JP2011096720A - Holding device of optical element, aligner using the same, and manufacturing method of device - Google Patents

Holding device of optical element, aligner using the same, and manufacturing method of device Download PDF

Info

Publication number
JP2011096720A
JP2011096720A JP2009246635A JP2009246635A JP2011096720A JP 2011096720 A JP2011096720 A JP 2011096720A JP 2009246635 A JP2009246635 A JP 2009246635A JP 2009246635 A JP2009246635 A JP 2009246635A JP 2011096720 A JP2011096720 A JP 2011096720A
Authority
JP
Japan
Prior art keywords
support member
optical element
holding device
elastic
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246635A
Other languages
Japanese (ja)
Inventor
Setsuo Yoshida
節男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009246635A priority Critical patent/JP2011096720A/en
Publication of JP2011096720A publication Critical patent/JP2011096720A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a holding device of an optical element, reducing an eccentric shift of the optical element by an external force, also reducing variation in aberration, and providing high resolution. <P>SOLUTION: A holding device 10 of an optical element is equipped with: a first support member 2 which is annular and supports an optical element 1; a second support member 3 which is annular and is positioned on the outer diameter side of the first support member 2 to support the first support member 2; and a plurality of elastic members 4 which elastically deform and are positioned between the first support member 2 and the second support member 3. The elastic member 4 is a cylindrical member, and one end face of the cylindrical member is coupled to the first support member 2 in the optical axis direction of the optical element 1 while the other end face of the cylindrical member is coupled to the second support member 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学素子の保持装置、それを用いた露光装置、及びデバイスの製造方法に関するものである。   The present invention relates to an optical element holding apparatus, an exposure apparatus using the same, and a device manufacturing method.

露光装置は、半導体デバイスや液晶表示装置等の製造工程であるリソグラフィ工程において、原版(レチクル、又はマスク)のパターンを、投影光学系を介して感光性の基板(表面にレジスト層が形成されたウエハやガラスプレート等)に転写する装置である。例えば、半導体露光装置では、レチクルのパターンをウエハ上に結像させるための光学装置が用いられるが、高集積な回路を作成するためには高い解像力が要求される。このようなことから、半導体露光装置用の光学装置は、光学収差を小さく抑える必要があり、具体的には、光学装置を構成するレンズ、ミラー等の光学素子の材質や膜に関する諸特性の均一性や、光学素子の光学面形状の加工精度、及び組立精度が必要となる。   In a lithography process, which is a manufacturing process for semiconductor devices, liquid crystal display devices, and the like, an exposure apparatus uses a pattern of an original (reticle or mask) as a photosensitive substrate (a resist layer is formed on the surface) via a projection optical system. A transfer device to a wafer, a glass plate, or the like). For example, in a semiconductor exposure apparatus, an optical device for forming an image of a reticle pattern on a wafer is used, but a high resolving power is required to create a highly integrated circuit. For this reason, an optical apparatus for a semiconductor exposure apparatus needs to suppress optical aberrations to be small. Specifically, the characteristics of optical elements such as lenses and mirrors constituting the optical apparatus and characteristics regarding films are uniform. Performance, processing accuracy of the optical surface shape of the optical element, and assembly accuracy are required.

ここで、光学装置に用いられる光学素子を保持する保持部材は、金属材、即ち、光学素子とは異なる材質のもので形成されるのが一般的である。しかしながら、環境温度等の変化に起因して、光学素子や保持部材に形状変化が生じ、収差が変化する場合がある。そこで、近年、環境温度の変化、更には、組み付けの際に発生する歪み等に起因するレンズ面の変形を軽減することによって、収差が小さく、高い解像度を得ることが可能な光学素子の保持装置が提案されている。例えば、特許文献1は、光学要素を支持する第1の支持部材と、第1の支持部材を支持する第2の支持部材との間に径方向に弾性変形可能な弾性部材を備える光学要素の保持装置を開示している。弾性部材は、両端部が第1の支持部材に結合され、中央部が第2の支持部材に結合された板ばねを含み、環境温度が変化した場合には、板ばねが曲げ変形を起こすことによって光学要素の好ましくない変形を低減させている。   Here, the holding member for holding the optical element used in the optical device is generally formed of a metal material, that is, a material different from the optical element. However, due to a change in the environmental temperature or the like, the optical element or the holding member may change in shape and the aberration may change. Therefore, in recent years, an optical element holding device that can obtain high resolution with low aberration by reducing the deformation of the lens surface due to changes in environmental temperature, and further distortion and the like that occur during assembly. Has been proposed. For example, Patent Document 1 discloses an optical element including an elastic member that is elastically deformable in a radial direction between a first support member that supports the optical element and a second support member that supports the first support member. A holding device is disclosed. The elastic member includes a leaf spring whose both ends are coupled to the first support member and whose central portion is coupled to the second support member. When the environmental temperature changes, the leaf spring undergoes bending deformation. Reduces undesirable deformation of the optical element.

特開2001−343576号公報JP 2001-343576 A

しかしながら、特許文献1に示すような光学素子の保持装置では、第2の支持部材が外形側より半径方向に押されて変形した場合、光学素子が偏心移動する。図6は、特許文献1に示す光学素子の保持装置を光軸方向から見た平面図である。保持装置100は、光学素子111と、第1の支持部材112と、第2の支持部材113と、第1の支持部材112と第2の支持部材113との間に、円周上120°の間隔で配置された3箇所の弾性部材114a、114b、114cとを備える。ここで、光軸(z軸)上の任意の点を原点として、xyz直交座標系と、x軸をθ=0としたrθz円筒座標系とを設定し、かつ、各弾性部材114の弾性定数は、同一であり、弾性定数のrθz座標系に関する成分を、それぞれKr、Kθ、Kzと仮定する。例えば、図6に示すように、第2の支持部材113に対して外力が作用すると、第2の支持部材113がy方向に収縮して、破線で示すような楕円形状に変形する。このとき、各弾性部材114の弾性定数のy方向成分Kyは、弾性部材114cでは、Ky=Krであり、一方、弾性部材114a、114bの弾性定数のy方向成分Kyは、共に次式で表される。
Ky=Kr×sin30°+Kθ×cos30°
=(1/2)Kr+((√3)/2)Kθ
ここで、y軸方向プラス側に位置する2箇所の弾性部材114a、114bの弾性定数のy方向成分を合計すると、Kr+(√3)Kθとなり、y軸方向マイナス側に位置する弾性部材114cのy方向成分Krよりも大きい。また、各弾性部材114は、径方向に対しては低い弾性を有する。即ち、特許文献1の保持装置では、Kr<<Kθとなるように構成されているので、y軸のプラス側とマイナス側とでは、弾性定数のy方向成分の差が非常に大きいことになる。したがって、第2の支持部材113の変形に起因した各弾性部材114のy軸方向の変形は、弾性部材114cで大きくなり、第1の支持部材112は、y軸のマイナス方向に偏心移動し、これに伴い、光学素子111もy軸のマイナス方向に偏心移動する。このような光学素子111の変形は、光学素子の保持装置を含む光学系の光学性能に悪影響を及ぼす。
However, in the optical element holding apparatus as shown in Patent Document 1, when the second support member is pushed and deformed in the radial direction from the outer shape side, the optical element moves eccentrically. FIG. 6 is a plan view of the optical element holding device shown in Patent Document 1 as seen from the optical axis direction. The holding device 100 includes an optical element 111, a first support member 112, a second support member 113, and a first support member 112 and a second support member 113 that are 120 ° on the circumference. And three elastic members 114a, 114b, 114c arranged at intervals. Here, with an arbitrary point on the optical axis (z axis) as the origin, an xyz orthogonal coordinate system and an rθz cylindrical coordinate system in which the x axis is θ = 0 are set, and the elastic constant of each elastic member 114 Are the same, and the components of the elastic constant relating to the rθz coordinate system are assumed to be Kr, Kθ, and Kz, respectively. For example, as shown in FIG. 6, when an external force acts on the second support member 113, the second support member 113 contracts in the y direction and deforms into an elliptical shape as indicated by a broken line. At this time, the y-direction component Ky of the elastic constant of each elastic member 114 is Ky = Kr in the elastic member 114c, while the y-direction component Ky of the elastic constant of the elastic members 114a and 114b is expressed by the following equation. Is done.
Ky = Kr × sin 30 ° + Kθ × cos 30 °
= (1/2) Kr + ((√3) / 2) Kθ
Here, the sum of the y-direction components of the elastic constants of the two elastic members 114a and 114b located on the y-axis direction plus side is Kr + (√3) Kθ, and the elastic member 114c located on the y-axis direction minus side is added. It is larger than the y-direction component Kr. Each elastic member 114 has low elasticity in the radial direction. That is, since the holding device of Patent Document 1 is configured so that Kr << Kθ, the difference in the y-direction component of the elastic constant is very large between the positive side and the negative side of the y-axis. . Therefore, the deformation in the y-axis direction of each elastic member 114 due to the deformation of the second support member 113 becomes large at the elastic member 114c, and the first support member 112 moves eccentrically in the minus direction of the y-axis, Along with this, the optical element 111 also moves eccentrically in the negative direction of the y-axis. Such deformation of the optical element 111 adversely affects the optical performance of the optical system including the optical element holding device.

本発明は、このような状況を鑑みてなされたものであり、外力に起因した光学素子の偏心移動を低減し、収差変化が小さく、かつ、高い解像力が得られる光学素子の保持装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an optical element holding device that reduces the eccentric movement of the optical element due to an external force, has a small change in aberration, and provides high resolution. For the purpose.

上記課題を解決するために、本発明は、光学素子を支持する環状の第1の支持部材と、第1の支持部材の外径側に位置し、第1の支持部材を支持する環状の第2の支持部材と、第1の支持部材と第2の支持部材の間に位置する複数の弾性変形が可能な弾性部材とを備える光学素子の保持装置であって、弾性部材は、円筒部材であり、円筒部材の一方の端面は、光学素子の光軸方向において、第1の支持部材と結合し、円筒部材の他方の端面は、第2の支持部材と結合することを特徴とする。   In order to solve the above-described problems, the present invention provides an annular first support member that supports an optical element, and an annular first support member that is positioned on the outer diameter side of the first support member and supports the first support member. 2 is a holding device for an optical element, and a plurality of elastic members capable of elastic deformation located between the first support member and the second support member, wherein the elastic member is a cylindrical member. And one end surface of the cylindrical member is coupled to the first support member in the optical axis direction of the optical element, and the other end surface of the cylindrical member is coupled to the second support member.

本発明によれば、各方向の弾性定数が同一となる円筒形の弾性部材を採用することにより、第2の支持部材が外力を受けることに起因した光学素子の偏心移動を低減し、収差変化が小さく、かつ、高い解像力が得られる光学素子の保持装置を提供する。   According to the present invention, by adopting a cylindrical elastic member having the same elastic constant in each direction, the eccentric movement of the optical element due to the second support member receiving an external force is reduced, and the aberration change An optical element holding device that is small in size and can provide high resolution is provided.

本発明の実施形態に係る光学素子の保持装置の断面立体図である。It is a cross-sectional three-dimensional view of the holding device for the optical element according to the embodiment of the present invention. 図1に示す光学素子の保持装置の展開図である。It is an expanded view of the holding | maintenance apparatus of the optical element shown in FIG. 図1に示す弾性部材の周辺を拡大した断面立体図である。It is the cross-sectional solid view which expanded the periphery of the elastic member shown in FIG. 本発明の光学素子の保持装置を光軸方向から見た平面図である。It is the top view which looked at the holding | maintenance apparatus of the optical element of this invention from the optical axis direction. 本発明の実施形態に係る露光装置の構成を示す概略図である。It is the schematic which shows the structure of the exposure apparatus which concerns on embodiment of this invention. 従来の光学素子の保持装置を光軸方向から見た平面図である。It is the top view which looked at the holding device of the conventional optical element from the optical axis direction.

以下、本発明を実施するための形態について図面等を参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(光学素子の保持装置)
まず、本発明の実施形態に係る光学素子の保持装置の構成について説明する。図1は、本発明の実施形態に係る光学素子の保持装置の断面立体図(斜視図)である。また、図2は、光学素子の保持装置の展開図である。保持装置10は、光学素子1と、第1の支持部材2と、第2の支持部材3と、3つの弾性部材4とを備える。光学素子1は、レンズ、若しくはミラー等で形成される光学素子である。なお、本実施形態では、光学素子1は、レンズであり、該レンズの材質は、石英ガラス、若しくは螢石ガラスが好適である。
(Optical element holding device)
First, the configuration of the optical element holding device according to the embodiment of the present invention will be described. FIG. 1 is a cross-sectional three-dimensional view (perspective view) of an optical element holding device according to an embodiment of the present invention. FIG. 2 is a development view of the optical element holding device. The holding device 10 includes an optical element 1, a first support member 2, a second support member 3, and three elastic members 4. The optical element 1 is an optical element formed by a lens or a mirror. In the present embodiment, the optical element 1 is a lens, and the material of the lens is preferably quartz glass or meteorite glass.

第1の支持部材2は、光学素子1を内径側で支持する環状の部材である。第1の支持部材2は、まず、その内径側に、光学素子1の外径部を収容するように、底辺部が径中心に対向するL字型の溝部21を有する。該溝部21は、その水平面に、光軸方向上向きに突起した、角形若しくは半球形の凸部である突起部22を、円周方向に略等間隔で3ヶ所有する。また、第1の支持部材2は、その外径側に、後述する弾性部材4を収容する切り欠き部23を、円周方向に等間隔で3ヶ所有する。なお、突起部22及び切り欠き部23の設置個数は、製造効率及び作用効率を考慮し、本実施形態では3箇所としているが、特に限定するものではない。第1の支持部材2の材質は、光学素子1の材質と近似する熱膨張係数を有する。例えば、光学素子1の材質が石英ガラスである場合、第1の支持部材2の材質は、ニッケル合金、酸化マグネシウムと酸化シリコン等からなるコージライト系のセラミックス材料が好適である。若しくは、第1の支持部材2の材質は、アルミナや窒化シリコン等のセラミック材料、更には、低熱膨張ガラスであるゼロジュール(登録商標)等も好適である。一方、光学素子1の材質が螢石ガラスである場合、第1の支持部材2の材質は、真鍮等の銅合金、18−8ステンレス鋼等の鉄、クロム、及びニッケルによる合金、若しくは、アルミニウムを主成分とした合金等が好適である。   The first support member 2 is an annular member that supports the optical element 1 on the inner diameter side. First, the first support member 2 has an L-shaped groove portion 21 whose bottom portion faces the center of the diameter so as to accommodate the outer diameter portion of the optical element 1 on the inner diameter side thereof. The groove portion 21 has three protrusion portions 22 which are convex portions of a square shape or a hemispheric shape protruding upward in the optical axis direction on the horizontal plane at substantially equal intervals in the circumferential direction. Moreover, the 1st supporting member 2 possesses three notch parts 23 which accommodate the elastic member 4 mentioned later on the outer diameter side at equal intervals in the circumferential direction. The number of protrusions 22 and notches 23 is three in the present embodiment in consideration of manufacturing efficiency and operational efficiency, but is not particularly limited. The material of the first support member 2 has a thermal expansion coefficient that approximates that of the material of the optical element 1. For example, when the material of the optical element 1 is quartz glass, the material of the first support member 2 is preferably a cordierite ceramic material made of nickel alloy, magnesium oxide, silicon oxide, or the like. Alternatively, the material of the first support member 2 is preferably a ceramic material such as alumina or silicon nitride, and further, Zero Joule (registered trademark) which is a low thermal expansion glass. On the other hand, when the material of the optical element 1 is meteorite glass, the material of the first support member 2 is a copper alloy such as brass, an alloy of iron such as 18-8 stainless steel, chromium and nickel, or aluminum. An alloy or the like containing as a main component is suitable.

第2の支持部材3は、第1の支持部材2を内径側で支持する環状の部材である。第2の支持部材3は、その内径側に、第1の支持部材2の外径部を収容するように、底辺部が径中心に対向するL字型の溝部31を有する。第2の支持部材3の材質は、ステンレス鋼等の鉄鋼材料が好適である。   The second support member 3 is an annular member that supports the first support member 2 on the inner diameter side. The second support member 3 has, on its inner diameter side, an L-shaped groove portion 31 whose bottom portion faces the diameter center so as to accommodate the outer diameter portion of the first support member 2. The material of the second support member 3 is preferably a steel material such as stainless steel.

弾性部材4は、弾性変形が可能な円筒部材であり、円筒の一方の端面に、第1の支持部材2と結合する第1の結合部41と、該結合部41と対向する他方の端面に、第2の支持部材3に形成された溝部31の平坦部と結合する第2の結合部42とを備える。本実施形態では、第1の結合部41は、円筒の中心部に向けて突出した2箇所の平坦部であり、一方、第2の結合部42は、円筒の外側に向けて突出した2箇所の平坦部である。円筒部材の寸法は、保持する光学素子1の形状、及び重量等に依存するが、例えば、光学素子1の径寸法が40mm程度とすると、円筒の径寸法は、10mm程度、円筒の光軸方向の高さは、5mm程度、及び円筒壁面の厚さは、1〜2mm程度が望ましい。また、円筒部材の材質は、ステンレス鋼等で形成されたバネ用金属材や、ジルコニウム等の非金属材が好適であるが、形成した円筒部材が弾性を有するものであれば、特に限定するものではない。   The elastic member 4 is a cylindrical member that can be elastically deformed, and has a first coupling portion 41 coupled to the first support member 2 on one end surface of the cylinder, and a second end surface facing the coupling portion 41. And a second coupling portion 42 coupled to the flat portion of the groove portion 31 formed in the second support member 3. In this embodiment, the 1st coupling | bond part 41 is two flat parts which protruded toward the center part of the cylinder, while the 2nd coupling | bond part 42 protruded toward the outer side of the cylinder. It is a flat part. The dimensions of the cylindrical member depend on the shape and weight of the optical element 1 to be held. For example, if the diameter of the optical element 1 is about 40 mm, the diameter of the cylinder is about 10 mm, and the optical axis direction of the cylinder The height is preferably about 5 mm, and the thickness of the cylindrical wall surface is preferably about 1 to 2 mm. Further, the material of the cylindrical member is preferably a metal material for spring formed of stainless steel or the like, or a non-metallic material such as zirconium, but the material is particularly limited as long as the formed cylindrical member has elasticity. is not.

次に、保持装置10を構成する各部材の接続について説明する。図3は、図1における弾性部材4の周辺を拡大した断面立体図(斜視図)である。以下、光学素子1は、光軸方向が重力方向と一致するように配置するものとする。まず、光学素子1は、重力方向下面を3箇所の突起部22に点接触させ、かつ、外周部を溝部21の側面に接着させることにより、第1の支持部材2に固定される。次に、第1の支持部材2は、3箇所の切り欠き部23にそれぞれ弾性部材4を収容しつつ、第2の支持部材3に接続される。このとき、各弾性部材4は、円筒の中心軸が、第1の支持部材2の中心軸と平行となるように配置される。この場合、各中心軸の方向は、光軸方向、即ち、重力方向と一致する。また、弾性部材4は、第1及び第2の結合部41、42を、それぞれ第1及び第2の支持部材2、3に対して、不図示の接着、又はネジ止め等の方法で締結することにより固定される。   Next, connection of each member which comprises the holding | maintenance apparatus 10 is demonstrated. 3 is a cross-sectional three-dimensional view (perspective view) in which the periphery of the elastic member 4 in FIG. 1 is enlarged. Hereinafter, the optical element 1 shall be arrange | positioned so that an optical axis direction may correspond with a gravitational direction. First, the optical element 1 is fixed to the first support member 2 by bringing the lower surface in the gravitational direction into point contact with the three protrusions 22 and adhering the outer periphery to the side surface of the groove 21. Next, the first support member 2 is connected to the second support member 3 while accommodating the elastic members 4 in the three cutout portions 23 respectively. At this time, each elastic member 4 is disposed such that the central axis of the cylinder is parallel to the central axis of the first support member 2. In this case, the direction of each central axis coincides with the optical axis direction, that is, the gravity direction. The elastic member 4 fastens the first and second coupling parts 41 and 42 to the first and second support members 2 and 3, respectively, by a method such as adhesion (not shown) or screwing. It is fixed by.

次に、保持装置10の作用及び効果について説明する。まず、本実施形態では、光学素子1、及び第1の支持部材2の材質は、互いに近似する熱膨張係数を有し、かつ、光学素子1は、光軸方向で3箇所の突起部22で支持されている。したがって、環境温度の変化により、光学素子1と第1の支持部材2とに対して、膨張、若しくは収縮が発生しても、光学素子1は、単純膨張、若しくは単純収縮に近い形状変化となり、光学性能に有害な面形状の変化を抑えることができる。また、第1の支持部材2と第2の支持部材3とが異なる熱膨張係数を有する材料で形成されている場合、環境温度の変化により、異なる膨張、若しくは収縮を起こすことがある。この場合、本発明によれば、弾性部材4が変形を起こすことによって、これらの熱膨張差を吸収することができる。   Next, the operation and effect of the holding device 10 will be described. First, in this embodiment, the materials of the optical element 1 and the first support member 2 have coefficients of thermal expansion that are close to each other, and the optical element 1 has three protrusions 22 in the optical axis direction. It is supported. Therefore, even if expansion or contraction occurs with respect to the optical element 1 and the first support member 2 due to a change in environmental temperature, the optical element 1 becomes a shape change close to simple expansion or simple contraction, Changes in the surface shape that are harmful to optical performance can be suppressed. In addition, when the first support member 2 and the second support member 3 are formed of materials having different thermal expansion coefficients, different expansion or contraction may occur due to a change in environmental temperature. In this case, according to the present invention, the elastic member 4 can be deformed to absorb these thermal expansion differences.

更に、本実施形態では、第2の支持部材3の側面に外力が加えられた場合、弾性部材4が変形を起こすことによって、光学素子1の変形を抑制させる。以下、各弾性部材4の変形について、従来の課題で述べた例と比較して説明する。図4は、本実施形態の保持装置10を光軸方向から見た平面図である。ここで、前述の図6と同様に、光軸(z軸)上の任意の点を原点として、xyz直交座標系を設定する。なお、本実施形態の各弾性部材4(4a、4b、4c)は、円筒部材であるため、円筒の中心軸を含む面に対称な変形に対する弾性定数Kcは、円筒の中心軸に対して等方的であり、各弾性部材4の弾性定数は、同一と考えられる。例えば、図4に示すように、第2の支持部材3に対して外力が作用すると、第2の支持部材3がy方向に収縮して、破線で示すような楕円形状に変形する。このとき、y軸のマイナス側に位置する弾性部材4cの弾性定数のy方向成分は、Kcである。一方、y軸のプラス側に位置する2箇所の弾性部材4a、4bの弾性定数のy方向成分の合計は、2×Kcであり、y軸のマイナス側よりも大きい。しかしながら、弾性部材4の弾性定数Kcが、図6で示した弾性部材114の弾性定数のr方向成分Krと等しいと仮定し、本実施形態と従来例を比較すると、y軸のマイナス側の弾性定数のy方向成分は、Kc=Krで等しい。一方、y軸のプラス側の弾性定数のy方向成分の合計は、従来例がKr+(√3)Kθであるのに対し、本実施形態では、2×Kc=2×Krである。ここで、従来例では、Kr<<Kθとなるように構成されているので、2×Kr<<Kr+(√3)Kθとなる。即ち、本実施形態の保持装置10では、従来例の保持装置100と比較して、y軸のプラス側とマイナス側との弾性定数のy方向成分の差が非常に小さくなる。したがって、第2の支持部材3がy方向に外力を受けて変形した場合、光学素子1が偏心する量も、非常に小さくすることができる。   Furthermore, in this embodiment, when an external force is applied to the side surface of the second support member 3, the elastic member 4 is deformed, thereby suppressing the deformation of the optical element 1. Hereinafter, the deformation of each elastic member 4 will be described in comparison with the example described in the conventional problem. FIG. 4 is a plan view of the holding device 10 according to the present embodiment as viewed from the optical axis direction. Here, as in FIG. 6 described above, an xyz orthogonal coordinate system is set with an arbitrary point on the optical axis (z axis) as the origin. In addition, since each elastic member 4 (4a, 4b, 4c) of this embodiment is a cylindrical member, the elastic constant Kc with respect to deformation symmetrical to the plane including the central axis of the cylinder is equal to the central axis of the cylinder. The elastic constants of the elastic members 4 are considered to be the same. For example, as shown in FIG. 4, when an external force is applied to the second support member 3, the second support member 3 contracts in the y direction and deforms into an elliptical shape as indicated by a broken line. At this time, the y-direction component of the elastic constant of the elastic member 4c located on the negative side of the y-axis is Kc. On the other hand, the sum of the y direction components of the elastic constants of the two elastic members 4a and 4b located on the plus side of the y axis is 2 × Kc, which is larger than the minus side of the y axis. However, when it is assumed that the elastic constant Kc of the elastic member 4 is equal to the r-direction component Kr of the elastic constant of the elastic member 114 shown in FIG. The constant y-direction component is equal to Kc = Kr. On the other hand, the sum of the y-direction components of the elastic constant on the plus side of the y-axis is 2 × Kc = 2 × Kr in the present embodiment, whereas the conventional example is Kr + (√3) Kθ. Here, since the conventional example is configured to satisfy Kr << Kθ, 2 × Kr << Kr + (√3) Kθ. That is, in the holding device 10 of the present embodiment, the difference in the y-direction component of the elastic constant between the positive side and the negative side of the y-axis is very small as compared with the holding device 100 of the conventional example. Therefore, when the second support member 3 is deformed by receiving an external force in the y direction, the amount by which the optical element 1 is decentered can be very small.

以上のように、本発明の光学素子の保持装置10によれば、第2の保持部材3が半径方向に外力を受けたことに起因する光学素子1の偏心移動を低減することができる。これにより、光学素子1の光学性能に有害となる面形状の変化を抑えることができる。   As described above, according to the optical element holding device 10 of the present invention, the eccentric movement of the optical element 1 due to the second holding member 3 receiving an external force in the radial direction can be reduced. Thereby, the change of the surface shape which is harmful to the optical performance of the optical element 1 can be suppressed.

(露光装置)
次に、本発明の光学素子の保持装置を適用する露光装置の構成について説明する。図5は、本発明の保持装置を適用する露光装置の構成を示す概略図である。露光装置90は、照明光学系91と、レチクルを保持するレチクルステージ92と、投影光学系93と、被処理基板を保持する基板ステージ94とを備える。なお、本実施形態における露光装置90は、ステップ・アンド・リピート方式又はステップ・アンド・スキャン方式を採用し、レチクルに形成されたパターンを、被処理基板であるウエハに露光する走査型投影露光装置である。
(Exposure equipment)
Next, the configuration of an exposure apparatus to which the optical element holding device of the present invention is applied will be described. FIG. 5 is a schematic view showing the arrangement of an exposure apparatus to which the holding apparatus of the present invention is applied. The exposure apparatus 90 includes an illumination optical system 91, a reticle stage 92 that holds a reticle, a projection optical system 93, and a substrate stage 94 that holds a substrate to be processed. Note that the exposure apparatus 90 in the present embodiment employs a step-and-repeat method or a step-and-scan method, and exposes a pattern formed on the reticle onto a wafer that is a substrate to be processed. It is.

照明光学系91は、不図示の光源部を備え、レチクルを照明する装置である。光源部において、光源は、例えば、レーザーを使用する。使用可能なレーザーは、波長約193nmのArFエキシマレーザー、波長約248nmのKrFエキシマレーザー、波長約157nmのF2エキシマレーザー等である。なお、レーザーの種類は、エキシマレーザーに限定されず、例えば、YAGレーザーを使用しても良いし、レーザーの個数も限定されない。また、光源部にレーザーが使用される場合、レーザー光源からの平行光束を所望のビーム形状に整形する光束整形光学系、コヒーレントなレーザーをインコヒーレント化するインコヒーレント光学系を使用することが好ましい。更に、光源部に使用可能な光源は、レーザーに限定されるものではなく、一又は複数の水銀ランプやキセノンランプ等のランプも使用可能である。また、照明光学系91は、レンズ、ミラー、ライトインテグレーター、及び絞り等を含む。一般に、光学系は、コンデンサーレンズ、ハエの目レンズ、開口絞り、コンデンサーレンズ、スリット、結像光学系の順で整列する。照明光学系91は、軸上光、軸外光を問わず使用可能である。ライトインテグレーターは、ハエの目レンズや2組のシリンドリカルレンズアレイ板を重ねることによって構成されるインテグレーター等を含む。なお、ライトインテグレーターは、光学ロッドや回折要素に置換される場合もある。また、開口絞りは、円形絞り、変形照明用の輪帯照明絞り、及び4重極照明絞り等として構成される。   The illumination optical system 91 is a device that includes a light source unit (not shown) and illuminates the reticle. In the light source unit, for example, a laser is used as the light source. Usable lasers include an ArF excimer laser having a wavelength of about 193 nm, a KrF excimer laser having a wavelength of about 248 nm, and an F2 excimer laser having a wavelength of about 157 nm. In addition, the kind of laser is not limited to an excimer laser, For example, a YAG laser may be used and the number of lasers is not limited. When a laser is used for the light source unit, it is preferable to use a light beam shaping optical system that shapes a parallel light beam from the laser light source into a desired beam shape and an incoherent optical system that makes a coherent laser incoherent. Furthermore, the light source that can be used in the light source unit is not limited to the laser, and one or a plurality of lamps such as a mercury lamp and a xenon lamp can be used. The illumination optical system 91 includes a lens, a mirror, a light integrator, a diaphragm, and the like. In general, an optical system is arranged in the order of a condenser lens, a fly-eye lens, an aperture stop, a condenser lens, a slit, and an imaging optical system. The illumination optical system 91 can be used regardless of on-axis light or off-axis light. The light integrator includes an integrator configured by stacking a fly-eye lens and two sets of cylindrical lens array plates. The light integrator may be replaced with an optical rod or a diffraction element. The aperture stop is configured as a circular stop, an annular illumination stop for modified illumination, a quadrupole illumination stop, or the like.

レチクルは、例えば、石英ガラス製の原版であり、転写されるべき回路パターンが形成されている。また、レチクルステージ92は、xy方向に移動可能なステージであって、レチクルを保持する装置である。なお、レチクルステージ92は、レチクルステージ定盤95に保持されている。   The reticle is, for example, a quartz glass original plate on which a circuit pattern to be transferred is formed. The reticle stage 92 is a stage that can move in the xy directions, and is a device that holds the reticle. Note that reticle stage 92 is held by reticle stage surface plate 95.

投影光学系93は、照明光学系91からの露光光で照明されたレチクル上のパターンを所定倍率(例えば、1/4)で基板上に投影露光する。投影光学系93としては、複数の光学素子のみから構成される光学系や、複数の光学素子と少なくとも一枚の凹面鏡とから構成される光学系(カタディオプトリック光学系)が採用可能である。若しくは、投影光学系93として、複数の光学素子と少なくとも一枚のキノフォーム等の回折光学素子とから構成される光学系や、全ミラー型の光学系等も採用可能である。なお、上記レチクルステージ定盤95及び投影光学系93は、床面(基盤面)96上に、ダンパ97を介した鏡筒定盤98に支持されている。ここで、投影光学系93は、高い解像性能が必要不可欠であり、極低収差な光学性能が要求される。そこで、上述の光学素子の保持装置10を適用することにより、投影光学系93が鏡筒定盤98からの外力等により変形した場合であっても、光学素子の偏心移動による光学性能の劣化が起こり難くなる。即ち、極低収差な光学性能を得ることができるので、半導体製造に必要な解像力を得るためのレンズシステムを実現することが可能となる。なお、本発明の光学素子の保持装置10は、投影光学系93のみならず、照明光学系91にも適用可能である。   The projection optical system 93 projects and exposes the pattern on the reticle illuminated with the exposure light from the illumination optical system 91 onto the substrate at a predetermined magnification (for example, 1/4). As the projection optical system 93, an optical system composed only of a plurality of optical elements or an optical system (catadioptric optical system) composed of a plurality of optical elements and at least one concave mirror can be employed. Alternatively, as the projection optical system 93, an optical system including a plurality of optical elements and at least one diffractive optical element such as a kinoform, an all-mirror optical system, or the like can be employed. The reticle stage surface plate 95 and the projection optical system 93 are supported on a floor surface (base surface) 96 by a lens barrel surface plate 98 via a damper 97. Here, the projection optical system 93 is indispensable for high resolution performance, and is required to have optical performance with extremely low aberration. Therefore, by applying the optical element holding device 10 described above, even if the projection optical system 93 is deformed by an external force or the like from the lens barrel surface plate 98, the optical performance is deteriorated due to the eccentric movement of the optical element. It becomes difficult to happen. That is, since optical performance with extremely low aberration can be obtained, it is possible to realize a lens system for obtaining the resolving power necessary for semiconductor manufacturing. The optical element holding device 10 of the present invention is applicable not only to the projection optical system 93 but also to the illumination optical system 91.

基板(被処理基板)は、表面上に感光剤(レジスト)が塗布された、シリコンウエハ等の被処理体である。基板ステージ94は、xyz方向に移動可能なステージであって、基板を保持する装置である。なお、基板ステージ94は、床面(基盤面)96上に載置されたステージ定盤99上に設置されている。   A substrate (substrate to be processed) is an object to be processed such as a silicon wafer having a surface coated with a photosensitive agent (resist). The substrate stage 94 is a stage that can move in the xyz direction, and is a device that holds the substrate. The substrate stage 94 is installed on a stage surface plate 99 placed on a floor surface (base surface) 96.

本実施形態の露光装置90において、レチクルから発せられた回折光は、投影光学系93を通過し、基板上に投影される。該基板とレチクルとは、共役の関係にある。走査型の投影露光装置の場合は、レチクルと基板とを走査することにより、レチクルのパターンを基板上に転写する。なお、ステッパー(ステップ・アンド・リピート方式の露光装置)の場合は、レチクルと基板とを静止させた状態で露光が行われる。   In the exposure apparatus 90 of the present embodiment, the diffracted light emitted from the reticle passes through the projection optical system 93 and is projected onto the substrate. The substrate and the reticle are in a conjugate relationship. In the case of a scanning projection exposure apparatus, the reticle pattern is transferred onto the substrate by scanning the reticle and the substrate. In the case of a stepper (step-and-repeat type exposure apparatus), exposure is performed with the reticle and substrate stationary.

(デバイスの製造方法)
次に、本発明の一実施形態のデバイス(半導体デバイス、液晶表示デバイス等)の製造方法について説明する。半導体デバイスは、ウエハに集積回路を作る前工程と、前工程で作られたウエハ上の集積回路チップを製品として完成させる後工程を経ることにより製造される。前工程は、前述の露光装置を使用して感光剤が塗布されたウエハを露光する工程と、ウエハを現像する工程を含む。後工程は、アッセンブリ工程(ダイシング、ボンディング)と、パッケージング工程(封入)を含む。液晶表示デバイスは、透明電極を形成する工程を経ることにより製造される。透明電極を形成する工程は、透明導電膜が蒸着されたガラス基板に感光剤を塗布する工程と、前述の露光装置を使用して感光剤が塗布されたガラス基板を露光する工程と、ガラス基板を現像する工程を含む。本実施形態のデバイス製造方法によれば、従来よりも高品位のデバイスを製造することができる。
(Device manufacturing method)
Next, a method for manufacturing a device (semiconductor device, liquid crystal display device, etc.) according to an embodiment of the present invention will be described. A semiconductor device is manufactured through a pre-process for producing an integrated circuit on a wafer and a post-process for completing an integrated circuit chip on the wafer produced in the pre-process as a product. The pre-process includes a step of exposing a wafer coated with a photosensitive agent using the above-described exposure apparatus, and a step of developing the wafer. The post-process includes an assembly process (dicing and bonding) and a packaging process (encapsulation). A liquid crystal display device is manufactured through a process of forming a transparent electrode. The step of forming the transparent electrode includes a step of applying a photosensitive agent to a glass substrate on which a transparent conductive film is deposited, a step of exposing the glass substrate on which the photosensitive agent is applied using the above-described exposure apparatus, and a glass substrate. The process of developing is included. According to the device manufacturing method of the present embodiment, it is possible to manufacture a higher quality device than before.

(その他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
(Other embodiments)
As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

上記実施形態では、第1及び第2の支持部材2、3に対して弾性部材4を接続する方法として、弾性部材4に第1及び第2の結合部41、42を形成し、接着、若しくはネジ止めにより締結する方法を採用したが、本発明は、これに限定されない。例えば、弾性部材4を構成する円筒の両端の円周部を、第1及び第2の支持部材2、3に直接接着しても良い。若しくは、第1及び第2の支持部材2、3との接続部に、円筒と略同一の径を有する穴部を形成し、該穴部に円筒の両端を嵌設させても良い。   In the above embodiment, as a method of connecting the elastic member 4 to the first and second support members 2 and 3, the first and second coupling portions 41 and 42 are formed on the elastic member 4 and bonded, or Although the method of fastening by screwing is adopted, the present invention is not limited to this. For example, the circumferential portions at both ends of the cylinder constituting the elastic member 4 may be directly bonded to the first and second support members 2 and 3. Alternatively, a hole having substantially the same diameter as that of the cylinder may be formed in the connection portion between the first and second support members 2 and 3, and both ends of the cylinder may be fitted into the hole.

1 光学素子
2 第1の支持部材
3 第2の支持部材
4 弾性部材
10 保持装置
23 切り欠き部
31 溝部
91 照明光学系
93 投影光学系
DESCRIPTION OF SYMBOLS 1 Optical element 2 1st support member 3 2nd support member 4 Elastic member 10 Holding device 23 Notch part 31 Groove part 91 Illumination optical system 93 Projection optical system

Claims (6)

光学素子を支持する環状の第1の支持部材と、該第1の支持部材の外径側に位置し、前記第1の支持部材を支持する環状の第2の支持部材と、前記第1の支持部材と前記第2の支持部材の間に位置する複数の弾性変形が可能な弾性部材とを備える光学素子の保持装置であって、
前記弾性部材は、円筒部材であり、
前記円筒部材の一方の端面は、前記光学素子の光軸方向において、前記第1の支持部材と結合し、前記円筒部材の他方の端面は、前記第2の支持部材と結合することを特徴とする光学素子の保持装置。
An annular first support member that supports the optical element, an annular second support member that is positioned on the outer diameter side of the first support member and supports the first support member, and the first An optical element holding device comprising a plurality of elastic members capable of elastic deformation located between a support member and the second support member,
The elastic member is a cylindrical member,
One end surface of the cylindrical member is coupled to the first support member in the optical axis direction of the optical element, and the other end surface of the cylindrical member is coupled to the second support member. Holding device for optical element.
前記第1の支持部材は、前記弾性部材を収容する切り欠き部を有し、
前記第2の支持部材は、内径側で、底辺部が径中心に対向するL字型の溝部を有し、
前記弾性部材は、前記切り欠き部に収容されつつ、前記第1の支持部材と結合し、前記円筒部材の他方の端面を、前記溝部の平坦部と結合することを特徴とする請求項1に記載の光学素子の保持装置。
The first support member has a cutout portion for accommodating the elastic member,
The second support member has an L-shaped groove on the inner diameter side, with a bottom portion facing the diameter center,
The elastic member is coupled to the first support member while being accommodated in the cutout portion, and the other end surface of the cylindrical member is coupled to the flat portion of the groove portion. The holding device of the optical element described.
前記弾性部材は、円筒の中心軸が、前記第1の支持部材の中心軸と平行となるように配置されることを特徴とする請求項1又は2に記載の光学素子の保持装置。   3. The optical element holding device according to claim 1, wherein the elastic member is disposed such that a central axis of a cylinder is parallel to a central axis of the first support member. 前記弾性部材は、前記第1の支持部材及び前記第2の支持部材の円周方向において、等間隔に配置されることを特徴とする請求項1〜3のいずれか1項に記載の光学素子の保持装置。   The optical element according to claim 1, wherein the elastic members are arranged at equal intervals in a circumferential direction of the first support member and the second support member. Holding device. 原版のパターンを照明する照明光学系と、前記原版からの光を被処理基板に導く投影光学系とを有する露光装置であって、
前記照明光学系、及び前記投影光学系の少なくとも一方は、請求項1〜4のいずれか1項に記載の光学素子の保持装置を備えることを特徴とする露光装置。
An exposure apparatus having an illumination optical system that illuminates a pattern of an original and a projection optical system that guides light from the original to a substrate to be processed,
5. An exposure apparatus, wherein at least one of the illumination optical system and the projection optical system includes the optical element holding device according to any one of claims 1 to 4.
請求項5に記載の露光装置を用いて基板を露光する工程と、
前記基板を現像する工程と、
を有することを特徴とするデバイスの製造方法。
Exposing the substrate using the exposure apparatus according to claim 5;
Developing the substrate;
A device manufacturing method characterized by comprising:
JP2009246635A 2009-10-27 2009-10-27 Holding device of optical element, aligner using the same, and manufacturing method of device Pending JP2011096720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246635A JP2011096720A (en) 2009-10-27 2009-10-27 Holding device of optical element, aligner using the same, and manufacturing method of device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246635A JP2011096720A (en) 2009-10-27 2009-10-27 Holding device of optical element, aligner using the same, and manufacturing method of device

Publications (1)

Publication Number Publication Date
JP2011096720A true JP2011096720A (en) 2011-05-12

Family

ID=44113355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246635A Pending JP2011096720A (en) 2009-10-27 2009-10-27 Holding device of optical element, aligner using the same, and manufacturing method of device

Country Status (1)

Country Link
JP (1) JP2011096720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946807A (en) * 2019-04-12 2019-06-28 中国科学院长春光学精密机械与物理研究所 The support of the accurate integrated package of optical component surface shape and auxiliary locator, the accurate integrated package of face shape and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946807A (en) * 2019-04-12 2019-06-28 中国科学院长春光学精密机械与物理研究所 The support of the accurate integrated package of optical component surface shape and auxiliary locator, the accurate integrated package of face shape and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4809987B2 (en) Support structure for optical element, exposure apparatus using the same, and method for manufacturing semiconductor device
JP4710427B2 (en) Optical element holding apparatus, lens barrel, exposure apparatus, and device manufacturing method
US7352520B2 (en) Holding device and exposure apparatus using the same
US7116500B2 (en) Optical element holding system, barrel, exposure apparatus, and device manufacturing method
JP3944095B2 (en) Holding device
EP1549984B1 (en) Optical apparatus, exposure apparatus, and semiconductor device fabrication method
US20060056083A1 (en) Retainer, exposure apparatus, and device fabrication method
US20060072219A1 (en) Mirror holding mechanism in exposure apparatus, and device manufacturing method
JPWO2008146655A1 (en) Optical element holding apparatus, lens barrel, exposure apparatus, and device manufacturing method
JP2008218710A (en) Optical element holding device
JP2019517030A (en) Mounting device for optical imaging device
US6909493B2 (en) Correction member, retainer, exposure apparatus, and device fabrication method
JP5335372B2 (en) Optical element support apparatus, exposure apparatus using the same, and device manufacturing method
JP2011035102A (en) Holding apparatus for optical element, exposure apparatus using the same, and method of manufacturing device
JP2013106017A (en) Optical element holding device, optical device, and exposure device
JP2011096720A (en) Holding device of optical element, aligner using the same, and manufacturing method of device
US7583453B2 (en) Optical element holding structure, exposure apparatus, and device manufacturing method
JP4956680B2 (en) Support structure for optical element, exposure apparatus using the same, and method for manufacturing semiconductor device
JP2010225896A (en) Holding device of optical element, measuring device of optical element, aligner, and method of manufacturing device using the same
JP2010087048A (en) Support structure for optical element, aligner using the same, and method of manufacturing device
JP2003021769A (en) Optical element holding device, exposure device, device manufacturing method, and device
JP2011059475A (en) Support device, optical device, exposure device and method of manufacturing device
JP2004093663A (en) Supporting means of optical element, optical apparatus such as optical system by supporting means of optical element and aligner, and device manufacturing method
JP2003344741A (en) Correcting member, holding device, exposure device and device manufacturing method
JP2015060131A (en) Optical element holding device, optical system and exposure device