JP2011094190A - Method for manufacturing steel having non-magnetic reforming phase - Google Patents

Method for manufacturing steel having non-magnetic reforming phase Download PDF

Info

Publication number
JP2011094190A
JP2011094190A JP2009249317A JP2009249317A JP2011094190A JP 2011094190 A JP2011094190 A JP 2011094190A JP 2009249317 A JP2009249317 A JP 2009249317A JP 2009249317 A JP2009249317 A JP 2009249317A JP 2011094190 A JP2011094190 A JP 2011094190A
Authority
JP
Japan
Prior art keywords
space
metal
modified
nonmagnetic
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009249317A
Other languages
Japanese (ja)
Inventor
Keisuke Tsunoda
佳介 角田
Takuya Shimizu
拓也 清水
Izuru Yamamoto
出 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009249317A priority Critical patent/JP2011094190A/en
Publication of JP2011094190A publication Critical patent/JP2011094190A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel having a non-magnetic reforming phase in which stability of quality is attained. <P>SOLUTION: In the method for manufacturing the steel having the non-magnetic reforming phase, reforming metal 30 is put into an inner space 20 in which a plurality of steel materials 1 are piled up and the reforming metal 30 is melted together with a part of surrounding steel materials 1 by energization and pressurization with a pair of electrodes 5 to form the non-magnetic reforming-phase, the reforming metal 30 is a round member having a thickness, a size in the pressurizing direction of the electrode 5 is larger than the space 20 and a size in a lateral direction orthogonal to the pressurizing direction is smaller than the space 20, and a projecting and recessed surface 31 is continuously formed in the circumferential direction on the circumferential surface in the lateral direction. The method includes a positioning step in which projecting parts 21 for positioning of the reforming metal 30 are formed in the space 20, before the energization and pressurization with the pair of electrodes 5, rotation is given to the steel materials 1 piled up by putting the reforming metal 30 into the space 20, and the reforming metal 30 shifted in the space 20 with centrifugal force is abutted on the projections 21 in the space 20 for positioning. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼材に非磁性材を挟み込んで通電加熱溶融することにより部分的に非磁性改質相を備える鋼材を形成する製造方法に関し、特に、安定した非磁性改質相を形成する鋼材の製造方法に関する。   The present invention relates to a manufacturing method for forming a steel material partially including a non-magnetic modified phase by sandwiching a non-magnetic material in a steel material and melting it by heating with heating, and in particular, a steel material that forms a stable non-magnetic modified phase. It relates to a manufacturing method.

電動機や発電機などに用いられる鉄心には一般に高い透磁率が求められるため、ロータに磁石が取り付けられている。そして、そのロータには、磁石の漏れ磁束によって性能が低下しないようにするため、従来から部分的に非磁性化する加工が施される。図7は、ロータを非磁性化した改質箇所を示した図である。ロータ90に設けられた磁石91に対し、非磁性改質相のペリブリッジ部92とセンターブリッジ部93が形成され、磁気抵抗を高めることで漏れ磁束による性能低下を防止している。   Since iron cores used for electric motors and generators generally require high magnetic permeability, a magnet is attached to the rotor. In order to prevent the performance from being deteriorated by the leakage magnetic flux of the magnet, the rotor is partially processed to be non-magnetic. FIG. 7 is a view showing a modified portion where the rotor is made non-magnetic. A non-magnetic modified phase peribridge portion 92 and a center bridge portion 93 are formed on the magnet 91 provided on the rotor 90, and the performance is prevented from being deteriorated due to leakage magnetic flux by increasing the magnetic resistance.

このような非磁性改質相を備える鋼材を製造する方法としては、例えば特許文献1に、鉄心の該当箇所を局所的に加熱した後、冷却させることでオーステナイト領域を形成する技術が開示されている。すなわち、局所的な加熱の手段としてレーザー照射を行い、準安定オーステナイト系ステンレス鋼を冷間圧延により強磁性のマルテンサイト組織としたものを用いることで、その一部を非磁性のオーステナイト組織とする。その他には、特許文献2に開示されているように、対象の磁性部材を局所的に溶融しつつ、外部から改質元素を添加して固溶させて非磁性化する方法もある。   As a method for producing a steel material having such a nonmagnetic modified phase, for example, Patent Document 1 discloses a technique for forming an austenite region by locally heating a corresponding portion of an iron core and then cooling it. Yes. That is, laser irradiation is performed as a means of local heating, and a metastable austenitic stainless steel is made into a ferromagnetic martensite structure by cold rolling, so that part of it becomes a nonmagnetic austenitic structure . In addition, as disclosed in Patent Document 2, there is a method in which a target magnetic member is locally melted and a modifying element is added from the outside to be solid-dissolved to be non-magnetic.

特許第3507395号公報Japanese Patent No. 3507395 特開2001−93717号公報JP 2001-93717 A

しかしながら、こうした従来の製造方法では、マルテンサイト化したオーステナイト系ステンレス鋼を用いる場合、結晶形の歪み等のため透磁率が一般的な電磁鋼板より劣り、最大磁束密度が不足してしまう。また、溶融させた状態で改質元素を添加する方法では、長い処理時間を要することや、深さ方向の制御が困難で非磁性改質相を所望どおりに形成できないなどの問題があった。また、ロータ90の場合には、電磁鋼板を複数重ねて構成するため、改質元素を添加した分が体積増加してしまい処理後の平坦性が悪いため、気密な重ね合わせができないといった問題も生じる。従って、非磁性改質相を備える鋼材の製造に対し、こうした課題を解決した新たな方法が望まれ、本出願人は特願2008−192468号によって新規製造方法を提案した。   However, in such a conventional manufacturing method, when martensitic austenitic stainless steel is used, the permeability is inferior to that of a general electromagnetic steel sheet due to crystal distortion or the like, and the maximum magnetic flux density is insufficient. In addition, the method of adding the modifying element in the melted state has problems that a long processing time is required and that the nonmagnetic modified phase cannot be formed as desired because the control in the depth direction is difficult. In addition, in the case of the rotor 90, since a plurality of electromagnetic steel plates are stacked, the amount of addition of the modifying element is increased in volume, and the flatness after processing is poor, so that airtight stacking cannot be performed. Arise. Therefore, a new method for solving these problems is desired for the production of a steel material having a nonmagnetic modified phase, and the present applicant has proposed a new production method according to Japanese Patent Application No. 2008-192468.

本発明は、かかる新規製造方法に関し、品質の安定を図った非磁性改質相を備える鋼材の製造方法を提供することを目的とする。   The present invention relates to such a novel production method, and an object thereof is to provide a method for producing a steel material having a nonmagnetic modified phase with stable quality.

本発明に係る非磁性改質相を備える鋼材の製造方法は、複数の鋼材を重ね合わせによって内部に空間を形成し、その空間内に改質金属を入れ、前記重ね合わせた鋼材を前記改質金属の存在する位置で重ね合わせ方向に挟み込んだ一対の電極により通電加圧することによって、前記改質金属を周囲の鋼材の一部とともに溶融して非磁性改質相を形成するものであり、前記改質金属は、厚さをもった円形の部材であって、前記電極による加圧方向寸法が前記空間よりも大きく、前記加圧方向に直交する横方向寸法が前記空間よりも小さく、その横方向周面に周方向に連続して凹凸部が形成されたものであり、前記空間内には、前記改質金属の位置決めを行うための突起部が形成され、前記電極による通電加圧の前に、前記空間に改質金属を入れて重ね合わせた鋼材に回転を与え、その遠心力によって前記空間内で移動させた前記改質金属を、前記空間内の突起に当てることにより位置決めする工程を有することを特徴とする。   A method of manufacturing a steel material having a nonmagnetic modified phase according to the present invention includes forming a space inside by superposing a plurality of steel materials, putting a reformed metal in the space, and then modifying the superposed steel material By energizing and pressurizing with a pair of electrodes sandwiched in the overlapping direction at the position where the metal exists, the modified metal is melted together with a part of the surrounding steel material to form a nonmagnetic modified phase, The modified metal is a circular member having a thickness, and the dimension in the pressing direction by the electrode is larger than the space, and the lateral dimension perpendicular to the pressing direction is smaller than the space. Concavities and convexities are formed continuously in the circumferential direction on the circumferential surface, and a protrusion for positioning the modified metal is formed in the space, before energization and pressurization by the electrode. And put the modified metal into the space It combined giving a rotation to steel, the modified metal is moved in the space by the centrifugal force, characterized by having a step of positioning by applying the projection in the space.

また、本発明に係る非磁性改質相を備える鋼材の製造方法は、前記改質金属には三角形状の凹凸部が形成され、前記空間内には前記加圧方向の底面に突き出た突起部が複数箇所に形成され、遠心力によって前記空間内を移動する前記改質金属の凹部に突起部が嵌り込むようにして位置決めを行うようにしたものであることが好ましい。
また、本発明に係る非磁性改質相を備える鋼材の製造方法は、前記空間内に形成された突起部は、前記加圧方向の底面の中心点を中心とした円の円周上の3点で前記改質金属に嵌り込むように形成され、遠心力によって前記空間内を移動する前記改質金属を3点で支持して位置決めを行うようにしたものであることが好ましい。
Further, in the method of manufacturing a steel material including the nonmagnetic modified phase according to the present invention, the modified metal is formed with a triangular uneven portion, and a protruding portion protruding from the bottom surface in the pressing direction is formed in the space. Are formed at a plurality of locations, and the positioning is preferably performed such that the protrusions are fitted into the recesses of the modified metal that moves in the space by centrifugal force.
Further, in the method of manufacturing a steel material including the nonmagnetic modified phase according to the present invention, the protrusion formed in the space has 3 on the circumference of a circle centered on the center point of the bottom surface in the pressing direction. It is preferable that the modified metal which is formed so as to be fitted into the modified metal at a point and moves in the space by centrifugal force is supported at three points for positioning.

本発明によれば、改質金属と重ねた鋼材によってできる空間の寸法を調整することにより、通電加圧の際、改質金属が上下両面から発熱して溶融するようにすることで品質のよい非磁性改質相を得ることができ、更に、位置決め工程によって改質金属を空間内の適正な位置に配置させることで、より安定した品質のよい非磁性改質相を備える鋼材を製造することができる。   According to the present invention, by adjusting the size of the space formed by the steel material overlapped with the reformed metal, the quality of the reformed metal is improved by causing the reformed metal to generate heat and melt from both the upper and lower surfaces during energization and pressurization. A nonmagnetic modified phase can be obtained, and further, a steel material having a more stable and high quality nonmagnetic modified phase can be produced by arranging the modified metal at an appropriate position in the space by the positioning step. Can do.

ロータの電磁鋼板とその凹穴に入れる改質金属を示した図である。It is the figure which showed the modified metal put into the electromagnetic steel plate of a rotor, and its recessed hole. 非磁性改質相を備える鋼材の製造方法について示した断面図である。It is sectional drawing shown about the manufacturing method of steel materials provided with a nonmagnetic modification phase. 非磁性改質相を備える鋼材の製造方法について課題を示した断面図である。It is sectional drawing which showed the subject about the manufacturing method of steel materials provided with a nonmagnetic modification phase. 電磁鋼板の空間内に入れた改質金属について行う位置決めを示した平面図である。It is the top view which showed the positioning performed about the modified metal put in the space of an electromagnetic steel plate. 非磁性改質相を備える鋼材の製造方法について第1実施形態を示した断面図である。It is sectional drawing which showed 1st Embodiment about the manufacturing method of steel materials provided with a nonmagnetic modification phase. 非磁性改質相を備える鋼材の製造方法について第2実施形態を示した断面図である。It is sectional drawing which showed 2nd Embodiment about the manufacturing method of steel materials provided with a nonmagnetic modification phase. ロータを非磁性化した改質箇所を示した図である。It is the figure which showed the modification location which made the rotor non-magnetic.

次に、本発明に係る非磁性改質相を備える鋼材の製造方法について、その一実施形態を図面を参照しながら以下に説明する。
本実施形態では、モータを構成するロータに対して非磁性改質相を形成する場合について説明する。ロータには、前述したように高い透磁率を得るため磁石が取り付けられ、磁石の漏れ磁束による性能低下を防止するため非磁性改質相が形成される。
Next, an embodiment of a method for producing a steel material having a nonmagnetic modified phase according to the present invention will be described below with reference to the drawings.
In the present embodiment, a case where a nonmagnetic modified phase is formed on the rotor constituting the motor will be described. As described above, a magnet is attached to the rotor in order to obtain a high magnetic permeability, and a nonmagnetic modified phase is formed in order to prevent performance degradation due to leakage flux of the magnet.

ロータは、図1に示すようにドーナッツ形状をした極薄の電磁鋼板(例えば、Fe−Si)1を多数枚積層して形成されるものである。本実施形態では、そうした電磁鋼板1の所定箇所に円形の凹穴2が複数形成され、その中にそれぞれ厚さをもった円形の小片である改質金属(例えば、NiCr)3が一つずつ入れられ、複数箇所に非磁性改質相が形成される。ここで、図2は、非磁性改質相の一箇所について製造方法を示した断面図である。   As shown in FIG. 1, the rotor is formed by laminating a large number of doughnut-shaped ultrathin electromagnetic steel plates (for example, Fe—Si) 1. In the present embodiment, a plurality of circular concave holes 2 are formed at predetermined locations on the electromagnetic steel sheet 1, and one modified metal (for example, NiCr) 3 that is a small circular piece having a thickness in each of them. The nonmagnetic modified phase is formed at a plurality of locations. Here, FIG. 2 is a cross-sectional view showing a manufacturing method for one portion of the nonmagnetic modified phase.

先ず、図2(a)に示すように、凹穴2を形成した2枚の電磁鋼板1を上下に重ね合わせ、その際、上下両方の凹穴2が重なってできた空間20内に改質金属3が入れられる。次に、上面及び下面が凹穴2の底面に当たるように改質金属3を挟み込んだ2枚の電磁鋼板1同士を、図2(b)に示すように、その改質金属3が位置する箇所で上下から電極5によって挟み込み、通電加圧を行う。   First, as shown in FIG. 2 (a), two electromagnetic steel sheets 1 each having a concave hole 2 are stacked one on top of the other, and at that time, a modification is made in a space 20 formed by overlapping both the upper and lower concave holes 2. Metal 3 is placed. Next, as shown in FIG. 2 (b), the two electromagnetic steel plates 1 sandwiching the modified metal 3 so that the upper surface and the lower surface are in contact with the bottom surface of the recessed hole 2 are positioned where the modified metal 3 is located. Then, the electrode 5 is sandwiched from above and below, and energization and pressurization are performed.

ここでは、改質金属3の厚さを電磁鋼板1の凹穴2を重ねた空間20の高さよりも大きく、必ず改質金属3の上面及び下面が凹穴2の底面に当たるように形成されている。そのため、通電電流は電磁鋼板1と接触している改質金属3の上下両面を通って流れ、その上端部3a及び下端部3bから発熱して全体が溶融する。改質金属3が溶融するに従って加圧された上下の電磁鋼板1が上下に押し付けられ、密閉された空間20内に改質金属3が充填され、周りの電磁鋼板1とともに溶融する。そして、通電終了後に再び凝固することで、図2(c)に示すように、非磁性改質相11が形成される。   Here, the thickness of the modified metal 3 is larger than the height of the space 20 where the concave holes 2 of the electromagnetic steel sheet 1 are stacked, and the upper surface and the lower surface of the modified metal 3 are always formed so as to contact the bottom surface of the concave hole 2. Yes. Therefore, the energization current flows through both the upper and lower surfaces of the modified metal 3 in contact with the electromagnetic steel sheet 1, and heat is generated from the upper end portion 3 a and the lower end portion 3 b to melt the whole. As the reformed metal 3 melts, the upper and lower electromagnetic steel plates 1 that are pressed are pressed up and down to fill the sealed space 20 with the reformed metal 3 and melt together with the surrounding electromagnetic steel plates 1. And it solidifies again after completion | finish of electricity supply, and as shown in FIG.2 (c), the nonmagnetic modification | reformation phase 11 is formed.

なお、改質金属3の厚さが空間20の高さよりも大きくなるように形成されているが、これは改質金属3の厚さと空間20の高さの寸法を等しく設定すると、誤差によって改質金属3の厚さが小さくなってしまった場合に電極5の加圧方向に隙間ができてしまい、改質金属3が十分な加熱によって溶融が行われず、非磁性改質相11の品質を低下させるおそれがあるからである。   Although the thickness of the modified metal 3 is formed to be larger than the height of the space 20, if the thickness of the modified metal 3 and the height of the space 20 are set equal, the modified metal 3 is modified due to an error. When the thickness of the porous metal 3 is reduced, a gap is formed in the pressing direction of the electrode 5, and the modified metal 3 is not melted by sufficient heating, and the quality of the nonmagnetic modified phase 11 is improved. This is because there is a risk of lowering.

非磁性改質相11の形成は、図1に示す電磁鋼板1に設けられた複数の凹穴2の箇所において同じように行われ、これにより非磁性改質相11を複数備えたロータ部材10が得られる。モータを構成するロータは、このようなロータ部材10が、非磁性改質相11の位置を合わせて複数枚が重ねられることによって形成される。なお、この非磁性改質相11が、図7のペリブリッジ部92やセンターブリッジ部93に相当する。従って、非磁性改質相11が形成されたロータ部材10には、所定箇所に磁石91を装填するための設置孔が形成され、その外周が削り取られたりする。   The formation of the nonmagnetic modified phase 11 is performed in the same manner at a plurality of concave holes 2 provided in the electromagnetic steel sheet 1 shown in FIG. 1, and thereby the rotor member 10 having a plurality of nonmagnetic modified phases 11. Is obtained. The rotor constituting the motor is formed by stacking a plurality of such rotor members 10 with the position of the nonmagnetic modified phase 11 aligned. The nonmagnetic modified phase 11 corresponds to the peribridge portion 92 and the center bridge portion 93 shown in FIG. Therefore, the rotor member 10 on which the nonmagnetic modified phase 11 is formed has an installation hole for loading the magnet 91 at a predetermined location, and the outer periphery thereof is scraped off.

ところで、円形の改質金属3は、その厚さ寸法を大きくした分、直径を凹穴2よりも小さくなるようにしている。これは改質金属3の体積を凹穴2の空間20とほぼ等しくし、溶融した改質金属3が密閉された空間20内に適切に充填できるようにするためである。しかし、改質金属3よりも凹穴2の径が大きいため、中心位置を合わせて配置してもズレが生じてしまうことがあり、特に電磁鋼板1を重ねるため目視による確認ができない。そして、改質金属3の位置ズレが生じたまま改質を行ったのでは、非磁性改質相11の品質を低下させる原因となる。   By the way, the diameter of the circular modified metal 3 is made smaller than that of the recessed hole 2 by the increase in the thickness dimension. This is to make the volume of the modified metal 3 substantially equal to the space 20 of the recessed hole 2 so that the molten modified metal 3 can be appropriately filled into the sealed space 20. However, since the diameter of the recessed hole 2 is larger than that of the modified metal 3, even if the central positions are aligned, the displacement may occur. In particular, since the electromagnetic steel sheets 1 are stacked, visual confirmation cannot be performed. If the reforming is performed while the positional deviation of the reforming metal 3 is generated, the quality of the nonmagnetic reforming phase 11 is deteriorated.

ここで図3は、非磁性改質相が安定的に得られなかった場合の一例を示した図である。空間20内の改質金属3が一方に偏ってしまうと、例えば図3(a)に示すように、偏った側(図面右側)で改質金属3と電磁鋼板1とが接触する一方、反対側(図面左側)には大きな隙間ができてしまう。このような状態で改質金属3を挟み込んだ2枚の電磁鋼板1同士を、図3(b)に示すように上下から電極5によって挟み込み通電加圧を行うと、通電電流は改質金属3の電磁鋼板1との接触部分を流れ、その部分を中心に改質金属3が溶融する。   Here, FIG. 3 is a diagram showing an example of the case where the nonmagnetic modified phase is not stably obtained. If the reformed metal 3 in the space 20 is biased to one side, for example, as shown in FIG. 3A, the reformed metal 3 and the electrical steel sheet 1 are in contact with each other on the biased side (the right side in the drawing), but the opposite. A large gap is formed on the side (left side of the drawing). When the two electromagnetic steel sheets 1 sandwiching the reforming metal 3 in such a state are sandwiched by the electrodes 5 from above and below as shown in FIG. The modified metal 3 melts around the contact portion with the electromagnetic steel sheet 1.

従って、改質金属3は電磁鋼板1と接触している図面右側面部から加熱され、十分に溶融するが、電流が通り難い図面左側では溶融が十分でないため、図3(c)に示すような非対称の非磁性改質相111が形成されてしまう。この場合、図面右側の改質が十分でないためロータを構成した時に漏れ磁束を増加させる他、非磁性改質相111の形状が歪んでいることで強度低下を招くおそれがある。そのため、品質の良いロータ部材10を得るには、改質金属3の正確な位置決めを行い、図2(c)で示すような非磁性改質相11が安定的に得られるようにするための方策が必要となる。   Accordingly, the modified metal 3 is heated from the right side surface of the drawing that is in contact with the electromagnetic steel sheet 1 and is sufficiently melted, but the melting is not sufficient on the left side of the drawing where current is difficult to pass, so as shown in FIG. An asymmetric nonmagnetic modified phase 111 is formed. In this case, since the modification on the right side of the drawing is not sufficient, the leakage magnetic flux is increased when the rotor is configured, and the strength of the nonmagnetic modified phase 111 may be reduced due to the distorted shape. Therefore, in order to obtain the rotor member 10 with good quality, the modified metal 3 is accurately positioned so that the nonmagnetic modified phase 11 as shown in FIG. 2C can be stably obtained. Measures are needed.

そこで、本実施形態では、改質金属3が空間20の中心に必ず位置するようにし、安定した非磁性改質相11が得られる製造方法を提案する。具体的には、改質金属3を空間20の中心に位置決めする構成と、それを利用した位置決め工程を有する。図4は、空間20内の改質金属について行われる位置決めを示した平面図である。本実施形態の改質金属30は、周側面に三角形状の凹凸が連続して形成された凹凸部31を有する。一方、凹穴2側には、その底面に改質金属30の中心O1を凹穴2の中心O2に重ねるように位置決めさせるための突起21が形成されている。突起21は、O2を中心とした円の円周上に3箇所配置され、改質金属30を3点で支持して確実に位置決めできるようにしている。なお、こうした凹凸部31や突起21は、改質金属30や電磁鋼板1をプレスや切削によって加工するのに伴って形成される。   Therefore, in the present embodiment, a manufacturing method is proposed in which the modified metal 3 is necessarily positioned at the center of the space 20 and a stable nonmagnetic modified phase 11 can be obtained. Specifically, it has a configuration for positioning the modified metal 3 at the center of the space 20 and a positioning step using it. FIG. 4 is a plan view showing the positioning performed for the modified metal in the space 20. The modified metal 30 of the present embodiment has an uneven portion 31 in which triangular unevenness is continuously formed on the peripheral side surface. On the other hand, a projection 21 is formed on the bottom surface of the concave hole 2 so as to position the modified metal 30 so that the center O1 of the modified metal 30 overlaps the center O2 of the concave hole 2. The protrusions 21 are arranged at three locations on the circumference of a circle centered on O2, and support the modified metal 30 at three points so as to be surely positioned. In addition, such uneven | corrugated | grooved part 31 and the processus | protrusion 21 are formed in connection with processing the modified metal 30 and the electromagnetic steel plate 1 by a press or cutting.

改質金属30の位置決めは、図2に示した非磁性改質相11の加工の前工程として行われる。そこでは、下側の電磁鋼板1の各凹穴2に対し改質金属30が入れられ、上側の電磁鋼板1が凹穴2を合わせるようにして重ねられる。その後、重ねた電磁鋼板1に回転を与えることにより、空間20内の改質金属30を遠心力によって外径方向へ移動させる。その際、改質金属30は、図4(b)に矢印で示すように移動し、凹凸部31の凹部が突起21に嵌り込むことにより、凹穴2の中心O2に改質金属30の中心O1が重なるように位置決めされる。そして、こうした位置決め工程の後、非磁性改質相11の加工工程が実行される。   The positioning of the modified metal 30 is performed as a pre-process for processing the nonmagnetic modified phase 11 shown in FIG. There, the modified metal 30 is put into each concave hole 2 of the lower electromagnetic steel sheet 1, and the upper electromagnetic steel sheet 1 is overlapped so that the concave holes 2 are aligned. Then, by applying rotation to the stacked electrical steel sheets 1, the modified metal 30 in the space 20 is moved in the outer diameter direction by centrifugal force. At that time, the modified metal 30 moves as indicated by an arrow in FIG. 4B, and the concave portion of the concavo-convex portion 31 is fitted into the projection 21, so that the center of the modified metal 30 is centered on the center O 2 of the concave hole 2. Positioning is performed so that O1 overlaps. Then, after such a positioning step, a processing step of the nonmagnetic modified phase 11 is executed.

図5は、位置決めされた改質金属30によって非磁性改質相を形成する場合の一箇所について示した第1実施形態の断面図である。位置決めされた改質金属30は、図5(a)に示すように、上下両面が電磁鋼板1と接し、径方向の図面横方向には等しく隙間が空くように配置されている。そこで、上下2枚の電磁鋼板1同士が、図5(b)に示すように、改質金属30が位置する箇所で電極5によって挟み込まれ、通電加圧が行われる。このとき通電電流は、電磁鋼板1と接触している改質金属30の上下の面を通って流れ、側面側の流れをつくらないため、その接触部分の抵抗発熱によって全体が均等に溶融する。そして、通電終了後に再び凝固することで、図5(c)に示すように、安定した非磁性改質相11が形成される。   FIG. 5 is a cross-sectional view of the first embodiment showing one place when a nonmagnetic modified phase is formed by the positioned modified metal 30. As shown in FIG. 5A, the positioned modified metal 30 is disposed so that both upper and lower surfaces thereof are in contact with the electromagnetic steel sheet 1 and that there is an equal gap in the horizontal direction of the drawing in the radial direction. Therefore, as shown in FIG. 5B, the upper and lower electromagnetic steel sheets 1 are sandwiched by the electrode 5 at the position where the modified metal 30 is positioned, and energization and pressurization are performed. At this time, the energization current flows through the upper and lower surfaces of the modified metal 30 that is in contact with the electromagnetic steel sheet 1 and does not create a flow on the side surface. Then, by solidifying again after the end of energization, a stable nonmagnetic modified phase 11 is formed as shown in FIG.

なお、本実施形態では、改質金属30の位置決めの際、電磁鋼板1は重ねただけの上下方向にほとんど荷重をかけない状態で、回転数200rpm程度の回転が与えられる。また、電磁鋼板1は、板厚が0.3mmであり、そこに形成された凹穴2の径は3.05mmで深さが0.15mmである。一方、改質金属30は、凹凸部31の最外径が2.5mmであり、厚さが0.43mmであり、空間20の高さより0.13mm高く、径方向に0.53mm分の隙間ができるように寸法が設定されている。そして、上下一対の電極5によって挟み込んで行う通電加圧は、例えば加圧力が2KN程度とし、電流値は7.2KA程度で0.15秒間とする。   In the present embodiment, when the modified metal 30 is positioned, the electromagnetic steel sheet 1 is rotated at a rotational speed of about 200 rpm in a state in which almost no load is applied in the up-down direction. The electromagnetic steel sheet 1 has a thickness of 0.3 mm, and the diameter of the recessed hole 2 formed therein is 3.05 mm and the depth is 0.15 mm. On the other hand, the modified metal 30 has an outermost diameter of the concavo-convex portion 31 of 2.5 mm, a thickness of 0.43 mm, 0.13 mm higher than the height of the space 20, and a gap of 0.53 mm in the radial direction. The dimensions are set so that The energization and pressurization performed between the pair of upper and lower electrodes 5 is, for example, a pressing force of about 2 KN and a current value of about 7.2 KA for 0.15 seconds.

本実施形態の製造方法によれば、改質金属30と空間20の寸法を調整することにより、改質金属30が上下両面から発熱して溶融する点で品質のよい非磁性改質相11が得られる。また、位置決め工程によって適正な位置に改質金属30を配置させることにより、更に安定して品質のよい非磁性改質相11をもったロータ部材10を製造することが可能になった。改質金属30の位置決めも、凹穴2への挿入後に電磁鋼板1を回転させるだけの簡易な方法であり、作業効率を上げつつ前記品質向上の効果を達成することができた。そして、位置決め工程を実行するための構成も、改質金属30には凹凸部31を形成し、凹穴2には突起21を形成する簡易なものである。   According to the manufacturing method of the present embodiment, by adjusting the dimensions of the modified metal 30 and the space 20, the nonmagnetic modified phase 11 having a high quality is obtained in that the modified metal 30 generates heat from both the upper and lower surfaces and melts. can get. In addition, by arranging the modified metal 30 at an appropriate position in the positioning step, it is possible to manufacture the rotor member 10 having the nonmagnetic modified phase 11 with higher quality and stability. The positioning of the modified metal 30 is also a simple method of simply rotating the electromagnetic steel sheet 1 after being inserted into the recessed hole 2, and the effect of improving the quality can be achieved while increasing the work efficiency. And the structure for performing a positioning process is also a simple thing which forms the uneven | corrugated | grooved part 31 in the modified metal 30, and forms the protrusion 21 in the recessed hole 2. FIG.

次に、図6は、非磁性改質相の製造方法を示した第2実施形態の断面図である。本実施形態では、2枚の電磁鋼板1を重ねてロータ部材10を形成した第1実施形態に対し、3枚の電磁鋼板を重ねてロータ部材を形成する場合の製造方法を示したものである。なお、第1実施形態と同じ構成については、同じ符号を付して説明する。   Next, FIG. 6 is a cross-sectional view of a second embodiment showing a method for producing a nonmagnetic modified phase. In the present embodiment, a manufacturing method in the case where a rotor member is formed by stacking three electromagnetic steel sheets is shown in the first embodiment in which the rotor member 10 is formed by stacking two electromagnetic steel sheets 1. . In addition, about the same structure as 1st Embodiment, the same code | symbol is attached | subjected and demonstrated.

本実施形態では、表面が平らな2枚の電磁鋼板41と、貫通孔42aが形成された1枚の電磁鋼板42が用意され、図6(a)に示すように、電磁鋼板42の上下に電磁鋼板41を重ねてできる貫通孔42aの空間40内に改質金属3を配置させる。このとき改質金属30は、加圧方向である高さ寸法が電磁鋼板42の板厚よりも大きく、逆に加圧方向に直交する横方向の寸法は貫通穴42aよりも小さい。そして、本実施形態でも図4に示す位置決め工程が実行され、重ねた電磁鋼板41,42,41を回転することにより、空間40内の改質金属30に遠心力を与えて外径方向へ移動させ、下側の電磁鋼板41に形成した突起21に当てることにより位置決めが行われる。   In the present embodiment, two electromagnetic steel plates 41 having a flat surface and one electromagnetic steel plate 42 having through holes 42a are prepared. As shown in FIG. The reformed metal 3 is placed in the space 40 of the through hole 42a formed by overlapping the electromagnetic steel plates 41. At this time, the height dimension in the pressing direction of the modified metal 30 is larger than the thickness of the electromagnetic steel sheet 42, and conversely, the horizontal dimension orthogonal to the pressing direction is smaller than the through hole 42a. Also in this embodiment, the positioning step shown in FIG. 4 is executed, and by rotating the stacked electromagnetic steel sheets 41, 42, 41, the modified metal 30 in the space 40 is given a centrifugal force and moved in the outer diameter direction. Then, positioning is performed by contacting the projection 21 formed on the lower electromagnetic steel sheet 41.

その後、上下3枚の電磁鋼板41,42,41が、図6(b)に示すように、改質金属30が位置する箇所で電極5によって挟み込まれ、通電加圧が行われる。このとき通電電流は、電磁鋼板41と接触している改質金属30の上下の面を通って流れ、側面側の流れをつくらないため、その接触部分の抵抗発熱によって全体が均等に溶融する。そして、通電終了後に再び凝固することで、図6(c)に示すように、安定した非磁性改質相61を備えたロータ部材60が形成される。   Thereafter, as shown in FIG. 6B, the upper and lower electromagnetic steel plates 41, 42, 41 are sandwiched by the electrode 5 at the location where the modified metal 30 is located, and energization and pressurization are performed. At this time, the energization current flows through the upper and lower surfaces of the modified metal 30 in contact with the electromagnetic steel sheet 41 and does not create a flow on the side surface, so that the whole is uniformly melted by the resistance heat generation at the contact portion. Then, by solidifying again after the end of energization, as shown in FIG. 6C, a rotor member 60 having a stable nonmagnetic modified phase 61 is formed.

よって、本実施形態の製造方法でも、改質金属30と空間40の寸法を調整することにより、改質金属30が上下両面から発熱して溶融する点で品質のよい非磁性改質相61が得られる。また、位置決め工程によって適正な位置に改質金属30を配置させることにより、更に安定して品質のよい非磁性改質相61をもったロータ部材60を製造することが可能になった。   Therefore, also in the manufacturing method of the present embodiment, by adjusting the dimensions of the modified metal 30 and the space 40, the nonmagnetic modified phase 61 having a high quality in that the modified metal 30 generates heat from both the upper and lower surfaces and melts. can get. In addition, by arranging the modified metal 30 at an appropriate position in the positioning step, it is possible to manufacture the rotor member 60 having the nonmagnetic modified phase 61 with higher quality and stability.

以上、本発明に係る非磁性改質相を備える鋼材の製造方法について実施形態を説明したが、本発明はこれに限定されることはなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、前記実施形態では凹穴2内に突起21を3箇所設けたが、その突起21は2箇所であってもよい。また、凹穴2に形成する突起部は、前記実施形態の突起21のように底面に突き立てるように形成するものの他、スペースによっては円形の壁面から突き出るようなものであってもよい。
また、前記実施形態では、2枚の電磁鋼板1を重ねたロータ部材に非磁性改質相11を形成した場合について説明したが、その他の部材について行う場合にも応用可能である。
As mentioned above, although embodiment was described about the manufacturing method of the steel materials provided with the nonmagnetic modification phase concerning the present invention, the present invention is not limited to this, and various changes are possible in the range which does not deviate from the meaning. is there.
For example, in the above-described embodiment, three protrusions 21 are provided in the recessed hole 2, but the protrusions 21 may be two. Further, the protrusion formed in the recessed hole 2 may be formed so as to protrude from the circular wall surface depending on the space, in addition to the protrusion formed on the bottom surface like the protrusion 21 of the embodiment.
Moreover, although the said embodiment demonstrated the case where the nonmagnetic modified phase 11 was formed in the rotor member which piled up the two electromagnetic steel plates 1, it is applicable also when performing about another member.

また、前記第2実施形態では、電磁鋼板41を平面にしたが、その電磁鋼板41にも第1実施形態と同様に凹穴を形成し、その凹穴と電磁鋼板42の貫通孔42aとによって形成した空間に改質金属を入れるようにしてもよい。
更に、前記第2実施形態では、空間40を貫通孔42aを形成した1枚の電磁鋼板42で構成したが、上下の電磁鋼板41の間に2枚以上の電磁鋼板42を重ねるようにしてもよい。
Moreover, in the said 2nd Embodiment, although the electromagnetic steel plate 41 was made into the plane, a concave hole is formed also in the electromagnetic steel plate 41 similarly to 1st Embodiment, By the concave hole and the through-hole 42a of the electromagnetic steel plate 42, it is. You may make it put a modified metal in the formed space.
Furthermore, in the said 2nd Embodiment, although the space 40 was comprised with the one electromagnetic steel plate 42 in which the through-hole 42a was formed, you may make it pile up two or more electromagnetic steel plates 42 between the upper and lower electromagnetic steel plates 41. FIG. Good.

1 電磁鋼板
2 凹穴
3 改質金属
5 電極
10 ロータ部材
11 非磁性改質相
20 空間
21 突起
30 改質金属
31 凹凸部
DESCRIPTION OF SYMBOLS 1 Electromagnetic steel plate 2 Concave hole 3 Modified metal 5 Electrode 10 Rotor member 11 Nonmagnetic modified phase 20 Space 21 Protrusion 30 Modified metal 31 Uneven portion

Claims (3)

複数の鋼材を重ね合わせによって内部に空間を形成し、その空間内に改質金属を入れ、前記重ね合わせた鋼材を前記改質金属の存在する位置で重ね合わせ方向に挟み込んだ一対の電極により通電加圧することによって、前記改質金属を周囲の鋼材の一部とともに溶融して非磁性改質相を形成するものであり、
前記改質金属は、厚さをもった円形の部材であって、前記電極による加圧方向寸法が前記空間よりも大きく、前記加圧方向に直交する横方向寸法が前記空間よりも小さく、その横方向周面に周方向に連続して凹凸部が形成されたものであり、
前記空間内には、前記改質金属の位置決めを行うための突起部が形成され、
前記電極による通電加圧の前に、前記空間に改質金属を入れて重ね合わせた鋼材に回転を与え、その遠心力によって前記空間内で移動させた前記改質金属を、前記空間内の突起に当てることにより位置決めする工程を有することを特徴とする非磁性改質相を備える鋼材の製造方法。
A space is formed by superposing a plurality of steel materials, a reformed metal is placed in the space, and electricity is supplied by a pair of electrodes sandwiched in the superposition direction at the position where the reformed metal exists. By pressurizing, the modified metal is melted together with a part of the surrounding steel material to form a nonmagnetic modified phase,
The modified metal is a circular member having a thickness, the dimension in the pressurizing direction by the electrode is larger than the space, and the lateral dimension orthogonal to the pressurizing direction is smaller than the space. Concave and convex portions are formed continuously in the circumferential direction on the lateral circumferential surface,
A protrusion for positioning the modified metal is formed in the space,
Prior to energization and pressurization by the electrodes, the steel that has been superposed with the reformed metal placed in the space is rotated, and the reformed metal moved in the space by the centrifugal force is projected into the projection in the space. A method for producing a steel material comprising a non-magnetically modified phase, characterized by having a step of positioning by being applied to the surface.
請求項1に記載する非磁性改質相を備える鋼材の製造方法において、
前記改質金属には三角形状の凹凸部が形成され、前記空間内には前記加圧方向の底面に突き出た突起部が複数箇所に形成され、
遠心力によって前記空間内を移動する前記改質金属の凹部に突起部が嵌り込むようにして位置決めを行うようにしたことを特徴とする非磁性改質相を備える鋼材の製造方法。
In the manufacturing method of the steel material provided with the nonmagnetic modified phase according to claim 1,
In the modified metal, a triangular uneven portion is formed, and in the space, protrusions protruding on the bottom surface in the pressurizing direction are formed at a plurality of locations,
A method for producing a steel material having a nonmagnetic modified phase, wherein positioning is performed such that a protrusion fits into a recessed portion of the modified metal that moves in the space by centrifugal force.
請求項1又は請求項2に記載する非磁性改質相を備える鋼材の製造方法において、
前記空間内に形成された突起部は、前記加圧方向の底面の中心点を中心とした円の円周上の3点で前記改質金属に嵌り込むように形成され、
遠心力によって前記空間内を移動する前記改質金属を3点で支持して位置決めを行うようにしたことを特徴とする非磁性改質相を備える鋼材の製造方法。
In the manufacturing method of the steel material provided with the nonmagnetic modified phase according to claim 1 or claim 2,
The protrusions formed in the space are formed so as to fit into the modified metal at three points on the circumference of a circle centered on the center point of the bottom surface in the pressing direction,
A method for producing a steel material comprising a nonmagnetic modified phase, wherein the modified metal that moves in the space by centrifugal force is supported at three points for positioning.
JP2009249317A 2009-10-29 2009-10-29 Method for manufacturing steel having non-magnetic reforming phase Withdrawn JP2011094190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009249317A JP2011094190A (en) 2009-10-29 2009-10-29 Method for manufacturing steel having non-magnetic reforming phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249317A JP2011094190A (en) 2009-10-29 2009-10-29 Method for manufacturing steel having non-magnetic reforming phase

Publications (1)

Publication Number Publication Date
JP2011094190A true JP2011094190A (en) 2011-05-12

Family

ID=44111427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249317A Withdrawn JP2011094190A (en) 2009-10-29 2009-10-29 Method for manufacturing steel having non-magnetic reforming phase

Country Status (1)

Country Link
JP (1) JP2011094190A (en)

Similar Documents

Publication Publication Date Title
JP2011067027A (en) Steel plate pair, laminated steel plate, and method of manufacturing core of rotary electric machine
KR101095233B1 (en) Steel having non-magnetic portion, its producing method, and revolving electric core
EP2600506A2 (en) Method for manufacturing stator for motor and stator for motor
WO2010131560A1 (en) Method of manufacturing laminated iron core, and laminated iron core
KR101224700B1 (en) Rotor and method for manufacturing same
JP6056385B2 (en) Rotor for rotating machine and method for manufacturing rotor for rotating machine
JP2014079068A (en) Rotor core and method for manufacturing the same
CN109642265B (en) Thin strip component, method for manufacturing the same, and motor using the thin strip component
JP2016046866A (en) Stator for motor
JP2008099360A (en) Method of forming non-magnetic region of steel material, and steel material having non-magnetic region formed thereon
JP6471831B2 (en) Permanent magnet type rotating electrical machine and manufacturing method thereof
JP2014079044A (en) Method for manufacturing laminated steel plate, and laminated steel plate
JP2010259251A (en) Rotor for axial gap type dynamo-electric machine and method for manufacturing the same
JP2011094190A (en) Method for manufacturing steel having non-magnetic reforming phase
JP2007151360A (en) Method of manufacturing laminate
JP5906694B2 (en) Manufacturing method of rotor for rotating machine
JP2010142067A (en) Rotary electric machine and method of manufacturing the same
JP6127450B2 (en) Rotor for rotating machine
WO2022054722A1 (en) Magnetic core and magnetic component
JP2011097745A (en) Method for manufacturing steel material with non-magnetically modified phase
JP6801327B2 (en) Permanent magnet type rotary electric machine and its manufacturing method
JP6627520B2 (en) Method of manufacturing rotor and rotor
JP2010016932A (en) Stator structure of rotating electrical machine
WO2011033646A1 (en) Steel sheet pair, laminated steel sheet and core of dynamo electric machine
JP2018098968A (en) Rotary electric machine rotor and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108