JP2011099348A - Air compressor - Google Patents

Air compressor Download PDF

Info

Publication number
JP2011099348A
JP2011099348A JP2009253240A JP2009253240A JP2011099348A JP 2011099348 A JP2011099348 A JP 2011099348A JP 2009253240 A JP2009253240 A JP 2009253240A JP 2009253240 A JP2009253240 A JP 2009253240A JP 2011099348 A JP2011099348 A JP 2011099348A
Authority
JP
Japan
Prior art keywords
chamber
pressure
load operation
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009253240A
Other languages
Japanese (ja)
Other versions
JP5308994B2 (en
Inventor
Kenji Morita
謙次 森田
Hideharu Tanaka
英晴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2009253240A priority Critical patent/JP5308994B2/en
Publication of JP2011099348A publication Critical patent/JP2011099348A/en
Application granted granted Critical
Publication of JP5308994B2 publication Critical patent/JP5308994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Fluid-Driven Valves (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air compressor reducing operation pressure of a suction throttle valve during no-load operation while suppressing an increase in the size of the suction throttle valve and, eventually, reducing the delivery pressure of a compressor body during the no-load operation and enhancing an energy-saving effect. <P>SOLUTION: A three-way valve 22 is provided so that any one of control paths 21A and 21B is selected and made to communicate with a control path 21C. When performing load operation, a control device 5 controls the three-way valve 22 so that the control path 21A is made to communicate with the control path 21C, thereby allowing the spring chamber 16 of the suction throttle valve 3 to communicate with a primary chamber 11. Meanwhile, when switching from the load operation to the non-load operation, the control device controls the three-way valve 22 so that the control path 21B is made to communicate with the control path 21C, thereby allowing the spring chamber 16 of the suction throttle valve 3 to communicate with a secondary chamber 12. Thereby, pressure in the spring chamber 16 of the suction throttle valve 3 is controlled. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、圧縮機本体の吸入側に設けられた吸込み絞り弁を備えた空気圧縮機に関する。   The present invention relates to an air compressor provided with a suction throttle valve provided on the suction side of a compressor body.

空気圧縮機は、例えば、空気を圧縮する圧縮機本体と、この圧縮機本体の吸入側に設けられた吸込み絞り弁とを備えている(例えば、特許文献1参照)。   The air compressor includes, for example, a compressor main body that compresses air, and a suction throttle valve provided on the suction side of the compressor main body (see, for example, Patent Document 1).

吸込み絞り弁は、弁座と、この弁座を開閉する弁体と、弁座の上流側である一次室と、弁座の下流側である二次室と、シリンダ内に摺動可能に設けられたピストンと、このピストンに接続されて、先端側の小径部に弁体がスライド可能に挿通された軸とを有している。シリンダ内はピストンで区画されて、シリンダ内のピストンの摺動方向一方側にバネ室が形成され、シリンダ内のピストンの摺動方向他方側に操作室が形成されている。バネ室内にはバネが収納されており、このバネの力が弁体の開き方向の付勢力としてピストンに作用している。また、操作室内の圧力が弁体の閉じ方向の付勢力としてピストンに作用している。   The suction throttle valve is slidably provided in the cylinder, a valve body for opening and closing the valve seat, a primary chamber upstream of the valve seat, a secondary chamber downstream of the valve seat, and a cylinder. And a shaft that is connected to the piston and into which a valve body is slidably inserted in a small-diameter portion on the distal end side. The cylinder is partitioned by a piston, and a spring chamber is formed on one side in the sliding direction of the piston in the cylinder, and an operation chamber is formed on the other side in the sliding direction of the piston in the cylinder. A spring is housed in the spring chamber, and the force of this spring acts on the piston as a biasing force in the opening direction of the valve body. Further, the pressure in the operation chamber acts on the piston as a biasing force in the closing direction of the valve body.

圧縮機本体の吐出経路には第1の放気経路が分岐接続され、この第1の放気経路が吸込み絞り弁の操作室に接続されている。第1の放気経路には放気弁が設けられている。また、吸込み絞り弁の操作室と一次室との間には第2の放気経路が接続されている。   A first discharge path is branchedly connected to the discharge path of the compressor body, and the first discharge path is connected to the operation chamber of the suction throttle valve. An air release valve is provided in the first air release path. A second air release path is connected between the operation chamber of the suction throttle valve and the primary chamber.

そして、例えば全負荷運転を行う場合は、放気弁を閉じ状態とすることにより、圧縮機本体の吐出側の圧縮空気が吸込み絞り弁の操作室及び一次室に導出されず、また操作室と一次室とが連通しているので、操作室内の圧力がほぼ大気圧となる。これにより、バネの力による弁体の開き方向の付勢力が操作室内の圧力による弁体の閉じ方向の付勢力よりも勝り、ピストンが弁体の開き方向に摺動し、さらに一次室と二次室との圧力差によって弁体が開き方向にスライドし、弁座が全開する。その結果、圧縮機本体は、吸込み絞り弁を介し空気を吸込み、圧縮するようになっている。   For example, when performing full load operation, by closing the discharge valve, the compressed air on the discharge side of the compressor body is not led to the operation chamber and the primary chamber of the suction throttle valve, Since the primary chamber communicates with the primary chamber, the pressure in the operation chamber is almost atmospheric pressure. As a result, the biasing force in the opening direction of the valve body by the force of the spring exceeds the biasing force in the closing direction of the valve body by the pressure in the operation chamber, the piston slides in the opening direction of the valve body, The valve body slides in the opening direction due to the pressure difference with the next chamber, and the valve seat is fully opened. As a result, the compressor body sucks air through the suction throttle valve and compresses it.

一方、例えば無負荷運転を行う場合は、放気弁を開き状態とすることにより、圧縮機本体の吐出側の圧縮空気が吸込み絞り弁の操作室及び一次室に導出されて、圧縮機本体の吐出側圧力が低減するとともに、操作室内の圧力が高くなる。これにより、操作室内の圧力による弁体の閉じ方向の付勢力がバネの力による弁体の開き方向の付勢力より勝り、ピストンとともに弁体が閉じ方向に動作し、弁座が全閉する。その結果、圧縮機本体の吸入側が遮断され、かつ圧縮機本体の吐出側圧力が低減した状態で、圧縮機本体が運転される。   On the other hand, for example, when performing no-load operation, by opening the release valve, compressed air on the discharge side of the compressor body is led to the operation chamber and the primary chamber of the suction throttle valve, and the compressor body While the discharge side pressure decreases, the pressure in the operation chamber increases. As a result, the urging force in the closing direction of the valve body due to the pressure in the operation chamber is superior to the urging force in the opening direction of the valve body due to the spring force, the valve body operates in the closing direction together with the piston, and the valve seat is fully closed. As a result, the compressor body is operated in a state where the suction side of the compressor body is shut off and the discharge side pressure of the compressor body is reduced.

特開2008−175152号公報JP 2008-175152 A

上記従来技術では、無負荷運転を行う場合に、操作室内の圧力による弁体の閉じ方向の付勢力を、バネの力による弁体の開き方向の付勢力より大きくして、弁体を閉じ方向に動作させるようになっている。そのため、無負荷運転時の吸込み絞り弁の操作室内の圧力は、バネの力に勝るように高める必要があり、その圧力源である圧縮機本体の吐出側圧力の低減を妨げる要因となっていた。無負荷運転時の吐出側圧力が大きくなれば、圧縮機本体の動力も大きくなり、省エネ効果が低下する。特に、近年、ロータの改良などによって、圧縮機本体の吸入側圧力と吐出側圧力との圧力差が小さくなってもロータを安定して運転することが可能となり、騒音を低減することが可能となったことから、無負荷運転時の吐出側圧力の低減が望まれていた。   In the above prior art, when performing no-load operation, the urging force in the closing direction of the valve body due to the pressure in the operation chamber is made larger than the urging force in the opening direction of the valve body due to the spring force to close the valve body in the closing direction. Is supposed to work. Therefore, the pressure in the operation chamber of the suction throttle valve during no-load operation needs to be increased to overcome the spring force, which hinders the reduction of the discharge side pressure of the compressor body that is the pressure source. . If the discharge side pressure during no-load operation increases, the power of the compressor body also increases and the energy saving effect decreases. In particular, due to improvements in the rotor in recent years, it is possible to operate the rotor stably even if the pressure difference between the suction side pressure and the discharge side pressure of the compressor body becomes small, and noise can be reduced. Therefore, it has been desired to reduce the discharge side pressure during no-load operation.

そこで、無負荷運転時の圧縮機本体の吐出側圧力すなわち吸込み絞り弁の操作圧力の低減を図るための方法の一つとして、例えばピストンの径寸法(言い換えれば、断面積)を大きくする方法が考えられる。しかし、この場合には、吸込み絞り弁の大型化を招いてしまう。具体的に説明すると、例えば、無負荷運転時の圧縮機本体の吐出側圧力を0.2MPa、吸込み絞り弁のピストンの径寸法を100mm、バネ力を700Nとした条件から、吐出側圧力を0.1MPaまで低減するには、ピストンの径寸法を140mm程度(約1.4倍)まで大きくしなければならない。   Therefore, as one of methods for reducing the discharge side pressure of the compressor body during no-load operation, that is, the operation pressure of the suction throttle valve, for example, a method of increasing the diameter of the piston (in other words, the cross-sectional area). Conceivable. However, in this case, the suction throttle valve is increased in size. More specifically, for example, the discharge side pressure is set to 0 on the condition that the discharge side pressure of the compressor body during no-load operation is 0.2 MPa, the diameter of the piston of the suction throttle valve is 100 mm, and the spring force is 700 N. To reduce the pressure to 1 MPa, the piston diameter must be increased to about 140 mm (about 1.4 times).

本発明の目的は、吸込み絞り弁の大型化を抑制しつつ、無負荷運転時の吸込み絞り弁の操作圧力を低減することができ、ひいては無負荷運転時の圧縮機本体の吐出側圧力を低減することができ、省エネ効果を高めることができる空気圧縮機を提供することにある。   The object of the present invention is to reduce the operating pressure of the suction throttle valve during no-load operation while suppressing an increase in the size of the suction throttle valve, thereby reducing the discharge side pressure of the compressor body during no-load operation. An object of the present invention is to provide an air compressor that can increase the energy saving effect.

(1)上記目的を達成するために、本発明は、空気を圧縮する圧縮機本体と、前記圧縮機本体の吸入側に設けられた吸込み絞り弁とを備え、前記吸込み絞り弁は、弁座と、前記弁座を開閉する弁体と、前記弁座の上流側の一次室と、前記弁座の下流側の二次室と、シリンダ内に摺動可能に設けられて前記弁体に接続されたピストンと、前記シリンダ内に前記ピストンで区画形成されて前記ピストンの摺動方向一方側に位置するバネ室と、前記バネ室に収納され、前記弁体の開き方向の付勢力を前記ピストンに作用させるバネと、前記シリンダ内に前記ピストンで区画形成されて前記ピストンの摺動方向他方側に位置し、内部圧力が前記弁体の閉じ方向の付勢力として前記ピストンに作用する操作室とを有し、負荷運転を行う場合は、前記圧縮機本体の吐出側の圧縮空気を前記操作室に導出しないで前記操作室内の圧力を低くし、これによって前記ピストンとともに前記弁体を開き方向に動作させて前記弁座を開き、負荷運転から無負荷運転に切替える場合は、前記圧縮機本体の吐出側の圧縮空気を前記操作室に導出して前記操作室内の圧力を高め、これによって前記ピストンとともに前記弁体を閉じ方向に動作させて前記弁座を閉じる空気圧縮機において、負荷運転を行う場合に前記バネ室を前記一次室又はほぼ大気圧下の領域と連通し、負荷運転から無負荷運転に切替える場合に前記バネ室を前記二次室と連通して、前記バネ室内の圧力を制御するバネ室圧力制御手段を備える。   (1) In order to achieve the above object, the present invention includes a compressor body that compresses air, and a suction throttle valve that is provided on the suction side of the compressor body. A valve body that opens and closes the valve seat, a primary chamber upstream of the valve seat, a secondary chamber downstream of the valve seat, and is slidably provided in the cylinder and connected to the valve body A piston, a spring chamber defined by the piston in the cylinder and positioned on one side in the sliding direction of the piston, and housed in the spring chamber, and the biasing force in the opening direction of the valve body is stored in the piston A spring that acts on the piston, and an operation chamber that is defined by the piston in the cylinder and is located on the other side in the sliding direction of the piston, and in which an internal pressure acts on the piston as an urging force in the closing direction of the valve body; When performing load operation, the compression The pressure inside the operation chamber is lowered without leading the compressed air on the discharge side of the main body to the operation chamber, thereby causing the valve body to operate in the opening direction together with the piston to open the valve seat, and from no load operation to no load When switching to operation, the compressed air on the discharge side of the compressor body is led to the operation chamber to increase the pressure in the operation chamber, thereby operating the valve body together with the piston in the closing direction to move the valve seat. In the air compressor which closes, when the load operation is performed, the spring chamber is communicated with the primary chamber or a region under substantially atmospheric pressure, and when the load operation is switched to the no-load operation, the spring chamber is connected to the secondary chamber. Spring chamber pressure control means for communicating and controlling the pressure in the spring chamber is provided.

本発明においては、負荷運転を行う場合に、吸込み絞り弁のバネ室を一次室(又はほぼ大気圧下の領域)と連通して、バネ室内の圧力がほぼ大気圧となるように制御する。一方、負荷運転から無負荷運転に切替える場合は、吸込み絞り弁のバネ室を二次室と連通して、バネ室内の圧力がほぼ真空圧となるように制御する。このバネ室内の負圧は、操作室内の圧力(正圧)による弁体の閉じ方向の付勢力を補助するように働く。そのため、例えば吸込み絞り弁のピストンの断面積を大きくしなくとも、操作室内の圧力を低減することができる。したがって、吸込み絞り弁の大型化を抑制しつつ、無負荷運転時の吸込み絞り弁の操作圧力を低減することができ、ひいては無負荷運転時の圧縮機本体の吐出側圧力を低減することができる。その結果、無負荷運転時の圧縮機本体の動力を低減することができ、省エネ効果を高めることができる。   In the present invention, when performing a load operation, the spring chamber of the suction throttle valve is communicated with the primary chamber (or a region under almost atmospheric pressure), and the pressure in the spring chamber is controlled to be almost atmospheric pressure. On the other hand, when switching from the load operation to the no-load operation, the spring chamber of the suction throttle valve is communicated with the secondary chamber, and control is performed so that the pressure in the spring chamber becomes substantially a vacuum pressure. The negative pressure in the spring chamber serves to assist the biasing force in the closing direction of the valve body due to the pressure (positive pressure) in the operation chamber. Therefore, for example, the pressure in the operation chamber can be reduced without increasing the cross-sectional area of the piston of the suction throttle valve. Therefore, it is possible to reduce the operation pressure of the suction throttle valve during no-load operation while suppressing an increase in the size of the suction throttle valve, and thus reduce the discharge side pressure of the compressor body during no-load operation. . As a result, the power of the compressor body during no-load operation can be reduced, and the energy saving effect can be enhanced.

(2)上記(1)において、好ましくは、前記バネ室圧力制御手段は、負荷運転を行う場合は、前記バネ室を前記一次室又はほぼ大気圧下の領域と連通して、前記バネ室内の圧力がほぼ大気圧となるように制御し、負荷運転から無負荷運転に切替える場合は、前記バネ室を前記二次室と連通して、前記バネ室内の圧力がほぼ真空圧となるように制御する。   (2) In the above (1), preferably, when performing a load operation, the spring chamber pressure control means communicates the spring chamber with the primary chamber or a region under substantially atmospheric pressure, When the pressure is controlled to be almost atmospheric pressure and the load operation is switched to the no-load operation, the spring chamber is communicated with the secondary chamber so that the pressure in the spring chamber is almost a vacuum pressure. To do.

(3)上記(1)又は(2)において、好ましくは、前記バネ室圧力制御手段は、前記一次室又はほぼ大気圧下の領域に連通する第1の制御経路と、前記二次室に連通する第2の制御経路と、前記バネ室に連通する第3の制御経路と、前記第1の制御経路及び前記第2の制御経路のうちのいずれか一方を選択して前記第3の制御経路と連通する三方弁と、負荷運転を行う場合に前記第1の制御経路と前記第3の制御経路とを連通させるように前記三方弁を制御し、負荷運転から無負荷運転に切替える場合に前記第2の制御経路と前記第3の制御経路とを連通させるように前記三方弁を制御する制御装置とを有する。   (3) In the above (1) or (2), preferably, the spring chamber pressure control means communicates with the first control path communicating with the primary chamber or a region under substantially atmospheric pressure, and the secondary chamber. The second control path, the third control path communicating with the spring chamber, the third control path by selecting one of the first control path and the second control path A three-way valve that communicates with the first control path and the third control path when the load operation is performed, the three-way valve is controlled so that the load operation is switched to the no-load operation. And a control device that controls the three-way valve so as to communicate the second control path and the third control path.

(4)上記(3)において、好ましくは、前記バネ室圧力制御手段は、前記第2の制御経路に設けられ、前記二次室から前記バネ室への逆流を防止する逆止弁を有する。   (4) In the above (3), preferably, the spring chamber pressure control means has a check valve provided in the second control path to prevent a back flow from the secondary chamber to the spring chamber.

(5)上記(1)〜(4)のいずれか1つにおいて、好ましくは、前記圧縮機本体の吐出経路に分岐接続されて、前記圧縮機本体の吐出側の圧縮空気を前記操作室に導出するとともに前記一次室又はほぼ大気圧下の領域に導出して放気するための放気経路と、前記放気経路に設けられ、負荷運転を行う場合に閉じ状態、無負荷運転を行う場合に開き状態に切替えられる放気弁とを備える。   (5) In any one of the above (1) to (4), the compressed air on the discharge side of the compressor main body is preferably branched and connected to the discharge path of the compressor main body to the operation chamber. In addition, an air discharge path for discharging to the primary chamber or an area under almost atmospheric pressure and an air discharge path provided in the air discharge path are closed when performing load operation, and when performing no load operation. And an air release valve that is switched to an open state.

本発明によれば、吸込み絞り弁の大型化を抑制しつつ、無負荷運転時の吸込み絞り弁の操作圧力を低減することができ、ひいては無負荷運転時の圧縮機本体の吐出側圧力を低減することができ、省エネ効果を高めることができる。   According to the present invention, it is possible to reduce the operating pressure of the suction throttle valve during no-load operation while suppressing an increase in the size of the suction throttle valve, and thus reduce the discharge side pressure of the compressor body during no-load operation. Can increase the energy saving effect.

本発明の一実施形態における空気圧縮機の構成を表す概略図である。It is the schematic showing the structure of the air compressor in one Embodiment of this invention. 本発明の一実施形態における空気圧縮機の動作を説明するための概略図であり、負荷運転の状態を示す。It is the schematic for demonstrating operation | movement of the air compressor in one Embodiment of this invention, and shows the state of load operation. 本発明の一実施形態における空気圧縮機の動作を説明するための概略図であり、無負荷運転の状態を示す。It is the schematic for demonstrating operation | movement of the air compressor in one Embodiment of this invention, and shows the state of a no-load driving | operation.

以下、本発明の一実施形態を、図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態における空気圧縮機の構成を表す概略図である。図2及び図3は、本実施形態における空気圧縮機の動作を説明するための概略図であり、図2は負荷運転の状態を示し、図3は無負荷運転の状態を示している。なお、図2及び図3中の点線は空気の流れが遮断されている部分を示す。   FIG. 1 is a schematic diagram illustrating a configuration of an air compressor in the present embodiment. 2 and 3 are schematic diagrams for explaining the operation of the air compressor in the present embodiment. FIG. 2 shows a load operation state, and FIG. 3 shows a no-load operation state. The dotted lines in FIGS. 2 and 3 indicate portions where the air flow is blocked.

これら図1〜図3において、給油式の空気圧縮機は、電動機1と、この電動機1によって駆動され、空気を圧縮する圧縮機本体2と、この圧縮機本体2の吸入側に設けられた吸込み絞り弁3と、この吸込み絞り弁の上流側に設けられた吸込みフィルタ(図示せず)と、圧縮機本体2の吐出側に設けられたオイルセパレータ4と、制御装置5とを備えている。   1 to 3, an oil supply type air compressor includes an electric motor 1, a compressor main body 2 driven by the electric motor 1 to compress air, and a suction provided on the suction side of the compressor main body 2. A throttle valve 3, a suction filter (not shown) provided on the upstream side of the suction throttle valve, an oil separator 4 provided on the discharge side of the compressor body 2, and a control device 5 are provided.

オイルセパレータ4は、圧縮機本体2から吐出された圧縮空気中の油を分離する。そして、オイルセパレータ4で分離された油は、オイルセパレータ4の内部に貯留された後、油供給経路(図示せず)を介して圧縮機本体2の作動室等へ供給されるようになっている。一方、オイルセパレータ4で分離された圧縮空気は、圧縮空気供給経路6を介して圧縮空気の使用先に供給されるようになっている。なお、圧縮空気供給路6には、調圧弁(逆止弁)7が設けられており、その下流側には、図示しない冷却器や除湿器などが設けられている。また、調圧弁7の下流側には圧力センサ8が設けられており、この圧力センサ8で検出された圧力(すなわち、調圧弁7の下流側の圧力であって、圧縮空気の使用量によって変動する圧力)が制御装置5に出力されるようになっている。   The oil separator 4 separates oil in the compressed air discharged from the compressor body 2. The oil separated by the oil separator 4 is stored in the oil separator 4 and then supplied to the working chamber of the compressor body 2 through an oil supply path (not shown). Yes. On the other hand, the compressed air separated by the oil separator 4 is supplied to the use destination of the compressed air via the compressed air supply path 6. The compressed air supply path 6 is provided with a pressure regulating valve (check valve) 7, and a cooler and a dehumidifier (not shown) are provided on the downstream side thereof. Further, a pressure sensor 8 is provided on the downstream side of the pressure regulating valve 7, and the pressure detected by the pressure sensor 8 (that is, the pressure on the downstream side of the pressure regulating valve 7 and varies depending on the amount of compressed air used). Pressure) to be output to the control device 5.

吸込み絞り弁3は、弁座9と、この弁座9を開閉する弁体10と、弁座9の上流側である一次室11と、弁座9の下流側である二次室12と、シリンダ13内に摺動可能に設けられたピストン14と、このピストン14に接続されて、先端側の小径部に弁体10がスライド可能に挿通された軸15とを有している。シリンダ13内はピストン14で区画されて、シリンダ13内のピストン14の摺動方向一方側(図中左側)にバネ室16が形成され、シリンダ13内のピストン14の摺動方向他方側(図中右側)に操作室(加圧室)17が形成されている。バネ室16内にはバネ18が収納されており、このバネ18の力が弁体10の開き方向(図中右側)の付勢力としてピストン14に作用している。また、操作室17内の圧力が弁体10の閉じ方向(図中左側)の付勢力としてピストン14に作用している。   The suction throttle valve 3 includes a valve seat 9, a valve body 10 that opens and closes the valve seat 9, a primary chamber 11 that is upstream of the valve seat 9, a secondary chamber 12 that is downstream of the valve seat 9, It has a piston 14 slidably provided in the cylinder 13 and a shaft 15 connected to the piston 14 and through which a valve body 10 is slidably inserted in a small diameter portion on the tip side. The cylinder 13 is partitioned by a piston 14, and a spring chamber 16 is formed on one side (left side in the figure) of the piston 14 in the cylinder 13. An operation chamber (pressurizing chamber) 17 is formed in the middle right). A spring 18 is accommodated in the spring chamber 16, and the force of the spring 18 acts on the piston 14 as an urging force in the opening direction of the valve body 10 (right side in the figure). Further, the pressure in the operation chamber 17 acts on the piston 14 as an urging force in the closing direction (left side in the figure) of the valve body 10.

オイルセパレータ4と吸込み絞り弁3の操作室17との間には放気経路19Aが接続されており、この放気経路19Aには放気弁(電磁弁)20が設けられている。また、放気経路19Aにおける放気弁20の下流側から放気経路19Bが分岐接続され、この放気経路19Bが吸込み絞り弁3の一次室10(若しくは、ほぼ大気圧下の領域として、例えば吸込み絞り弁3の一次室10の上流側で吸込みフィルタの下流側としてもよい。)に接続されている。   An air discharge path 19A is connected between the oil separator 4 and the operation chamber 17 of the suction throttle valve 3, and an air discharge valve (electromagnetic valve) 20 is provided in the air discharge path 19A. In addition, the air discharge path 19B is branched from the downstream side of the air discharge valve 20 in the air discharge path 19A, and the air discharge path 19B is used as the primary chamber 10 of the suction throttle valve 3 (or as a region under almost atmospheric pressure, for example, The suction throttle valve 3 may be connected upstream of the primary chamber 10 and downstream of the suction filter.

また、本実施形態の大きな特徴として、吸込み絞り弁3の一次室11に連通する制御経路21Aと、吸込み絞り弁3の二次室12に連通する制御経路21Bと、吸込み絞り弁3のバネ室16に連通する制御経路21Cと、制御経路21A及び21Bのうちのいずれか一方を選択して制御経路21Cと連通する三方弁(電磁弁)22とが設けられている。また、制御経路21Bには、二次室12からバネ室16への逆流を防止するための逆止弁23が設けられている。これにより、圧縮機本体1の停止時に圧縮空気が吸込み絞り弁の二次室12に逆流した場合に、油を含む圧縮空気が制御経路21B、三方弁22、及び制御経路21Cを介してバネ室16に流入するのを防止するようになっている。   Further, as major features of the present embodiment, a control path 21A that communicates with the primary chamber 11 of the suction throttle valve 3, a control path 21B that communicates with the secondary chamber 12 of the suction throttle valve 3, and a spring chamber of the suction throttle valve 3 A control path 21C that communicates with 16 and a three-way valve (electromagnetic valve) 22 that selects one of the control paths 21A and 21B and communicates with the control path 21C are provided. In addition, a check valve 23 for preventing a back flow from the secondary chamber 12 to the spring chamber 16 is provided in the control path 21B. Thereby, when the compressed air flows back into the secondary chamber 12 of the suction throttle valve when the compressor main body 1 is stopped, the compressed air containing oil flows through the control path 21B, the three-way valve 22, and the control path 21C. 16 is prevented.

制御装置5は、図示しない操作スイッチからの運転信号又は停止信号に基づき、電動機1を介して圧縮機本体2を運転又は停止させるようになっている。また、制御装置5は、予め設定された圧力上限値及び圧力下限値を内部メモリ等に記憶しており、これら圧力上限値及び圧力下限値と圧力センサ8で検出された圧力とを比較し、その判定結果に基づいて負荷運転又は無負荷運転に切替えるようになっている。すなわち、例えば負荷運転時に圧力センサ8で検出された圧力が圧力上限値まで上昇したら、負荷運転から無負荷運転に切替える。また、例えば無負荷運転時に圧力センサ8で検出された圧力が圧力下限値まで下降したら、無負荷運転から負荷運転に切替えるようになっている。   The control device 5 operates or stops the compressor main body 2 via the electric motor 1 based on an operation signal or a stop signal from an operation switch (not shown). The control device 5 stores preset pressure upper limit values and pressure lower limit values in an internal memory or the like, compares these pressure upper limit values and pressure lower limit values with the pressure detected by the pressure sensor 8, Based on the determination result, switching to load operation or no-load operation is performed. That is, for example, when the pressure detected by the pressure sensor 8 during the load operation rises to the pressure upper limit value, the load operation is switched to the no-load operation. Further, for example, when the pressure detected by the pressure sensor 8 during the no-load operation decreases to the pressure lower limit value, the no-load operation is switched to the load operation.

そして、負荷運転を行う場合(図2参照)、制御装置5は、放気弁20を閉じ状態に制御する。これにより、オイルセパレータ4内の圧縮空気が吸込み絞り弁3の操作室17及び一次室11に導出されず、また操作室17と一次室11とが連通しているので、操作室17内の圧力が一次室11の圧力(ほぼ大気圧)と同じになる。また、制御装置5は、三方弁22を制御して制御経路21Aと制御経路21Cとを連通させる。これにより、吸込み絞り弁3のバネ室16と一次室11とが連通して、バネ室16内の圧力が一次室11の圧力と同じになる。これにより、バネ18の力による弁体10の開き方向の付勢力が操作室17内の圧力(詳細には、操作室17とバネ室16との圧力差)による弁体10の閉じ方向の付勢力よりも勝り、ピストン14が弁体10の開き方向に摺動し、さらに一次室11と二次室12との圧力差によって弁体10が開き方向にスライドし、弁座9が開き状態となる。その結果、圧縮機本体2は、吸込みフィルタ及び吸込み絞り弁3を介し空気を吸込み、圧縮するようになっている。   And when performing load driving | operation (refer FIG. 2), the control apparatus 5 controls the air release valve 20 to a closed state. As a result, the compressed air in the oil separator 4 is not led out to the operation chamber 17 and the primary chamber 11 of the suction throttle valve 3, and the operation chamber 17 and the primary chamber 11 are in communication with each other. Becomes the same as the pressure of the primary chamber 11 (approximately atmospheric pressure). Further, the control device 5 controls the three-way valve 22 to cause the control path 21A and the control path 21C to communicate with each other. Thereby, the spring chamber 16 of the suction throttle valve 3 and the primary chamber 11 communicate with each other, and the pressure in the spring chamber 16 becomes the same as the pressure in the primary chamber 11. Thereby, the biasing force in the opening direction of the valve body 10 by the force of the spring 18 is applied in the closing direction of the valve body 10 by the pressure in the operation chamber 17 (specifically, the pressure difference between the operation chamber 17 and the spring chamber 16). The piston 14 slides in the opening direction of the valve body 10, and the valve body 10 slides in the opening direction due to the pressure difference between the primary chamber 11 and the secondary chamber 12, and the valve seat 9 is in the open state. Become. As a result, the compressor body 2 sucks air through the suction filter and the suction throttle valve 3 and compresses the air.

一方、負荷運転から無負荷運転に切替える場合(図3参照)、制御装置5は、放気弁20を開き状態に制御する。これにより、オイルセパレータ4内の圧縮空気が吸込み絞り弁3の操作室17及び一次室11に導出されて、オイルセパレータ4内の圧力(言い換えれば、圧縮機本体2の吐出側圧力)が低減するとともに、吸込み絞り弁3の操作室17内の圧力が高まる。また、制御装置5は、三方弁22を制御して制御経路21Bと制御経路21Cとを連通させる。これにより、吸込み絞り弁3のバネ室16と二次室12とが連通して、バネ室16内の圧力が一次室12の圧力(例えば−100kPa程度のほぼ真空圧)と同じになる。これにより、操作室17内の圧力(詳細には、操作室17とバネ室16との圧力差)による弁体10の閉じ方向の付勢力がバネ18の力による弁体10の開き方向の付勢力よりも勝り、ピストン14とともに弁体10が閉じ方向に動作し、弁座9が閉じ状態となる。その結果、圧縮機本体2の吸入側が遮断され、かつ圧縮機本体2の吐出側圧力が低減した状態で、圧縮機本体2が運転される。   On the other hand, when switching from load operation to no-load operation (see FIG. 3), the control device 5 controls the air release valve 20 to be in an open state. Thereby, the compressed air in the oil separator 4 is led out to the operation chamber 17 and the primary chamber 11 of the suction throttle valve 3, and the pressure in the oil separator 4 (in other words, the discharge side pressure of the compressor body 2) is reduced. At the same time, the pressure in the operation chamber 17 of the suction throttle valve 3 increases. Further, the control device 5 controls the three-way valve 22 so as to communicate the control path 21B and the control path 21C. As a result, the spring chamber 16 and the secondary chamber 12 of the suction throttle valve 3 communicate with each other, and the pressure in the spring chamber 16 becomes the same as the pressure in the primary chamber 12 (for example, a substantially vacuum pressure of about −100 kPa). Thereby, the biasing force in the closing direction of the valve body 10 due to the pressure in the operation chamber 17 (specifically, the pressure difference between the operation chamber 17 and the spring chamber 16) is applied in the opening direction of the valve body 10 by the force of the spring 18. Overcoming the force, the valve body 10 moves in the closing direction together with the piston 14, and the valve seat 9 is closed. As a result, the compressor body 2 is operated in a state where the suction side of the compressor body 2 is blocked and the discharge side pressure of the compressor body 2 is reduced.

以上のように本実施形態においては、無負荷運転時に吸込み絞り弁3のバネ室16内の圧力がほぼ真空圧となるように制御する。このバネ室16内の負圧は、操作室17内の圧力(正圧)による弁体10の閉じ方向の付勢力を補助するように働く。これにより、例えばピストン14の断面積を大きくしなくとも、無負荷運転時の吸込み絞り弁3の操作圧力を低減することができる。したがって、吸込み絞り弁3の大型化を抑制しつつ、無負荷運転時の吸込み絞り弁3の操作圧力を低減することができ、ひいては無負荷運転時の圧縮機本体2の吐出側圧力を低減することができる。その結果、無負荷運転時の圧縮機本体2の動力を低減することができ、省エネ効果を高めることができる。具体的に説明すると、例えば無負荷運転時の圧縮機本体2の吐出側圧力を0.2MPaから0.1MPaまで低減することができ、この場合には動力を約40%低減することができ、省エネ効果を高めることができる。   As described above, in the present embodiment, control is performed so that the pressure in the spring chamber 16 of the suction throttle valve 3 becomes substantially a vacuum pressure during no-load operation. The negative pressure in the spring chamber 16 serves to assist the biasing force in the closing direction of the valve body 10 due to the pressure (positive pressure) in the operation chamber 17. Thus, for example, the operation pressure of the suction throttle valve 3 during no-load operation can be reduced without increasing the cross-sectional area of the piston 14. Therefore, it is possible to reduce the operating pressure of the suction throttle valve 3 during no-load operation while suppressing an increase in the size of the suction throttle valve 3, and thus reduce the discharge side pressure of the compressor body 2 during the no-load operation. be able to. As a result, the power of the compressor body 2 during no-load operation can be reduced, and the energy saving effect can be enhanced. Specifically, for example, the discharge-side pressure of the compressor body 2 during no-load operation can be reduced from 0.2 MPa to 0.1 MPa, and in this case, the power can be reduced by about 40%, Energy saving effect can be enhanced.

また、別の観点として、無負荷運転時の圧縮機本体2の吐出側圧力を同じとするならば、吸込み絞り弁3のピストン14の断面積を小さくすることができ、吸込み絞り弁3の小型化を図ることができる。その結果、材料費等の低減を図ることができる。   As another viewpoint, if the discharge side pressure of the compressor body 2 during the no-load operation is the same, the cross-sectional area of the piston 14 of the suction throttle valve 3 can be reduced, and the suction throttle valve 3 can be reduced in size. Can be achieved. As a result, material costs can be reduced.

なお、以上においては、本発明の適用対象として、圧縮機本体2の作動室に油を供給する給油式の空気圧縮機を例にとって説明したが、これに限られない。すなわち、例えば、圧縮機本体2の作動室に油を供給しない無給油式の空気圧縮機や、圧縮機本体2の作動室に水を供給する給水式の空気圧縮機などに適用してもよい。また、本発明の適用対象として、電動機1の回転数を固定して運転する空気圧縮機を例にとって説明したが、これに限られない。すなわち、例えば電動機1の回転数をインバータによって可変制御して運転する空気圧縮機に適用してもよい。これらの場合も、上記同様の効果を得ることができる。   In the above description, the oil supply type air compressor that supplies oil to the working chamber of the compressor main body 2 is described as an example of application of the present invention, but the present invention is not limited thereto. That is, for example, the present invention may be applied to an oil-free air compressor that does not supply oil to the working chamber of the compressor body 2 or a water-supplying air compressor that supplies water to the working chamber of the compressor body 2. . Further, as an application target of the present invention, the air compressor that operates with the rotation speed of the electric motor 1 fixed is described as an example, but the present invention is not limited thereto. That is, for example, the present invention may be applied to an air compressor that is operated by variably controlling the rotation speed of the electric motor 1 with an inverter. In these cases, the same effect as described above can be obtained.

2 圧縮機本体
3 吸込み絞り弁、
5 制御装置(バネ室圧力制御手段)
9 弁座
10 弁体
11 一次室
12 二次室
13 シリンダ
14 ピストン
16 バネ室
17 操作室
18 バネ
19A 放気経路
19B 放気経路
20 放気弁
21A 制御経路(バネ室圧力制御手段)
21B 制御経路(バネ室圧力制御手段)
21C 制御経路(バネ室圧力制御手段)
22 三方弁(バネ室圧力制御手段)
23 逆止弁(バネ室圧力制御手段)
2 Compressor body 3 Suction throttle valve,
5 Control device (spring chamber pressure control means)
DESCRIPTION OF SYMBOLS 9 Valve seat 10 Valve body 11 Primary chamber 12 Secondary chamber 13 Cylinder 14 Piston 16 Spring chamber 17 Operation chamber 18 Spring 19A Air discharge path 19B Air discharge path 20 Air discharge valve 21A Control path (spring chamber pressure control means)
21B Control path (spring chamber pressure control means)
21C Control path (spring chamber pressure control means)
22 Three-way valve (spring chamber pressure control means)
23 Check valve (spring chamber pressure control means)

Claims (5)

空気を圧縮する圧縮機本体と、前記圧縮機本体の吸入側に設けられた吸込み絞り弁とを備え、
前記吸込み絞り弁は、弁座と、前記弁座を開閉する弁体と、前記弁座の上流側の一次室と、前記弁座の下流側の二次室と、シリンダ内に摺動可能に設けられて前記弁体に接続されたピストンと、前記シリンダ内に前記ピストンで区画形成されて前記ピストンの摺動方向一方側に位置するバネ室と、前記バネ室に収納され、前記弁体の開き方向の付勢力を前記ピストンに作用させるバネと、前記シリンダ内に前記ピストンで区画形成されて前記ピストンの摺動方向他方側に位置し、内部圧力が前記弁体の閉じ方向の付勢力として前記ピストンに作用する操作室とを有し、
負荷運転を行う場合は、前記圧縮機本体の吐出側の圧縮空気を前記操作室に導出しないで前記操作室内の圧力を低くし、これによって前記ピストンとともに前記弁体を開き方向に動作させて前記弁座を開き、負荷運転から無負荷運転に切替える場合は、前記圧縮機本体の吐出側の圧縮空気を前記操作室に導出して前記操作室内の圧力を高め、これによって前記ピストンとともに前記弁体を閉じ方向に動作させて前記弁座を閉じる空気圧縮機において、
負荷運転を行う場合に前記バネ室を前記一次室又はほぼ大気圧下の領域と連通し、負荷運転から無負荷運転に切替える場合に前記バネ室を前記二次室と連通して、前記バネ室内の圧力を制御するバネ室圧力制御手段を備えたことを特徴とする空気圧縮機。
A compressor main body for compressing air, and a suction throttle valve provided on the suction side of the compressor main body,
The suction throttle valve is slidable in a cylinder, a valve body that opens and closes the valve seat, a primary chamber upstream of the valve seat, a secondary chamber downstream of the valve seat, and a cylinder A piston provided and connected to the valve body; a spring chamber defined by the piston in the cylinder and positioned on one side in the sliding direction of the piston; and housed in the spring chamber; A spring that applies an urging force in the opening direction to the piston, and the piston is partitioned in the cylinder and positioned on the other side in the sliding direction of the piston, and the internal pressure is used as the urging force in the closing direction of the valve body. An operation chamber acting on the piston,
When performing a load operation, the pressure inside the operation chamber is lowered without leading the compressed air on the discharge side of the compressor body to the operation chamber, thereby causing the valve body to operate in the opening direction together with the piston. When the valve seat is opened and the operation is switched from the load operation to the no-load operation, the compressed air on the discharge side of the compressor body is led to the operation chamber to increase the pressure in the operation chamber, thereby the valve body together with the piston. In the air compressor that closes the valve seat by operating in the closing direction,
When performing a load operation, the spring chamber communicates with the primary chamber or a region under almost atmospheric pressure, and when switching from a load operation to a no-load operation, the spring chamber communicates with the secondary chamber, An air compressor comprising spring chamber pressure control means for controlling the pressure of the air chamber.
請求項1記載の空気圧縮機において、前記バネ室圧力制御手段は、負荷運転を行う場合は、前記バネ室を前記一次室又はほぼ大気圧下の領域と連通して、前記バネ室内の圧力がほぼ大気圧となるように制御し、負荷運転から無負荷運転に切替える場合は、前記バネ室を前記二次室と連通して、前記バネ室内の圧力がほぼ真空圧となるように制御することを特徴とする空気圧縮機。   2. The air compressor according to claim 1, wherein the spring chamber pressure control means communicates the spring chamber with the primary chamber or a region under substantially atmospheric pressure when a load operation is performed, so that the pressure in the spring chamber is reduced. When controlling to be almost atmospheric pressure and switching from load operation to no-load operation, the spring chamber is communicated with the secondary chamber, and the pressure in the spring chamber is controlled to be almost a vacuum pressure. Features an air compressor. 請求項1又は2記載の空気圧縮機において、前記バネ室圧力制御手段は、前記一次室又はほぼ大気圧下の領域に連通する第1の制御経路と、前記二次室に連通する第2の制御経路と、前記バネ室に連通する第3の制御経路と、前記第1の制御経路及び前記第2の制御経路のうちのいずれか一方を選択して前記第3の制御経路と連通する三方弁と、負荷運転を行う場合に前記第1の制御経路と前記第3の制御経路とを連通させるように前記三方弁を制御し、負荷運転から無負荷運転に切替える場合に前記第2の制御経路と前記第3の制御経路とを連通させるように前記三方弁を制御する制御装置とを有することを特徴とする空気圧縮機。   3. The air compressor according to claim 1, wherein the spring chamber pressure control means includes a first control path that communicates with the primary chamber or a region under substantially atmospheric pressure, and a second control channel that communicates with the secondary chamber. A control path, a third control path that communicates with the spring chamber, and a three-way that communicates with the third control path by selecting one of the first control path and the second control path When the valve is in a load operation, the three-way valve is controlled so that the first control path and the third control path are communicated, and the second control is performed when switching from a load operation to a no-load operation. An air compressor comprising: a control device that controls the three-way valve so as to communicate a path with the third control path. 請求項3記載の空気圧縮機において、前記バネ室圧力制御手段は、前記第2の制御経路に設けられ、前記二次室から前記バネ室への逆流を防止する逆止弁を有することを特徴とする空気圧縮機。   4. The air compressor according to claim 3, wherein the spring chamber pressure control means includes a check valve that is provided in the second control path and prevents a back flow from the secondary chamber to the spring chamber. And air compressor. 請求項1〜4のいずれか1項記載の空気圧縮機において、前記圧縮機本体の吐出経路に分岐接続されて、前記圧縮機本体の吐出側の圧縮空気を前記操作室に導出するとともに前記一次室又はほぼ大気圧下の領域に導出して放気するための放気経路と、前記放気経路に設けられ、負荷運転を行う場合に閉じ状態、無負荷運転を行う場合に開き状態に切替えられる放気弁とを備えたことを特徴とする空気圧縮機。   5. The air compressor according to claim 1, wherein the air compressor is branched and connected to a discharge path of the compressor body, and discharges compressed air on a discharge side of the compressor body to the operation chamber. An air release path for discharging to the room or an area under almost atmospheric pressure, and an air release path provided in the air release path, switched to a closed state when performing a load operation and an open state when performing a no load operation An air compressor comprising an air release valve.
JP2009253240A 2009-11-04 2009-11-04 air compressor Active JP5308994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253240A JP5308994B2 (en) 2009-11-04 2009-11-04 air compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253240A JP5308994B2 (en) 2009-11-04 2009-11-04 air compressor

Publications (2)

Publication Number Publication Date
JP2011099348A true JP2011099348A (en) 2011-05-19
JP5308994B2 JP5308994B2 (en) 2013-10-09

Family

ID=44190732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253240A Active JP5308994B2 (en) 2009-11-04 2009-11-04 air compressor

Country Status (1)

Country Link
JP (1) JP5308994B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062366A (en) * 2014-03-20 2016-10-26 株式会社日立产机系统 Air compressor
CN108397368A (en) * 2017-02-06 2018-08-14 北越工业株式会社 The control method and engine driving type compressor of engine driving type compressor
WO2022188540A1 (en) * 2021-03-11 2022-09-15 浙江盾安人工环境股份有限公司 Electromagnetic valve and air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610876A (en) * 1992-06-23 1994-01-21 Hitachi Ltd Capacity control method for lubricating screw compressor
JPH0979166A (en) * 1995-09-14 1997-03-25 Hitachi Ltd Air compressor
JP2008175152A (en) * 2007-01-19 2008-07-31 Hitachi Industrial Equipment Systems Co Ltd Air compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610876A (en) * 1992-06-23 1994-01-21 Hitachi Ltd Capacity control method for lubricating screw compressor
JPH0979166A (en) * 1995-09-14 1997-03-25 Hitachi Ltd Air compressor
JP2008175152A (en) * 2007-01-19 2008-07-31 Hitachi Industrial Equipment Systems Co Ltd Air compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062366A (en) * 2014-03-20 2016-10-26 株式会社日立产机系统 Air compressor
US10316842B2 (en) 2014-03-20 2019-06-11 Hitachi Industrial Equipment Systems Co., Ltd. Air compressor
CN108397368A (en) * 2017-02-06 2018-08-14 北越工业株式会社 The control method and engine driving type compressor of engine driving type compressor
WO2022188540A1 (en) * 2021-03-11 2022-09-15 浙江盾安人工环境股份有限公司 Electromagnetic valve and air conditioning system

Also Published As

Publication number Publication date
JP5308994B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP4627492B2 (en) Oil-cooled screw compressor
JP2015105709A (en) Gas charging device, and gas charging method
CN102536814A (en) Oil free screw compressor
JP6827334B2 (en) Control method of engine-driven compressor and engine-driven compressor
JP6058054B2 (en) Compressor control method
CN103069168A (en) Air compression device for railway vehicle
JP5308994B2 (en) air compressor
JP6649746B2 (en) Oil-cooled screw compressor control method and oil-cooled screw compressor
CN100400871C (en) Compressor
JP6216204B2 (en) Lubricating compressor
JP5312272B2 (en) Control method for engine-driven air compressor and engine-driven air compressor
WO2015141596A1 (en) Air compressor
JP2017523339A (en) Vacuum pumping method and vacuum pump system
JP2010255595A (en) Screw compressor
JP2019138200A (en) Compressor system
JP5698912B2 (en) Compressor
JP6618347B2 (en) Engine-driven compressor start control method and engine-driven compressor
JP6249671B2 (en) Inverter-driven compressor operation control method and inverter-driven compressor
JP5046659B2 (en) air compressor
CN110925170A (en) Novel double-speed exhaust valve and intake valve with unloading function
JP2015190465A (en) compressor
JP2023136256A (en) air compressor
JP7427523B2 (en) Operation control method for engine-driven compressor and engine-driven compressor
JP2011021487A (en) Reciprocating compressor
JP5075521B2 (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150