JP2010210571A - Image correlation displacement gauge and displacement measuring method - Google Patents
Image correlation displacement gauge and displacement measuring method Download PDFInfo
- Publication number
- JP2010210571A JP2010210571A JP2009059577A JP2009059577A JP2010210571A JP 2010210571 A JP2010210571 A JP 2010210571A JP 2009059577 A JP2009059577 A JP 2009059577A JP 2009059577 A JP2009059577 A JP 2009059577A JP 2010210571 A JP2010210571 A JP 2010210571A
- Authority
- JP
- Japan
- Prior art keywords
- image
- correlation
- displacement
- reference images
- acquired image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本発明は、コヒーレント光の照明手段を備え、基準となる位置における測定対象への該コヒーレント光の照射により得られるスペックルパターンの基準画像と、面内変位(平面内移動)後における前記測定対象への前記コヒーレント光の照射により得られるスペックルパターンの取得画像と、の相関から、前記面内変位を測定する画像相関変位計、及び変位測定法に係り、特に、測定対象の回転量を求めることが可能な画像相関変位計、及び変位測定方法に関する。 The present invention includes a reference image of a speckle pattern obtained by irradiating the measurement target at a reference position with the coherent light illumination means, and the measurement target after in-plane displacement (in-plane movement) The present invention relates to an image correlation displacement meter that measures the in-plane displacement and a displacement measurement method, and in particular, obtains a rotation amount of a measurement object from a correlation with an acquired image of a speckle pattern obtained by irradiation of the coherent light onto The present invention relates to an image correlation displacement meter and a displacement measurement method.
スケールを用いることなく、二次元変位を非接触・高分解能で検出できる変位計として、特許文献1や非特許文献1に記載されているように、光ビームを測定対象に投光し、測定対象の表面(測定対象面)からの反射光の干渉パターンであるスペックルパターンを撮像素子で受光して、面内方向の変位(面内変位と称する)を測定する面内方向変位計が知られている。
As described in
一般的な画像においては、画像内にいくつかの特徴があり、それらを利用して測定対象の面内変位後の回転量を高精度に得る事が可能である。しかし、スペックルパターンでは一見して特徴を把握するのが困難である。このため、一般的な画像に対して用いられるような回転量を得る手法を、スペックルパターンの画像に対して用いることは困難である。 A general image has some characteristics in the image, and it is possible to obtain the rotation amount after the in-plane displacement of the measurement object with high accuracy by using them. However, it is difficult to grasp features at a glance with speckle patterns. For this reason, it is difficult to use a technique for obtaining a rotation amount used for a general image for an image of a speckle pattern.
具体的に説明すると、特許文献1に示すような面内方向変位計は、面内変位後の取得画像が回転していなければ(θ=0deg)、図7(A)に示す如く、平行移動量のみだけの面内変位を精度良く求めることができる。しかし、図7(B)示すように、取得画像に回転量θが与えられている場合には(例えば、θ=10deg)、例えば平行移動量を求めた上で基準画像を回転させて回転量θを求めることが考えられる。その場合には、図8に示す如く、微小角度(例えば、2degずつ)で基準画像を変化させた上で、取得画像と相関演算を行い、相関ピークの一番高い角度を取得画像の回転量θとして求めることとなる。しかし、このような方法は、取得画像の回転量θが一般的には不明であることから、その回転量θを求めるのに容易に収束せず、膨大な演算時間を要することとなる。同時に、そのような方法では、回転量θを正確に測定することは極めて困難となる。
More specifically, the in-plane direction displacement meter as shown in
本発明は、前記の問題点を解決するべくなされたもので、取得画像が回転されていても、面内変位の平行移動量と回転量の両方を高精度且つ高速に計測することが可能な画像相関変位計、及び変位測定方法を提供することを課題とする。 The present invention has been made to solve the above-described problems, and even when the acquired image is rotated, it is possible to measure both the parallel movement amount and the rotation amount of the in-plane displacement with high accuracy and high speed. It is an object to provide an image correlation displacement meter and a displacement measurement method.
本願の請求項1に係る発明は、コヒーレント光の照明手段を備え、基準となる位置における測定対象への該コヒーレント光の照射により得られるスペックルパターンの基準画像と、面内変位後における前記測定対象への前記コヒーレント光の照射により得られるスペックルパターンの取得画像と、の相関から、前記面内変位を測定する画像相関変位計であって、前記基準画像を複数記憶する記憶部と、該複数の基準画像と前記取得画像との相関演算を行うと共に、該相関演算の結果から前記面内変位のうちの平行移動量をそれぞれの基準画像に対して求める移動量処理部と、前記複数の基準画像間の距離とそれぞれの前記平行移動量の違いとから前記面内変位のうちの回転量を求める回転量処理部と、を備えたことにより、前記課題を解決したものである。
The invention according to
本願の請求項2に係る発明は、前記移動量処理部で、前記複数の基準画像の1つの基準画像と前記取得画像との相関演算から前記平行移動量を求めた後、前記複数の基準画像間の距離に基づいて前記取得画像の領域を制限して、該制限された領域の取得画像に対して他の基準画像と相関演算をなしたものである。 In the invention according to claim 2 of the present application, the movement amount processing unit obtains the parallel movement amount from a correlation calculation between one reference image of the plurality of reference images and the acquired image, and then the plurality of reference images. The area of the acquired image is limited based on the distance between them, and the acquired image in the limited area is subjected to correlation calculation with another reference image.
本願の請求項3に係る発明は、又、コヒーレント光の照明手段を備え、基準となる位置における測定対象への該コヒーレント光の照射により得られるスペックルパターンの基準画像と、面内変位後における前記測定対象への前記コヒーレント光の照射により得られるスペックルパターンの取得画像と、の相関から、前記面内変位を測定する変位測定方法であって、前記基準画像を複数記憶する工程と、該複数の基準画像を読み出して前記取得画像と相関演算を行う工程と、該相関演算の結果から前記面内変位のうちの平行移動量をそれぞれの基準画像に対して求める工程と、前記複数の基準画像間の距離とそれぞれの前記平行移動量の違いとから前記面内変位のうちの回転量を求める工程と、を含むことを特徴とする変位測定方法を提供するものである。 The invention according to claim 3 of the present application is also provided with illumination means for coherent light, and a reference image of a speckle pattern obtained by irradiating the measurement object at a reference position with the coherent light, and after in-plane displacement A displacement measuring method for measuring the in-plane displacement from a correlation with an acquired image of a speckle pattern obtained by irradiating the measurement object with the coherent light, the step of storing a plurality of the reference images; A step of reading a plurality of reference images and performing a correlation operation with the acquired image, a step of obtaining a parallel movement amount of the in-plane displacement from each of the reference images based on a result of the correlation operation, and the plurality of references And a step of obtaining a rotation amount of the in-plane displacement from a distance between images and a difference in each parallel movement amount. Than is.
本発明によれば、基準画像を複数用いることで、面内変位の平行移動量と回転量の両方を高精度且つ高速に計測することが可能となる。 According to the present invention, it is possible to measure both the parallel movement amount and the rotation amount of the in-plane displacement with high accuracy and high speed by using a plurality of reference images.
以下、図面を参照して、本発明の実施形態の一例を詳細に説明する。 Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.
本発明に係る第1実施形態について、図1から図4を用いて説明する。図1は本発明の第1実施形態に係る画像相関変位計の構成を示す模式図、図2は同じく画像相関変位計の回転量算出の原理を示す模式図、図3は同じく画像相関変位計の回転量算出のフローを示す図、図4は同じく回転量と相関レベルとの関係を示す図、である。 A first embodiment according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing the configuration of the image correlation displacement meter according to the first embodiment of the present invention, FIG. 2 is a schematic diagram showing the principle of calculating the rotation amount of the image correlation displacement meter, and FIG. FIG. 4 is a view showing the relationship between the rotation amount and the correlation level.
最初に、本実施形態の構成を、図1を用いて説明する。 First, the configuration of the present embodiment will be described with reference to FIG.
画像相関変位計100は、コヒーレント光の照明手段と、測定対象102の測定対象面104へ照射されたコヒーレント光により得られるスペックルパターンを受光する受光光学系と、受光光学系で得られる基準画像Sと取得画像Tとを処理する処理系と、を備える。 The image correlation displacement meter 100 includes a coherent light illuminating unit, a light receiving optical system that receives a speckle pattern obtained by the coherent light irradiated on the measurement target surface 104 of the measurement target 102, and a reference image obtained by the light receiving optical system. And a processing system for processing S and the acquired image T.
コヒーレント光の照明手段は、主にレーザ光源110とレーザ光源110から出射されたレーザ光を平行光とするコリメートレンズ112とから構成される。レーザ光源110から発せられたレーザ光はコリメートレンズ112により平行光である投光ビーム(コヒーレント光)114とされて、測定対象面104に照射される。 The illumination means for coherent light is mainly composed of a laser light source 110 and a collimating lens 112 that converts the laser light emitted from the laser light source 110 into parallel light. Laser light emitted from the laser light source 110 is converted into a projection beam (coherent light) 114 which is parallel light by the collimator lens 112 and is irradiated onto the measurement target surface 104.
受光光学系は、投光ビーム114の測定対象面104への照射により得られるスペックルパターンを集光して結像するためのレンズ116と、絞りの役目を果たすピンホール118と、レンズ116により結像された像をピクセルごとの電子データとして出力する固体撮像素子120と、を有する。
The light receiving optical system includes a
処理系は、記憶部122と移動量処理部124と回転量処理部126とを有する。記憶部122は、測定対象102の基準となる位置における測定対象102への投光ビーム114の照射により得られるスペックルパターンの基準画像Sを複数(2つ)記憶する。移動量処理部124は、記憶部122に記憶された複数(2つ)の基準画像Sを呼び出し、それらの基準画像Sと固体撮像素子120で得られた取得画像Tとの相関演算を行うことができる。基準画像Sと取得画像Tとは、2次元のピクセルデータである。このため、基準画像Sと取得画像Tとの相関演算は、取得画像T内でピクセル単位で位置が順次変更されて行われる。移動量処理部124は、その相関演算の結果で、一番高い相関ピークを示す位置を、取得画像Tにおける基準画像Sの面内変位後の画像(比較画像と称する)の位置と認識し、比較画像と基準画像Sとの位置の違いから平行移動量Mを求めることができる。移動量処理部124は、この相関演算を2つの基準画像Sに対して行い、基準画像Sに対してそれぞれの平行移動量Mを求める。回転量処理部126は、平行移動量Mと2つの基準画像S間の距離Lとを用いて回転量θを求めることができる。回転量処理部126は、平行移動量Mと求めた回転量θを面内変位(M、θ)として出力する。なお、平行移動量Mと回転量θとは、いずれの基準画像Sを基準にして求めてもよい。
The processing system includes a
次に、本実施形態における画像間相関変位計の回転量算出の原理を、図2を用いて説明する。 Next, the principle of calculating the rotation amount of the inter-image correlation displacement meter in the present embodiment will be described with reference to FIG.
基準画像S1及びS2の取得後面内変位を生じた際に、それが回転量θ1を伴って、基準画像S1及びS2の場所がそれぞれS11及びS21へ移動したとする。すると、取得画像T1に対して比較画像S11及びS21は相対的に傾きθ1を持つこととなる。しかし、相関演算をする際には、基準画像S1に回転量θ1(若しくはΔθ1)を与えずに取得画像T1と相関演算を行う。その際、その傾きθ1を与えずに相関演算を行っても、基準画像S1は比較画像S12の位置で強い相関関係を生じる(相関ピークが大きくなる)こととなる。このため、例えば基準画像S1の中心位置Aは比較画像S12の中心位置Cに移動したとして平行移動量M1を求めることができる。同時に、基準画像S2の中心位置Bは比較画像S22の中心位置Dに移動したとして平行移動量M2を求めることができる。従って、図2(B)に示す如く、中心位置Aから位置Cへの平行移動量M1を中心位置C、Dのそれぞれから差し引くと、計算上中心位置Cは中心位置C1に、中心位置Dは中心位置D1にそれぞれ移る。中心位置Aは中心位置C1と重なり、中心位置A(C1)と中心位置B(D1)との中心位置AB(C1D1)間の距離はL1である。このため、中心位置Bと中心位置A(C1)と中心位置D1の位置が明らかとなるので角度θ1を回転量として求めることができる。なお、2つの基準画像S1、S2の中心位置AB間の距離L1が長いほど回転量θ1は高精度な値として求められる。 It is assumed that when in-plane displacement occurs after acquisition of the reference images S1 and S2, the location of the reference images S1 and S2 moves to S11 and S21, respectively, with the rotation amount θ1. Then, the comparison images S11 and S21 have an inclination θ1 relative to the acquired image T1. However, when performing the correlation calculation, the correlation calculation is performed with the acquired image T1 without giving the rotation amount θ1 (or Δθ1) to the reference image S1. At this time, even if the correlation calculation is performed without giving the inclination θ1, the reference image S1 has a strong correlation at the position of the comparison image S12 (the correlation peak becomes large). Therefore, for example, the parallel movement amount M1 can be obtained assuming that the center position A of the reference image S1 has moved to the center position C of the comparison image S12. At the same time, the translation amount M2 can be obtained assuming that the center position B of the reference image S2 has moved to the center position D of the comparison image S22. Therefore, as shown in FIG. 2B, when the parallel movement amount M1 from the center position A to the position C is subtracted from each of the center positions C and D, the calculated center position C becomes the center position C1, and the center position D becomes Each moves to the center position D1. The center position A overlaps the center position C1, and the distance between the center position AB (C1D1) between the center position A (C1) and the center position B (D1) is L1. For this reason, since the positions of the center position B, the center position A (C1), and the center position D1 become clear, the angle θ1 can be obtained as the rotation amount. The longer the distance L1 between the central positions AB of the two reference images S1 and S2, the higher the rotation amount θ1 is obtained as a value.
次に、本実施形態に係る画像相関変位計の回転量算出のフローを図3に示し、その動作を説明する。 Next, FIG. 3 shows a flow for calculating the rotation amount of the image correlation displacement meter according to the present embodiment, and the operation thereof will be described.
最初に、平面内移動の基準となる位置において測定対象102へ投光ビーム114を照射し、そこから得られるスペックルパターンの基準画像S1、S2を記憶部122へ記憶する(ステップS2)。 First, the measurement target 102 is irradiated with the projection beam 114 at a position serving as a reference for in-plane movement, and the speckle pattern reference images S1 and S2 obtained therefrom are stored in the storage unit 122 (step S2).
次に、面内変位後に、測定対象102への投光ビーム114の照射により取得画像T1を得る。得られた取得画像T1と基準画像S1及びS2との相関演算をそれぞれ行う(ステップS4)。 Next, after the in-plane displacement, an acquired image T1 is obtained by irradiating the measurement target 102 with the projection beam 114. Correlation calculation between the obtained acquired image T1 and the reference images S1 and S2 is performed (step S4).
次に、取得画像T1と基準画像S1及びS2と相関演算した結果、相関ピークの最も大きい位置を比較画像S12及びS22の位置とする。そして、それぞれの中心位置AC、BD間の距離を平行移動量M1、M2として算出する(ステップS6)。 Next, as a result of correlation calculation between the acquired image T1 and the reference images S1 and S2, the position having the largest correlation peak is set as the position of the comparison images S12 and S22. Then, the distances between the respective center positions AC and BD are calculated as parallel movement amounts M1 and M2 (step S6).
次に、それぞれ得られた平行移動量M1、M2と基準画像S1、S2間(中心位置AB間)の距離L1とを用いて回転量θ1を算出する(ステップS8)。 Next, the rotation amount θ1 is calculated using the obtained parallel movement amounts M1 and M2 and the distance L1 between the reference images S1 and S2 (between the center positions AB) (step S8).
このため、本実施形態では回転量θ1の算出のために、予め微小回転量を与えた基準画像を多数用いて相関演算を行う必要はない。又、得られる回転量θ1は予め想定した回転量に限定されない。 For this reason, in this embodiment, in order to calculate the rotation amount θ1, it is not necessary to perform correlation calculation using a large number of reference images to which a minute rotation amount is given in advance. Further, the obtained rotation amount θ1 is not limited to the rotation amount assumed in advance.
即ち、取得画像T1が、たとえ回転されてスペックルパターンのように一見して特徴を見出すことが困難な画像を元にしても、2つの基準画像S1、S2を用いることで面内変位の平行移動量M1(M2)と回転量θ1の両方を高精度且つ高速に計測することが可能となる。 That is, even if the acquired image T1 is rotated and based on an image that is difficult to find at first glance like a speckle pattern, the in-plane displacement is parallelized by using the two reference images S1 and S2. It is possible to measure both the movement amount M1 (M2) and the rotation amount θ1 with high accuracy and high speed.
例えば、回転量θ1=10deg程度であれば、図4に示す如く、相関ピークの相関レベルは充分高いので、回転量がない場合(θ1=0deg)と同程度の精度で平行移動量M1(M2)を計測可能である。 For example, if the rotation amount θ1 = about 10 deg, the correlation level of the correlation peak is sufficiently high as shown in FIG. 4, and therefore the parallel movement amount M1 (M2) with the same accuracy as when there is no rotation amount (θ1 = 0 deg). ) Can be measured.
なお、図4に示す如く、取得画像T1の回転量θ1が少ないほど、相関ピークの相関レベルが高くなる。このため、回転量θ1が微小な回転量であるほど、より正確に回転量θ1を求めることができる。 As shown in FIG. 4, the smaller the rotation amount θ1 of the acquired image T1, the higher the correlation level of the correlation peak. For this reason, the smaller the rotation amount θ1 is, the more accurately the rotation amount θ1 can be obtained.
次に、本発明の第2実施形態について、図5、図6を用いて説明する。 Next, a second embodiment of the present invention will be described with reference to FIGS.
本実施形態においては、構成自体は図1に示す第1実施形態と同一である。しかし、移動量処理部124における処理が異なっている。第1実施形態においては、取得画像Tの全ピクセルデータに対して基準画像Sの相関演算を行っていたが、第2実施形態においては、取得画像Tの相関演算の対象とする領域を制限している。
In the present embodiment, the configuration itself is the same as that of the first embodiment shown in FIG. However, the processing in the movement
最初に本実施形態に係る画像相関変位計の回転量算出の原理を、図5を用いて説明する。 First, the principle of calculating the rotation amount of the image correlation displacement meter according to the present embodiment will be described with reference to FIG.
2つの基準画像S3及びS4を用いた時に、その中心位置EF間の距離L2は定まっており、面内変位の後もその中心位置GH間の距離L2は不変と考えることができる。このため、回転量θ2を伴って、基準画像S3、S4の場所がそれぞれS31、S41へ移動したとする。すると、図5に示す如く、基準画像S3の比較画像S32への平行移動量M3が求められた際には、比較画像S32の中心位置Gから距離L2だけ離れた位置に比較画像S42(S41)の中心位置Hがあると想定することができる。即ち、基準画像S3に対する比較画像S32の中心位置Gを中心とした半径L2の円周SF上に基準画像S4に対する比較画像S42が存在すると考えることができる。このため、基準画像S4に対する平行移動量M4を求めるための取得画像T2上の演算領域を円周SF上のみに制限することができる。このようにして、基準画像S4に対する取得画像T2の演算領域を低減することにより、演算時間の短縮を図ることができる。 When the two reference images S3 and S4 are used, the distance L2 between the center positions EF is determined, and it can be considered that the distance L2 between the center positions GH remains unchanged after the in-plane displacement. For this reason, it is assumed that the locations of the reference images S3 and S4 have moved to S31 and S41, respectively, with the rotation amount θ2. Then, as shown in FIG. 5, when the translation amount M3 of the reference image S3 to the comparison image S32 is obtained, the comparison image S42 (S41) is located at a position separated from the center position G of the comparison image S32 by the distance L2. It can be assumed that there is a center position H. That is, it can be considered that the comparison image S42 for the reference image S4 exists on the circumference SF of the radius L2 with the center position G of the comparison image S32 for the reference image S3 as the center. For this reason, the calculation area on the acquired image T2 for obtaining the translation amount M4 with respect to the reference image S4 can be limited only to the circumference SF. Thus, the calculation time can be shortened by reducing the calculation area of the acquired image T2 with respect to the reference image S4.
具体的に、本実施形態に係る画像相関変位計の回転量算出のフローを、図6を用いて説明する。 Specifically, the flow of calculating the rotation amount of the image correlation displacement meter according to the present embodiment will be described with reference to FIG.
最初に、基準となる位置において測定対象102へ投光ビーム114を照射し、そこから得られるスペックルパターンの基準画像S3、S4を記憶部122へ記憶する(ステップS20)。 First, the measurement target 102 is irradiated with the projection beam 114 at the reference position, and the speckle pattern reference images S3 and S4 obtained therefrom are stored in the storage unit 122 (step S20).
次に、面内変位した後の測定対象102への投光ビーム114の照射により取得画像T2を得る。そして、得られた取得画像T2と基準画像S3との相関演算を行う(ステップS22)。 Next, an acquired image T2 is obtained by irradiating the measurement target 102 with the projection beam 114 after the in-plane displacement. Then, a correlation calculation between the obtained acquired image T2 and the reference image S3 is performed (step S22).
次に、取得画像T2と基準画像S3と相関演算した結果、相関ピークの最も大きい位置を比較画像S32の位置とする。そして、基準画像S3と比較画像S32の中心位置EG間の距離を平行移動量M3として算出する(ステップS24)。 Next, as a result of correlation calculation between the acquired image T2 and the reference image S3, the position having the largest correlation peak is set as the position of the comparison image S32. Then, the distance between the center position EG of the reference image S3 and the comparison image S32 is calculated as the parallel movement amount M3 (step S24).
次に、平行移動量M3と基準画像S3、S4間(中心位置EF間)の距離L2とを用いて位置pを算出する(ステップS26)。この時、位置pは、中心位置Fを、中心位置Eから中心位置G対して求められた平行移動量M3で移動した位置となり、且つ、基準画像S3、S4間(中心位置EF間)の距離L2を半径とする円周SF上の位置となる。 Next, the position p is calculated using the parallel movement amount M3 and the distance L2 between the reference images S3 and S4 (between the center positions EF) (step S26). At this time, the position p is a position obtained by moving the center position F from the center position E by the parallel movement amount M3 obtained with respect to the center position G, and a distance between the reference images S3 and S4 (between the center positions EF). It is a position on the circumference SF having a radius of L2.
次に、位置pを基準点にして円周SF上で基準点を順次ずらし、比較画像T2内でそれら基準点を中心位置とする基準画像S4と同じピクセル領域と基準画像S4との相関演算をそれぞれ実行していく(ステップS28)。そして、相関ピークが最大となる位置を中心位置Hとする比較画像S42の位置として決定して、基準画像S4からの平行移動量M4を求める。この時、測定対象102からのスペックルパターンの画像は測定系や移動系によって多少の誤差を有している可能性がある。このため、それらの誤差に応じて適宜円周SF上の測定間隔及び円周SFの半径方向の幅を定めることができる。 Next, the reference point is sequentially shifted on the circumference SF with the position p as the reference point, and the correlation calculation between the reference pixel S4 and the reference image S4 having the reference point as the center position in the comparison image T2 is performed. Each is executed (step S28). Then, the position where the correlation peak is maximized is determined as the position of the comparison image S42 having the center position H, and the parallel movement amount M4 from the reference image S4 is obtained. At this time, the speckle pattern image from the measuring object 102 may have some errors depending on the measurement system and the moving system. For this reason, the measurement interval on the circumference SF and the width in the radial direction of the circumference SF can be appropriately determined according to the errors.
次に、それぞれ得られた平行移動量M3、M4と基準画像S3、S4間(中心位置EF間)の距離L2とを用いて回転量θ2を算出する(ステップS30)。 Next, the rotation amount θ2 is calculated using the obtained parallel movement amounts M3 and M4 and the distance L2 between the reference images S3 and S4 (between the center positions EF) (step S30).
このようにして、画像相関を行う際には、限定された円周SF上の位置pを基準に行うため、取得画像T2の全ピクセルデータに対して行う相関演算に比べてはるかに演算量を減らすことができる。このため、本実施形態は第1実施形態に比べて回転量θ2を算出するための計算時間を短くして、より高速化を図ることができる。 In this way, when image correlation is performed, since the position p on the limited circumference SF is used as a reference, the calculation amount is much larger than the correlation calculation performed on all the pixel data of the acquired image T2. Can be reduced. For this reason, the present embodiment can shorten the calculation time for calculating the rotation amount θ2 as compared with the first embodiment, and can achieve higher speed.
本実施形態について、上記実施形態をあげて説明したが、本発明は上記実施形態に限定されるものではない。即ち本発明の要旨を逸脱しない範囲においての改良並びに設計の変更が可能なことは言うまでもない。 Although the present embodiment has been described with reference to the above embodiment, the present invention is not limited to the above embodiment. That is, it goes without saying that improvements and design changes can be made without departing from the scope of the present invention.
例えば、上記実施形態においては、基準画像Sは2つであったが本発明はこれに限定されない。基準画像Sを3つ以上用いても構わない。その際には、面内変位後に取得画像T内から出ないで残る基準画像Sに対する比較画像を複数用いて本発明を適用することができる。その際に、複数の基準画像Sの領域が互いに重複するような配置関係になっていても構わない。 For example, in the above embodiment, there are two reference images S, but the present invention is not limited to this. Three or more reference images S may be used. In that case, the present invention can be applied by using a plurality of comparison images with respect to the reference image S that remains without leaving the acquired image T after the in-plane displacement. At this time, the arrangement relationship may be such that the regions of the plurality of reference images S overlap each other.
また、上記実施形態においては、基準画像S間の距離Lをその基準画像Sの中心位置で規定していたが、本発明はこれに限定されるものではない。基準画像Sの上端、下端、角、或いはその他の位置であっても構わない。 In the above embodiment, the distance L between the reference images S is defined by the center position of the reference image S, but the present invention is not limited to this. The upper end, lower end, corner, or other position of the reference image S may be used.
また、上記実施形態においては、取得画像T2の領域を制限するために、比較画像S32の中心位置Gを中心とした半径L2の円周SF上のみに比較画像S42の中心位置Hがくるとしていたが、本発明はこれに限定されるものではない。例えば、図4に示す如く、相関レベルは回転量Mが少なければ高いということを利用して、更に円周SF上の狭い角度の範囲のみに取得画像Tとの相関演算を限定してもよいし、また円周SF上という限定をはずして、単に回転角の狭い領域だけに相関演算を制限することであってもよい。 In the above embodiment, in order to limit the area of the acquired image T2, the center position H of the comparison image S42 comes only on the circumference SF of the radius L2 with the center position G of the comparison image S32 as the center. However, the present invention is not limited to this. For example, as shown in FIG. 4, the correlation calculation with the acquired image T may be further limited to a narrow angle range on the circumference SF using the fact that the correlation level is high when the rotation amount M is small. Alternatively, the limitation on the circumference SF may be removed, and the correlation calculation may be limited only to a region having a narrow rotation angle.
100…画像相関変位計
102…測定対象
104…測定対象面
110…レーザ光源
112…コリメートレンズ
114…投光ビーム
116…レンズ
118…ピンホール
120…固体撮像素子
122…記憶部
124…移動量処理部
126…回転量処理部
DESCRIPTION OF SYMBOLS 100 ... Image correlation displacement meter 102 ... Measurement object 104 ... Measurement object surface 110 ... Laser light source 112 ... Collimating lens 114 ...
Claims (3)
前記基準画像を複数記憶する記憶部と、
該複数の基準画像と前記取得画像との相関演算を行うと共に、該相関演算の結果から前記面内変位のうちの平行移動量をそれぞれの基準画像に対して求める移動量処理部と、
前記複数の基準画像間の距離とそれぞれの前記平行移動量の違いとから前記面内変位のうちの回転量を求める回転量処理部と、
を備えることを特徴とする画像相関変位計。 A reference image of a speckle pattern obtained by irradiating the measurement target at a reference position with a coherent light illumination means, and obtained by irradiation of the coherent light to the measurement target after in-plane displacement. An image correlation displacement meter that measures the in-plane displacement from a correlation with an acquired image of a speckle pattern,
A storage unit for storing a plurality of the reference images;
A correlation processing between the plurality of reference images and the acquired image, and a movement amount processing unit for obtaining a parallel movement amount of the in-plane displacement from each of the reference images from the result of the correlation calculation;
A rotation amount processing unit for obtaining a rotation amount of the in-plane displacement from a distance between the plurality of reference images and a difference in each of the parallel movement amounts;
An image correlation displacement meter comprising:
前記基準画像を複数記憶する工程と、
該複数の基準画像を読み出して前記取得画像と相関演算を行う工程と、
該相関演算の結果から前記面内変位のうちの平行移動量をそれぞれの基準画像に対して求める工程と、
前記複数の基準画像間の距離とそれぞれの前記平行移動量の違いとから前記面内変位のうちの回転量を求める工程と、
を含むことを特徴とする変位測定方法。 A reference image of a speckle pattern obtained by irradiating the measurement target at a reference position with a coherent light illumination means, and obtained by irradiation of the coherent light to the measurement target after in-plane displacement. A displacement measuring method for measuring the in-plane displacement from a correlation with an acquired image of a speckle pattern,
Storing a plurality of the reference images;
Reading the plurality of reference images and performing a correlation operation with the acquired image;
Obtaining a translation amount of the in-plane displacement from each correlation image from the result of the correlation calculation;
Obtaining the amount of rotation of the in-plane displacement from the distance between the plurality of reference images and the difference in the amount of parallel movement of each,
A displacement measuring method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009059577A JP2010210571A (en) | 2009-03-12 | 2009-03-12 | Image correlation displacement gauge and displacement measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009059577A JP2010210571A (en) | 2009-03-12 | 2009-03-12 | Image correlation displacement gauge and displacement measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010210571A true JP2010210571A (en) | 2010-09-24 |
Family
ID=42970883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009059577A Pending JP2010210571A (en) | 2009-03-12 | 2009-03-12 | Image correlation displacement gauge and displacement measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010210571A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012078342A (en) * | 2010-10-05 | 2012-04-19 | Mitsutoyo Corp | Image correlation displacement sensor |
JP2015152490A (en) * | 2014-02-17 | 2015-08-24 | 株式会社ミツトヨ | Displacement detection apparatus, displacement detection system, and displacement detection method |
JP2017032595A (en) * | 2016-11-17 | 2017-02-09 | 株式会社リコー | Edge position detection device, conveyance device, image formation device and edge position detection method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000099711A (en) * | 1998-09-15 | 2000-04-07 | Hewlett Packard Co <Hp> | Acquiring method for navigation position |
JP2003316509A (en) * | 2002-04-08 | 2003-11-07 | Agilent Technol Inc | Apparatus and method for sensing rotation |
JP2007133702A (en) * | 2005-11-10 | 2007-05-31 | Uchida Yoko Co Ltd | Information processing apparatus for content related to object and casing storing the information processing apparatus |
WO2007088759A1 (en) * | 2006-02-01 | 2007-08-09 | National University Corporation The University Of Electro-Communications | Displacement detection method, displacement detection device, displacement detection program, characteristic point matching method, and characteristic point matching program |
JP2008039535A (en) * | 2006-08-04 | 2008-02-21 | Mitsutoyo Corp | Image correlation displacement gage |
-
2009
- 2009-03-12 JP JP2009059577A patent/JP2010210571A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000099711A (en) * | 1998-09-15 | 2000-04-07 | Hewlett Packard Co <Hp> | Acquiring method for navigation position |
JP2003316509A (en) * | 2002-04-08 | 2003-11-07 | Agilent Technol Inc | Apparatus and method for sensing rotation |
JP2007133702A (en) * | 2005-11-10 | 2007-05-31 | Uchida Yoko Co Ltd | Information processing apparatus for content related to object and casing storing the information processing apparatus |
WO2007088759A1 (en) * | 2006-02-01 | 2007-08-09 | National University Corporation The University Of Electro-Communications | Displacement detection method, displacement detection device, displacement detection program, characteristic point matching method, and characteristic point matching program |
JP2008039535A (en) * | 2006-08-04 | 2008-02-21 | Mitsutoyo Corp | Image correlation displacement gage |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012078342A (en) * | 2010-10-05 | 2012-04-19 | Mitsutoyo Corp | Image correlation displacement sensor |
JP2015152490A (en) * | 2014-02-17 | 2015-08-24 | 株式会社ミツトヨ | Displacement detection apparatus, displacement detection system, and displacement detection method |
JP2017032595A (en) * | 2016-11-17 | 2017-02-09 | 株式会社リコー | Edge position detection device, conveyance device, image formation device and edge position detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9062958B2 (en) | Image sensor, attitude detector, contact probe, and multi-sensing probe | |
JP5798810B2 (en) | Image correlation displacement sensor | |
JP5663758B2 (en) | Shape measuring method and shape measuring apparatus | |
KR102082476B1 (en) | 2D Absolute Position Measuring Method And Absolute Position Measuring Apparatus | |
US20160180516A1 (en) | Position detection apparatus, lens apparatus, image pickup system, machine tool apparatus, position detection method, and non-transitory computer-readable storage medium which are capable of detecting abnormality | |
US9441959B2 (en) | Calibration method and shape measuring apparatus | |
JP5722787B2 (en) | Scanning microscope | |
JP2010060366A (en) | Measurement method, method of manufacturing optical element, reference master standard, and measurement device | |
US7443516B2 (en) | Optical-distortion correcting apparatus and optical-distortion correcting method | |
JP2008145139A (en) | Shape measuring device | |
JP2009162591A (en) | Specimen shape measuring method, measuring apparatus, and program for allowing computer to execute measurement of specimen shape | |
JP2010210571A (en) | Image correlation displacement gauge and displacement measuring method | |
US20130235385A1 (en) | Surface shape measurement method and measurement apparatus | |
JP2015114279A (en) | Precision angular positioning device | |
US7609389B2 (en) | Measurement apparatus for measuring surface map | |
JP2013130457A (en) | Shape measurement apparatus, shape measurement system and shape measurement method | |
JP4784396B2 (en) | 3D shape measurement method and 3D shape measurement apparatus using the same | |
JP5431221B2 (en) | Distance measuring device | |
JP6899236B2 (en) | Relationship identification method, relationship identification device, relationship identification program, correction method, correction device, and correction program | |
US8643848B2 (en) | Method and apparatus for measuring shape | |
JP5950760B2 (en) | Calibration method of interference shape measuring mechanism | |
US9823097B2 (en) | Method for determining absolute coding of an optical coding track | |
JP5371606B2 (en) | Shape measuring apparatus and shape measuring method | |
US20080316878A1 (en) | Method for measuring thickness and measuring device using the same | |
JP2018119817A (en) | Shape measurement device and shape measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130405 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140107 |