. This is because the average level cannot be detected if the number of data is too small. Next, the obtained geometric element A is shifted in the plus direction and minus direction of the intensity axis, respectively, and threshold levels B and C are set (S12). The interference light intensity exceeding the threshold levels B and C is obtained as a peak position candidate point (S13). Then, the center of gravity of the region where the peak position candidate points are most dense is obtained as the peak position P (S14). Alternatively, the peak position is set using the degree of deviation of the threshold range as an index within the region. By such processing, the peak position P can be obtained at high speed by reducing the number of processing points.

[第2実施形態]
図6は、本発明の第2実施形態に係る形状測定装置におけるピーク位置検出方法を示すフローチャート、図7は、その処理を説明するための干渉光強度列を示す図である。
[Second Embodiment]
FIG. 6 is a flowchart showing a peak position detecting method in the shape measuring apparatus according to the second embodiment of the present invention, and FIG. 7 is a diagram showing an interference light intensity sequence for explaining the processing.

この実施形態では、参照面を移動走査して得られた干渉光強度列に対して、平滑化処理を行い、図7に示すような平滑曲線Dを求める(S21)。次に、得られた平滑曲線Dをそれぞれ強度軸のプラス方向とマイナス方向にシフトさせて、スレッショルドレベルE,Fを設定する(S22)。このスレッショルドレベルE,Fを超える干渉光強度をピーク位置候補点として求める(S23)。そして、分散しているピーク位置候補点領域を、例えばClosing演算などにより1領域に統合し(S24)、統合領域の重心をピーク位置Pとして求める(S25)。ここで、Closing 演算とは、着目点の隣接点に“1”の点が存在すれば、着目点を“1”に置き換える「膨張処理」と、着目点の隣接点に“0”の点が存在すれば、着目点を“0”に置き換える「収縮処理」とを数回ずつに繰り返し、分散している領域を徐々に統合していく処理である。このような処理により、処理点数を削減して高速でピーク位置Pを求めることが出来る。   In this embodiment, the interference light intensity sequence obtained by moving and scanning the reference surface is subjected to a smoothing process to obtain a smooth curve D as shown in FIG. 7 (S21). Next, the obtained smooth curve D is shifted in the positive and negative directions of the intensity axis, respectively, and threshold levels E and F are set (S22). The interference light intensity exceeding the threshold levels E and F is obtained as a peak position candidate point (S23). Then, the dispersed peak position candidate point areas are integrated into one area by, for example, Closing calculation (S24), and the center of gravity of the integrated area is obtained as the peak position P (S25). Here, the Closing calculation is an “expansion process” in which the point of interest is replaced with “1” if a point of “1” exists in the adjacent point of the point of interest, and a point of “0” in the adjacent point of the point of interest. If it exists, the “shrinkage process” for replacing the focus point with “0” is repeated several times, and the dispersed areas are gradually integrated. By such processing, the peak position P can be obtained at high speed by reducing the number of processing points.

[第3実施形態]
図8は、本発明の第3実施形態に係る形状測定装置におけるピーク位置検出方法を示すフローチャート、図9は、その処理を説明するための干渉光強度列を示す図である。
[Third Embodiment]
FIG. 8 is a flowchart showing a peak position detecting method in the shape measuring apparatus according to the third embodiment of the present invention, and FIG. 9 is a diagram showing an interference light intensity sequence for explaining the processing.

この実施形態では、参照面を移動走査して得られた干渉光強度列に対して、振幅が再現されるように幾何要素の当てはめを行う(S31)。ここで、ノイズの影響を受けないように、予め初期状態で当てはめた幾何要素(振幅再現される幾何要素よりも平滑化された幾何要素)からの距離に基づいて各データに重み付けをしておき、振幅再現される幾何要素の当てはめに際しては、重みも考慮した最小二乗演算を行う等の処理を行う。より具体的には、初期状態で当てはめた幾何要素からの距離が近いほど大きな値となる重みW[i]を設けて、各点X[i],Y[i]に対して、   In this embodiment, geometric elements are fitted to the interference light intensity train obtained by moving and scanning the reference surface so that the amplitude is reproduced (S31). Here, in order not to be affected by noise, each data is weighted based on a distance from a geometric element that has been fitted in an initial state in advance (a geometric element that is smoother than a geometric element whose amplitude is reproduced). When fitting the geometric element whose amplitude is to be reproduced, a process such as performing a least-squares calculation considering the weight is performed. More specifically, a weight W [i] that becomes larger as the distance from the geometric element fitted in the initial state is closer is provided, and for each point X [i], Y [i],

[数1]
Σ(W[i]*(a*X[i]+b*Y[i]+c)*(a*X[i]+b*Y[i]+c))->min
となるa,b,cを算出する。次に、当てはめた幾何要素の各端点について、その端点で接続された2つの幾何要素の傾きの絶対値和が最大になる端点位置(図9におけるH点)を干渉光強度列のピーク位置として求める(S32)。
[Equation 1]
Σ (W [i] * (a * X [i] + b * Y [i] + c) * (a * X [i] + b * Y [i] + c))-> min
Calculate a, b, and c. Next, for each end point of the fitted geometric element, the end point position (point H in FIG. 9) at which the absolute value sum of the inclinations of the two geometric elements connected at the end point is maximized is set as the peak position of the interference light intensity sequence. Obtained (S32).

[第4実施形態]
図10は、本発明の第4実施形態に係る形状測定装置におけるピーク位置検出方法を示すフローチャート、図11は、その処理を説明するための干渉光強度列を示す図である。
[Fourth Embodiment]
FIG. 10 is a flowchart showing a peak position detection method in the shape measuring apparatus according to the fourth embodiment of the present invention, and FIG. 11 is a diagram showing an interference light intensity sequence for explaining the processing.

この実施形態では、参照面を移動走査して得られた干渉光強度列に対して、その形状を損なわないようにデータの間引きを行い(S41)、間引かれたデータに対して、最もデータの密度が高い位置(最も密度が高い領域の重心)を干渉光強度列のピーク位置として求める(S42)。   In this embodiment, data is thinned out so as not to impair the shape of the interference light intensity sequence obtained by moving and scanning the reference surface (S41). Is determined as the peak position of the interference light intensity sequence (S42).

[第5実施形態]
上記第1実施形態〜第4実施形態で説明したピーク位置検出方法は、膜厚測定など複数のピーク位置を検出する場合にも適用できる。例えば、上述した方法に基づいて1つのピークを含む領域を抽出し、領域毎に各評価量に基づいて最大位置をピーク位置として算出する。例えば、図12に示すように、第3実施形態を応用する場合、当てはめた幾何要素の傾きの絶対値があるしきい値以上である領域を算出し、各領域をclosing演算などにより連結、統合し、統合された各領域でその重心位置等からピーク位置P1,P2を算出すれば良い。
[Fifth Embodiment]
The peak position detection method described in the first to fourth embodiments can be applied to a case where a plurality of peak positions are detected such as film thickness measurement. For example, a region including one peak is extracted based on the above-described method, and the maximum position is calculated as the peak position based on each evaluation amount for each region. For example, as shown in FIG. 12, when the third embodiment is applied, areas where the absolute value of the slope of the fitted geometric element is greater than a certain threshold value are calculated, and the areas are connected and integrated by a closing operation or the like. Then, the peak positions P1 and P2 may be calculated from the center of gravity position of each integrated region.

1…光源、2…コリメータレンズ、3…ビームスプリッタ、4…ワーク、5…参照板、6…駆動手段、7…結像レンズ、8…CCDカメラ、9…画像メモリ、10…演算処理部、11…入力部、12…出力部、13…表示部、14…エンコーダ。
DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Collimator lens, 3 ... Beam splitter, 4 ... Work, 5 ... Reference board, 6 ... Drive means, 7 ... Imaging lens, 8 ... CCD camera, 9 ... Image memory, 10 ... Arithmetic processing part, DESCRIPTION OF SYMBOLS 11 ... Input part, 12 ... Output part, 13 ... Display part, 14 ... Encoder.

Claims (8)

広帯域スペクトルを有する光源と、
この光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を生成する光学系と、
前記光学系から出力される前記干渉光強度分布画像を撮像する撮像手段と、
前記第1光路長と第2光路長の光路長差を変化させる光路長差変更手段と、
前記撮像手段で撮像され前記光路長差の変化に伴って変化する干渉光強度分布画像を順次記憶する画像記憶手段と、
前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列から、そのピーク値を求め、このピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める演算手段と
を備えた形状測定装置において、
前記演算手段は、前記干渉光強度列の強度の中心から強度軸の正負方向に所定のスレッショルドレベルを設定し、このスレッショルドレベルを超える干渉光強度のデータをピーク位置候補とし、最もピーク候補点が密集している領域の重心を干渉光強度列のピーク値として求めるものである
ことを特徴とする形状測定装置。
A light source having a broadband spectrum;
The light from the light source is guided to the object to be measured and the reference surface, and the light reflected from the object to be measured and the reference surface is synthesized, and the first optical path length from the light source to the object to be measured and the light source An optical system for generating an interference light intensity distribution image indicating an interference light intensity corresponding to each measurement position in the measurement surface of the measurement target, which varies depending on a difference in optical path length from the second optical path length to the reference surface;
Imaging means for imaging the interference light intensity distribution image output from the optical system;
Optical path length difference changing means for changing an optical path length difference between the first optical path length and the second optical path length;
Image storage means for sequentially storing an interference light intensity distribution image picked up by the image pickup means and changing with a change in the optical path length difference;
A peak value is obtained from an interference light intensity sequence indicating a change in interference light intensity accompanying a change in the optical path length difference at each measurement position of the interference light intensity distribution image stored in the image storage means, and the peak value is obtained. In a shape measuring apparatus comprising: a calculating means for obtaining a position in the optical axis direction at each measurement position of the measurement target;
The calculation means sets a predetermined threshold level in the positive / negative direction of the intensity axis from the center of intensity of the interference light intensity sequence, sets the interference light intensity data exceeding the threshold level as a peak position candidate, and the most peak candidate point is A shape measuring apparatus characterized in that the center of gravity of a dense area is obtained as a peak value of an interference light intensity sequence.
前記演算手段は、
前記干渉光強度列の所定数を超えるデータに対して幾何要素を当てはめ、得られた幾何要素を干渉光強度列の強度軸の正方向及び負方向にシフトさせて前記スレッショルドレベルを設定する
ことを特徴とする請求項1記載の形状測定装置。
The computing means is
Applying a geometric element to data exceeding a predetermined number in the interference light intensity sequence, and shifting the obtained geometric element in the positive and negative directions of the intensity axis of the interference light intensity sequence to set the threshold level. The shape measuring apparatus according to claim 1, characterized in that:
前記演算手段は、
前記干渉光強度列に対して平滑化処理を行って平滑化曲線を求め、得られた平滑化曲線を干渉光強度列の強度軸の正方向及び負方向にシフトさせて前記スレッショルドレベルを設定する
ことを特徴とする請求項1記載の形状測定装置。
The computing means is
A smoothing process is performed on the interference light intensity sequence to obtain a smoothing curve, and the obtained smoothing curve is shifted in the positive and negative directions of the intensity axis of the interference light intensity sequence to set the threshold level. The shape measuring apparatus according to claim 1.
広帯域スペクトルを有する光源と、
この光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を生成する光学系と、
前記光学系から出力される前記干渉光強度分布画像を撮像する撮像手段と、
前記第1光路長と第2光路長の光路長差を変化させる光路長差変更手段と、
前記撮像手段で撮像され前記光路長差の変化に伴って変化する干渉光強度分布画像を順次記憶する画像記憶手段と、
前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列から、そのピーク値を求め、このピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める演算手段と
を備えた形状測定装置において、
前記演算手段は、前記干渉光強度列に対してその振幅が再現されるように幾何要素を当てはめ、当てはめた幾何要素の各端点について、その端点で接続された2つの幾何要素の傾きの絶対値和が最大となる端点位置を前記干渉光強度列のピーク値として求めるものである
ことを特徴とする形状測定装置。
A light source having a broadband spectrum;
The light from the light source is guided to the object to be measured and the reference surface, and the light reflected from the object to be measured and the reference surface is synthesized, and the first optical path length from the light source to the object to be measured and the light source An optical system for generating an interference light intensity distribution image indicating an interference light intensity corresponding to each measurement position in the measurement surface of the measurement target, which varies depending on a difference in optical path length from the second optical path length to the reference surface;
Imaging means for imaging the interference light intensity distribution image output from the optical system;
Optical path length difference changing means for changing an optical path length difference between the first optical path length and the second optical path length;
Image storage means for sequentially storing an interference light intensity distribution image picked up by the image pickup means and changing with a change in the optical path length difference;
A peak value is obtained from an interference light intensity sequence indicating a change in interference light intensity accompanying a change in the optical path length difference at each measurement position of the interference light intensity distribution image stored in the image storage means, and the peak value is obtained. In a shape measuring apparatus comprising: a calculating means for obtaining a position in the optical axis direction at each measurement position of the measurement target;
The calculation means applies a geometric element so that the amplitude is reproduced with respect to the interference light intensity sequence, and for each end point of the applied geometric element, an absolute value of an inclination of two geometric elements connected at the end point A shape measuring apparatus characterized in that an end point position where the sum is maximum is obtained as a peak value of the interference light intensity sequence.
広帯域スペクトルを有する光源と、
この光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を生成する光学系と、
前記光学系から出力される前記干渉光強度分布画像を撮像する撮像手段と、
前記第1光路長と第2光路長の光路長差を変化させる光路長差変更手段と、
前記撮像手段で撮像され前記光路長差の変化に伴って変化する干渉光強度分布画像を順次記憶する画像記憶手段と、
前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列から、そのピーク値を求め、このピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める演算手段と
を備えた形状測定装置において、
前記演算手段は、前記干渉光強度列に対してその形状を損なわないようにデータの間引きを行い、間引かれたデータに対して、最もデータの密度が高い位置を前記干渉光強度列のピーク値として求めるものである
ことを特徴とする形状測定装置。
A light source having a broadband spectrum;
The light from the light source is guided to the object to be measured and the reference surface, and the light reflected from the object to be measured and the reference surface is synthesized, and the first optical path length from the light source to the object to be measured and the light source An optical system for generating an interference light intensity distribution image indicating an interference light intensity corresponding to each measurement position in the measurement surface of the measurement target, which varies depending on a difference in optical path length from the second optical path length to the reference surface;
Imaging means for imaging the interference light intensity distribution image output from the optical system;
Optical path length difference changing means for changing an optical path length difference between the first optical path length and the second optical path length;
Image storage means for sequentially storing an interference light intensity distribution image picked up by the image pickup means and changing with a change in the optical path length difference;
A peak value is obtained from an interference light intensity sequence indicating a change in interference light intensity accompanying a change in the optical path length difference at each measurement position of the interference light intensity distribution image stored in the image storage means, and the peak value is obtained. In a shape measuring apparatus comprising: a calculating means for obtaining a position in the optical axis direction at each measurement position of the measurement target;
The arithmetic means thins out the data so as not to impair the shape of the interference light intensity sequence, and positions the highest density of data for the thinned data in the peak of the interference light intensity sequence. A shape measuring device characterized by being obtained as a value.
広帯域スペクトルを有する光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を、撮像手段で撮像する工程と、
前記第1光路長と第2光路長の光路長差を光路長差変更手段で変化させながら、干渉光強度分布画像を画像記憶手段に順次記憶する工程と、
前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列から、その強度の中心から強度軸の正負方向に所定のスレッショルドレベルを設定する工程と、
前記スレッショルドレベルを超える干渉光強度のデータをピーク位置候補として求める工程と、
最もピーク位置候補が密集している領域の重心を干渉光強度列のピーク値として求める工程と、
前記求められたピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める工程と
を有することを特徴とする形状測定方法。
The light from the light source having a broadband spectrum is guided to the measurement target and the reference surface, and the light reflected from the measurement target and the reference surface is synthesized, and the first optical path length from the light source to the measurement target is obtained. An interference light intensity distribution image indicating the interference light intensity corresponding to each measurement position in the measurement surface of the measurement target that changes due to the optical path length difference from the light source to the second optical path length from the light source to the reference surface is obtained by the imaging unit. Imaging step;
Sequentially storing the interference light intensity distribution image in the image storage means while changing the optical path length difference between the first optical path length and the second optical path length by the optical path length difference changing means;
From the interference light intensity sequence indicating the change in the interference light intensity accompanying the change in the optical path length difference at each measurement position of the interference light intensity distribution image stored in the image storage means, from the center of the intensity to the positive / negative direction of the intensity axis Setting a predetermined threshold level in
Obtaining interference light intensity data exceeding the threshold level as a peak position candidate;
Obtaining the center of gravity of the region where the peak position candidates are most dense as the peak value of the interference light intensity sequence;
Obtaining the obtained peak value as a position in the optical axis direction at each measurement position of the object to be measured.
広帯域スペクトルを有する光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を、撮像手段で撮像する工程と、
前記第1光路長と第2光路長の光路長差を光路長差変更手段で変化させながら、干渉光強度分布画像を画像記憶手段に順次記憶する工程と、
前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列に対して、その振幅が再現されるように幾何要素を当てはめる工程と、
前記当てはめた幾何要素の各端点について、その端点で接続された2つの幾何要素の傾きの絶対値和が最大となる端点位置を前記干渉光強度列のピーク値として求める工程と、
前記求められたピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める工程と
を有することを特徴とする形状測定方法。
The light from the light source having a broadband spectrum is guided to the measurement target and the reference surface, and the light reflected from the measurement target and the reference surface is synthesized, and the first optical path length from the light source to the measurement target is obtained. An interference light intensity distribution image indicating the interference light intensity corresponding to each measurement position in the measurement surface of the measurement target that changes due to the optical path length difference from the light source to the second optical path length from the light source to the reference surface is obtained by the imaging unit. Imaging step;
Sequentially storing the interference light intensity distribution image in the image storage means while changing the optical path length difference between the first optical path length and the second optical path length by the optical path length difference changing means;
The amplitude is reproduced with respect to the interference light intensity sequence indicating the change in the interference light intensity accompanying the change in the optical path length difference at each measurement position of the interference light intensity distribution image stored in the image storage means. Applying a geometric element;
For each end point of the fitted geometric element, obtaining the end point position at which the sum of the absolute values of the inclinations of the two geometric elements connected at the end point is maximum as the peak value of the interference light intensity sequence;
Obtaining the obtained peak value as a position in the optical axis direction at each measurement position of the object to be measured.
広帯域スペクトルを有する光源からの光を被測定対象と参照面とに導くと共に、前記被測定対象及び参照面から反射された光を合成し、前記光源から前記被測定対象までの第1光路長と前記光源から前記参照面までの第2光路長との光路長差によって変化する前記被測定対象の測定面内の各測定位置に対応した干渉光強度を示す干渉光強度分布画像を、撮像手段で撮像する工程と、
前記第1光路長と第2光路長の光路長差を光路長差変更手段で変化させながら、干渉光強度分布画像を画像記憶手段に順次記憶する工程と、
前記画像記憶手段に記憶された前記干渉光強度分布画像の各測定位置における前記光路長差の変化に伴う干渉光強度の変化を示す干渉光強度列に対して、その形状を損なわないようにデータの間引きを行う工程と、
前記間引かれたデータに対して、最もデータの密度が高い位置を前記干渉光強度列のピーク値として求める工程と、
前記求められたピーク値を前記被測定対象の各測定位置における光軸方向の位置として求める工程と
を有することを特徴とする形状測定方法。
The light from the light source having a broadband spectrum is guided to the measurement target and the reference surface, and the light reflected from the measurement target and the reference surface is synthesized, and the first optical path length from the light source to the measurement target is obtained. An interference light intensity distribution image indicating the interference light intensity corresponding to each measurement position in the measurement surface of the measurement target that changes due to the optical path length difference from the light source to the second optical path length from the light source to the reference surface is obtained by the imaging unit. Imaging step;
Sequentially storing the interference light intensity distribution image in the image storage means while changing the optical path length difference between the first optical path length and the second optical path length by the optical path length difference changing means;
Data so as not to damage the shape of the interference light intensity sequence indicating the change in the interference light intensity accompanying the change in the optical path length difference at each measurement position of the interference light intensity distribution image stored in the image storage means. Decimation process,
For the thinned data, a step of obtaining a position having the highest data density as a peak value of the interference light intensity sequence;
Obtaining the obtained peak value as a position in the optical axis direction at each measurement position of the object to be measured.
JP2009255328A 2009-11-06 2009-11-06 Apparatus and method for measuring shape Pending JP2011099787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255328A JP2011099787A (en) 2009-11-06 2009-11-06 Apparatus and method for measuring shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255328A JP2011099787A (en) 2009-11-06 2009-11-06 Apparatus and method for measuring shape

Publications (1)

Publication Number Publication Date
JP2011099787A true JP2011099787A (en) 2011-05-19

Family

ID=44191073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255328A Pending JP2011099787A (en) 2009-11-06 2009-11-06 Apparatus and method for measuring shape

Country Status (1)

Country Link
JP (1) JP2011099787A (en)

Similar Documents

Publication Publication Date Title
CN100507441C (en) Non-contact 3-D shape testing method and its device
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
JP4939304B2 (en) Method and apparatus for measuring film thickness of transparent film
JP4255865B2 (en) Non-contact three-dimensional shape measuring method and apparatus
CN107121084A (en) Measuring method and process of measurement
JP2018163092A (en) Surface shape measurement device, and switching measurement method of the same
JP2011089897A (en) Form measuring device and method of aligning form data
JP5493152B2 (en) Shape measuring device
Quan et al. Determination of surface contour by temporal analysis of shadow moiré fringes
JP2023176026A (en) Method for determining scan range
JP6047764B2 (en) White interferometer, image processing method, and image processing program
JP5544679B2 (en) Step surface shape measuring method and measuring device
JP2016042072A (en) Information processing apparatus, information processing method, and program
JP2011099787A (en) Apparatus and method for measuring shape
Spagnolo et al. Fringe projection profilometry for recovering 2.5 D shape of ancient coins
JP2010060420A (en) Surface shape and/or film thickness measuring method and its system
CN107121058A (en) Measuring method and process of measurement
JP2010210571A (en) Image correlation displacement gauge and displacement measuring method
JP6188384B2 (en) Shape measuring device
JP6880396B2 (en) Shape measuring device and shape measuring method
Li et al. Measurement of diameter of metal cylinders using a sinusoidally vibrating interference pattern
KR20120016419A (en) Method for measuring width of sample using 3d shape measuring unit
JPH10221032A (en) Method and apparatus for measuring interference
JPH11218411A (en) Measurement method for interference and measurement device of interference
JP5953539B2 (en) Height position measuring device