JP2011097745A - Method for manufacturing steel material with non-magnetically modified phase - Google Patents

Method for manufacturing steel material with non-magnetically modified phase Download PDF

Info

Publication number
JP2011097745A
JP2011097745A JP2009249312A JP2009249312A JP2011097745A JP 2011097745 A JP2011097745 A JP 2011097745A JP 2009249312 A JP2009249312 A JP 2009249312A JP 2009249312 A JP2009249312 A JP 2009249312A JP 2011097745 A JP2011097745 A JP 2011097745A
Authority
JP
Japan
Prior art keywords
steel material
modified
space
metal
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009249312A
Other languages
Japanese (ja)
Inventor
Keisuke Tsunoda
佳介 角田
Takuya Shimizu
拓也 清水
Izuru Yamamoto
出 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009249312A priority Critical patent/JP2011097745A/en
Publication of JP2011097745A publication Critical patent/JP2011097745A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel material of improved quality with non-magnetically modified phase. <P>SOLUTION: The method for manufacturing the steel material with non-magnetically modified phase includes: forming a space 20 inside by stacking a plurality of steel materials 1; putting a modified metal 3 into the space 20; energizing and pressurizing the stacked steel materials 1 using a pair of electrodes 5 interposed in a stacking direction at a location of the modified metal 3, and melting the modified metal 3 together with a part of the surrounding steel materials 1 to form the non-magnetically modified phase. In this method, the steel material includes the modified metal 3 which is larger in a direction of being pressurized by the electrodes 5 than the space 20. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼材に非磁性材を挟み込んで通電加熱溶融することにより部分的に非磁性改質相を備える鋼材を形成する製造方法に関し、特に、安定した非磁性改質相を形成する鋼材の製造方法に関する。   The present invention relates to a manufacturing method for forming a steel material partially including a non-magnetic modified phase by sandwiching a non-magnetic material in a steel material and melting it by heating with heating, and in particular, a steel material that forms a stable non-magnetic modified phase. It relates to a manufacturing method.

電動機や発電機などに用いられる鉄心には一般に高い透磁率が求められるため、ロータに磁石が取り付けられている。そして、そのロータには、磁石の漏れ磁束によって性能が低下しないようにするため、従来から部分的に非磁性化する加工が行われている。図6は、ロータを非磁性化した改質箇所を示した図である。ロータ90に設けられた磁石91に対し、非磁性改質相のペリブリッジ部92とセンターブリッジ部93が形成され、磁気抵抗を高めることで漏れ磁束による性能低下を防止している。   Since iron cores used for electric motors and generators generally require high magnetic permeability, a magnet is attached to the rotor. In order to prevent the rotor from being deteriorated in performance due to the magnetic flux leakage of the magnet, a process for making the rotor partially non-magnetic has been conventionally performed. FIG. 6 is a view showing a modified portion where the rotor is made non-magnetic. A non-magnetic modified phase peribridge portion 92 and a center bridge portion 93 are formed on the magnet 91 provided on the rotor 90, and the performance is prevented from being deteriorated due to leakage magnetic flux by increasing the magnetic resistance.

このような非磁性改質相を備える鋼材を製造する方法としては、例えば特許文献1に、鉄心の該当箇所を局所的に加熱した後、冷却させることでオーステナイト領域を形成する技術が開示されている。すなわち、局所的な加熱の手段としてレーザー照射を行い、準安定オーステナイト系ステンレス鋼を冷間圧延により強磁性のマルテンサイト組織としたものを用いることで、その一部を非磁性のオーステナイト組織とする。その他には、特許文献2に開示されているように、対象の磁性部材を局所的に溶融しつつ、外部から改質元素を添加して固溶させて非磁性化する方法もある。   As a method for producing a steel material having such a nonmagnetic modified phase, for example, Patent Document 1 discloses a technique for forming an austenite region by locally heating a corresponding portion of an iron core and then cooling it. Yes. That is, laser irradiation is performed as a means of local heating, and a metastable austenitic stainless steel is made into a ferromagnetic martensite structure by cold rolling, so that part of it becomes a nonmagnetic austenitic structure . In addition, as disclosed in Patent Document 2, there is a method in which a target magnetic member is locally melted and a modifying element is added from the outside to be solid-dissolved to be non-magnetic.

特許第3507395号公報Japanese Patent No. 3507395 特開2001−93717号公報JP 2001-93717 A

しかしながら、こうした従来の製造方法では、マルテンサイト化したオーステナイト系ステンレス鋼を用いる場合、結晶形の歪み等のため透磁率が一般的な電磁鋼板より劣り、最大磁束密度が不足してしまう。また、溶融させた状態で改質元素を添加する方法では、長い処理時間を要することや、深さ方向の制御が困難で非磁性改質相を所望どおりに形成できないなどの問題があった。また、ロータ90の場合には、電磁鋼板を複数重ねて構成するため、改質元素を添加した分が体積増加してしまい処理後の平坦性が悪いため、気密な重ね合わせができないといった問題も生じる。従って、非磁性改質相を備える鋼材の製造に対し、こうした課題を解決した新たな方法が望まれ、本出願人は特願2008−192468号によって新規製造方法を提案した。   However, in such a conventional manufacturing method, when martensitic austenitic stainless steel is used, the permeability is inferior to that of a general electromagnetic steel sheet due to crystal distortion or the like, and the maximum magnetic flux density is insufficient. In addition, the method of adding the modifying element in the melted state has problems that a long processing time is required and that the nonmagnetic modified phase cannot be formed as desired because the control in the depth direction is difficult. In addition, in the case of the rotor 90, since a plurality of electromagnetic steel plates are stacked, the amount of addition of the modifying element is increased in volume, and the flatness after processing is poor, so that airtight stacking cannot be performed. Arise. Therefore, a new method for solving these problems is desired for the production of a steel material having a nonmagnetic modified phase, and the present applicant has proposed a new production method according to Japanese Patent Application No. 2008-192468.

本発明は、かかる新規製造方法に関し、品質の安定を図った非磁性改質相を備える鋼材の製造方法を提供することを目的とする。   The present invention relates to such a novel production method, and an object thereof is to provide a method for producing a steel material having a nonmagnetic modified phase with stable quality.

本発明に係る非磁性改質相を備える鋼材の製造方法は、複数の鋼材を重ね合わせによって内部に空間を形成し、その空間内に改質金属を入れ、前記重ね合わせた鋼材を前記改質金属の存在する位置で重ね合わせ方向に挟み込んだ一対の電極により通電加圧することによって、前記改質金属を周囲の鋼材の一部とともに溶融して非磁性改質相を形成するものであり、前記電極による加圧方向寸法が前記空間よりも大きい前記改質金属を入れるようにしたことを特徴とする。   A method of manufacturing a steel material having a nonmagnetic modified phase according to the present invention includes forming a space inside by superposing a plurality of steel materials, putting a reformed metal in the space, and then modifying the superposed steel material By energizing and pressurizing with a pair of electrodes sandwiched in the overlapping direction at the position where the metal exists, the modified metal is melted together with a part of the surrounding steel material to form a nonmagnetic modified phase, The modified metal having a dimension in the pressurizing direction by an electrode larger than that of the space is placed.

また、本発明に係る非磁性改質相を備える鋼材の製造方法は、前記空間が、向かい合う面にそれぞれ凹穴を形成した2枚の鋼材を重ね合わせて形成されたものであり、前記改質金属の前記電極による加圧方向寸法が前記空間より大きいものを入れて行うようにしたものであることが好ましい。
また、本発明に係る非磁性改質相を備える鋼材の製造方法は、前記空間が、貫通孔を形成した1の鋼材又は2以上を重ねた鋼材を、上下両面から当該貫通孔を塞ぐための鋼材によって挟み込んで形成されたものであり、前記改質金属の前記電極による加圧方向寸法が前記空間より大きいものを入れて行うようにしたものであることが好ましい。
また、本発明に係る非磁性改質相を備える鋼材の製造方法は、前記改質金属が前記電極による加圧方向と直交する方向の寸法を前記空間より小さくするようにしたものであることが好ましい。
また、本発明に係る非磁性改質相を備える鋼材の製造方法は、前記改質金属の体積と前記空間の容積とがほぼ等しくなるようにしたものであることが好ましい。
Further, in the method of manufacturing a steel material including the nonmagnetic modified phase according to the present invention, the space is formed by superimposing two steel materials each having a concave hole on each facing surface. It is preferable that the metal is pressed with a dimension in the pressing direction larger than that of the space.
Moreover, the manufacturing method of the steel material provided with the nonmagnetic modified phase according to the present invention is for the space to close the through hole from above and below both the one steel material in which the through hole is formed or the steel material in which two or more are stacked. It is preferably formed by sandwiching between steel materials, and is performed by inserting a material having a dimension in the pressurizing direction of the reformed metal larger than the space.
Moreover, the manufacturing method of the steel material provided with the nonmagnetic modified phase according to the present invention is such that the dimension of the modified metal is smaller than the space in the direction perpendicular to the pressing direction by the electrode. preferable.
Moreover, it is preferable that the manufacturing method of the steel material provided with the nonmagnetic modified phase according to the present invention is such that the volume of the modified metal is substantially equal to the volume of the space.

本発明によれば、電極による加圧方向寸法が、重ねた鋼材内の空間よりも改質金属の方が大きいので、非磁性改質相を形成する際に必ず改質金属の加圧方向両面が鋼材に接触する。そのため、電極によって通電加圧を行うと、その加圧方向両面部分から抵抗発熱して溶融し、全体を改質した安定的な非磁性改質相を得ることができる。   According to the present invention, the dimension in the pressing direction by the electrodes is larger in the reformed metal than in the space in the stacked steel material. Comes into contact with steel. For this reason, when energization and pressurization is performed with the electrodes, it is possible to obtain a stable non-magnetic modified phase in which the entire surface is reformed and melted by resistance heat generation and reformed.

ロータの電磁鋼板とその凹穴に入れる改質金属を示した図である。It is the figure which showed the modified metal put into the electromagnetic steel plate of a rotor, and its recessed hole. 非磁性改質相を備える鋼材の製造方法について第1実施形態を示した断面図である。It is sectional drawing which showed 1st Embodiment about the manufacturing method of steel materials provided with a nonmagnetic modification phase. 非磁性改質相を備える鋼材の製造方法について課題を示した断面図である。It is sectional drawing which showed the subject about the manufacturing method of steel materials provided with a nonmagnetic modification phase. 実施形態における改質金属と凹穴による空間とを示した断面図である。It is sectional drawing which showed the modified metal and the space by a recessed hole in embodiment. 非磁性改質相を備える鋼材の製造方法について第2実施形態を示した断面図である。It is sectional drawing which showed 2nd Embodiment about the manufacturing method of steel materials provided with a nonmagnetic modification phase. ロータを非磁性化した改質箇所を示した図である。It is the figure which showed the modification location which made the rotor non-magnetic.

次に、本発明に係る非磁性改質相を備える鋼材の製造方法について、その一実施形態を図面を参照しながら以下に説明する。
本実施形態では、モータを構成するロータに対して非磁性改質相を形成する場合について説明する。ロータには、前述したように高い透磁率を得るため磁石が取り付けられ、一方で磁石の漏れ磁束による性能低下を防止するため非磁性改質相が形成される。
Next, an embodiment of a method for producing a steel material having a nonmagnetic modified phase according to the present invention will be described below with reference to the drawings.
In the present embodiment, a case where a nonmagnetic modified phase is formed on the rotor constituting the motor will be described. As described above, a magnet is attached to the rotor in order to obtain a high magnetic permeability, while a nonmagnetic modified phase is formed in order to prevent performance degradation due to leakage flux of the magnet.

ロータは、図1に示すようにドーナッツ形状をした極薄の電磁鋼板(例えば、Fe−Si)1を多数枚積層して形成されるものである。本実施形態では、そうした電磁鋼板1の所定箇所に円形の凹穴2が複数形成され、その中にそれぞれ円形の改質金属(例えば、NiCr)3が一つずつ入れられ、複数箇所に非磁性改質相が形成される。ここで、図2は、非磁性改質相の一箇所について第1実施形態の製造方法を示した断面図である。   As shown in FIG. 1, the rotor is formed by laminating a large number of doughnut-shaped ultrathin electromagnetic steel plates (for example, Fe—Si) 1. In the present embodiment, a plurality of circular concave holes 2 are formed at predetermined locations on such a magnetic steel sheet 1, and one circular modified metal (for example, NiCr) 3 is placed therein, and a plurality of non-magnetic holes are nonmagnetic. A reforming phase is formed. Here, FIG. 2 is a cross-sectional view showing the manufacturing method of the first embodiment at one place of the nonmagnetic modified phase.

先ず、図2(a)に示すように、凹穴2を形成した2枚の電磁鋼板1を上下に重ね合わせ、その際、上下両方の凹穴2が重なってできた空間20内に改質金属3が入れられる。こうして改質金属3を挟み込んだ2枚の電磁鋼板1同士を、図2(b)に示すように、その改質金属3が位置する箇所で上下から一対の電極5によって挟み込み、スポット溶接と類似の要領で通電加圧を行う。例えば、このときの加圧力は2KN程度とし、電流値は8KA程度とする。   First, as shown in FIG. 2 (a), two electromagnetic steel sheets 1 each having a concave hole 2 are stacked one on top of the other, and at that time, a modification is made in a space 20 formed by overlapping both the upper and lower concave holes 2. Metal 3 is placed. As shown in FIG. 2 (b), the two electromagnetic steel sheets 1 sandwiching the modified metal 3 are sandwiched by a pair of electrodes 5 from above and below at the location where the modified metal 3 is located, which is similar to spot welding. Perform energization and pressurization in the same way. For example, the applied pressure at this time is about 2 KN, and the current value is about 8 KA.

電極5による通電加圧が0.15秒程行われ、そこで起きる抵抗発熱により改質金属3が周りの電磁鋼板1とともに溶融する。こうして電磁鋼板1の内部が改質金属3とともに溶融する一方、表面部分は電極5に接して熱が奪われるため溶融しない。そして、通電終了後に再び凝固することで、図2(c)に示すように、非磁性改質相11が形成される。非磁性改質相11の形成は、図1に示す電磁鋼板1に形成された複数の凹穴2の箇所において同じように行われ、ロータ部材10が形成される。   The energization and pressurization by the electrode 5 is performed for about 0.15 seconds, and the reformed metal 3 is melted together with the surrounding electrical steel sheet 1 by the resistance heat generated there. Thus, the inside of the electromagnetic steel sheet 1 is melted together with the reforming metal 3, while the surface portion is not melted because it is in contact with the electrode 5 and heat is taken away. And it solidifies again after completion | finish of electricity supply, and as shown in FIG.2 (c), the nonmagnetic modification | reformation phase 11 is formed. The nonmagnetic modified phase 11 is formed in the same manner at the plurality of concave holes 2 formed in the electromagnetic steel sheet 1 shown in FIG.

モータを構成するロータは、このような非磁性改質相11をもった2枚重ねのロータ部材10が、非磁性改質相11の位置を合わせて更に複数枚重ねられることによって形成される。なお、この非磁性改質相11が、図6のペリブリッジ部92やセンターブリッジ部93に相当する。従って、非磁性改質相11が形成されたロータ部材10には、所定箇所に磁石91を装填するための設置孔が形成され、その外周が削り取られる。   The rotor constituting the motor is formed by further stacking a plurality of such two-layered rotor members 10 having the nonmagnetic modified phase 11 so that the positions of the nonmagnetic modified phase 11 are aligned. The nonmagnetic modified phase 11 corresponds to the peribridge portion 92 and the center bridge portion 93 shown in FIG. Therefore, the rotor member 10 in which the nonmagnetic modified phase 11 is formed has an installation hole for loading the magnet 91 at a predetermined location, and the outer periphery thereof is scraped off.

ところで、ロータ部材10毎に形成される非磁性改質相11について改質の品質が落ちると、漏れ磁束を適切に防止することができず、モータの性能を低下させることになる。そのため、非磁性改質相11の製造に関しては、磁石91の漏れ磁束を効果的に抑えられることが求められている。また、非磁性改質相11には、その他にも磁石91に作用する遠心力によって、前述した磁石の設置孔が形成された位置から破壊が生じない強度を備えていることなどが要求される。そのためには、図2(c)で示すように、改質された非磁性改質相11が安定した状態で得られるようにするための方策が必要であった。   By the way, if the quality of the reforming of the nonmagnetic reforming phase 11 formed for each rotor member 10 is deteriorated, the leakage magnetic flux cannot be prevented appropriately, and the performance of the motor is deteriorated. Therefore, regarding the manufacture of the nonmagnetic modified phase 11, it is required to effectively suppress the leakage flux of the magnet 91. In addition, the non-magnetic modified phase 11 is required to have a strength that does not cause breakage from the position where the above-described magnet installation hole is formed by centrifugal force acting on the magnet 91. . For that purpose, as shown in FIG. 2C, a measure for ensuring that the modified nonmagnetic modified phase 11 is obtained in a stable state is necessary.

ここで図3は、その非磁性改質相が安定的に得られなかった場合の一例を示したものである。非磁性改質相が不安定になる原因としては、改質金属103と凹穴102との寸法誤差が考えられる。すなわち、改質金属103の体積は、電磁鋼板101の凹穴102によってできる空間120の容積と同じなるように形成されることが好ましいが、共に公差があるため、図3(a)に示すように、改質金属103の厚さ寸法が小さく、凹穴102が深い場合には、電極5の加圧方向に隙間110が出来てしまう。   Here, FIG. 3 shows an example of the case where the nonmagnetic modified phase is not stably obtained. A possible cause of the nonmagnetic modified phase becoming unstable is a dimensional error between the modified metal 103 and the recessed hole 102. That is, the volume of the modified metal 103 is preferably formed to be the same as the volume of the space 120 formed by the concave hole 102 of the electromagnetic steel sheet 101, but since both have tolerances, as shown in FIG. In addition, when the thickness dimension of the modified metal 103 is small and the concave hole 102 is deep, a gap 110 is formed in the pressing direction of the electrode 5.

このような状態で改質金属103を挟み込んだ2枚の電磁鋼板101同士を、図3(b)に示すように上下から電極5によって挟み込んで通電加圧を行うと、隙間110を回避した通電電流が改質金属103の横側面部と電磁鋼板101との接触部分を流れ、そこで起きる抵抗発熱により改質金属103が周りの電磁鋼板101とともに溶融する。従って、改質金属103の側面部から溶融して改質し、電流が通らない中心部分の改質が十分行われない、図3(c)に示すような非磁性改質相111が形成されてしまう。この場合、中心部分の改質が十分でないためロータを構成した時に漏れ磁束を増加させる他、非磁性改質相111の形状が歪んでいることで強度低く破損を引き起こしかねない。   When the two electromagnetic steel plates 101 sandwiching the modified metal 103 in this state are sandwiched by the electrodes 5 from above and below as shown in FIG. An electric current flows through the contact portion between the lateral side surface of the modified metal 103 and the electrical steel sheet 101, and the modified metal 103 is melted together with the surrounding electrical steel sheet 101 by resistance heat generated there. Therefore, the non-metallic reformed phase 111 as shown in FIG. 3C is formed, which is melted and reformed from the side surface portion of the reformed metal 103 and the center portion where current does not pass is not sufficiently reformed. End up. In this case, since the modification of the central portion is not sufficient, the leakage magnetic flux is increased when the rotor is configured, and the shape of the nonmagnetic modified phase 111 is distorted, which may cause damage with low strength.

そこで本実施形態では、前述した図2に示す方法により、安定した非磁性改質相11が得られる製造方法を提案する。具体的には、図4に示すように、改質金属3と電磁鋼板1の凹穴2の寸法を調整することにより、安定した非磁性改質相11を形成しようとするものである。本実施形態の改質金属3の厚さtは、電磁鋼板1の凹穴2を重ねた空間20の高さHよりも大きく設定する。   Therefore, in the present embodiment, a manufacturing method is proposed in which a stable nonmagnetic modified phase 11 can be obtained by the method shown in FIG. Specifically, as shown in FIG. 4, by adjusting the dimensions of the modified metal 3 and the recessed hole 2 of the electromagnetic steel sheet 1, a stable nonmagnetic modified phase 11 is to be formed. The thickness t of the modified metal 3 of the present embodiment is set to be larger than the height H of the space 20 where the concave holes 2 of the electromagnetic steel sheet 1 are overlapped.

例えば、2枚重ねした電磁鋼板1の板厚は0.3mmであり、そこに形成された凹穴2による空間20は、直径Dが3.05mmで高さHが0.15mmである。一方、円形の改質金属3は、直径dが3.0mmであり、厚さtが0.2mmである。従って、電磁鋼板1の凹穴2を重ねた空間20の高さHよりも改質金属3の厚さtが0.05mm大きくなるように寸法が決められている。   For example, the thickness of the two laminated steel sheets 1 is 0.3 mm, and the space 20 formed by the recessed holes 2 formed therein has a diameter D of 3.05 mm and a height H of 0.15 mm. On the other hand, the circular modified metal 3 has a diameter d of 3.0 mm and a thickness t of 0.2 mm. Therefore, the dimension is determined so that the thickness t of the modified metal 3 is 0.05 mm larger than the height H of the space 20 where the concave holes 2 of the electromagnetic steel sheet 1 are overlapped.

従って、図2(a)に示すように、凹穴2の空間20内に改質金属3を入れて電磁鋼板1同士を重ね合わせれば、必ず改質金属3の上面及び下面が凹穴2の底面に当たる。そして、改質金属3を挟み込んだ2枚の電磁鋼板1同士を、図2(b)に示すように、その改質金属3が位置する箇所で上下から電極5によって挟み込み、通電加圧を行う。このとき通電電流は、電磁鋼板1と接触している改質金属3の上下の面を通って流れるため、改質金属3は上端部3a及び下端部3bから発熱して全体が溶融する。   Therefore, as shown in FIG. 2A, when the modified metal 3 is put in the space 20 of the recessed hole 2 and the electromagnetic steel sheets 1 are overlapped with each other, the upper surface and the lower surface of the modified metal 3 are always the recessed holes 2. Hit the bottom. Then, as shown in FIG. 2 (b), the two electromagnetic steel sheets 1 sandwiching the modified metal 3 are sandwiched by the electrodes 5 from above and below at the location where the modified metal 3 is positioned, and energization pressurization is performed. . At this time, since the energizing current flows through the upper and lower surfaces of the modified metal 3 in contact with the electromagnetic steel sheet 1, the modified metal 3 generates heat from the upper end portion 3a and the lower end portion 3b and melts as a whole.

改質金属3が溶融するに従って加圧された上下の電磁鋼板1が上下に押し付けられ、密閉された空間20内に改質金属3が充填され、周りの電磁鋼板1とともに溶融する。そして、通電終了後に再び凝固することで、図2(c)に示すように、非磁性改質相11が形成される。   As the reformed metal 3 melts, the upper and lower electromagnetic steel plates 1 that are pressed are pressed up and down to fill the sealed space 20 with the reformed metal 3 and melt together with the surrounding electromagnetic steel plates 1. And it solidifies again after completion | finish of electricity supply, and as shown in FIG.2 (c), the nonmagnetic modification | reformation phase 11 is formed.

よって、本実施形態の製造方法によれば、改質金属3の厚さ寸法tを、重ねた電磁鋼板1にできる空間20の高さよりも大きくすることにより、必ず改質金属3の上面と下面とが接触し、そこから抵抗発熱によって溶融することで全体が改質した非磁性改質相11が得られる。こうして非磁性改質相11の品質が安定したロータ部材10が得られるようになった。   Therefore, according to the manufacturing method of the present embodiment, the upper surface and the lower surface of the modified metal 3 are surely formed by making the thickness dimension t of the modified metal 3 larger than the height of the space 20 that can be formed in the stacked electromagnetic steel sheets 1. And a non-magnetically modified phase 11 which is entirely modified is obtained by melting by resistance heating. Thus, the rotor member 10 in which the quality of the nonmagnetic modified phase 11 is stable can be obtained.

ところで、本実施形態の改質金属3は、厚さ寸法を大きくした分、その直径dが円形の凹穴2の直径Dよりも小さくなるようにしている。これは改質金属3の体積が凹穴2の空間20とほぼ等しくし、溶融した改質金属3が密閉された空間20内に対し適切に充填できるようにするためである。一方、改質金属3の体積と空間20の容積との差が大きい場合には、空間20から溶融した改質金属3が流れ出したり、非磁性改質相11部分の板厚を厚くし、または逆に板厚を薄くしてしまうなどし、ロータの性能を低下させる原因となってしまう。   By the way, the modified metal 3 of the present embodiment has a diameter d smaller than the diameter D of the circular concave hole 2 as the thickness dimension is increased. This is because the volume of the modified metal 3 is substantially equal to the space 20 of the recessed hole 2 so that the molten modified metal 3 can be appropriately filled into the sealed space 20. On the other hand, when the difference between the volume of the modified metal 3 and the volume of the space 20 is large, the molten modified metal 3 flows out of the space 20, increases the thickness of the nonmagnetic modified phase 11 portion, or On the contrary, the plate thickness is reduced, which causes a decrease in the performance of the rotor.

そこで、本実施形態では、前述したように改質金属3の厚さ寸法を大きくした分、横方向の寸法を小さくして空間20の大きさに合わせるようにした。これにより、溶融した改質金属3が空間20内に適切に収まるように充填でき、より安定した非磁性改質相11を形成することが可能になった。ただし、改質金属3と空間20との大きさは等しいことが望ましいが、その差が大きくなった場合に前述した不都合が生じやすくなるのであって、多少の誤差を許容できないわけではない。   Therefore, in the present embodiment, as described above, the thickness dimension of the modified metal 3 is increased, so that the lateral dimension is decreased to match the size of the space 20. As a result, the molten modified metal 3 can be filled so as to fit properly in the space 20, and a more stable nonmagnetic modified phase 11 can be formed. However, it is desirable that the sizes of the modified metal 3 and the space 20 are equal, but if the difference becomes large, the above-described disadvantages are likely to occur, and some errors are not unacceptable.

次に、図5は、非磁性改質相の製造方法を示した第2実施形態の断面図である。本実施形態では、2枚の電磁鋼板1を重ねてロータ部材10を形成した第1実施形態に対し、3枚の電磁鋼板を重ねてロータ部材を形成する場合の製造方法を示したものである。なお、第1実施形態と同じ構成については、同じ符号を付して説明する。   Next, FIG. 5 is a cross-sectional view of a second embodiment showing a method for producing a nonmagnetic modified phase. In the present embodiment, a manufacturing method in the case where a rotor member is formed by stacking three electromagnetic steel sheets is shown in the first embodiment in which the rotor member 10 is formed by stacking two electromagnetic steel sheets 1. . In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and demonstrated.

本実施形態では、表面が平らな2枚の電磁鋼板41と、貫通孔42aが形成された1枚の電磁鋼板42が用意され、図5(a)に示すように、電磁鋼板42の上下に電磁鋼板41を重ねてできる貫通孔42aの空間40内に改質金属3を配置させる。このとき改質金属3は、加圧方向である高さ寸法が電磁鋼板42の板厚よりも大きく、逆に加圧方向に直交する横方向の寸法は貫通穴42aよりも小さい。   In the present embodiment, two electromagnetic steel plates 41 having a flat surface and one electromagnetic steel plate 42 having through holes 42a are prepared. As shown in FIG. The reformed metal 3 is placed in the space 40 of the through hole 42a formed by overlapping the electromagnetic steel plates 41. At this time, the height of the modified metal 3 in the pressing direction is larger than the thickness of the electromagnetic steel plate 42, and the horizontal dimension orthogonal to the pressing direction is smaller than the through hole 42a.

従って、図5(b)に示すように電極5によって3枚の電磁鋼板41,42,41を挟み込んだ場合、改質金属3の上下面はそれぞれが必ず電磁鋼板41に当たった状態で通電加圧が行われる。通電電流は、電磁鋼板41と接触している改質金属3の上下の面を通って流れ、改質金属3は、上端部3a及び下端部3bから発熱して全体が溶融する。そして、上下の押し付けによって密閉された空間40内に改質金属3が充填され、周りの電磁
鋼板1とともに溶融し、通電終了後に再び凝固することで、図5(c)に示すように、非磁性改質相61を備えたロータ部材60が形成される。
Therefore, when three electromagnetic steel plates 41, 42, 41 are sandwiched between the electrodes 5 as shown in FIG. 5 (b), the upper and lower surfaces of the modified metal 3 are always in contact with the electromagnetic steel plate 41. Pressure is applied. The energizing current flows through the upper and lower surfaces of the reformed metal 3 that is in contact with the electromagnetic steel plate 41, and the reformed metal 3 generates heat from the upper end portion 3a and the lower end portion 3b and is melted as a whole. Then, the reformed metal 3 is filled in the space 40 sealed by pressing up and down, melted together with the surrounding electromagnetic steel sheet 1, and solidified again after the energization is completed, as shown in FIG. A rotor member 60 having a magnetically modified phase 61 is formed.

よって、本実施形態の製造方法でも、改質金属3の厚さ寸法を、電磁鋼板41,42を重ねて形成する空間40の高さよりも大きくすることにより、必ず改質金属3の上面と下面とが電磁鋼板41に接触した抵抗発熱によって溶融することで全体が改質し、非磁性改質相61の品質が安定したロータ部材60が得られるようになった。   Therefore, even in the manufacturing method of the present embodiment, the upper and lower surfaces of the modified metal 3 are surely formed by making the thickness dimension of the modified metal 3 larger than the height of the space 40 formed by overlapping the electromagnetic steel plates 41 and 42. As a result, the whole is reformed by the resistance heat generated in contact with the electromagnetic steel sheet 41, and the rotor member 60 in which the quality of the nonmagnetic modified phase 61 is stable can be obtained.

以上、本発明に係る非磁性改質相を備える鋼材の製造方法について実施形態を説明したが、本発明はこれに限定されることはなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、前記実施形態では、改質金属3と空間20との大きさがほぼ同じになるようにするため、改質金属3の径方向寸法を小さくしたが、例えば改質金属3の径方向寸法を凹穴2と同じにし、その分中心に貫通孔をあけて体積を調節することも考えられる。
また、前記実施形態では、2枚の電磁鋼板1を重ねたロータ部材に非磁性改質相11を形成した場合について説明したが、その他の部材について行う場合にも応用可能である。
As mentioned above, although embodiment was described about the manufacturing method of the steel materials provided with the nonmagnetic modification phase concerning the present invention, the present invention is not limited to this, and various changes are possible in the range which does not deviate from the meaning. is there.
For example, in the above-described embodiment, the radial dimension of the modified metal 3 is reduced so that the sizes of the modified metal 3 and the space 20 are substantially the same. It is also conceivable to adjust the volume by making the same as that of the recessed hole 2 and making a through hole at the center.
Moreover, although the said embodiment demonstrated the case where the nonmagnetic modified phase 11 was formed in the rotor member which piled up the two electromagnetic steel plates 1, it is applicable also when performing about another member.

また、前記第2実施形態では、電磁鋼板41を平面にしたが、その電磁鋼板41にも第1実施形態と同様に凹穴を形成し、その凹穴と電磁鋼板42の貫通孔42aとによって形成した空間に改質金属を入れるようにしてもよい。
更に、前記第2実施形態では、空間40を貫通孔42aを形成した1枚の電磁鋼板42で構成したが、上下の電磁鋼板41の間に2枚以上の電磁鋼板42を重ねるようにしてもよい。
Moreover, in the said 2nd Embodiment, although the electromagnetic steel plate 41 was made into the plane, a concave hole is formed also in the electromagnetic steel plate 41 similarly to 1st Embodiment, By the concave hole and the through-hole 42a of the electromagnetic steel plate 42, it is. You may make it put a modified metal in the formed space.
Furthermore, in the said 2nd Embodiment, although the space 40 was comprised with the one electromagnetic steel plate 42 in which the through-hole 42a was formed, you may make it pile up two or more electromagnetic steel plates 42 between the upper and lower electromagnetic steel plates 41. FIG. Good.

1 電磁鋼板
2 凹穴
3 改質金属
5 電極
10 ロータ部材
11 非磁性改質相
20 空間
DESCRIPTION OF SYMBOLS 1 Magnetic steel plate 2 Concave hole 3 Modified metal 5 Electrode 10 Rotor member 11 Nonmagnetic modified phase 20 Space

Claims (5)

複数の鋼材を重ね合わせによって内部に空間を形成し、その空間内に改質金属を入れ、前記重ね合わせた鋼材を前記改質金属の存在する位置で重ね合わせ方向に挟み込んだ一対の電極により通電加圧することによって、前記改質金属を周囲の鋼材の一部とともに溶融して非磁性改質相を形成するものであり、
前記電極による加圧方向寸法が前記空間よりも大きい前記改質金属を入れるようにしたことを特徴とする非磁性改質相を備える鋼材の製造方法。
A space is formed by superposing a plurality of steel materials, a reformed metal is placed in the space, and electricity is supplied by a pair of electrodes sandwiched in the superposition direction at the position where the reformed metal exists. By pressurizing, the modified metal is melted together with a part of the surrounding steel material to form a nonmagnetic modified phase,
A method for producing a steel material having a non-magnetic modified phase, wherein the modified metal having a dimension in the pressurizing direction by the electrode larger than that of the space is placed.
請求項1に記載する非磁性改質相を備える鋼材の製造方法において、
前記空間は、向かい合う面にそれぞれ凹穴を形成した2枚の鋼材を重ね合わせて形成されたものであり、
前記改質金属の前記電極による加圧方向寸法が前記空間より大きいものを入れて行うようにしたことを特徴とする非磁性改質相を備える鋼材の製造方法。
In the manufacturing method of the steel material provided with the nonmagnetic modified phase according to claim 1,
The space is formed by stacking two steel materials each having a concave hole on the opposite surface,
A method for producing a steel material having a non-magnetically modified phase, characterized in that the metal in the direction of pressure applied by the electrode is larger than the space.
請求項1に記載する非磁性改質相を備える鋼材の製造方法において、
前記空間は、貫通孔を形成した1の鋼材又は2以上を重ねた鋼材を、上下両面から当該貫通孔を塞ぐための鋼材によって挟み込んで形成されたものであり、
前記改質金属の前記電極による加圧方向寸法が前記空間より大きいものを入れて行うようにしたことを特徴とする非磁性改質相を備える鋼材の製造方法。
In the manufacturing method of the steel material provided with the nonmagnetic modified phase according to claim 1,
The space is formed by sandwiching one steel material in which a through hole is formed or a steel material in which two or more are stacked, with a steel material for closing the through hole from both upper and lower surfaces,
A method for producing a steel material having a non-magnetically modified phase, characterized in that the metal in the direction of pressure applied by the electrode is larger than the space.
請求項1乃至請求項3のいずれかに記載する非磁性改質相を備える鋼材の製造方法において、
前記改質金属は、前記電極による加圧方向と直交する方向の寸法を前記空間より小さくすることを特徴とする非磁性改質相を備える鋼材の製造方法。
In the manufacturing method of the steel material provided with the nonmagnetic modified phase according to any one of claims 1 to 3,
The method for producing a steel material having a nonmagnetic modified phase, wherein the modified metal has a dimension in a direction orthogonal to a pressing direction by the electrode smaller than the space.
請求項1乃至請求項4のいずれかに記載する非磁性改質相を備える鋼材の製造方法において、
前記改質金属の体積と前記空間の容積とがほぼ等しくなるようにしたことを特徴とする非磁性改質相を備える鋼材の製造方法。
In the manufacturing method of the steel material provided with the nonmagnetic modified phase according to any one of claims 1 to 4,
A method for producing a steel material comprising a nonmagnetic modified phase, wherein the volume of the modified metal and the volume of the space are substantially equal.
JP2009249312A 2009-10-29 2009-10-29 Method for manufacturing steel material with non-magnetically modified phase Withdrawn JP2011097745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009249312A JP2011097745A (en) 2009-10-29 2009-10-29 Method for manufacturing steel material with non-magnetically modified phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249312A JP2011097745A (en) 2009-10-29 2009-10-29 Method for manufacturing steel material with non-magnetically modified phase

Publications (1)

Publication Number Publication Date
JP2011097745A true JP2011097745A (en) 2011-05-12

Family

ID=44114055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249312A Withdrawn JP2011097745A (en) 2009-10-29 2009-10-29 Method for manufacturing steel material with non-magnetically modified phase

Country Status (1)

Country Link
JP (1) JP2011097745A (en)

Similar Documents

Publication Publication Date Title
KR101095233B1 (en) Steel having non-magnetic portion, its producing method, and revolving electric core
JP2011067027A (en) Steel plate pair, laminated steel plate, and method of manufacturing core of rotary electric machine
EP2600506A2 (en) Method for manufacturing stator for motor and stator for motor
WO2010131560A1 (en) Method of manufacturing laminated iron core, and laminated iron core
KR101224700B1 (en) Rotor and method for manufacturing same
EP2600508B1 (en) Rotor for motor and method of manufacturing the same
JP2007159300A (en) Stator of rotary electric machine
JP4722589B2 (en) Stator laminated core
CN109642265B (en) Thin strip component, method for manufacturing the same, and motor using the thin strip component
US11456635B2 (en) Magnet embedded type motor and method for manufacturing the same
JP2014079044A (en) Method for manufacturing laminated steel plate, and laminated steel plate
JP2011097749A (en) Method for manufacturing steel material with non-magnetically modified phase
JP2011097745A (en) Method for manufacturing steel material with non-magnetically modified phase
JP2004281737A (en) Manufacturing method of composite magnetic member and motor employing the member, composite magnetic member and motor employing the member
WO2020084829A1 (en) Electromagnet, electromagnetic switch, and method of manufacturing electromagnet
EP2600507A2 (en) Rotor for motor and method for manufacturing the same
JP6350964B2 (en) Rotor core, rotor using the rotor core, and method of manufacturing rotor core
WO2022054722A1 (en) Magnetic core and magnetic component
JP2011094190A (en) Method for manufacturing steel having non-magnetic reforming phase
JP2015198475A (en) rotor core
WO2011033646A1 (en) Steel sheet pair, laminated steel sheet and core of dynamo electric machine
JP2012152821A (en) Tabular one-turn coil for electromagnetic welding
JP2011083157A (en) Method of manufacturing steel plate having non-magnetic spot
JP2011036077A (en) Method of manufacturing laminated core
JP5787635B2 (en) Static inductor and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108