JP2011099157A - Formed circuit component - Google Patents

Formed circuit component Download PDF

Info

Publication number
JP2011099157A
JP2011099157A JP2009256392A JP2009256392A JP2011099157A JP 2011099157 A JP2011099157 A JP 2011099157A JP 2009256392 A JP2009256392 A JP 2009256392A JP 2009256392 A JP2009256392 A JP 2009256392A JP 2011099157 A JP2011099157 A JP 2011099157A
Authority
JP
Japan
Prior art keywords
insulating substrate
zinc oxide
filler
plating layer
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009256392A
Other languages
Japanese (ja)
Other versions
JP5426325B2 (en
Inventor
Tetsuo Yumoto
哲男 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Kasei Co Ltd
Original Assignee
Sankyo Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Kasei Co Ltd filed Critical Sankyo Kasei Co Ltd
Priority to JP2009256392A priority Critical patent/JP5426325B2/en
Publication of JP2011099157A publication Critical patent/JP2011099157A/en
Application granted granted Critical
Publication of JP5426325B2 publication Critical patent/JP5426325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure the insulation of a portion which is not formed into a circuit and to improve adhesiveness in electroless plating by preventing occurrence of ion migration. <P>SOLUTION: In a formed circuit component, an electroless copper plating layer 3 is formed selectively on the surface of an insulating substrate 1 which is prepared by mixing a thermoplastic resin with a filler comprising multi-needle crystal particles of zinc oxide. In that case, the filler existing in the surface layer of the substrate is removed by an etching liquid before forming the electroless copper plating layer. The filler-removed surface layer of the substrate 1 exerts excellent anchoring effect with respect to the copper plating layer 3, and can prevent occurrence of ion migration in the portion 1b which is not formed into a circuit. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、絶縁性基体の表面に選択的に無電解めっき層を形成した成形回路部品に関する。   The present invention relates to a molded circuit component in which an electroless plating layer is selectively formed on the surface of an insulating substrate.

従来から絶縁性基体の表面に選択的に無電解めっきを行って導電性回路を形成した成形回路部品が提供されている。この成形回路部品においては、絶縁性基体の表面と無電解めっきとの密着性を確保するために、無電解めっきを行なう部分について、通常、予め絶縁性基体の表面を粗化し、いわゆるアンカー効果によって無電解めっきの密着性を確保している(例えば特許文献1参照。)。絶縁性基体の表面を粗化する手段の1つとして、絶縁性基体に、エッチング液によって溶解し易い、例えばゴム物質の充填物を混合しておき、エッチング液によって、絶縁性基体の表層部分に混合する充填物を溶解させる手段がある。(例えば特許文献2参照。)   Conventionally, there has been provided a molded circuit component in which a conductive circuit is formed by selectively performing electroless plating on the surface of an insulating substrate. In this molded circuit component, in order to ensure the adhesion between the surface of the insulating substrate and the electroless plating, the surface of the insulating substrate is usually roughened in advance for the portion to be subjected to electroless plating. The adhesiveness of electroless plating is ensured (for example, refer patent document 1). As one of the means for roughening the surface of the insulating substrate, the insulating substrate is mixed with a filler of, for example, a rubber substance that is easily dissolved by the etching solution, and the etching solution is applied to the surface layer portion of the insulating substrate. There are means for dissolving the filler to be mixed. (For example, refer to Patent Document 2.)

また従来から充填剤は、絶縁性基体の強度や剛性等を向上させるためにも使用されている。これらの絶縁性基体の強度や剛性等を向上させるため充填剤としては、ガラス繊維、ガラスビーズ、炭素繊維、金属繊維、あるいは酸化亜鉛ウィスカー等の無機質充填剤が提案されている(例えば特許文献3参照。)。   Conventionally, fillers have also been used to improve the strength and rigidity of insulating substrates. In order to improve the strength, rigidity, etc. of these insulating substrates, inorganic fillers such as glass fibers, glass beads, carbon fibers, metal fibers, or zinc oxide whiskers have been proposed (for example, Patent Document 3). reference.).

ところで近年、酸化亜鉛の多針状結晶粒体、すなわち酸化亜鉛の結晶粒体であって、多数の針状結晶が中心部から放射状に成長した形状を有するものが開発されて製品化されており、例えば株式会社アムテックの製品「パナテトラ」(登録商標)が市販されている。この「パナテトラ」を合成樹脂に混合することによって、優れた製品の成形性、耐摩耗性、帯電防止製、及び電波シールド性が得られるとされている。   By the way, in recent years, zinc oxide multi-needle crystal grains, that is, zinc oxide crystal grains having a shape in which a large number of needle crystals grow radially from the center have been developed and commercialized. For example, a product “Panatetra” (registered trademark) manufactured by Amtec Corporation is commercially available. It is said that by mixing this “Panatetra” with a synthetic resin, excellent moldability, wear resistance, antistatic properties, and radio wave shielding properties can be obtained.

上述したように酸化亜鉛の多針状結晶粒体は、中心部から放射状に成長した多数の針状結晶を有するため、無電解めっきの密着性を確保するためのアンカー効果を得る上で、理想的と考えることができる。すなわち仮に、絶縁性基体に酸化亜鉛の多針状結晶粒体を混合し、絶縁性基体の表層に存在する酸化亜鉛の多針状結晶粒体を除去できれば、この多針状結晶粒体を除去した空洞は、四方に放射状に分岐したものとなるため、この空洞に無電解めっきが侵入すれば、極めて優れた密着性が得られる。   As described above, since the zinc oxide multi-needle crystal grains have a large number of needle crystals grown radially from the center, it is ideal for obtaining an anchor effect for ensuring the adhesion of electroless plating. Can be thought of as the target. In other words, if multi-needle crystals of zinc oxide are mixed in an insulating substrate and the zinc oxide multi-needle crystals existing on the surface of the insulating substrate can be removed, the multi-needle crystals are removed. Since the cavities are radially branched in all directions, if electroless plating penetrates into these cavities, extremely good adhesion can be obtained.

特開平11−145583号公報JP-A-11-145583 特開2006−240085号公報JP 2006-240085 A 特開2000−239422号公報JP 2000-239422 A

しかるに酸化亜鉛の結晶は、酸及びアルカリ水溶液に溶解してイオン化し易い。このため酸化亜鉛の結晶を混合した絶縁性基体は、湿気がある雰囲気において電圧を印加すると、イオン化した亜鉛が金属亜鉛に還元されて、いわゆるイオンマイグレーシンが発生し、回路間の短絡を招き易いという問題がある。また酸化亜鉛の多針状結晶粒体は、導電性を有するため、無電解めっきが形成されない非回路となる部分の絶縁性を低下させることが考えられる。このため絶縁性基体の表面に選択的に無電解めっきを行なって、導電性回路を形成する成形回路部品に関しては、絶縁性基体と無電解めっきとの密着性を向上させるために、酸化亜鉛の多針状結晶粒体を充填剤として使用することは行なわれていなかった。   However, zinc oxide crystals are easily ionized by dissolving in acid and alkaline aqueous solutions. For this reason, when a voltage is applied in a humid atmosphere, an insulating substrate mixed with zinc oxide crystals is reduced to metal zinc, so-called ion migrainin is generated, and a short circuit between the circuits is likely to occur. There is a problem. Moreover, since the multi-needle-like crystal grains of zinc oxide have conductivity, it is conceivable that the insulating properties of the non-circuit portions where electroless plating is not formed are reduced. For this reason, with respect to the molded circuit component that forms the conductive circuit by selectively performing electroless plating on the surface of the insulating substrate, in order to improve the adhesion between the insulating substrate and the electroless plating, The use of multi-needle crystal grains as a filler has not been performed.

そこで本願発明の目的は、イオンマイグレーシンの発生を防止して、非回路となる部分の絶縁性を確保すると共に、無電解めっきの密着性が極めて優れる成形回路部品を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a molded circuit component that prevents the occurrence of ion migration and secures the insulation of a non-circuit portion and that has extremely excellent electroless plating adhesion.

本願発明者は、鋭意研究の結果、酸化亜鉛の多針状結晶粒体を混合した熱可塑性樹脂の表面をエッチング液でエッチングすれば、表層に混在する酸化亜鉛の多針状結晶粒体が除去されて、無電解めっきに対して理想的なアンカー効果が得られると共に、イオンマイグレーシンの発生が防止でき、かつ非回路となる部分の電気絶縁性も確保できることを見出して、本発明を完成させた。   As a result of diligent research, the inventors of the present application have removed the zinc oxide multi-needle crystal particles mixed in the surface layer by etching the surface of the thermoplastic resin mixed with zinc oxide multi-needle crystal particles with an etching solution. As a result, it was found that an ideal anchoring effect for electroless plating can be obtained, the occurrence of ion migrainin can be prevented, and the electrical insulation of a non-circuit portion can be secured. It was.

すなわち本発明による成形回路部品の特徴は、絶縁性基体の表面に選択的に無電解めっき層を形成した成形回路部品であって、この絶縁性基体は、熱可塑性樹脂に酸化亜鉛の多針状結晶粒体からなる充填剤を混合したものであり、この無電解めっき層を形成する前に、この絶縁性基体の表層に混在する充填剤が、エッチング液によって除去されており、この絶縁性基体の表面において、非回路部の電気絶縁抵抗が少なくとも10E9Ωであることにある。上記充填剤の混合割合は、5〜45重量部%であることが望ましい。また上記絶縁性基体に、さらに上記エッチング液に溶解する他の無機充填剤を5〜20重量部%を混合してもよい。   That is, the feature of the molded circuit component according to the present invention is a molded circuit component in which an electroless plating layer is selectively formed on the surface of the insulating substrate, and this insulating substrate is formed of a multi-needle of zinc oxide on a thermoplastic resin. Before the formation of the electroless plating layer, the filler mixed in the surface layer of the insulating substrate is removed by the etching solution, and the insulating substrate is mixed. The electrical insulation resistance of the non-circuit portion is at least 10E9Ω. The mixing ratio of the filler is desirably 5 to 45 parts by weight. Moreover, you may mix 5-20 weight part of the other inorganic filler melt | dissolved in the said etching liquid with the said insulating base | substrate.

ここで「成形回路部品」とは、平面的な2次元形状のものに限らず、立体的な3次元形状のものや、中空形状のものも含む。「選択的に無電解めっき層を形成」とは、所定の経路形状からなる導電性回路となる部分にのみ無電解めっき層を形成し、残りの部分は絶縁性基体の表面が露呈した非回路となる部分になることを意味する。「熱可塑性樹脂」としては、耐酸性及び耐アルカリ性を有する、例えばポリエーテルイミド、ポリサルホン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフタルアミド、芳香族ポリエステル液晶ポリマー及びポリエーテルエーテルケトンが好ましい。   Here, the “molded circuit component” is not limited to a planar two-dimensional shape, but includes a three-dimensional three-dimensional shape and a hollow shape. “Selectively forming an electroless plating layer” is a non-circuit in which an electroless plating layer is formed only on a portion of a conductive circuit having a predetermined path shape and the surface of the insulating substrate is exposed in the remaining portion. It means to become a part. The “thermoplastic resin” preferably has acid resistance and alkali resistance, such as polyetherimide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyphthalamide, aromatic polyester liquid crystal polymer, and polyether ether ketone.

「酸化亜鉛の多針状結晶粒体」とは、上述したように、多数の針状結晶が中心部から放射状に成長した形状を有するものを意味し、例えば株式会社アムテックの製品「パナテトラ」(登録商標)が該当する。「無電解めっき」とは、いわゆる通常の化学めっきを意味し、無電解銅めっき、無電解ニッケルめっき、無電解金めっき、無電解銀めっき、あるいは、めっき金属が相互に異なる無電解めっきを、複数段積層したものも含む。「エッチング液」とは、絶縁性基体の表層に混在する酸化亜鉛の多針状結晶粒体を、溶解除去する液を意味し、酸性液及びアルカリ性液の双方を含む。   As described above, “multi-needle crystal grains of zinc oxide” means a shape in which a large number of needle crystals grow radially from the central portion. For example, a product “Panatetra” (amtec Co., Ltd.) ( Registered trademark). “Electroless plating” means so-called normal chemical plating. Electroless copper plating, electroless nickel plating, electroless gold plating, electroless silver plating, or electroless plating with different plating metals, Also includes multi-layered ones. “Etching solution” means a solution for dissolving and removing zinc needle multi-needle crystal grains mixed in the surface layer of an insulating substrate, and includes both an acidic solution and an alkaline solution.

「10E9Ω」とは、表面抵抗率が10の9乗オームであることを意味する。なお「非回路部の電気絶縁抵抗が少なくとも10E9Ωである」としたのは、10E8Ω以下では導通するからである。「上記充填剤の混合割合は、5〜45重量部%であることが望ましい」としたのは、5重量部%未満であると、酸化亜鉛の多針状結晶粒体の分布が疎らになって、無電解めっきに対するアンカー効果が低くなるからであり、逆に45重量部%を超えると、酸化亜鉛の多針状結晶粒体の分布が密になって、非回路となる部分の電気絶縁抵抗が低下するからである。「上記エッチング液に溶解する他の無機充填剤」としては、例えば炭酸カルシウム、ケイ酸カルシウム及びピロリン酸カルシウムが該当する。   “10E9Ω” means that the surface resistivity is 10 9 ohms. The reason that “the electrical insulation resistance of the non-circuit portion is at least 10E9Ω” is that conduction is established at 10E8Ω or less. “It is desirable that the mixing ratio of the filler is 5 to 45 parts by weight”. If it is less than 5 parts by weight, the distribution of the zinc oxide multi-needle crystal grains becomes sparse. This is because the anchor effect for electroless plating is lowered. Conversely, when the amount exceeds 45 parts by weight, the distribution of the zinc oxide multi-needle crystal grains becomes dense, and the electrical insulation of the non-circuit portion is achieved. This is because the resistance decreases. Examples of “other inorganic fillers soluble in the etching solution” include calcium carbonate, calcium silicate, and calcium pyrophosphate.

絶縁性基体に酸化亜鉛の多針状結晶粒体を混合し、絶縁性基体の表層に混在する酸化亜鉛の多針状結晶粒体を、エッチング液で除去することによって形成した空洞は、四方に放射状に分岐したものとなるため、この空洞に無電解めっきが侵入すれば、極めて優れた密着性が得られる。また無電解めっきで覆われない非回路部も、その表層に混在する酸化亜鉛の多針状結晶粒体が、エッチング液で除去されているため、イオンマイグレーションの発生を防止できる。   The cavity formed by mixing the zinc oxide multi-needle crystal grains in the insulating substrate and removing the zinc oxide multi-needle crystal grains mixed in the surface layer of the insulating substrate with the etching solution is in all directions. Since it becomes a thing branched radially, if electroless plating penetrate | invades into this cavity, the extremely outstanding adhesiveness will be acquired. In addition, the non-circuit portion that is not covered with electroless plating can also prevent the occurrence of ion migration because the zinc oxide multi-needle crystal grains mixed in the surface layer are removed by the etching solution.

酸化亜鉛の多針状結晶粒体の混合割合を、所定の範囲とすることによって、非回路部の電気絶縁性を確保することができる。さらに無機充填剤として、エッチング液で溶解する材料、例えば炭酸カルシウムを混合することによって、酸化亜鉛の多針状結晶粒体を除去した空洞に、炭酸カルシウムが除去された空洞が連結し、更に無電解めっきに対するアンカー効果を向上させることができる。   By setting the mixing ratio of the multi-needle crystal grains of zinc oxide within a predetermined range, the electrical insulation of the non-circuit portion can be ensured. Furthermore, by mixing a material that dissolves in the etching solution, such as calcium carbonate, as an inorganic filler, the cavity from which the calcium carbonate has been removed is connected to the cavity from which the multi-needle crystals of zinc oxide have been removed. The anchor effect for electrolytic plating can be improved.

成形回路部品の製造工程を示す工程図である。It is process drawing which shows the manufacturing process of a molded circuit component. 無電解めっきに対するアンカー効果を説明する説明図である。It is explanatory drawing explaining the anchor effect with respect to electroless plating.

図1に示す工程図を参照しつつ、本発明による成形回路部品の製造方法を説明する。さて最初の工程(A)において、射出成形によってブロック形状の絶縁性基体1を形成する。ここで絶縁性基体1の素材は、熱可塑性樹脂であるポリエーテルエーテルケトン(例えばダイセル・エボニック株式会社の製品「1000G」)50.1重量%に、酸化亜鉛の多針状結晶粒体(例えば株式会社アムテックの製品「パナテトラ(登録商標)WZ−0501」)32.6重量%、及び無機充填剤として炭酸カルシウム(例えば白石工業株式会社の製品「ホワイトンP−10」)12.3重量%を混合して製作する。   A method for manufacturing a molded circuit component according to the present invention will be described with reference to the process chart shown in FIG. In the first step (A), the block-shaped insulating substrate 1 is formed by injection molding. Here, the material of the insulating substrate 1 is 50.1% by weight of polyether ether ketone (for example, product “1000G” manufactured by Daicel Evonik Co., Ltd.), which is a thermoplastic resin, and multi-needle crystal grains of zinc oxide (for example, Amtec Co., Ltd. product “Panatetra (registered trademark) WZ-0501”) 32.6% by weight and calcium carbonate as an inorganic filler (for example, Shiraishi Kogyo Co., Ltd. product “Whiten P-10”) 12.3% by weight To make.

次に工程(B)において絶縁性基体1を脱脂洗浄した後に、工程(C)において、エッチング液によって、この絶縁性基体表面をエッチングする。エッチング液としては、例えば濃硫酸400gと無水クロム酸400g/リッターとの酸性水溶液を使用し、温度70℃にて10分間、絶縁性基体1を浸漬する。   Next, after degreasing and cleaning the insulating substrate 1 in the step (B), the surface of the insulating substrate is etched with an etchant in the step (C). As an etching solution, for example, an acidic aqueous solution of 400 g of concentrated sulfuric acid and 400 g / liter of chromic anhydride is used, and the insulating substrate 1 is immersed at a temperature of 70 ° C. for 10 minutes.

次に絶縁性基体1を中和洗浄した後、工程(D)において、絶縁性基体1の表面を、回路となる部分1aを残して、非回路部となる部分1bをマスキング2にて被覆する。マスキング2は、水溶性であって温水で容易に溶解する、オキシアルキレン基含有ポリビニルアルコール系樹脂(例えば日本合成化学工業株式会社の商品「エコマティAX」)を射出して成形する。なおマスキング2として、耐酸性であってアルカリ水溶液に容易に加水分解する、ポリ乳酸(例えば三井化学株式会社製「レイシア#H-100J/F」)、あるいはポリグリコール酸(例えば株式会社クレハ製「#KSK08」)等を使用してもよい。   Next, after neutralizing and cleaning the insulating substrate 1, in step (D), the surface of the insulating substrate 1 is covered with the masking 2 on the portion 1b that becomes a non-circuit portion, leaving the portion 1a that becomes a circuit. . The masking 2 is molded by injecting an oxyalkylene group-containing polyvinyl alcohol resin (for example, “Ecomati AX” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) that is water-soluble and easily dissolved in warm water. As masking 2, polylactic acid (for example, “Lacia # H-100J / F” manufactured by Mitsui Chemicals, Inc.) or polyglycolic acid (for example “Kureha Co., Ltd.“ # KSK08 ") or the like may be used.

次の工程(E)において、マスキング2で被覆された絶縁性基体1に触媒を付与して、無電解めっきを析出させるための核を形成する。この触媒の付与手順としては、例えば、錫、パラジウム系の混合触媒液に、絶縁性基体1を浸漬した後、塩酸、硫酸などの酸で活性化し、表面にパラジウムを析出させる。または、塩化第1錫等の比較的強い還元剤を表面に吸着させ、金などの貴金属イオンを含む触媒溶液に浸漬し、表面に金を析出させる。液の温度は15〜23℃で5分間浸漬すれば良い。   In the next step (E), a catalyst is applied to the insulating substrate 1 covered with the masking 2 to form nuclei for depositing electroless plating. As a procedure for applying the catalyst, for example, the insulating substrate 1 is immersed in a mixed catalyst solution of tin and palladium, and then activated with an acid such as hydrochloric acid or sulfuric acid to deposit palladium on the surface. Alternatively, a relatively strong reducing agent such as stannous chloride is adsorbed on the surface and immersed in a catalyst solution containing noble metal ions such as gold to deposit gold on the surface. What is necessary is just to immerse the temperature of a liquid at 15-23 degreeC for 5 minutes.

次の工程(F)において、絶縁性基体1を被覆するマスキング2を除去する。マスキング2が、オキシアルキレン基含有ポリビニルアルコール系樹脂の場合には、マスキング2で被覆された絶縁性基体1を、80℃の温水中に10分間程度浸漬して、このマスキングを湯中に溶出させる。またマスキング2が、ポリ乳酸やポリグリコール酸の場合には、濃度2〜15重量%、温度25〜70℃の苛性アルカリ(NaOH、KOHなど)水溶液中に、1〜120分程度浸漬して、マスキング2を除去する。   In the next step (F), the masking 2 covering the insulating substrate 1 is removed. When the masking 2 is an oxyalkylene group-containing polyvinyl alcohol resin, the insulating substrate 1 covered with the masking 2 is immersed in warm water at 80 ° C. for about 10 minutes to elute the masking in hot water. . When the masking 2 is polylactic acid or polyglycolic acid, it is immersed for about 1 to 120 minutes in a caustic (NaOH, KOH, etc.) aqueous solution having a concentration of 2 to 15% by weight and a temperature of 25 to 70 ° C. Masking 2 is removed.

最後の工程(G)において、絶縁性基体1の表面であって、マスキング2で被覆されていなかった回路となる部分1aに、無電解銅めっき層3を形成する。すなわち回路となる部分1aには、後述するように酸化亜鉛の多針状結晶粒体が除去された空洞が開口し、かつ触媒が付与されているため、無電解銅めっき層3が表面と空洞内に析出し、この絶縁性基体に強固に固着する。具体的には、マスキング2で被覆された絶縁性基体1を、酸性浴組成のめっき液、例えば金属塩として硫酸銅を5〜15g/L、還元剤としてホルマリンの37容量%の溶液を8〜12mL/L、錯化材としてロッシェル塩を20〜25g/L、そしてアルカリ剤として水酸化ナトリウムを5〜12g/L混合した温度20℃の溶液に浸漬して行なう。   In the last step (G), the electroless copper plating layer 3 is formed on the surface 1a of the insulating substrate 1 and on the portion 1a that is not covered with the masking 2 and becomes a circuit. That is, as will be described later, since the cavity from which the multi-needle crystal grains of zinc oxide are removed and the catalyst is applied to the portion 1a to be a circuit, the electroless copper plating layer 3 is formed on the surface and the cavity. It precipitates inside and firmly adheres to this insulating substrate. Specifically, the insulating substrate 1 coated with the masking 2 is applied to a plating solution having an acidic bath composition, for example, 5 to 15 g / L of copper sulfate as a metal salt, and 8 to 37% by volume of a formalin as a reducing agent. It is immersed in a solution at a temperature of 20 ° C. mixed with 12 mL / L, 20-25 g / L of Rochelle salt as a complexing agent, and 5-12 g / L of sodium hydroxide as an alkaline agent.

図2を参照しつつ、無電解銅めっき3に対する優れたアンカー効果を説明する。図2(A)は、上述した図1の工程(A)において射出成形した絶縁性基体1について、その表層の断面を示している。すなわち絶縁性基体1は、熱可塑性樹脂11に、酸化亜鉛の多針状結晶粒体12と微粒状の炭酸カルシム13とを混合したものであり、この酸化亜鉛の多針状結晶粒体の一部が、表面に突き出ている。したがって、このままの状態において電圧を印加すると、空気中の湿気によって、酸化亜鉛の多針状結晶粒体12の表面に突き出た部分がイオン化して、イオンマイグレーシンが発生し、回路間の短絡を招く恐れがある。   The excellent anchor effect for the electroless copper plating 3 will be described with reference to FIG. FIG. 2A shows a cross section of the surface layer of the insulating substrate 1 injection-molded in the step (A) of FIG. 1 described above. That is, the insulating substrate 1 is obtained by mixing a thermoplastic resin 11 with multi-needle crystal grains 12 of zinc oxide and fine calcium carbonate 13 and one of the multi-needle crystal grains of zinc oxide. The part protrudes from the surface. Therefore, when a voltage is applied in this state, the portion protruding from the surface of the zinc oxide multi-needle crystal grains 12 is ionized by moisture in the air, ion migrasin is generated, and a short circuit between the circuits is generated. There is a risk of inviting.

図2(B)は、上述した図1の工程(C)においてエッチングした後の、絶縁性基体1の表層の断面を示している。すなわち酸化亜鉛の多針状結晶粒体12は、絶縁性基体1の表面から突き出た部分だけでなく、この絶縁性基体の表面内部の部分も溶解除去されて、四方に広がる空洞14が形成される。また酸化亜鉛の多針状結晶粒体12に接触する炭酸カルシム13も溶解除去されて、空洞14と連通する粒状空洞15が形成される。   FIG. 2B shows a cross section of the surface layer of the insulating substrate 1 after etching in the step (C) of FIG. 1 described above. That is, in the zinc oxide multi-needle crystal grains 12, not only a portion protruding from the surface of the insulating substrate 1 but also a portion inside the surface of the insulating substrate is dissolved and removed, and a cavity 14 extending in all directions is formed. The Also, the calcium carbonate 13 in contact with the zinc oxide multi-needle crystal grains 12 is dissolved and removed, and a granular cavity 15 communicating with the cavity 14 is formed.

図2(B)は、上述した図1の工程(G)において無電解銅めっき層3を形成した、絶縁性基体1の表層の断面を示している。すなわち無電解銅めっき層3は、絶縁性基体1の表面部部分31だけでなく、酸化亜鉛の多針状結晶粒体12及び炭酸カルシム13が溶解除去された空洞14及び粒状空洞15の内部にも形成される。したがって無電解銅めっき層3は、絶縁性基体1の表層に強固に固着する。なお無電解銅めっき層3が形成されない非回路となる部分1bにおいては、絶縁性基体1の表層に混在する酸化亜鉛の多針状結晶粒体12、及び炭酸カルシム13は溶解除去されているため、イオンマイグレーシンの発生を防止することができる。   FIG. 2B shows a cross section of the surface layer of the insulating substrate 1 on which the electroless copper plating layer 3 is formed in the above-described step (G) of FIG. That is, the electroless copper plating layer 3 is provided not only in the surface portion 31 of the insulating substrate 1 but also in the cavities 14 and granular cavities 15 in which the zinc oxide multi-needle crystal grains 12 and the calcium carbonate 13 are dissolved and removed. Is also formed. Therefore, the electroless copper plating layer 3 is firmly fixed to the surface layer of the insulating substrate 1. In the non-circuit portion 1b where the electroless copper plating layer 3 is not formed, the zinc oxide multi-needle crystal grains 12 and calcium carbonate 13 mixed in the surface layer of the insulating substrate 1 are dissolved and removed. The generation of ion migrainin can be prevented.

無電解銅めっき3層は、上述した工程に限らず、他の工程で容易に成形することができる。例えば、図1における工程(D)(マスキング)と、工程工程(E)(触媒付与)とを入れ替えることも可能である。また工程(F)(マスキング除去)と、工程工程(G)(無電解銅めっき)とを入れ替えることも可能である。さらには、絶縁性基体1に、予め触媒を混入しておけば、図1における工程(E)(触媒付与)を省略することもできる。なおこの場合には、工程(F)(マスキング除去)と、工程工程(G)(無電解銅めっき)とを入れ替えることが必要である。   The electroless copper plating three layers can be easily formed not only in the above-described process but also in other processes. For example, the step (D) (masking) and the step (E) (catalyst application) in FIG. 1 can be interchanged. Further, the step (F) (masking removal) and the step (G) (electroless copper plating) can be interchanged. Furthermore, if a catalyst is mixed in the insulating substrate 1 in advance, the step (E) (providing the catalyst) in FIG. 1 can be omitted. In this case, it is necessary to interchange the step (F) (masking removal) and the step (G) (electroless copper plating).

また難めっき性の素材によって絶縁性基体1を形成し、この表面に、上述した熱可塑性樹脂11に酸化亜鉛の多針状結晶粒体12と炭酸カルシム13とを混合した材料によって、マスキング2を選択的に形成し、このマスキング2の表面に無電解銅めっき層3を形成することも可能である。さらには無電解銅めっき層3に重ねて、無電解ニッケル層や電解銅めっき層を積層することも容易にできる。   Further, the insulating substrate 1 is formed of a material that is difficult to plate, and the masking 2 is formed on the surface by a material in which the above-described thermoplastic resin 11 is mixed with the multi-needle crystal grains 12 of zinc oxide and calcium carbonate 13. It is also possible to selectively form the electroless copper plating layer 3 on the surface of the masking 2. Furthermore, an electroless nickel layer or an electrolytic copper plating layer can be easily stacked on the electroless copper plating layer 3.

熱可塑性樹脂11として、ポリエーテルエーテルケトン(PEEK)(ダイセル・エボニック株式会社の製品「#1000G」)50.1質量部%に対し、酸化亜鉛の多針状結晶粒体として(株式会社アムテックの製品「♯パナテトラWZ-0501」)32.6重量部%、及び無機充填材炭酸カルシウム(CaCO3)(白石工業株式会社の製品「♯ホワイトンP-10」)12.3重量部%を配合した複合材を用いて絶縁性基体1を形成し、脱脂洗浄後に、化学エッチング剤として濃硫酸400g、無水クロム酸400g/リッターの水溶液中で、70℃/10分間エッチングを施し、この絶縁性基体の表層に混在する酸化亜鉛の多針状結晶粒体12、及び炭酸カルシウム13を完全除去し、上述した無電解銅めっき層3を形成して、非回路部1bの絶縁抵抗を測定した結果、10の10乗Ω以上であることが検証できた。無電解銅めっき層の3の密着強度は、ピール試験で2.0KN/mであった。 As thermoplastic resin 11, polyether ether ketone (PEEK) (product “# 1000G” manufactured by Daicel-Evonik Co., Ltd.) 50.1% by mass, as multi-needle crystal grains of zinc oxide (product of Amtec Co., Ltd. “ #Panatetra WZ-0501 ") 32.6 parts by weight and inorganic filler calcium carbonate (CaCO 3 ) (Shiraishi Kogyo Co., Ltd. product"# Whiten P-10 ") 12.3 parts by weight An insulating substrate 1 is formed using a material, and after degreasing and cleaning, etching is performed in an aqueous solution of 400 g of concentrated sulfuric acid and 400 g of chromic anhydride / liter as a chemical etching agent for 70 ° C./10 minutes, and the surface layer of this insulating substrate As a result of measuring the insulation resistance of the non-circuit portion 1b by completely removing the zinc oxide multi-needle crystal grains 12 and the calcium carbonate 13 mixed together, and forming the electroless copper plating layer 3 described above. We were able to verify is 10 square Ω or more. The adhesion strength of electroless copper plating layer 3 was 2.0 KN / m in the peel test.

熱可塑性樹脂11として、ポリエーテルエーテルケトン(PEEK)(ダイセル・エボニック株式会社の製品「♯1000G」)62.8重量部%に対し、酸化亜鉛針状結晶粒体として(株式会社アムテックの製品「♯パナテトラWZ-0501」)37.2重量部%を配合した複合材を用いて絶縁性基体1を形成し、脱脂洗浄後、化学エッチング剤として濃硫酸400g、無水クロム酸400g/リッターの水溶液中で、70℃/10分間エッチングを施し、この絶縁性基体の表層に混在する酸化亜鉛の針状結晶粒体12を完全除去し、上述した無電解銅めっき層3を形成して、非回路部1bの絶縁抵抗を測定した結果、10の10乗Ω以上であることが検証できた。また無電解銅めっき層3の密着強度は、ピール試験で1.5KN/mであった。   As thermoplastic resin 11, polyether ether ketone (PEEK) (product “# 1000G” manufactured by Daicel-Evonik Co., Ltd.) 62.8% by weight, as zinc oxide needle crystal grains (product of Amtec Co., Ltd. “ #Panatetra WZ-0501 ") Insulating substrate 1 is formed using a composite material containing 37.2 parts by weight, and after degreasing and cleaning, in an aqueous solution of 400 g of concentrated sulfuric acid and 400 g of chromic anhydride as a chemical etching agent. Then, etching is performed at 70 ° C. for 10 minutes to completely remove the zinc oxide needle crystal grains 12 mixed in the surface layer of the insulating base, and the above-described electroless copper plating layer 3 is formed. As a result of measuring the insulation resistance of 1b, it was verified that it was 10 10 Ω or more. The adhesion strength of the electroless copper plating layer 3 was 1.5 KN / m in a peel test.

熱可塑性樹脂11として、ポリフタルアミド(PPA)(株式会社クラレの製品「♯ジェネスタN1000 M42」)41.45重量部%に対し、酸化亜鉛の針状結晶粒体12として株式会社アムテックの製品「♯パナテトラWZ-0501」)38.55重量部%、及び無機充填材として炭酸カルシウム(CaCO3)(白石工業株式会社の製品「♯ホワイトンP-10」)20重量部%を配合した複合材を用いて絶縁性基体1を成形し、脱脂洗浄後、化学エッチング剤として濃硫酸400g、無水クロム酸400g/リッターの水溶液中で、50℃/5分間エッチングを施し、この絶縁性基体の表層に混在する酸化亜鉛の針状結晶粒体12を完全除去し、上述した無電解銅めっき層3を形成して、非回路部1bの絶縁抵抗を測定した結果、10の10乗Ω以上であることが検証できた。また無電解銅めっき層3の密着強度は、ピール試験で1.0KN/mであった。 As thermoplastic resin 11, polyphthalamide (PPA) (Kuraray Co., Ltd. product “#Genesta N1000 M42”) 41.45% by weight, as zinc oxide needle-like crystal grains 12, product of Amtec Co., Ltd. #Panatetra WZ-0501 ") 38.55 parts by weight, and calcium carbonate (CaCO 3 ) (product of Shiraishi Kogyo Co., Ltd."# Whiten P-10 ") 20 parts by weight as an inorganic filler. The insulating substrate 1 is molded using degreasing, and after degreasing and cleaning, etching is performed at 50 ° C. for 5 minutes in an aqueous solution of 400 g of concentrated sulfuric acid and 400 g of chromic anhydride as a chemical etching agent. As a result of completely removing the mixed zinc oxide needle crystal grains 12, forming the above-described electroless copper plating layer 3, and measuring the insulation resistance of the non-circuit portion 1b, it is 10 to the 10th power Ω or more. But with verification Came. Moreover, the adhesive strength of the electroless copper plating layer 3 was 1.0 KN / m in the peel test.

熱可塑性樹脂11として、液晶ポリマー(LCP)(ポリプラスチックス株式会社の製品「ベクトラ♯C820」)40重量部%に対し、液晶ポリマー(LCP)(ポリプラスチックス株式会社の製品「ベクトラ♯A950」)40重量部%、及び酸化亜鉛の多針状結晶粒体12として株式会社アムテックの製品「♯パナテトラWZ-0501」)20重量部%を配合した複合材を用いて絶縁性基体1を成形し、脱脂洗浄後、化学エッチング剤として苛性ソーダ45重量%に溶解した、温度70℃のアルカリ性水溶液に、この絶縁性基体を50分間浸漬してエッチングを行い、この絶縁性基体の表層に混在する酸化亜鉛の多針状結晶粒体12、及びピロリン酸カルシウム(予め「ベクトラ♯C820」に添加されているもの)を完全除去し、公知のレーザーパターンニングによる回路形成を施し、非回路部1bの絶縁抵抗を測定した結果、10の10乗Ω以上であることが検証できた。また無電解銅めっき層3の密着強度は、ピール試験で1.0KN/mであった。   As thermoplastic resin 11, liquid crystal polymer (LCP) (product “Vectra # C820” manufactured by Polyplastics Co., Ltd.) is 40% by weight, whereas liquid crystal polymer (LCP) (product “Vectra # A950” manufactured by Polyplastics Co., Ltd.) is used. ) Insulating substrate 1 was molded using a composite material containing 40 parts by weight and 20 parts by weight of Amtec Co., Ltd. product “#Panatetra WZ-0501” as multi-needle crystal grains 12 of zinc oxide. After degreasing and cleaning, this insulating substrate was immersed in an alkaline aqueous solution at a temperature of 70 ° C. dissolved in 45% by weight of caustic soda as a chemical etching agent for 50 minutes to perform etching, and zinc oxide mixed in the surface layer of this insulating substrate The multi-needle crystal grains 12 and calcium pyrophosphate (previously added to “Vectra # C820”) are completely removed, and by known laser patterning Subjecting the road form, the results of the insulation resistance was measured in the non-circuit portion 1b, it was verified to be 10 10 square Ω or more. The adhesion strength of the electroless copper plating layer 3 was 1.0 KN / m in a peel test.

上述した実施事例1〜4の供試体に対して、エレクトロケミカルマイグレーション試験(試験規格JPCA-ET04-2007の温湿定常試験)を、温度85℃、相対湿度85%において行ったところ、いずれもマイグレーションの発生がなく、絶縁抵抗値も低下しないことが検証できた。   When the electrochemical migration test (test standard JPCA-ET04-2007 constant temperature and humidity test) was performed at the temperature of 85 ° C. and the relative humidity of 85% on the specimens of Examples 1 to 4 described above, all migrated. It was verified that there was no occurrence of insulation and that the insulation resistance value did not decrease.

イオンマイグレーシンの発生を防止して、非回路となる部分の絶縁性を確保すると共に、無電解めっきの密着性が極めて優れるため、電子機器等に関する産業に広く利用可能である。   It is possible to prevent the occurrence of ion migration, and to ensure the insulation of the non-circuited portion, and the excellent adhesion of the electroless plating can be widely used in industries related to electronic devices and the like.

1 絶縁性基体
1a 回路となる部分
1b 非回路となる部分
2 マスキング
3 無電解銅めっき(無電解めっき)
DESCRIPTION OF SYMBOLS 1 Insulation base | substrate 1a The part used as a circuit 1b The part used as a non-circuit 2 Masking 3 Electroless copper plating (electroless plating)

Claims (3)

絶縁性基体の表面に選択的に無電解めっき層を形成した成形回路部品であって、
上記絶縁性基体は、熱可塑性樹脂に酸化亜鉛の多針状結晶粒体からなる充填剤を混合したものであり、
上記無電解めっき層を形成する前に、上記絶縁性基体の表層に混在する上記充填剤がエッチング液によって除去されており、
上記絶縁性基体の表面において、非回路部の電気絶縁抵抗が少なくとも10E9Ωである
ことを特徴とする成形回路部品。
A molded circuit component in which an electroless plating layer is selectively formed on the surface of an insulating substrate,
The insulating substrate is a mixture of a thermoplastic resin and a filler made of zinc oxide multi-needle crystal grains,
Prior to forming the electroless plating layer, the filler mixed in the surface layer of the insulating substrate is removed by an etching solution,
The molded circuit component, wherein the non-circuit portion has an electric insulation resistance of at least 10E9Ω on the surface of the insulating substrate.
上記充填剤の混合割合が、5〜45重量部%であることを特徴とする請求項1に記載の成形回路部品。       2. The molded circuit component according to claim 1, wherein a mixing ratio of the filler is 5 to 45 parts by weight. 上記絶縁性基体に、さらに上記エッチング液に溶解する他の無機充填剤を5〜20重量部%を混合してあることを特徴とする請求項1または2に記載の成形回路部品。       3. The molded circuit component according to claim 1, wherein 5 to 20 parts by weight of another inorganic filler dissolved in the etching solution is further mixed with the insulating substrate.
JP2009256392A 2009-11-09 2009-11-09 Molded circuit parts Active JP5426325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256392A JP5426325B2 (en) 2009-11-09 2009-11-09 Molded circuit parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256392A JP5426325B2 (en) 2009-11-09 2009-11-09 Molded circuit parts

Publications (2)

Publication Number Publication Date
JP2011099157A true JP2011099157A (en) 2011-05-19
JP5426325B2 JP5426325B2 (en) 2014-02-26

Family

ID=44190563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256392A Active JP5426325B2 (en) 2009-11-09 2009-11-09 Molded circuit parts

Country Status (1)

Country Link
JP (1) JP5426325B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140744A1 (en) * 2011-04-13 2012-10-18 三共化成株式会社 Molded circuit component
JP2013209362A (en) * 2012-02-28 2013-10-10 Nippon Valqua Ind Ltd Antibacterial material containing zinc oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415977A (en) * 1977-07-05 1979-02-06 Teijin Ltd Metho of plating polyester resin
JP2003342740A (en) * 2002-05-24 2003-12-03 Sumitomo Electric Ind Ltd Method of producing plated polyester resin molding
JP2004068120A (en) * 2002-08-08 2004-03-04 Sumitomo Osaka Cement Co Ltd Method for manufacturing metallic pattern film
WO2005000579A1 (en) * 2003-06-27 2005-01-06 Zeon Corporation Multilayer body and method for producing same
JP2008024959A (en) * 2006-07-18 2008-02-07 Kayaba Ind Co Ltd Plating method for article formed from resin
JP2008155581A (en) * 2006-12-26 2008-07-10 Tokai Rubber Ind Ltd Structural member and vibration damper using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415977A (en) * 1977-07-05 1979-02-06 Teijin Ltd Metho of plating polyester resin
JP2003342740A (en) * 2002-05-24 2003-12-03 Sumitomo Electric Ind Ltd Method of producing plated polyester resin molding
JP2004068120A (en) * 2002-08-08 2004-03-04 Sumitomo Osaka Cement Co Ltd Method for manufacturing metallic pattern film
WO2005000579A1 (en) * 2003-06-27 2005-01-06 Zeon Corporation Multilayer body and method for producing same
JP2008024959A (en) * 2006-07-18 2008-02-07 Kayaba Ind Co Ltd Plating method for article formed from resin
JP2008155581A (en) * 2006-12-26 2008-07-10 Tokai Rubber Ind Ltd Structural member and vibration damper using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140744A1 (en) * 2011-04-13 2012-10-18 三共化成株式会社 Molded circuit component
JP2013209362A (en) * 2012-02-28 2013-10-10 Nippon Valqua Ind Ltd Antibacterial material containing zinc oxide

Also Published As

Publication number Publication date
JP5426325B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
TWI445068B (en) A manufacture method of forming a circuit unit
TWI627885B (en) Method for producing three-dimensional conductive pattern structure and material for three-dimensional molding used there
TWI546128B (en) A process for electroless plating and a solution used for the same
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
TW201322835A (en) Fabricating a conductive trace structure and substrate having the structure
JP5426325B2 (en) Molded circuit parts
KR101166350B1 (en) Lds plastic material and fabricating method the same
JP3952480B2 (en) Molded circuit component and manufacturing method thereof
WO2012140744A1 (en) Molded circuit component
JP2009007406A (en) Prepreg, multilayered circuit board, printed wiring board and method for producing printed wiring board
JP6696988B2 (en) Printed wiring board and electronic parts
JP4875595B2 (en) Synthetic resin spring with conductive circuit
JP5628496B2 (en) Manufacturing method of three-dimensional molded circuit components
JP2005060772A (en) Flexible printed circuit board manufacturing method, and base material for circuit used therefor
KR100798870B1 (en) Conductive metal plated polyimide substrate including coupling agent and method for producing the same
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
WO2012157135A1 (en) Method for manufacturing molded circuit board
JP3999834B2 (en) Manufacturing of plated parts such as molded circuit parts
KR20110082626A (en) Method for manufacturing circuit board, and circuit board obtained using the manufacturing method
JP7149346B2 (en) Composite member and manufacturing method thereof
JP5102643B2 (en) Synthetic resin spring with conductive circuit
WO2013160994A1 (en) Plated structure of through-hole
JP4426690B2 (en) 3D circuit board manufacturing method and 3D circuit board
JP2009062609A (en) Method for producing forming circuit component
JP2010219313A (en) Method of manufacturing three-dimensional molded circuit component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250