JP2011095663A - Method for manufacturing electrophotographic photoreceptor - Google Patents

Method for manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2011095663A
JP2011095663A JP2009252074A JP2009252074A JP2011095663A JP 2011095663 A JP2011095663 A JP 2011095663A JP 2009252074 A JP2009252074 A JP 2009252074A JP 2009252074 A JP2009252074 A JP 2009252074A JP 2011095663 A JP2011095663 A JP 2011095663A
Authority
JP
Japan
Prior art keywords
intermediate layer
coating solution
support
layer coating
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009252074A
Other languages
Japanese (ja)
Other versions
JP2011095663A5 (en
JP5634048B2 (en
Inventor
Shinji Takagi
進司 高木
Hideaki Nagasaka
秀昭 長坂
Kunihiko Sekido
邦彦 関戸
Akihiro Maruyama
晃洋 丸山
Michiyo Sekiya
道代 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009252074A priority Critical patent/JP5634048B2/en
Publication of JP2011095663A publication Critical patent/JP2011095663A/en
Publication of JP2011095663A5 publication Critical patent/JP2011095663A5/ja
Application granted granted Critical
Publication of JP5634048B2 publication Critical patent/JP5634048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing electrophotographic photoreceptors which reduces the variation in thicknesses of intermediate layers or difference in thicknesses of intermediate layers among electrophotographic photoreceptors and are excellent in image quality. <P>SOLUTION: In the method for manufacturing electrophotographic photoreceptors, (T1-T2) is 3 to 20°C when T1 (°C) is the temperature of a support when applying an intermediate layer coating liquid onto the support and T2 (°C) is the temperature of the intermediate layer coating liquid when applying the intermediate layer coating liquid onto the support. The intermediate layer coating liquid contains resin particles and has total solid concentration of ≥10 mass% and has viscosity at 23°C and 1 atm pressure, of 2.0 to 20.0 cp. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子写真感光体の製造方法に関する。   The present invention relates to a method for producing an electrophotographic photoreceptor.

電子写真感光体は、適用される電子写真プロセスに応じた感度、電気特性、光学特性および画像欠陥がない高品位な画質が要求される。
その中で電子写真感光体の中間層(下引き層と呼ばれることもある)は、電子写真感光体に電圧を印加したとき電子写真感光体の支持体から電荷注入が起こらないように電気的ブロッキング機能が要求される。これは支持体から電荷注入があると、帯電能の低下、画像コントラストの低下、反転現像方式の場合は先述の白地に黒点や地カブリの原因になり画質を低下させることによる。
The electrophotographic photosensitive member is required to have high image quality without sensitivity, electrical characteristics, optical characteristics, and image defects according to the applied electrophotographic process.
Among them, an intermediate layer (sometimes called an undercoat layer) of the electrophotographic photosensitive member is electrically blocked so that charge injection does not occur from the support of the electrophotographic photosensitive member when a voltage is applied to the electrophotographic photosensitive member. Function is required. This is because when charge is injected from the support, the charging ability is lowered, the image contrast is lowered, and in the case of the reversal development method, black spots and background fogging are caused on the white background described above, and the image quality is lowered.

一方、支持体からの電荷注入を起こさないように中間層の膜厚を厚くしすぎると、電子写真感光体の感光層で発生した電荷が感光層の内部に滞留し、結果として残留電位の上昇や繰り返し使用による電位変動の原因になる。したがって、電気的ブロッキング機能を持たせつつ中間層の膜厚もある程度薄くする必要がある。そこで、中間層の膜厚がある程度厚い場合でも上記の残留電位の上昇を回避するために、中間層に金属酸化物を含有させ、電子写真感光体の内部の電荷の蓄積を低減させる方法がある。   On the other hand, if the intermediate layer is made too thick so as not to cause charge injection from the support, the charge generated in the photosensitive layer of the electrophotographic photosensitive member stays inside the photosensitive layer, resulting in an increase in residual potential. Or potential fluctuation due to repeated use. Therefore, it is necessary to reduce the thickness of the intermediate layer to some extent while providing an electrical blocking function. Therefore, in order to avoid the increase in the residual potential even when the intermediate layer is thick to some extent, there is a method for reducing the accumulation of charges inside the electrophotographic photosensitive member by including a metal oxide in the intermediate layer. .

中間層に用いられる樹脂としては、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂やメラミン樹脂、エポキシ樹脂、アルキッド樹脂のような熱硬化性樹脂が挙げられる。特許文献1には、中間層にTiOとポリアミド樹脂を含有させた構成が開示されている。 Examples of the resin used for the intermediate layer include thermosetting resins such as polyamide resin, vinyl chloride resin, vinyl acetate resin, polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl alcohol resin, melamine resin, epoxy resin, and alkyd resin. . Patent Document 1 discloses a configuration in which TiO 2 and polyamide resin are contained in an intermediate layer.

その他にも、誘電特性に優れたポリオレフィン樹脂で形成された層を支持体上に設けた構成が特許文献2に開示されている。また、特許文献3には、アンチモンでドープされたSnOならびにポリエステルアイオノマーを含有した導電層を支持体上に設けた構成が開示されている。 In addition, Patent Document 2 discloses a configuration in which a layer formed of a polyolefin resin having excellent dielectric properties is provided on a support. Patent Document 3 discloses a configuration in which a conductive layer containing SnO 2 doped with antimony and a polyester ionomer is provided on a support.

近年、電子写真感光体に求められる性能はますます高まっており、画質に及ぼす影響から電子写真感光体を構成する各層の膜厚の均一性は非常に高いものが求められる。とりわけ中間層においては、一般的に膜厚が薄いにも関わらず上記のように膜厚が黒点や地カブリ・電位変動に大きく影響するため、特に膜厚の均一性が求められている。   In recent years, the performance required for electrophotographic photoreceptors has been increasing, and due to the effect on image quality, the uniformity of the thickness of each layer constituting the electrophotographic photoreceptor is required to be extremely high. In particular, in the intermediate layer, although the film thickness is generally small, the film thickness greatly affects the black spot, the ground fogging, and the potential fluctuation as described above.

同様に近年、電子写真感光体の大量生産の観点から、電子写真感光体の製造における各工程のタクトタイムが短くなってきている。支持体の洗浄・乾燥から中間層用塗布液の塗布までの時間も短くなっており、乾燥後の支持体が十分に冷却されない場合も生じている。その際、1本の支持体での温度バラツキ、多数本を同時に塗布する場合の支持体間での温度のバラツキが生じやすく、そのバラツキによって中間層の膜厚の均一性が保たれなくなってくる。それによって、部分的な黒点や地カブリ・画像濃度変動、また電子写真感光体間での画像濃度差といった問題が生じる場合がある。   Similarly, in recent years, the tact time of each process in the production of an electrophotographic photosensitive member has been shortened from the viewpoint of mass production of the electrophotographic photosensitive member. The time from cleaning / drying of the support to application of the coating solution for the intermediate layer is also shortened, and the support after drying may not be sufficiently cooled. At that time, temperature variation between one support and temperature variation between supports when a large number of coatings are applied simultaneously are likely to occur, and the uniformity of the film thickness of the intermediate layer cannot be maintained due to the variation. . As a result, problems such as partial black spots, background fog, image density fluctuations, and image density differences between electrophotographic photosensitive members may occur.

特開2002−229237号公報JP 2002-229237 A 特開平01−114853号公報Japanese Laid-Open Patent Publication No. 01-114853 特開2000−231178号公報JP 2000-231178 A

本発明の目的は、タクトタイムが短い電子写真感光体の製造工程においても、中間層の膜厚のバラツキや電子写真感光体間の中間層の膜厚差が少なく、画質に優れた電子写真感光体の製造方法を提供することにある。   It is an object of the present invention to provide an electrophotographic photosensitive member having excellent image quality with little variation in the thickness of the intermediate layer and a difference in the thickness of the intermediate layer between the electrophotographic photosensitive members even in the manufacturing process of the electrophotographic photosensitive member having a short tact time. It is in providing the manufacturing method of a body.

本発明から、以下の電子写真感光体の製造方法が提供される。
支持体上に中間層用塗布液を塗布して中間層を形成する工程、および、
形成された中間層上に感光層用塗布液を塗布して感光層を形成する工程
を有する電子写真感光体の製造方法において、
前記支持体上に中間層用塗布液を塗布するときの前記支持体の温度をT1(℃)とし、前記支持体上に中間層用塗布液を塗布するときの中間層用塗布液の温度をT2(℃)としたときに、(T1−T2)が3℃以上20℃以下であり、
前記中間層用塗布液が樹脂粒子を含有し、
前記中間層用塗布液中の全固形分濃度が10質量%以上であり、
温度23℃/1気圧で測定した前記中間層用塗布液の粘度が2.0cp以上20.0cp以下である
ことを特徴とする電子写真感光体の製造方法。
The present invention provides the following method for producing an electrophotographic photoreceptor.
Applying an intermediate layer coating solution on a support to form an intermediate layer; and
In the method for producing an electrophotographic photosensitive member having a step of forming a photosensitive layer by applying a photosensitive layer coating solution on the formed intermediate layer,
The temperature of the support when applying the intermediate layer coating solution on the support is T1 (° C.), and the temperature of the intermediate layer coating solution when applying the intermediate layer coating solution on the support is When T2 (° C), (T1-T2) is 3 ° C or higher and 20 ° C or lower,
The intermediate layer coating solution contains resin particles,
The total solid concentration in the intermediate layer coating solution is 10% by mass or more,
A method for producing an electrophotographic photosensitive member, wherein the viscosity of the intermediate layer coating solution measured at a temperature of 23 ° C./1 atm is 2.0 cp to 20.0 cp.

本発明の製造方法によれば、製造工程で長きにわたり、電子写真感光体内・電子写真感光体間の中間層の膜厚の均一性が保たれる。そのため、得られた電子写真感光体を用いた画像形成において、画像不良・画像濃度差がない、優れた画質が形成できる電子写真感光体の製造方法を提供することができる。   According to the manufacturing method of the present invention, the uniformity of the film thickness of the intermediate layer between the electrophotographic photosensitive member and the electrophotographic photosensitive member is maintained for a long time in the manufacturing process. Therefore, it is possible to provide a method for producing an electrophotographic photosensitive member capable of forming excellent image quality without image defects and image density differences in image formation using the obtained electrophotographic photosensitive member.

本発明の電子写真感光体を搭載したプロセスカートリッジ、および該プロセスカートリッジを備えた電子写真装置の概略構成の一例。1 shows an example of a schematic configuration of a process cartridge equipped with the electrophotographic photosensitive member of the present invention and an electrophotographic apparatus including the process cartridge. 本発明の電子写真感光体の層構成の一例を概略する図。FIG. 2 is a diagram schematically illustrating an example of a layer configuration of the electrophotographic photosensitive member of the present invention.

本発明における電子写真感光体は、支持体上に中間層および感光層をこの順に形成したものである。   The electrophotographic photosensitive member in the present invention is obtained by forming an intermediate layer and a photosensitive layer in this order on a support.

上記感光層は、電荷輸送物質と電荷発生物質を同一の層に含有する単層型感光層であっても、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層であってもよい。本発明においては、電子写真特性の観点からは積層型感光層が好ましい。また、積層型感光層には、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層と、支持体側から電荷輸送層、電荷発生層の順に積層した逆層型感光層があるが、電子写真特性の観点からは順層型感光層が好ましい。   Even if the photosensitive layer is a single-layer type photosensitive layer containing the charge transport material and the charge generation material in the same layer, the charge generation layer containing the charge generation material and the charge transport layer containing the charge transport material Separated layered (functionally separated type) photosensitive layers may be used. In the present invention, a laminated photosensitive layer is preferred from the viewpoint of electrophotographic characteristics. The laminated photosensitive layer has a normal layer type photosensitive layer laminated in the order of the charge generation layer and the charge transport layer from the support side, and a reverse layer type photosensitive layer laminated in the order of the charge transport layer and the charge generation layer from the support side. However, a normal photosensitive layer is preferred from the viewpoint of electrophotographic characteristics.

また、中間層と支持体の間に、金属酸化物を含有した導電層を設けてもよい。本発明における電子写真感光体の好ましい構成の概略が図2に示される。図2の電子写真感光体においては、支持体21上に、導電層22、中間層23、電荷発生層24、電荷輸送層25が積層されている。   Further, a conductive layer containing a metal oxide may be provided between the intermediate layer and the support. An outline of a preferred structure of the electrophotographic photosensitive member in the present invention is shown in FIG. In the electrophotographic photosensitive member of FIG. 2, a conductive layer 22, an intermediate layer 23, a charge generation layer 24, and a charge transport layer 25 are laminated on a support 21.

本発明の電子写真感光体に用いる支持体としては、導電性を有していればよく(導電性支持体)、例えば、アルミニウム、アルミニウム合金、ステンレスのような金属製(合金
製)の支持体を用いることができる。また、アルミニウム、アルミニウム合金、酸化インジウム−酸化スズ合金のような金属または合金を真空蒸着によって被膜形成した層を有する上記金属製支持体やプラスチック製支持体を用いることもできる。また、カーボンブラック、酸化スズ粒子、酸化チタン粒子、銀粒子のような導電性粒子を適当な結着樹脂と共にプラスチックや紙に含浸した支持体や、導電性結着樹脂を有するプラスチック製の支持体を用いることもできる。また、支持体の形状としては、例えば、円筒状、ベルト状が挙げられるが、円筒状が好ましい。
The support used in the electrophotographic photoreceptor of the present invention may be conductive (conductive support), for example, a support made of metal (alloy) such as aluminum, aluminum alloy, and stainless steel. Can be used. Moreover, the said metal support body and plastic support body which have the layer which carried out the film formation of the metal or alloys, such as aluminum, an aluminum alloy, an indium oxide tin oxide alloy, by vacuum deposition can also be used. Also, a support in which conductive particles such as carbon black, tin oxide particles, titanium oxide particles, and silver particles are impregnated into plastic or paper together with an appropriate binder resin, or a plastic support having a conductive binder resin Can also be used. Examples of the shape of the support include a cylindrical shape and a belt shape, and a cylindrical shape is preferable.

上記支持体は、加工時に切削油のような油系物質が用いられることが多く、さらに支持体輸送時には人の指紋が付着することがある。そのため、電子写真感光体を製造する際には、支持体を十分に洗浄することが必要である。   The support is often made of an oil-based substance such as cutting oil during processing, and human fingerprints may adhere to the support when it is transported. Therefore, it is necessary to sufficiently wash the support when producing the electrophotographic photosensitive member.

支持体の洗浄方法としては、純水に浸漬し、次いで引き上げることにより支持体の表面を清浄化し、乾燥を行う方法がある。洗浄工程に採用される好ましい方法として、超音波洗浄を挙げることができる。支持体は、純水浸漬槽に浸漬した際に、該槽内において、浸漬時間(該槽内で停止している時間)をとることが好ましい。時間としては、浸漬する支持体にもよるが、10〜60秒が好ましい。すなわち、槽内の純水の温度まで支持体の温度が上昇するための時間をとることが好ましい。さらに、用いる純水の温度は支持体上の不純物を除去するために高い方が好ましく、さらに、純水浸漬槽から引き上げた際に、支持体および純水温度が高い方が、支持体が乾燥しやすい。そのため、洗浄工程の最後に、温度80℃以上の温水に浸漬することが好ましい。   As a method for washing the support, there is a method in which the surface of the support is cleaned by dipping in pure water and then pulled up and then dried. As a preferable method employed in the cleaning step, ultrasonic cleaning can be exemplified. When the support is immersed in the pure water immersion tank, it is preferable to take an immersion time (a time during which the support is stopped in the tank) in the tank. The time is preferably 10 to 60 seconds, although depending on the support to be immersed. That is, it is preferable to take time for the temperature of the support to rise to the temperature of pure water in the tank. Further, the temperature of pure water used is preferably higher in order to remove impurities on the support, and when the support and the temperature of pure water are raised from the pure water immersion tank, the support is dried. It's easy to do. Therefore, it is preferable to immerse in warm water having a temperature of 80 ° C. or higher at the end of the cleaning process.

本発明の電子写真感光体の製造方法は、支持体上に中間層用塗布液を塗布し、中間層を形成する工程を含む。
本発明の上記工程においては、支持体上に中間層用塗布液を塗布するときの支持体の温度をT1(℃)とし、支持体上に中間層用塗布液を塗布するときの中間層用塗布液の温度をT2(℃)としたときに、(T1−T2)が3℃以上20℃以下であり、中間層用塗布液が樹脂粒子を含有し、中間層用塗布液中の全固形分濃度が10質量%以上であり、温度23℃/1気圧で測定した中間層用塗布液の粘度が2.0cp以上20.0cp以下である。
The method for producing an electrophotographic photosensitive member of the present invention includes a step of applying an intermediate layer coating solution on a support to form an intermediate layer.
In the above step of the present invention, the temperature of the support when applying the intermediate layer coating solution on the support is T1 (° C.), and the intermediate layer coating when applying the intermediate layer coating solution on the support When the temperature of the coating solution is T2 (° C.), (T1-T2) is 3 ° C. or more and 20 ° C. or less, the coating solution for intermediate layer contains resin particles, and the total solid in the coating solution for intermediate layer The partial concentration is 10% by mass or more, and the viscosity of the intermediate layer coating solution measured at a temperature of 23 ° C./1 atm is 2.0 cp to 20.0 cp.

本発明者らは、支持体上に中間層を形成する際に中間層の膜厚の均一性を保つための研究を重ね、中間層用塗布液を塗布する際の支持体と塗布液の温度差、中間層用塗布液中の全固形分濃度、および、中間層用塗布液の粘度を制御することで、均一な膜厚の中間層を形成することができることを見出した。   The inventors of the present invention have repeatedly studied to maintain the uniformity of the film thickness of the intermediate layer when forming the intermediate layer on the support, and the temperature of the support and the coating liquid when applying the intermediate layer coating liquid. It was found that an intermediate layer having a uniform film thickness can be formed by controlling the difference, the total solid content concentration in the intermediate layer coating solution, and the viscosity of the intermediate layer coating solution.

上記(T1−T2)が20℃を超える場合には、中間層と支持体の温度差があまりにも大きく、塗布時に良好な膜を得ることができない。一方、(T1−T2)が3℃未満の場合には、支持体洗浄工程時の乾燥が不十分で、支持体の洗浄ムラが生じ、良好な膜を得ることができないことがある。上記(T1−T2)の値は、3℃以上10℃以下であることが、本発明の効果をより一層発揮するため、好ましい。なお、上記支持体の温度の測定は、その支持体の表面温度を測定することにより行った。後述する導電層が支持体の上に形成されている場合には、導電層上の温度を測定し、T1とした。   When the above (T1-T2) exceeds 20 ° C., the temperature difference between the intermediate layer and the support is too large, and a good film cannot be obtained during coating. On the other hand, when (T1-T2) is less than 3 ° C., drying during the support washing step is insufficient, and uneven washing of the support may occur, and a good film may not be obtained. The value of (T1-T2) is preferably 3 ° C. or higher and 10 ° C. or lower because the effects of the present invention are further exhibited. The temperature of the support was measured by measuring the surface temperature of the support. When a conductive layer to be described later was formed on the support, the temperature on the conductive layer was measured and designated as T1.

また、上記樹脂粒子を含有した中間層用塗布液中の全固形分濃度が10質量%未満である場合には、塗布時の液ダレによる膜厚差が生じ、画像不良を引き起こすことがある。本発明において、上記全固形分濃度は10質量%以上であるが、12質量%以上であることが好ましい。一方、全固形分濃度の上限は通常中間層塗布液として用いることができる範囲の濃度であれば特段制限はされないが、30質量%以下であることが好ましい。
なお、上記中間層用塗布液中の全固形分濃度は、塗布液の適量を容器に取り、温度14
0℃30分乾燥後の重量変化分を計算することによって測定した。
Moreover, when the total solid content concentration in the coating liquid for intermediate layer containing the resin particles is less than 10% by mass, a film thickness difference due to liquid dripping at the time of coating may occur, and image defects may be caused. In the present invention, the total solid content concentration is 10% by mass or more, but preferably 12% by mass or more. On the other hand, the upper limit of the total solid content concentration is not particularly limited as long as it is a concentration that can be used as a coating solution for an intermediate layer, but is preferably 30% by mass or less.
In addition, the total solid content concentration in the coating solution for the intermediate layer is obtained by taking an appropriate amount of the coating solution in a container and at a temperature of 14
The weight change after drying at 0 ° C. for 30 minutes was calculated.

また、温度23℃/1気圧で測定した上記中間層用塗布液の粘度が2cp未満もしくは20cpを超える場合には、中間層用塗布液の塗布時のダレによる塗布ムラが生じたり、電子写真感光体を連続して作製したときの膜厚変動が大きくなったりすることで、画像不良を引き起こすことがある。上記中間層用塗布液の粘度は、4cp以上10cp以下であることが、より均一な膜厚の中間層を形成できるため、好ましい。なお、上記粘度は、東機産業(株)製、B型粘度計BL型を用いて測定した。塗布液の粘度は、全固形分濃度の上昇に伴って高くなっていくが、粒径が0.05μm以上かつ0.50μm以下の樹脂粒子を含有する水性分散液を使用し、溶剤量を調節することによって、上記全固形分濃度と粘度を満足する中間層用塗布液を調製することができる。   Further, when the viscosity of the intermediate layer coating solution measured at a temperature of 23 ° C./1 atm is less than 2 cp or more than 20 cp, uneven coating due to sagging during coating of the intermediate layer coating solution may occur, or electrophotographic photosensitive An image defect may be caused by an increase in film thickness variation when the body is continuously manufactured. The viscosity of the intermediate layer coating solution is preferably 4 cp or more and 10 cp or less because an intermediate layer having a more uniform film thickness can be formed. The viscosity was measured using a B-type viscometer BL type manufactured by Toki Sangyo Co., Ltd. The viscosity of the coating solution increases as the total solid content increases, but the amount of solvent is adjusted by using an aqueous dispersion containing resin particles having a particle size of 0.05 μm or more and 0.50 μm or less. By doing this, a coating solution for an intermediate layer satisfying the above-mentioned total solid content concentration and viscosity can be prepared.

さらには、本発明に用いる中間層用塗布液が、光散乱粒度分布計を用いて測定した体積平均粒径が0.05μm以上0.50μm以下の樹脂粒子を含有する水性分散液であることが好ましい。前述のとおり、中間層用塗布液にこのような平均粒径を有する樹脂粒子を含有する水性分散液を用いることで、上記全固形分濃度と粘度を同時に満足する塗布液を調製することができる。また、0.1μm以上0.40μm以下であるとより一層好ましい。上記樹脂粒子の平均粒径は、水性分散液を作製する際の溶剤種や、攪拌時間を変更することにより上記範囲に調整することができる。   Further, the intermediate layer coating solution used in the present invention is an aqueous dispersion containing resin particles having a volume average particle size of 0.05 μm or more and 0.50 μm or less measured using a light scattering particle size distribution meter. preferable. As described above, by using an aqueous dispersion containing resin particles having such an average particle size as the intermediate layer coating solution, a coating solution satisfying both the total solid content concentration and the viscosity can be prepared. . Moreover, it is still more preferable in it being 0.1 to 0.40 μm. The average particle diameter of the resin particles can be adjusted to the above range by changing the type of solvent used for preparing the aqueous dispersion and the stirring time.

上記水性分散液とは、樹脂粒子が水性媒体に分散もしくは溶解されている溶液である。ここで、水性媒体とは、水を主成分とする液体からなる媒体であり、水溶性の有機溶剤を含有していてもよい。上記水を主成分とするとは、溶液中に含まれる媒体中で最も含有量が多い成分のことをいう。本発明においては、水性媒体における水の含有比率が4質量%以上である場合、水性分散液がより安定して存在することとなるため好ましい。より好ましくは30質量%以上であり、50質量%以上であるとさらに好ましい。また、上限は特に制限されず、水100質量%でも本発明の効果を奏する。   The aqueous dispersion is a solution in which resin particles are dispersed or dissolved in an aqueous medium. Here, the aqueous medium is a medium composed of a liquid containing water as a main component, and may contain a water-soluble organic solvent. The above-mentioned main component of water means a component having the largest content in the medium contained in the solution. In the present invention, when the content ratio of water in the aqueous medium is 4% by mass or more, it is preferable because the aqueous dispersion exists more stably. More preferably, it is 30% by mass or more, and further preferably 50% by mass or more. Moreover, an upper limit in particular is not restrict | limited, Even if it is 100 mass% of water, there exists an effect of this invention.

本発明の中間層用塗布液に用いられる樹脂としては、前述のように特定範囲の粒径を持つ樹脂粒子として塗布液中に存在することが好ましい。樹脂粒子としては、ポリエチレン樹脂粒子のようなポリオレフィン樹脂粒子を好適に使用することができる。   The resin used in the intermediate layer coating solution of the present invention is preferably present in the coating solution as resin particles having a particle size in a specific range as described above. As the resin particles, polyolefin resin particles such as polyethylene resin particles can be suitably used.

さらには、上記ポリオレフィン樹脂が下記(A1)、(A2)および(A3)を有し、上記ポリオレフィン樹脂の(A1)、(A2)、および(A3)の質量比が下記式(1)および(2)を満たすことが好ましい。
0.01≦(A2)/{(A1)+(A2)+(A3)}×100≦10 式(1)
(A1)/(A3)=55/45〜99/1 式(2)
Further, the polyolefin resin has the following (A1), (A2) and (A3), and the mass ratio of (A1), (A2) and (A3) of the polyolefin resin is the following formulas (1) and ( It is preferable to satisfy 2).
0.01 ≦ (A2) / {(A1) + (A2) + (A3)} × 100 ≦ 10 Formula (1)
(A1) / (A3) = 55/45 to 99/1 Formula (2)

(A1):下記式(11)で示される繰り返し構造単位

Figure 2011095663

(式(11)中、R11〜R14は、それぞれ独立に、水素原子、アルキル基を示す。)

(A2):下記式(21)または(22)で示される繰り返し構造単位
Figure 2011095663

(式(21)および(22)中、R21〜R24は、それぞれ独立に、水素原子、アルキル基、フェニル基または−Y21COOH(式中、Y21は、単結合、アルキレン基またはアリーレン基を示す。)で示される1価の基を示し、R25およびR26は、それぞれ独立に、水素原子、アルキル基またはフェニル基を示し、X21は、−Y22COOCOY23−(式中、Y22およびY23は、それぞれ独立に、単結合、アルキレン基またはアリーレン基を示す。)で示される2価の基を示す。ただし、R21〜R24のうち少なくとも1つは−Y21COOHで示される1価の基である。)

(A3):下記式(31)、(32)、(33)または(34)で示される繰り返し構造単位
Figure 2011095663

(式(31)〜(34)中、R31〜R35は、それぞれ独立に、水素原子またはメチル基を示し、R41〜R43は、それぞれ独立に、炭素数1〜10のアルキル基を示し、R51〜R53は、それぞれ独立に、水素原子または炭素数1〜10のアルキル基を示す。) (A1): Repeating structural unit represented by the following formula (11)
Figure 2011095663

(In formula (11), R 11 to R 14 each independently represent a hydrogen atom or an alkyl group.)

(A2): Repeating structural unit represented by the following formula (21) or (22)
Figure 2011095663

(In the formulas (21) and (22), R 21 to R 24 are each independently a hydrogen atom, an alkyl group, a phenyl group or —Y 21 COOH (wherein Y 21 is a single bond, an alkylene group or an arylene) R 25 and R 26 each independently represents a hydrogen atom, an alkyl group or a phenyl group, and X 21 represents —Y 22 COOCOY 23 — (in the formula: , Y 22 and Y 23 each independently represents a single bond, an alkylene group or an arylene group.) However, at least one of R 21 to R 24 is —Y 21. (It is a monovalent group represented by COOH.)

(A3): repeating structural unit represented by the following formula (31), (32), (33) or (34)
Figure 2011095663

(In formulas (31) to (34), R 31 to R 35 each independently represent a hydrogen atom or a methyl group, and R 41 to R 43 each independently represents an alkyl group having 1 to 10 carbon atoms. R 51 to R 53 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)

上記の要件を満たすポリオレフィン樹脂を用いる場合には、上記全固形分濃度と粘度を満足し、かつ塗布液の安定性が高い塗布液を調製することが可能であり、好ましい。より好ましくは、下記式をさらに満たす場合である。
0.01≦(A2)/{(A1)+(A2)+(A3)}×100≦5
When a polyolefin resin that satisfies the above requirements is used, it is preferable because it is possible to prepare a coating solution that satisfies the above-mentioned total solid content concentration and viscosity and that has a high stability of the coating solution. More preferably, the following formula is further satisfied.
0.01 ≦ (A2) / {(A1) + (A2) + (A3)} × 100 ≦ 5

上記ポリオレフィン樹脂に含まれる(A2)を構成するためのモノマーは、カルボン酸基およびカルボン酸無水物基の少なくとも一方を有する化合物であり、カルボン酸基およびカルボン酸無水物基の少なくとも一方を、当該化合物分子内(モノマー単位内)に有す
る。
The monomer for constituting (A2) contained in the polyolefin resin is a compound having at least one of a carboxylic acid group and a carboxylic anhydride group, and at least one of the carboxylic acid group and the carboxylic anhydride group is Within the compound molecule (in the monomer unit).

当該カルボン酸基およびカルボン酸無水物基の少なくとも一方を有する化合物としては、不飽和カルボン酸またはその無水物が好ましい。具体的には、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸のほか、不飽和ジカルボン酸のハーフエステル、ハーフアミドが挙げられる。これらの中でも、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸が好ましく、特にアクリル酸、無水マレイン酸が好ましい。   As the compound having at least one of the carboxylic acid group and the carboxylic acid anhydride group, an unsaturated carboxylic acid or an anhydride thereof is preferable. Specific examples include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid and crotonic acid, as well as unsaturated dicarboxylic acid half esters and half amides. Among these, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferable, and acrylic acid and maleic anhydride are particularly preferable.

また、上記カルボン酸基およびカルボン酸無水物基の少なくとも一方を有する化合物から構成された(A2)は、共重合体であるポリオレフィン樹脂中の繰り返し構造単位として含有されている。また、当該共重合体の形態は、特に限定されず、ランダム共重合体、ブロック共重合体、グラフト共重合体が挙げられる。   Moreover, (A2) comprised from the compound which has at least one of the said carboxylic acid group and carboxylic anhydride group is contained as a repeating structural unit in polyolefin resin which is a copolymer. Moreover, the form of the said copolymer is not specifically limited, A random copolymer, a block copolymer, and a graft copolymer are mentioned.

上記(A2)の一般式(21)中、アルキル基、およびアルキレン基は炭素数が1〜7であることが好ましい。
また、R21〜R24のうち3つが水素原子で、1つが−COOHであること、またはR21〜R24のうち2つが水素原子で、1つがメチル基で、1つが−COOHであることがより好ましい。また、上記(A2)の一般式(22)中、R25およびR26が水素であり、かつX21が、−COOCO−であることがより好ましい。
In general formula (21) of (A2) above, the alkyl group and the alkylene group preferably have 1 to 7 carbon atoms.
Further, three of R 21 to R 24 are hydrogen atoms, one is —COOH, or two of R 21 to R 24 are hydrogen atoms, one is a methyl group, and one is —COOH. Is more preferable. In the general formula (22) of (A2), R 25 and R 26 are more preferably hydrogen, and X 21 is more preferably —COOCO—.

なお、上記無水マレイン酸のような不飽和カルボン酸無水物は、樹脂の乾燥状態では隣接するカルボキシル基が脱水環化した酸無水物構造を形成している。しかしながら、例えば、塩基性化合物を含有する水性媒体中では、その一部または全部が開環して、カルボン酸またはその塩の構造を取りやすくなる。また、本発明において、樹脂のカルボキシル基量を基準としてカルボン酸基またはカルボン酸無水物基を有する化合物の量を規定する場合には、樹脂中のカルボン酸無水物基はすべて開環してカルボキシル基をなしていると仮定して算出する。   The unsaturated carboxylic acid anhydride such as maleic anhydride forms an acid anhydride structure in which the adjacent carboxyl groups are dehydrated and cyclized in the dry state of the resin. However, for example, in an aqueous medium containing a basic compound, part or all of the ring is opened, and the structure of a carboxylic acid or a salt thereof is easily formed. In the present invention, when the amount of the compound having a carboxylic acid group or a carboxylic acid anhydride group is defined based on the amount of the carboxyl group of the resin, all the carboxylic acid anhydride groups in the resin are ring-opened. It is calculated assuming that it is based.

本発明において、上記ポリオレフィン樹脂に含まれる(A1)を構成するためのモノマーとしては、例えば、エチレン、プロピレン、イソブチレン、1−ブテン、1−ペンテン、1−ヘキセンが挙げられる。これらは単独または混合物として用いることもできる。これらの中でも、エチレン、プロピレン、イソブチレン、1−ブテンのような炭素数2〜4のアルケンがより好ましく、エチレンが特に好ましい。   In the present invention, examples of the monomer for constituting (A1) contained in the polyolefin resin include ethylene, propylene, isobutylene, 1-butene, 1-pentene, and 1-hexene. These can be used alone or as a mixture. Among these, alkenes having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene, and 1-butene are more preferable, and ethylene is particularly preferable.

上記(A1)の一般式(11)中、R11〜R14は、それぞれ独立に、水素原子、炭素数1〜6のアルキル基であることが好ましく、R11〜R14が、すべて水素であることが好ましい。 In general formula (11) of (A1) above, R 11 to R 14 are preferably each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 11 to R 14 are all hydrogen. Preferably there is.

また、本発明において、上記ポリオレフィン樹脂に含まれる(A3)を構成するためのモノマーとしては、例えば、下記化合物が挙げられる。
上記式(31)で示される繰り返し構造単位:(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルのような(メタ)アクリル酸エステル類。
上記式(32)で示される繰り返し構造単位:マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルのようなマレイン酸エステル類。
上記式(33)で示される繰り返し構造単位:(メタ)アクリル酸アミド類。
上記式(34)で示される繰り返し構造単位:メチルビニルエーテル、エチルビニルエーテルのようなアルキルビニルエーテル類、ビニルエステル類を塩基性化合物でケン化して得られるビニルアルコール。
Moreover, in this invention, as a monomer for comprising (A3) contained in the said polyolefin resin, the following compound is mentioned, for example.
Repeating structural units represented by the above formula (31): (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate.
The repeating structural unit represented by the above formula (32): maleic acid esters such as dimethyl maleate, diethyl maleate and dibutyl maleate.
A repeating structural unit represented by the above formula (33): (meth) acrylic acid amides.
Repeating structural unit represented by the above formula (34): vinyl alcohol obtained by saponifying alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, and vinyl esters with a basic compound.

また、これら化合物は、単独または混合物として用いることが可能である。これらの中でも、(メタ)アクリル酸エステル類がより好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルが特に好ましい。すなわち、(A3)は、上記式(31)で示される繰り返し構造単位であることが好ましく、上記式(31)中のR41はメチルまたはエチルであることがより好ましい。 These compounds can be used alone or as a mixture. Among these, (meth) acrylic acid esters are more preferable, and methyl (meth) acrylate and ethyl (meth) acrylate are particularly preferable. That is, (A3) is preferably a repeating structural unit represented by the above formula (31), and R 41 in the above formula (31) is more preferably methyl or ethyl.

本発明において、上記ポリオレフィン樹脂は、エチレン、(メタ)アクリル酸メチルまたは(メタ)アクリル酸エチル、および、無水マレイン酸から合成された三元共重合体であることが特に好ましい。当該三元共重合体の具体例として、エチレン−アクリル酸エステル−無水マレイン酸三元共重合体またはエチレン−メタクリル酸エステル−無水マレイン酸三元共重合体が挙げられる。   In the present invention, the polyolefin resin is particularly preferably a terpolymer synthesized from ethylene, methyl (meth) acrylate or ethyl (meth) acrylate, and maleic anhydride. Specific examples of the terpolymer include ethylene-acrylic acid ester-maleic anhydride terpolymer or ethylene-methacrylic acid ester-maleic anhydride terpolymer.

当該アクリル酸エステル単位は、樹脂の水性化の際に、エステル結合のごく一部が加水分解してアクリル酸単位に変化することがあるが、そのような場合には、それらの変化を加味した各構造単位の比率が規定の範囲にあればよい。本発明で用いるポリオレフィン樹脂の測定は、以下の方法により測定する。
(1)ポリオレフィン樹脂中の(A2)(不飽和カルボン酸成分)の含有量
ポリオレフィン樹脂の酸価をJIS K5407に準じて測定し、その値から不飽和カルボン酸の含有量(グラフト率)を次式から求めた。
不飽和カルボン酸成分の含有量(質量%)=(グラフトした不飽和カルボン酸の質量)/(原料ポリオレフィン樹脂の質量)×100
(2)ポリオレフィン樹脂中の(A2)以外の樹脂の構成
オルトジクロロベンゼン(d4)中、温度120℃にてH−NMR、13C−NMR分析(バリアン・テクノロジーズ・ジャパン・リミテッド社製、300MHz)を行って求めた。13C−NMR分析では定量性を考慮したゲート付きデカップリング法を用いて測定した。
The acrylic ester unit may be converted to an acrylic acid unit by hydrolyzing a small part of the ester bond when the resin is made aqueous. In such a case, the change is taken into account. It suffices if the ratio of each structural unit is within a specified range. The polyolefin resin used in the present invention is measured by the following method.
(1) Content of (A2) (unsaturated carboxylic acid component) in polyolefin resin The acid value of polyolefin resin was measured according to JIS K5407, and the content (graft rate) of unsaturated carboxylic acid was determined from the value. Obtained from the formula.
Content of unsaturated carboxylic acid component (mass%) = (mass of grafted unsaturated carboxylic acid) / (mass of raw material polyolefin resin) × 100
(2) Composition of resin other than (A2) in polyolefin resin 1 H-NMR, 13 C-NMR analysis at 300 ° C. in orthodichlorobenzene (d4) (manufactured by Varian Technologies Japan Limited, 300 MHz) ). In 13 C-NMR analysis, measurement was performed using a gated decoupling method in consideration of quantitativeness.

本発明に用いられるポリオレフィン樹脂には、上述以外の他の成分が、本発明の効果を阻害しない程度に、共重合体の繰り返し構造単位として含有されていてもよい。他の繰り返し構造単位を構成するためのモノマーとしては、例えば、ジエン類、(メタ)アクリロニトリル、ハロゲン化ビニル類、ハロゲン化ビリニデン類、一酸化炭素、二硫化炭素が挙げられる。   The polyolefin resin used in the present invention may contain other components other than those described above as repeating structural units of the copolymer to the extent that the effects of the present invention are not impaired. Examples of the monomer for constituting another repeating structural unit include dienes, (meth) acrylonitrile, halogenated vinyls, halogenated vinylidenes, carbon monoxide, and carbon disulfide.

本発明に用いられるポリオレフィン樹脂の分子量は特に限定されないが、10,000〜50,000のものが好適に用いられる。また、その合成法も特に限定されない。上記ポリオレフィン樹脂は、「新高分子実験学2 高分子の合成・反応(1)」の第1〜4章(共立出版(株))、特開2003−105145号公報、特開2003―147028号公報に記述された公知の方法を用いて合成することができる。例えば、ポリオレフィン樹脂を構成するためのモノマーをラジカル発生剤の存在下、高圧ラジカル共重合して得ることが可能である。   Although the molecular weight of the polyolefin resin used for this invention is not specifically limited, The thing of 10,000-50,000 is used suitably. Further, the synthesis method is not particularly limited. The above polyolefin resins are described in Chapters 1 to 4 (Kyoritsu Shuppan Co., Ltd.), Japanese Patent Application Laid-Open No. 2003-105145, and Japanese Patent Application Laid-Open No. 2003-147028. Can be synthesized using known methods described in 1. For example, a monomer for constituting the polyolefin resin can be obtained by high-pressure radical copolymerization in the presence of a radical generator.

本発明の中間層用塗布液は、例えば、ポリオレフィン樹脂のような樹脂粒子を適当な溶剤に溶解させて作製する方法、軟化点以上の高温に保持することによりポリオレフィン樹脂を溶融状態とすることで作製する方法、適当な溶媒中で加熱攪拌を行い、分散体とする方法で調製される。
中間層は、中間層用塗布液を支持体上に塗布することによって形成することができる。中間層中の樹脂粒子の含有量は、中間層の全固形分に対して5〜30質量%であることが好ましい。中間層の膜厚は0.05〜10μmであることが好ましく、特には0.3〜5μmであることがより好ましい。
なお、本発明の中間層用塗布液には、本発明の効果を損なわない範囲で、その他の成分
を含有させることもできる。その他の成分としては、例えば、金属酸化物や有機粒子が挙げられる。
The intermediate layer coating solution of the present invention can be prepared, for example, by dissolving resin particles such as a polyolefin resin in an appropriate solvent, by keeping the polyolefin resin in a molten state by maintaining it at a high temperature above the softening point. It is prepared by a method of producing and a method of heating and stirring in an appropriate solvent to form a dispersion.
The intermediate layer can be formed by applying an intermediate layer coating solution on a support. The content of the resin particles in the intermediate layer is preferably 5 to 30% by mass with respect to the total solid content of the intermediate layer. The film thickness of the intermediate layer is preferably 0.05 to 10 μm, and more preferably 0.3 to 5 μm.
In addition, the coating liquid for intermediate | middle layers of this invention can also be made to contain another component in the range which does not impair the effect of this invention. Examples of other components include metal oxides and organic particles.

本発明の電子写真感光体は、支持体と中間層の間に、別途、支持体の欠陥を隠蔽しかつモアレを抑制する目的で導電性粒子を含有した導電層を設けてもよい。導電層に用いられる樹脂としてはフェノール樹脂、ポリウレタン樹脂のような熱硬化型の樹脂を使用することが好ましい。導電性粒子としては、例えば、酸化亜鉛、酸化チタン、硫酸バリウムが用いられる。上記導電層は、上記樹脂および導電性粒子を適当な溶剤に溶解または分散させることで導電層用塗布液を調製し、導電層用塗布液を支持体上に塗布することで、形成することができる。導電層の膜厚は、10〜35μmであることが好ましい。   In the electrophotographic photoreceptor of the present invention, a conductive layer containing conductive particles may be separately provided between the support and the intermediate layer for the purpose of concealing defects on the support and suppressing moire. As the resin used for the conductive layer, it is preferable to use a thermosetting resin such as a phenol resin or a polyurethane resin. For example, zinc oxide, titanium oxide, or barium sulfate is used as the conductive particles. The conductive layer can be formed by preparing a coating liquid for a conductive layer by dissolving or dispersing the resin and conductive particles in an appropriate solvent, and coating the coating liquid for the conductive layer on a support. it can. The thickness of the conductive layer is preferably 10 to 35 μm.

上記熱硬化型樹脂および導電性粒子を含有する導電層用塗布液を支持体上に塗布した後乾燥させる際は、130℃以上の高温で乾燥させることが好ましい。また、導電層の表面で反射した光が干渉して出力画像に干渉縞が発生することを抑制するために、導電層に、導電層の表面を粗面化するための表面粗し付与材を添加することも可能である。表面粗し付与材としては、平均粒径1〜6μmの樹脂粒子が好ましい。この樹脂粒子としては、例えば、硬化性ゴム、ポリウレタン樹脂、エポキシ樹脂、アルキド樹脂、フェノール樹脂、ポリエステル樹脂、シリコーン樹脂、アクリル−メラミン樹脂のような硬化性樹脂の粒子が挙げられる。これらの中でも、凝集しにくいシリコーン樹脂の粒子が好ましい。また、導電層の表面性を高めるために、公知のレベリング剤を添加してもよい。   When the conductive layer coating liquid containing the thermosetting resin and conductive particles is applied on the support and then dried, it is preferably dried at a high temperature of 130 ° C. or higher. In addition, a surface roughening material for roughening the surface of the conductive layer is provided on the conductive layer in order to suppress interference fringes in the output image due to interference of the light reflected on the surface of the conductive layer. It is also possible to add. As the surface roughening material, resin particles having an average particle diameter of 1 to 6 μm are preferable. Examples of the resin particles include curable resin particles such as curable rubber, polyurethane resin, epoxy resin, alkyd resin, phenol resin, polyester resin, silicone resin, and acrylic-melamine resin. Among these, silicone resin particles that are difficult to aggregate are preferable. Moreover, in order to improve the surface property of a conductive layer, you may add a well-known leveling agent.

本発明の電子写真感光体の製造方法は、形成された中間層上に感光層用塗布液を塗布し、感光層を形成する工程を含む。上述したように感光層は、電荷発生物質を含有する電荷発生層と電荷輸送物質を含有する電荷輸送層とに分離した積層型(機能分離型)感光層であることが好ましい。本発明の電子写真感光体に好適に用いられる電荷発生層は、結着樹脂および電荷発生物質を含有する。電荷発生物質としては、例えば、モノアゾ、ジスアゾ、トリスアゾのようなアゾ顔料や、金属フタロシアニン、非金属フタロシアニンのようなフタロシアニン顔料や、インジゴ、チオインジゴのようなインジゴ顔料や、ペリレン酸無水物、ペリレン酸イミドのようなペリレン顔料や、アンスラキノン、ピレンキノン、ジベンズピレンキノンのような多環キノン顔料や、スクワリリウム色素や、ピリリウム塩およびチアピリリウム塩や、トリフェニルメタン色素や、セレン、セレン−テルル、アモルファスシリコンのような無機物質や、キナクリドン顔料や、アズレニウム塩顔料や、キノシアニンのようなシアニン染料や、アントアントロン顔料や、ピラントロン顔料や、キサンテン色素や、キノンイミン色素や、スチリル色素や、硫化カドミウムや、酸化亜鉛が挙げられる。これら電荷発生物質は1種のみ用いてもよく、2種以上用いてもよい。   The method for producing an electrophotographic photoreceptor of the present invention includes a step of forming a photosensitive layer by applying a photosensitive layer coating solution on the formed intermediate layer. As described above, the photosensitive layer is preferably a stacked type (functional separation type) photosensitive layer separated into a charge generation layer containing a charge generation material and a charge transport layer containing a charge transport material. The charge generation layer suitably used for the electrophotographic photosensitive member of the present invention contains a binder resin and a charge generation material. Examples of the charge generating substance include azo pigments such as monoazo, disazo, and trisazo, phthalocyanine pigments such as metal phthalocyanine and nonmetal phthalocyanine, indigo pigments such as indigo and thioindigo, perylene acid anhydride, and perylene acid. Perylene pigments such as imide, polycyclic quinone pigments such as anthraquinone, pyrenequinone and dibenzpyrenequinone, squarylium dyes, pyrylium and thiapyrylium salts, triphenylmethane dyes, selenium, selenium-tellurium, amorphous Inorganic substances such as silicon, quinacridone pigments, azulenium salt pigments, cyanine dyes such as quinocyanine, anthanthrone pigments, pyranthrone pigments, xanthene dyes, quinoneimine dyes, styryl dyes, cadmium sulfide And arm, zinc oxide, and the like. These charge generation materials may be used alone or in combination of two or more.

電荷発生層に用いられる結着樹脂としては、例えば、アクリル樹脂、アリル樹脂、アルキッド樹脂、エポキシ樹脂、ジアリルフタレート樹脂、シリコーン樹脂、スチレン−ブタジエンコポリマー、フェノール樹脂、ブチラール樹脂、ベンザール樹脂、ポリアクリレート樹脂、ポリアセタール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリアリルエーテル樹脂、ポリアリレート樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ポリビニルアセタール樹脂、ポリブタジエン樹脂、ポリプロピレン樹脂、メタクリル樹脂、ユリア樹脂、塩化ビニル−酢酸ビニルコポリマー、酢酸ビニル樹脂、塩化ビニル樹脂が挙げられる。これらの中でも、特には、ブチラール樹脂が好ましい。これらは、単独、混合または共重合体として1種または2種以上用いることができる。   Examples of the binder resin used for the charge generation layer include acrylic resin, allyl resin, alkyd resin, epoxy resin, diallyl phthalate resin, silicone resin, styrene-butadiene copolymer, phenol resin, butyral resin, benzal resin, polyacrylate resin. , Polyacetal resin, polyamideimide resin, polyamide resin, polyallyl ether resin, polyarylate resin, polyimide resin, polyurethane resin, polyester resin, polyethylene resin, polycarbonate resin, polystyrene resin, polysulfone resin, polyvinyl acetal resin, polybutadiene resin, polypropylene resin Methacrylic resin, urea resin, vinyl chloride-vinyl acetate copolymer, vinyl acetate resin, and vinyl chloride resin. Among these, a butyral resin is particularly preferable. These may be used alone or in combination as a mixture or copolymer.

電荷発生層は、電荷発生物質を結着樹脂および溶剤と共に分散して得られる電荷発生層用塗布液を塗布し、これを乾燥させることによって形成することができる。分散方法としては、例えば、ホモジナイザー、超音波分散機、ボールミル、サンドミル、ロールミル、
振動ミル、アトライター、液衝突型高速分散機を用いた方法が挙げられる。電荷発生物質と結着樹脂との割合は、1:0.3〜1:4(質量比)の範囲が好ましい。
The charge generation layer can be formed by applying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent and drying the coating solution. Examples of the dispersion method include a homogenizer, an ultrasonic disperser, a ball mill, a sand mill, a roll mill,
Examples include a method using a vibration mill, an attritor, and a liquid collision type high-speed disperser. The ratio between the charge generating material and the binder resin is preferably in the range of 1: 0.3 to 1: 4 (mass ratio).

電荷発生層用塗布液に用いられる溶剤は、使用する結着樹脂や電荷発生物質の溶解性や分散安定性から選択されるが、有機溶剤としては、例えば、アルコール、スルホキシド、ケトン、エーテル、エステル、脂肪族ハロゲン化炭化水素、芳香族化合物が挙げられる。   The solvent used in the coating solution for the charge generation layer is selected from the binder resin used and the solubility and dispersion stability of the charge generation material. Examples of the organic solvent include alcohols, sulfoxides, ketones, ethers and esters. , Aliphatic halogenated hydrocarbons and aromatic compounds.

電荷発生層の膜厚は5μm以下であることが好ましく、特には0.1〜2μmであることがより好ましい。
また、電荷発生層には、種々の増感剤、酸化防止剤、紫外線吸収剤、可塑剤を必要に応じて添加することもできる。
The thickness of the charge generation layer is preferably 5 μm or less, and more preferably 0.1 to 2 μm.
In addition, various sensitizers, antioxidants, ultraviolet absorbers, and plasticizers can be added to the charge generation layer as necessary.

本発明の電子写真感光体に好適に用いられる電荷輸送層は、電荷輸送物質と結着樹脂とを含有する。電荷輸送層は、成膜性を有する結着樹脂と電荷輸送物質を溶剤に溶解させて得られる電荷輸送層用塗布液を塗布し、これを乾燥させることによって形成することができる。上記電荷輸送物質は1種のみ用いてもよく、2種以上用いてもよい。   The charge transport layer suitably used for the electrophotographic photoreceptor of the present invention contains a charge transport material and a binder resin. The charge transport layer can be formed by applying a charge transport layer coating solution obtained by dissolving a film-forming binder resin and a charge transport material in a solvent, and drying it. The charge transport material may be used alone or in combination of two or more.

電荷輸送物質としては、例えば、トリアリールアミン系化合物、ヒドラゾン化合物、スチルベン化合物、ピラゾリン系化合物、オキサゾール系化合物、トリアリルメタン系化合物およびチアゾール系化合物が挙げられる。これら電荷輸送物質は1種のみ用いてもよく、2種以上用いてもよい。
電荷輸送層に用いられる結着樹脂としては、例えば、ポリエステル、ポリカーボネート、ポリメタクリル酸エステル、ポリアリレート、ポリサルホン、ポリスチレンが挙げられる。これらは、単独、混合または共重合体として1種または2種以上用いることができる。
電荷輸送層の膜厚は5〜40μmであることが好ましく、特には10〜35μmであることがより好ましい。
Examples of the charge transport material include triarylamine compounds, hydrazone compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, triallylmethane compounds, and thiazole compounds. These charge transport materials may be used alone or in combination of two or more.
Examples of the binder resin used for the charge transport layer include polyester, polycarbonate, polymethacrylic acid ester, polyarylate, polysulfone, and polystyrene. These may be used alone or in combination as a mixture or copolymer.
The thickness of the charge transport layer is preferably 5 to 40 μm, and more preferably 10 to 35 μm.

また、電荷輸送層には、酸化防止剤、紫外線吸収剤、可塑剤を必要に応じて添加することもできる。また、フッ素原子含有樹脂やシリコーン含有樹脂を含有させてもよい。また上記樹脂により構成される粒子を含有させてもよい。また、金属酸化物粒子や無機粒子を含有させてもよい。ただし、電荷輸送層を電子写真感光体の表面層として用いる場合は、その帯電列の位置に影響を及ぼさない範囲でそれらを含有させることができる。   In addition, an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the charge transport layer as necessary. Further, a fluorine atom-containing resin or a silicone-containing resin may be contained. Moreover, you may contain the particle | grains comprised with the said resin. Moreover, you may contain a metal oxide particle and an inorganic particle. However, when the charge transport layer is used as the surface layer of the electrophotographic photosensitive member, it can be contained in a range that does not affect the position of the charged column.

上記各層の塗布液を塗布する際には、例えば、浸漬塗布法(浸漬コーティング法)、スプレーコーティング法、スピンナーコーティング法、ローラーコーティング法、マイヤーバーコーティング法、ブレードコーティング法のような塗布方法を用いることができる。   When applying the coating liquid for each of the above layers, for example, an application method such as dip coating (dip coating), spray coating, spinner coating, roller coating, Meyer bar coating, or blade coating is used. be able to.

図1に、本発明の電子写真感光体を備えたプロセスカートリッジを有する電子写真装置の概略構成の一例を示す。   FIG. 1 shows an example of a schematic configuration of an electrophotographic apparatus having a process cartridge provided with the electrophotographic photosensitive member of the present invention.

図1において、1はドラム状の電子写真感光体であり、軸2を中心に矢印方向に所定の周速度で回転駆動される。
回転駆動される電子写真感光体1の周面(表面)は、帯電手段3により、負の所定電位に均一に帯電され、次いで、スリット露光、レーザービーム走査露光のような露光手段(不図示)から出力される露光光(画像露光光)4を受ける。こうして電子写真感光体1の周面に、目的の画像に対応した静電潜像が順次形成されていく。帯電手段3に印加する電圧は、直流成分に交流成分を重畳した電圧、または直流成分のみの電圧のどちらでもよいが、実施例においては直流成分のみを印加する帯電手段を用いた。
In FIG. 1, reference numeral 1 denotes a drum-shaped electrophotographic photosensitive member, which is driven to rotate about a shaft 2 in a direction indicated by an arrow at a predetermined peripheral speed.
The peripheral surface (surface) of the electrophotographic photosensitive member 1 that is driven to rotate is uniformly charged to a predetermined negative potential by the charging unit 3, and then exposure unit (not shown) such as slit exposure or laser beam scanning exposure. The exposure light (image exposure light) 4 output from is received. In this way, electrostatic latent images corresponding to the target image are sequentially formed on the peripheral surface of the electrophotographic photosensitive member 1. The voltage applied to the charging means 3 may be either a voltage obtained by superimposing an alternating current component on a direct current component or a voltage containing only a direct current component. In the embodiment, a charging means that applies only a direct current component is used.

電子写真感光体1の周面に形成された静電潜像は、現像手段5のトナーにより現像されてトナー画像となる。次いで、電子写真感光体1の周面に形成担持されているトナー画像が、転写手段6からの転写バイアスによって順次転写されていく。転写材Pは、転写材供給手段(不図示)から電子写真感光体1と転写手段6との間(当接部)に電子写真感光体1の回転と同期して取り出されて給送される。   The electrostatic latent image formed on the peripheral surface of the electrophotographic photosensitive member 1 is developed with toner of the developing unit 5 to become a toner image. Next, the toner images formed and supported on the peripheral surface of the electrophotographic photosensitive member 1 are sequentially transferred by the transfer bias from the transfer unit 6. The transfer material P is taken out from a transfer material supply means (not shown) between the electrophotographic photoreceptor 1 and the transfer means 6 (contact portion) in synchronization with the rotation of the electrophotographic photoreceptor 1 and fed. .

トナー画像の転写を受けた転写材Pは、電子写真感光体1の周面から分離されて定着手段8へ導入されて像定着を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。
トナー像転写後の電子写真感光体1の周面は、クリーニング手段7によって転写残りの現像剤(トナー)の除去を受けて清浄面化され、さらに前露光手段(不図示)からの前露光光11により除電処理された後、繰り返し画像形成に使用される。
なお、転写手段として、例えば、ベルト状またはドラム状の中間転写体を用いた中間転写方式の転写手段を採用してもよい。
The transfer material P that has received the transfer of the toner image is separated from the peripheral surface of the electrophotographic photosensitive member 1 and is introduced into the fixing means 8 to undergo image fixing, and is printed out of the apparatus as an image formed product (print, copy). Be out.
The peripheral surface of the electrophotographic photosensitive member 1 after the transfer of the toner image is cleaned by the developer 7 after the transfer residual developer (toner) is removed by the cleaning unit 7, and the pre-exposure light from the pre-exposure unit (not shown) 11 is used for repeated image formation.
As the transfer means, for example, an intermediate transfer type transfer means using a belt-like or drum-like intermediate transfer member may be employed.

図1では、電子写真感光体1と、帯電手段(接触帯電手段)3、現像手段5およびクリーニング手段7とを一体に支持してカートリッジ化して、電子写真装置本体のレールのような案内手段10を用いて電子写真装置本体に着脱自在なプロセスカートリッジ9としている。   In FIG. 1, an electrophotographic photosensitive member 1, a charging means (contact charging means) 3, a developing means 5 and a cleaning means 7 are integrally supported to form a cartridge, and guide means 10 such as a rail of an electrophotographic apparatus main body. The process cartridge 9 is detachable from the main body of the electrophotographic apparatus.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、以下の「部」は「質量部」を意味する。
(製造例1:ポリオレフィン樹脂PO−1)
ヒーター付きの密閉できる耐圧1リットル容ガラス容器を備えた撹拌機を用いて、75部のポリオレフィン樹脂(商品名:ボンダインHX−8290、住友化学工業(株)製)、90部のイソプロパノール、樹脂中の無水マレイン酸のカルボキシル基に対して1.2倍当量のトリエチルアミン、および、200部の蒸留水をガラス容器内に仕込み、撹拌翼の回転速度を300rpmとして撹拌したところ、容器底部には樹脂粒状物の沈澱は認められず、浮遊状態となっていることが確認された。そこで、この状態を保ちつつ、15分後にヒーターの電源を入れて加熱した。そして系内温度を145℃に保ってさらに60分間撹拌した。その後、水浴につけて、回転速度300rpmのまま攪拌しつつ室温(約25℃)まで冷却した後、300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)し、全固形分濃度が20質量%の乳白色の均一なポリオレフィン樹脂水性分散体(ポリオレフィン樹脂PO−1)を得た。
このポリオレフィン樹脂PO−1は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、アクリル酸エチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=91.00/3.00/6.00(質量%)であった。
樹脂の特性は、以下の方法によって測定または評価した。
(1)ポリオレフィン樹脂中の(A2)(不飽和カルボン酸成分)の含有量
ポリオレフィン樹脂の酸価をJIS K5407に準じて測定し、その値から不飽和カルボン酸の含有量(グラフト率)を次式から求めた。
不飽和カルボン酸成分の含有量(質量%)=(グラフトした不飽和カルボン酸の質量)/(原料ポリオレフィン樹脂の質量)×100
(2)ポリオレフィン樹脂中の(A2)以外の樹脂の構成
オルトジクロロベンゼン(d4)中、120℃にてH−NMR、13C−NMR分析(バリアン・テクノロジーズ・ジャパン・リミテッド社製、300MHz)を行って求めた。13C−NMR分析では定量性を考慮したゲート付きデカップリング法を用いて測定した。
ポリオレフィン樹脂の合成方法は、製造例1に限定されず、「新高分子実験学2 高分子の合成・反応(1)」の第1〜4章(共立出版(株))、特開2003−105145号公報、特開2003―147028号公報に記述された公知の方法を用いて合成できる。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The following “parts” means “parts by mass”.
(Production Example 1: Polyolefin resin PO-1)
Using a stirrer equipped with a heat-resistant 1-liter glass container with a heater, 75 parts of polyolefin resin (trade name: Bondine HX-8290, manufactured by Sumitomo Chemical Co., Ltd.), 90 parts of isopropanol, in the resin 1.2 times equivalent of triethylamine with respect to the carboxyl group of maleic anhydride and 200 parts of distilled water were charged in a glass container and stirred at a rotation speed of the stirring blade of 300 rpm. No sedimentation was observed, and it was confirmed that the product was floating. Therefore, while maintaining this state, the heater was turned on and heated after 15 minutes. Then, the system temperature was maintained at 145 ° C., and further stirred for 60 minutes. Then, after putting in a water bath and cooling to room temperature (about 25 ° C.) while stirring at a rotational speed of 300 rpm, pressure filtration (air pressure 0.2 MPa) with a 300 mesh stainless steel filter (wire diameter 0.035 mm, plain weave) Thus, a milky white uniform aqueous polyolefin resin dispersion (polyolefin resin PO-1) having a total solid content of 20% by mass was obtained.
This polyolefin resin PO-1 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, and (A3) obtained by copolymerizing ethyl acrylate. (A1) / (A2) / (A3) = 91.00 / 3.00 / 6.00 (mass%).
The characteristics of the resin were measured or evaluated by the following method.
(1) Content of (A2) (unsaturated carboxylic acid component) in polyolefin resin The acid value of polyolefin resin was measured according to JIS K5407, and the content (graft rate) of unsaturated carboxylic acid was determined from the value. Obtained from the formula.
Content of unsaturated carboxylic acid component (mass%) = (mass of grafted unsaturated carboxylic acid) / (mass of raw material polyolefin resin) × 100
(2) Composition of resin other than (A2) in polyolefin resin 1 H-NMR, 13 C-NMR analysis at 120 ° C. in orthodichlorobenzene (d4) (manufactured by Varian Technologies Japan Limited, 300 MHz) Asked to go. In 13 C-NMR analysis, measurement was performed using a gated decoupling method in consideration of quantitativeness.
The method for synthesizing the polyolefin resin is not limited to Production Example 1. Chapters 1 to 4 (Kyoritsu Shuppan Co., Ltd.) of “New Polymer Experiment 2 Polymer Synthesis / Reaction (1)”, JP 2003-105145 A And a known method described in JP-A No. 2003-147028.

(実施例1)
押し出し・引き抜き工程により製造された、長さ260.5mm、直径30mmのアルミニウムシリンダー(JIS−A3003、アルミニウム合金)を電子写真感光体の支持体として用意した。次に、上記支持体を洗浄した。まず、シリンダーを洗浄槽に垂直に入れ、その位置に停止させたまま、超音波を30秒間照射した。次いで引き上げた後、温水槽(温度80℃)にシリンダーを投入し、乾燥させた。支持体の洗浄および電子写真感光体作製時において、洗浄工程、塗布工程のタクトタイムが35秒で、塗布工程においては42本同時に浸漬塗布を行うことができる塗布装置を使用した。
Example 1
An aluminum cylinder (JIS-A3003, aluminum alloy) having a length of 260.5 mm and a diameter of 30 mm manufactured by the extrusion / pulling-out process was prepared as a support for the electrophotographic photosensitive member. Next, the support was washed. First, the cylinder was placed vertically in the washing tank, and ultrasonic waves were applied for 30 seconds while stopping at that position. Next, after raising, the cylinder was put into a hot water tank (temperature 80 ° C.) and dried. At the time of washing the support and producing the electrophotographic photosensitive member, the tact time of the washing step and the coating step was 35 seconds, and in the coating step, a coating apparatus capable of performing 42 dip coatings simultaneously was used.

次に、酸素欠損型SnOを被覆したTiO粒子(粉体抵抗率100Ω・cm、SnOの被覆率(質量比率)は35%)80部、溶剤としてのメタノール15部、メトキシプロパノール15部を、直径1mmのガラスビーズを用いたサンドミルで3時間分散して、分散液を調製した。
この分散液に、表面粗し付与材としてのシリコーン樹脂粒子(商品名:トスパール120、GE東芝シリコーン(株)製、平均粒径2.0μm)3.9部、レベリング剤としてのシリコーンオイル(商品名:SH28PA、東レ・ダウコーニング・シリコーン(株)製)0.001部を添加して攪拌し、導電層用塗布液を調製した。
Next, TiO 2 particles coated with oxygen-deficient SnO 2 (powder resistivity 100 Ω · cm, SnO 2 coverage (mass ratio) 35%) 80 parts, methanol 15 parts as solvent, methoxypropanol 15 parts Was dispersed in a sand mill using glass beads having a diameter of 1 mm for 3 hours to prepare a dispersion.
In this dispersion, 3.9 parts of silicone resin particles (trade name: Tospearl 120, manufactured by GE Toshiba Silicone Co., Ltd., average particle size: 2.0 μm) as a surface roughening agent, silicone oil as a leveling agent (product) Name: 0.001 part of SH28PA, manufactured by Toray Dow Corning Silicone Co., Ltd.) was added and stirred to prepare a coating solution for a conductive layer.

上記洗浄済み支持体上に、上記導電層用塗布液を浸漬塗布し、これを30分間温度140℃で乾燥させることによって30μmの導電層を形成した。   On the washed support, the conductive layer coating solution was dip coated and dried at a temperature of 140 ° C. for 30 minutes to form a 30 μm conductive layer.

次に、中間層に用いるポリオレフィン樹脂として、上記作製したPO−1を用意した。
また、樹脂粒子の粒径は、Malvern Instrument Ltd社製、Zetasizer NanoZS光散乱粒度分布計(MODEL ZEN3600)を用い、測定溶媒は中間層用塗布液の溶媒組成と同一とし、測定温度25℃での体積平均粒子径を求めた。なお、樹脂粒子の粒径は、ポリオレフィン樹脂の屈折率を1.53、測定溶媒の屈折率は水の屈折率を1.336、イソプロピルアルコールの屈折率を1.375とし、測定溶媒組成比率に応じて計算した値を用いた。
Next, the prepared PO-1 was prepared as a polyolefin resin used for the intermediate layer.
In addition, the particle diameter of the resin particles is the same as the solvent composition of the coating solution for intermediate layer, using a Zetasizer NanoZS light scattering particle size distribution meter (MODEL ZEN 3600) manufactured by Malvern Instrument Ltd. The volume average particle size was determined. The resin particles have a refractive index of 1.53 for the polyolefin resin, a refractive index of the measurement solvent of 1.336 for water and a refractive index of 1.375 for isopropyl alcohol. The value calculated accordingly was used.

撹拌機を備えた、ヒーター付の密閉できる耐圧1リットルガラス容器に、60.0部のポリオレフィン樹脂(PO−1)、30.0部のエタノール、3.9部のN,N−ジメチルエタノールアミンおよび206.1部の蒸留水を仕込んだ。次いで、得られた混合物を、撹拌機の撹拌翼の回転速度を300rpmとして撹拌したところ、容器底部には樹脂粒状物の沈澱は認められず、浮遊状態となっていることが確認された。そこで、この状態を保ちつつ、10分後にヒーターの電源を入れて加熱した。そして系内温度を140℃に保ってさらに20分間撹拌した。その後、水浴につけて、回転速度300rpmのまま攪拌しつつ室温(温度約25℃)まで冷却した。300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)し、乳白色の均一なポリオレフィン樹脂水性分散液を得た。   In a sealable pressure-resistant 1 liter glass container equipped with a stirrer, 60.0 parts polyolefin resin (PO-1), 30.0 parts ethanol, 3.9 parts N, N-dimethylethanolamine And 206.1 parts of distilled water were charged. Subsequently, when the obtained mixture was stirred at a rotational speed of the stirring blade of the stirrer at 300 rpm, no precipitation of resin particles was observed at the bottom of the container, and it was confirmed that the mixture was in a floating state. Therefore, while maintaining this state, the heater was turned on and heated after 10 minutes. Then, the system temperature was kept at 140 ° C. and further stirred for 20 minutes. Then, it put on the water bath and cooled to room temperature (temperature about 25 degreeC), stirring with a rotational speed of 300 rpm. Pressure filtration (air pressure 0.2 MPa) was performed with a 300 mesh stainless steel filter (wire diameter 0.035 mm, plain weave) to obtain a milky white uniform aqueous polyolefin resin dispersion.

次に、塩化第二スズ五水和物0.2モルを200mlの水に溶解させて0.5Mの水溶液とし、撹拌しながら28%のアンモニア水を添加することでpH1.5の白色酸化スズ超微粒子含有スラリーを得た。得られた酸化スズ超微粒子含有スラリーを温度70℃まで加熱した後、温度50℃前後まで自然冷却したうえで純水を加え、1リットルの酸化スズ超微粒子含有スラリーとし、遠心分離器を用いて固液分離を行った。この含水固形分に8
00mlの純水を加えて、ホモジナイザーにより撹拌・分散を行った後、遠心分離器を用いて固液分離を行うことで洗浄を行った。洗浄後の含水固形分に純水を75ml加えて酸化スズ超微粒子含有スラリーを調製した。得られた酸化スズ超微粒子含有スラリーにトリエチルアミン3.0mlを加えて撹拌し、透明感が出てきたところで温度70℃まで昇温した後、加温をやめて自然冷却することで全固形分濃度が20質量%の有機アミンを分散安定剤とする酸化スズゾル溶液を得た。
Next, 0.2 mol of stannic chloride pentahydrate was dissolved in 200 ml of water to make a 0.5 M aqueous solution, and 28% ammonia water was added with stirring to add white tin oxide having a pH of 1.5. An ultrafine particle-containing slurry was obtained. After the obtained tin oxide ultrafine particle-containing slurry is heated to a temperature of 70 ° C., it is naturally cooled to a temperature of around 50 ° C., and then pure water is added to obtain a 1 liter tin oxide ultrafine particle-containing slurry, which is then centrifuged. Solid-liquid separation was performed. 8 to this water-containing solid content
After adding 00 ml of pure water and stirring and dispersing with a homogenizer, washing was performed by solid-liquid separation using a centrifuge. 75 ml of pure water was added to the water-containing solid content after washing to prepare a tin oxide ultrafine particle-containing slurry. To the resulting slurry containing tin oxide ultrafine particles, 3.0 ml of triethylamine was added and stirred. After the transparency was raised, the temperature was raised to 70 ° C., then the heating was stopped and the whole solid content concentration was reduced by natural cooling. A tin oxide sol solution containing 20% by mass of organic amine as a dispersion stabilizer was obtained.

次に、上記ポリオレフィン樹脂水性分散液を100部、上記酸化スズゾル溶液100部を混合し、混合後の全固形分濃度が14質量%になるように、IPA(イソプロピルアルコール)を添加し、攪拌することによって中間層用塗布液を調製した。この中間層溶媒組成中での樹脂粒子の粒径は0.10μm、中間層用塗布液の粘度は4.0cpであった。   Next, 100 parts of the aqueous polyolefin resin dispersion and 100 parts of the tin oxide sol solution are mixed, and IPA (isopropyl alcohol) is added and stirred so that the total solid concentration after mixing is 14% by mass. Thus, an intermediate layer coating solution was prepared. The particle size of the resin particles in the intermediate layer solvent composition was 0.10 μm, and the viscosity of the intermediate layer coating solution was 4.0 cp.

上記中間層用塗布液を、上記導電層上に浸漬塗布し、これを10分間温度120℃で乾燥させることによって1μmの中間層を形成した。なお、上記のように作製した中間層中のポリオレフィン共重合体の組成を分析した結果、ポリオレフィン樹脂水性分散体を作製する前のポリオレフィン樹脂原材料の組成比率と同じであることが確認できた。中間層用塗布液に浸漬する直前、すなわち、導電層が設けられた支持体が塗布液に向けて下降する直前の中間層用塗布液の温度は22℃であった。また、導電層用塗布後の乾燥工程を経て運ばれてきた導電層が設けられた支持体の温度は29℃であった。   The intermediate layer coating solution was dip coated on the conductive layer and dried at a temperature of 120 ° C. for 10 minutes to form a 1 μm intermediate layer. As a result of analyzing the composition of the polyolefin copolymer in the intermediate layer produced as described above, it was confirmed that the composition ratio was the same as that of the polyolefin resin raw material before producing the aqueous polyolefin resin dispersion. The temperature of the intermediate layer coating solution was 22 ° C. immediately before dipping in the intermediate layer coating solution, that is, immediately before the support provided with the conductive layer was lowered toward the coating solution. Moreover, the temperature of the support body provided with the conductive layer carried through the drying process after coating for the conductive layer was 29 ° C.

次に、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.5°、9.9°、16.3°、18.6°、25.1°、28.3°に強いピークを有する結晶形のヒドロキシガリウムフタロシアニン10部を用意した。それに、ポリビニルブチラール(商品名:エスレックBX−1、積水化学工業(株)製)5部およびシクロヘキサノン250部を混合し、直径1mmのガラスビーズを用いたサンドミル装置で1時間分散処理した。次に、酢酸エチル250部を分散液に加えて電荷発生層用塗布液を調製した。この電荷発生層用塗布液を、中間層上に浸漬塗布し、これを10分間温度100℃で乾燥させることによって、膜厚が0.16μmの電荷発生層を形成した。   Next, the Bragg angles (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction are 7.5 °, 9.9 °, 16.3 °, 18.6 °, 25.1 °, and 28.3 °. 10 parts of a crystalline form of hydroxygallium phthalocyanine having a strong peak was prepared. It was mixed with 5 parts of polyvinyl butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 250 parts of cyclohexanone, and dispersed in a sand mill using glass beads having a diameter of 1 mm for 1 hour. Next, 250 parts of ethyl acetate was added to the dispersion to prepare a charge generation layer coating solution. This charge generation layer coating solution was dip-coated on the intermediate layer and dried at a temperature of 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.16 μm.

次に、下記式(5)で示される構造を有するアミン化合物8部、

Figure 2011095663
下記式(6)で示される構造を有するアミン化合物1部、
Figure 2011095663
および下記式(7)で示される繰り返し構造単位を有するポリアリレート樹脂(Mw:110,000)10部、
Figure 2011095663
を、最終質量比でモノクロルベンゼン:ジメトキシメタンが7:3である混合溶媒に溶解させることによって、電荷輸送用塗布液を調製した。この電荷輸送用塗布液を、浸漬塗布法で上記電荷発生層上に塗布し、これを1時間温度120℃で乾燥させることによって、膜厚18μmの電荷輸送層を形成した。 Next, 8 parts of an amine compound having a structure represented by the following formula (5),
Figure 2011095663
1 part of an amine compound having a structure represented by the following formula (6):
Figure 2011095663
And 10 parts of a polyarylate resin (Mw: 110,000) having a repeating structural unit represented by the following formula (7):
Figure 2011095663
Was dissolved in a mixed solvent having a final mass ratio of monochlorobenzene: dimethoxymethane of 7: 3 to prepare a charge transport coating solution. The charge transport coating solution was applied onto the charge generation layer by a dip coating method and dried at 120 ° C. for 1 hour to form a charge transport layer having a thickness of 18 μm.

以上の手順にて、42本同時に塗布することができる塗布装置にて、電荷輸送層が表面層である電子写真感光体を合計1,200本連続して作製した。   In the above procedure, a total of 1,200 electrophotographic photoreceptors having a charge transport layer as a surface layer were continuously produced with a coating apparatus capable of coating 42 simultaneously.

<初期の画像評価・濃度差評価>
次に、1,200本の連続塗布で最初に塗布した42本のうち無作為に5本をピックアップし、温度22.5℃、湿度50%RHの環境下にて、ヒューレットパッカード社製の電子写真装置(商品名:LaserJet4700)に装着し、初期の画像評価を行った。同様に、1,200本連続塗布したうちの最後の42本のうち5本を無作為にピックアップし、評価を行った。
詳しくは、シアン色用のプロセスカートリッジに上記作製した電子写真感光体を装着して、シアンのプロセスカートリッジのステーションに装着し、評価を行った。評価は1ドット桂馬パターンのハーフトーン画像とべた白の画像評価用のサンプルを出力した。
<Initial image evaluation and density difference evaluation>
Next, 5 of the 42 coatings initially applied in 1,200 continuous coatings were picked up at random, and the electronics manufactured by Hewlett-Packard Company under the environment of temperature 22.5 ° C. and humidity 50% RH. It was mounted on a photographic device (trade name: LaserJet 4700) and an initial image evaluation was performed. Similarly, 5 out of the last 42 of the 1,200 continuous coatings were randomly picked up and evaluated.
Specifically, the electrophotographic photosensitive member prepared above was mounted on a cyan color process cartridge and mounted on a cyan process cartridge station for evaluation. For the evaluation, a half-tone image having a 1-dot Keima pattern and a solid white image evaluation sample were output.

電子写真感光体5本分のサンプル画像から、AからFまでランク分けを行った。Aは評価した5本で画像不良が全く無く、ハーフトーン濃度差も無い状態である。順次、B、C、Dとわずかなハーフトーンムラ・部分的な黒ポチが発現し、ランクE、Fは実質問題のあるレベルである。ランクFは、5本すべてでハーフトーンムラ・部分的黒ポチが発生している。
別途、連続1,200本作製した電子写真感光体のうち、最初の5本と最後の5本を用
いて出力した画像サンプルでの濃度差も確認した。これも、濃度差のランクに応じて良い順からA、B、C、Dとし、Dは濃度差が顕著で問題のあるレベルである。
結果を表2に示す。
Ranking was performed from A to F from the sample images of five electrophotographic photosensitive members. A is a state where there is no image defect at the five evaluated and no halftone density difference. Sequentially, B, C, D and slight halftone unevenness / partial black spots appear, and ranks E, F are substantially problematic levels. In rank F, halftone unevenness and partial black spots occur in all five.
Separately, among the 1,200 continuous electrophotographic photosensitive members, the density difference between the image samples output using the first five and the last five was also confirmed. This is also set to A, B, C, and D in order from the best according to the rank of the density difference, and D is a problematic level with a significant density difference.
The results are shown in Table 2.

(実施例2)
実施例1の中間層用塗布液の調製において、ポリオレフィン樹脂水性分散液と酸化スズゾル溶液を調製し混合した後、全固形分濃度が10質量%、粘度が2.0cpになるようにIPAを添加し、混合液を希釈して中間層用塗布液を調製した以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 2)
In the preparation of the intermediate layer coating solution of Example 1, an aqueous polyolefin resin dispersion and a tin oxide sol solution were prepared and mixed, and then IPA was added so that the total solid concentration was 10% by mass and the viscosity was 2.0 cp. Then, an electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the mixed solution was diluted to prepare an intermediate layer coating solution. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例3)
実施例1の中間層用塗布液の調製において、それぞれ全固形分濃度が28質量%になるようにポリオレフィン樹脂水性分散液と酸化スズゾル溶液を調製した後、等量混合したところ、粘度は20.0cpであった。そのようにして中間層用塗布液を調製した以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 3)
In the preparation of the intermediate layer coating solution of Example 1, an aqueous polyolefin resin dispersion and a tin oxide sol solution were prepared so that the total solid concentration was 28% by mass, respectively, and then mixed in an equal amount. 0 cp. An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the intermediate layer coating solution was prepared as described above. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例4)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−2に変更した。PO−2は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、アクリル酸エチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=91.99/0.01/8.00(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
Example 4
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-2. PO-2 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing ethyl acrylate, and (A1). ) / (A2) / (A3) = 91.99 / 0.01 / 8.00 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例5)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−3に変更した。PO−3は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、アクリル酸エチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=85.00/5.00/10.00(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 5)
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-3. PO-3 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing ethyl acrylate, (A1) ) / (A2) / (A3) = 85.00 / 5.00 / 10.00 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例6)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−4に変更した。PO−4は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、アクリル酸エチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=49.50/10.00/40.50(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 6)
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-4. PO-4 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing ethyl acrylate, (A1) ) / (A2) / (A3) = 49.50 / 10.00 / 40.50 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例7)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−5に変更した。PO−5は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、アクリル酸エチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=80.00/10.00/10.00(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 7)
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-5. PO-5 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing ethyl acrylate, and (A1). ) / (A2) / (A3) = 80.00 / 10.00 / 10.00 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例8)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−6に変更した。PO−6は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、アクリル酸エチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=89.10/10.00/0.90(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 8)
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-6. PO-6 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing ethyl acrylate, and (A1). ) / (A2) / (A3) = 89.10 / 10.00 / 0.90 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例9)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−7に変更した。PO−7は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、マレイン酸ジエチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=91.00/3.00/6.00(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
Example 9
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-7. PO-7 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing diethyl maleate, and (A1). ) / (A2) / (A3) = 91.00 / 3.00 / 6.00 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例10)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−8に変更した。PO−8は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、アクリル酸アミドを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=91.00/3.00/6.00(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 10)
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-8. PO-8 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing acrylic amide, and (A1). ) / (A2) / (A3) = 91.00 / 3.00 / 6.00 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例11)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−9に変更した。PO−9は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、ビニルエチルエーテルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=91.00/3.00/6.00(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 11)
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-9. PO-9 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing vinyl ethyl ether, (A1) ) / (A2) / (A3) = 91.00 / 3.00 / 6.00 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例12)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−10に変更した。PO−10は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、アクリル酸エチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=65.00/30.00/5.00(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 12)
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-10. PO-10 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing ethyl acrylate, and (A1). ) / (A2) / (A3) = 65.00 / 30.00 / 5.00 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例13)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−11に変更した。PO−11は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得られる(A2)、アクリル酸エチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=48.50/3.00/48.50(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 13)
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-11. PO-11 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing ethyl acrylate, and (A1). ) / (A2) / (A3) = 48.50 / 3.00 / 48.50 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例14)
実施例1において、導電層に用いるポリオレフィン樹脂をPO−12に変更した。PO−12は、エチレンを共重合させて得られる(A1)、無水マレイン酸を共重合させて得
られる(A2)、アクリル酸エチルを共重合させて得られる(A3)から構成され、(A1)/(A2)/(A3)=96.10/3.00/0.90(質量%)であった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 14)
In Example 1, the polyolefin resin used for the conductive layer was changed to PO-12. PO-12 is composed of (A1) obtained by copolymerizing ethylene, (A2) obtained by copolymerizing maleic anhydride, (A3) obtained by copolymerizing ethyl acrylate, and (A1). ) / (A2) / (A3) = 96.10 / 3.00 / 0.90 (mass%). Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例15)
実施例1の中間層用塗布液の調製において、中間層に用いたポリオレフィン樹脂(PO−1)に変えてポリエステル樹脂を用い、中間層用塗布液をポリエステル水分散体にした以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 15)
In the preparation of the intermediate layer coating solution of Example 1, a polyester resin was used instead of the polyolefin resin (PO-1) used in the intermediate layer, and the intermediate layer coating solution was changed to a polyester aqueous dispersion. In the same manner as above, an electrophotographic photosensitive member was produced. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例16〜19)
実施例1の中間層用塗布液の調製において、ポリオレフィン樹脂水性分散体作製時の攪拌条件を調整することで、それぞれポリオレフィン樹脂粒子の粒径を0.05、0.50、0.03、0.60μmにした以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Examples 16 to 19)
In the preparation of the intermediate layer coating solution of Example 1, the polyolefin resin particle size was adjusted to 0.05, 0.50, 0.03, 0 by adjusting the stirring conditions during preparation of the aqueous polyolefin resin dispersion, respectively. An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the thickness was changed to 60 μm. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(比較例1)
実施例1の中間層用塗布液の調製において、ポリオレフィン樹脂分散体の代わりに、アルコール可溶性ナイロン樹脂(商品名:CM4000)を用い、中間層用塗布液中の全固形分濃度が5質量%になるように調製した。その結果、粘度は6.5cpであった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Comparative Example 1)
In the preparation of the intermediate layer coating solution of Example 1, an alcohol-soluble nylon resin (trade name: CM4000) was used instead of the polyolefin resin dispersion, and the total solid content concentration in the intermediate layer coating solution was 5% by mass. It was prepared as follows. As a result, the viscosity was 6.5 cp. Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(比較例2)
実施例1の中間層用塗布液の調製において、ポリオレフィン樹脂分散体の代わりに、アルコール可溶性ナイロン樹脂(商品名:CM4000)を用い、中間層用塗布液中の全固形分濃度が1質量%になるように調製した。その結果、粘度は1.9cpであった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Comparative Example 2)
In the preparation of the intermediate layer coating solution of Example 1, an alcohol-soluble nylon resin (trade name: CM4000) was used instead of the polyolefin resin dispersion, and the total solid concentration in the intermediate layer coating solution was 1% by mass. It was prepared as follows. As a result, the viscosity was 1.9 cp. Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(比較例3)
実施例1の中間層用塗布液の調製において、ポリオレフィン樹脂分散体の代わりに、アルコール可溶性ナイロン樹脂(商品名:CM4000)を用い、中間層用塗布液中の全固形分濃度が16質量%になるように調製した。その結果、粘度は22.5cpであった。それ以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Comparative Example 3)
In the preparation of the intermediate layer coating solution of Example 1, an alcohol-soluble nylon resin (trade name: CM4000) was used instead of the polyolefin resin dispersion, and the total solid content concentration in the intermediate layer coating solution was 16% by mass. It was prepared as follows. As a result, the viscosity was 22.5 cp. Other than that was carried out similarly to Example 1, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例20)
実施例1の中間層用塗布液の調製において、中間層の下層として導電層を設けず、JIS B 0601(1994)に準じた表面粗さRzが2.0μmである、表面を粗面化した支持体を使用した以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果を表1に示す。
(Example 20)
In the preparation of the intermediate layer coating solution of Example 1, a conductive layer was not provided as a lower layer of the intermediate layer, and the surface roughness Rz according to JIS B 0601 (1994) was 2.0 μm, and the surface was roughened. An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the support was used. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(比較例4)
実施例20の中間層用塗布液の調製において、ポリオレフィン樹脂分散体の代わりに、アルコール可溶性ナイロン樹脂(商品名:CM4000)を用い、中間層用塗布液中の全固形分濃度が5質量%になるように調製した。その結果、粘度は6.5cpであった。それ以外は実施例20と同様にして、電子写真感光体を作製した。評価は、実施例20と同様に行い、結果を表1に示す。
(Comparative Example 4)
In the preparation of the intermediate layer coating solution of Example 20, an alcohol-soluble nylon resin (trade name: CM4000) was used instead of the polyolefin resin dispersion, and the total solid content concentration in the intermediate layer coating solution was 5% by mass. It was prepared as follows. As a result, the viscosity was 6.5 cp. Other than that was carried out similarly to Example 20, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 20, and the results are shown in Table 1.

(実施例21)
実施例20において、支持体の洗浄時の温水槽の温度を70℃にした以外は、実施例20と同様にして、電子写真感光体を作製した。評価は、実施例20と同様に行い、結果を表1に示す。
(Example 21)
In Example 20, an electrophotographic photosensitive member was produced in the same manner as in Example 20 except that the temperature of the hot water tank at the time of washing the support was 70 ° C. Evaluation was performed in the same manner as in Example 20, and the results are shown in Table 1.

(比較例5)
実施例21において、ポリオレフィン樹脂分散体の代わりに、アルコール可溶性ナイロン樹脂(商品名:CM4000)を用い、中間層用塗布液中の全固形分濃度が5質量%になるように調製した。その結果、粘度は6.5cpであった。それ以外は実施例21と同様にして、電子写真感光体を作製した。評価は、実施例21と同様に行い、結果を表1に示す。
(Comparative Example 5)
In Example 21, an alcohol-soluble nylon resin (trade name: CM4000) was used instead of the polyolefin resin dispersion, and the total solid concentration in the intermediate layer coating solution was adjusted to 5% by mass. As a result, the viscosity was 6.5 cp. Other than that was carried out similarly to Example 21, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 21, and the results are shown in Table 1.

(実施例22)
実施例1の中間層用塗布液の調製において、酸化スズゾル溶液の代わりに、酸化チタン(商品名:TTO55N、比重4.2、石原産業(株)製)20部とIPA80部とをボールミルにより72時間分散した酸化チタン分散液300部を用いた。次に、水とエタノール比率を変えてポリオレフィン樹脂水性分散体を作製し、全固形分濃度が14質量%、粘度が18.2cp、水性媒体における水の含有比率が4質量%である中間層用塗布液を調製した。その中間層用塗布液を用いた以外は実施例1と同様にして、電子写真感光体を作製した。評価は、実施例1と同様に行い、結果は表1に示す。
(Example 22)
In the preparation of the coating solution for the intermediate layer of Example 1, instead of the tin oxide sol solution, 20 parts of titanium oxide (trade name: TTO55N, specific gravity 4.2, manufactured by Ishihara Sangyo Co., Ltd.) and 80 parts of IPA were mixed by a ball mill. 300 parts of time-dispersed titanium oxide dispersion was used. Next, an aqueous polyolefin resin dispersion is prepared by changing the water and ethanol ratio, and the intermediate layer has a total solid content concentration of 14 mass%, a viscosity of 18.2 cp, and a water content ratio of 4 mass% in the aqueous medium. A coating solution was prepared. An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the intermediate layer coating solution was used. Evaluation was performed in the same manner as in Example 1, and the results are shown in Table 1.

(実施例23)
実施例22の中間層用塗布液の調製において、水とエタノール比率を変えてポリオレフィン樹脂水性分散体を作製し、全固形分濃度が14質量%、粘度が19.8cp、水性媒体における水の含有比率が2質量%である中間層用塗布液を調製した。その中間層用塗布液を用いた以外は実施例22と同様にして、電子写真感光体を作製した。評価は、実施例22と同様に行い、結果は表1に示す。
(Example 23)
In the preparation of the intermediate layer coating solution of Example 22, an aqueous polyolefin resin dispersion was produced by changing the ratio of water and ethanol, the total solid content was 14% by mass, the viscosity was 19.8 cp, and water was contained in the aqueous medium. An intermediate layer coating solution having a ratio of 2% by mass was prepared. An electrophotographic photosensitive member was produced in the same manner as in Example 22 except that the intermediate layer coating solution was used. Evaluation was performed in the same manner as in Example 22, and the results are shown in Table 1.

(実施例24)
実施例1において、上記導電層用塗布液を浸漬塗布した後、これを30分間温度150℃で乾燥させることによって30μmの導電層を形成した。え中間層用塗布液に浸漬する直前、すなわち、導電層が設けられた支持体が塗布液に向けて下降する直前の中間層用塗布液の温度は22℃であった。また、導電層用塗布後の乾燥工程を経て運ばれてきた導電層が設けられた支持体の温度は42℃であった。それ以外は、実施例1と同様にして、電子写真感光体を作製した。評価は、実施例24と同様に行い、結果を表1に示す。
(Example 24)
In Example 1, the conductive layer coating solution was dip coated and then dried at a temperature of 150 ° C. for 30 minutes to form a 30 μm conductive layer. The temperature of the intermediate layer coating solution immediately before dipping in the intermediate layer coating solution, that is, immediately before the support provided with the conductive layer descends toward the coating solution, was 22 ° C. Moreover, the temperature of the support body provided with the conductive layer carried through the drying process after coating for the conductive layer was 42 ° C. Otherwise, an electrophotographic photoreceptor was produced in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 24, and the results are shown in Table 1.

(比較例6)
実施例24において、上記導電層用塗布液を浸漬塗布した後、これを40分間温度155℃で乾燥させることによって30μmの導電層を形成した。中間層用塗布液に浸漬する直前、すなわち、導電層が設けられた支持体が塗布液に向けて下降する直前の中間層用塗布液の温度は22℃であった。また、導電層塗布後の乾燥工程を経て運ばれてきた導電層が設けられた支持体の温度は47℃であった。それ以外は、実施例24と同様にして、電子写真感光体を作製した。評価は、実施例24と同様に行い、結果を表1に示す。
(Comparative Example 6)
In Example 24, after the above coating liquid for conductive layer was dip-coated, this was dried at a temperature of 155 ° C. for 40 minutes to form a 30 μm conductive layer. The temperature of the intermediate layer coating solution was 22 ° C. immediately before dipping in the intermediate layer coating solution, that is, immediately before the support provided with the conductive layer was lowered toward the coating solution. Moreover, the temperature of the support body provided with the conductive layer carried through the drying process after application of the conductive layer was 47 ° C. Other than that was carried out similarly to Example 24, and produced the electrophotographic photoreceptor. Evaluation was performed in the same manner as in Example 24, and the results are shown in Table 1.

(比較例7)
実施例20において、支持体の洗浄時の温水槽の温度を40℃にした以外は、実施例20と同様にして、電子写真感光体を作製した。評価は、実施例20と同様に行い、結果を表1に示す。
(Comparative Example 7)
In Example 20, an electrophotographic photosensitive member was produced in the same manner as in Example 20 except that the temperature of the hot water tank at the time of washing the support was 40 ° C. Evaluation was performed in the same manner as in Example 20, and the results are shown in Table 1.

(比較例8)
実施例20において、支持体の洗浄時の温水槽の温度を45℃にした以外は、実施例20と同様にして、電子写真感光体を作製した。評価は、実施例20と同様に行い、結果を表1に示す。
(Comparative Example 8)
In Example 20, an electrophotographic photosensitive member was produced in the same manner as in Example 20, except that the temperature of the hot water tank at the time of washing the support was 45 ° C. Evaluation was performed in the same manner as in Example 20, and the results are shown in Table 1.

Figure 2011095663
Figure 2011095663

1 電子写真感光体
21 支持体
22 導電層
23 中間層
24 電荷発生層
25 電荷輸送層
1 Electrophotographic Photosensitive Member 21 Support 22 Conductive Layer 23 Intermediate Layer 24 Charge Generation Layer 25 Charge Transport Layer

Claims (8)

支持体上に中間層用塗布液を塗布して中間層を形成する工程、および、
形成された中間層上に感光層用塗布液を塗布して感光層を形成する工程
を有する電子写真感光体の製造方法において、
前記支持体上に中間層用塗布液を塗布するときの前記支持体の温度をT1(℃)とし、前記支持体上に中間層用塗布液を塗布するときの中間層用塗布液の温度をT2(℃)としたときに、(T1−T2)が3℃以上20℃以下であり、
前記中間層用塗布液が樹脂粒子を含有し、
前記中間層用塗布液中の全固形分濃度が10質量%以上であり、
温度23℃/1気圧で測定した前記中間層用塗布液の粘度が2.0cp以上20.0cp以下である
ことを特徴とする電子写真感光体の製造方法。
Applying an intermediate layer coating solution on a support to form an intermediate layer; and
In the method for producing an electrophotographic photosensitive member having a step of forming a photosensitive layer by applying a photosensitive layer coating solution on the formed intermediate layer,
The temperature of the support when applying the intermediate layer coating solution on the support is T1 (° C.), and the temperature of the intermediate layer coating solution when applying the intermediate layer coating solution on the support is When T2 (° C), (T1-T2) is 3 ° C or higher and 20 ° C or lower,
The intermediate layer coating solution contains resin particles,
The total solid concentration in the intermediate layer coating solution is 10% by mass or more,
A method for producing an electrophotographic photosensitive member, wherein the viscosity of the intermediate layer coating solution measured at a temperature of 23 ° C./1 atm is 2.0 cp to 20.0 cp.
前記中間層用塗布液が、光散乱粒度分布計を用いて測定した体積平均粒径が0.05μm以上0.50μm以下の樹脂粒子を含有する水性分散液である請求項1に記載の電子写真感光体の製造方法。   2. The electrophotographic image according to claim 1, wherein the intermediate layer coating solution is an aqueous dispersion containing resin particles having a volume average particle size of 0.05 μm or more and 0.50 μm or less measured using a light scattering particle size distribution meter. A method for producing a photoreceptor. 前記樹脂粒子がポリオレフィン樹脂粒子である請求項1または2に記載の電子写真感光体の製造方法。   The method for producing an electrophotographic photosensitive member according to claim 1, wherein the resin particles are polyolefin resin particles. 前記ポリオレフィン樹脂が下記(A1)、(A2)および(A3)を有し、前記ポリオレフィン樹脂の(A1)、(A2)および(A3)の質量比が下記式(1)および(2)を満たす請求項3に記載の電子写真感光体の製造方法。
0.01≦(A2)/{(A1)+(A2)+(A3)}×100≦10 式(1)
(A1)/(A3)=55/45〜99/1 式(2)
(A1):下記式(11)で示される繰り返し構造単位
Figure 2011095663

(式(11)中、R11〜R14は、それぞれ独立に、水素原子、アルキル基を示す。)(A2):下記式(21)または(22)で示される繰り返し構造単位
Figure 2011095663

(式(21)および(22)中、R21〜R24は、それぞれ独立に、水素原子、アルキル基、フェニル基または−Y21COOH(式中、Y21は、単結合、アルキレン基またはアリーレン基を示す。)で示される1価の基を示し、R25およびR26は、それぞれ独立に、水素原子、アルキル基またはフェニル基を示し、X21は、−Y22COOCO
23−(式中、Y22およびY23は、それぞれ独立に、単結合、アルキレン基またはアリーレン基を示す。)で示される2価の基を示す。ただし、R21〜R24のうち少なくとも1つは−Y21COOHで示される1価の基である。)
(A3):下記式(31)、(32)、(33)または(34)で示される繰り返し構造単位
Figure 2011095663

(式(31)〜(34)中、R31〜R35は、それぞれ独立に、水素原子またはメチル基を示し、R41〜R43は、それぞれ独立に、炭素数1〜10のアルキル基を示し、R51〜R53は、それぞれ独立に、水素原子または炭素数1〜10のアルキル基を示す。)
The polyolefin resin has the following (A1), (A2) and (A3), and the mass ratio of (A1), (A2) and (A3) of the polyolefin resin satisfies the following formulas (1) and (2) The method for producing an electrophotographic photosensitive member according to claim 3.
0.01 ≦ (A2) / {(A1) + (A2) + (A3)} × 100 ≦ 10 Formula (1)
(A1) / (A3) = 55/45 to 99/1 Formula (2)
(A1): Repeating structural unit represented by the following formula (11)
Figure 2011095663

(In formula (11), R 11 to R 14 each independently represents a hydrogen atom or an alkyl group.) (A2): Repeating structural unit represented by the following formula (21) or (22)
Figure 2011095663

(In the formulas (21) and (22), R 21 to R 24 are each independently a hydrogen atom, an alkyl group, a phenyl group or —Y 21 COOH (wherein Y 21 is a single bond, an alkylene group or an arylene) R 25 and R 26 each independently represents a hydrogen atom, an alkyl group or a phenyl group, and X 21 represents —Y 22 COOCO.
Y 23 — (wherein Y 22 and Y 23 each independently represents a single bond, an alkylene group or an arylene group) represents a divalent group. However, at least one of R 21 to R 24 is a monovalent group represented by —Y 21 COOH. )
(A3): repeating structural unit represented by the following formula (31), (32), (33) or (34)
Figure 2011095663

(In formulas (31) to (34), R 31 to R 35 each independently represent a hydrogen atom or a methyl group, and R 41 to R 43 each independently represents an alkyl group having 1 to 10 carbon atoms. R 51 to R 53 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
前記ポリオレフィン樹脂の(A1)、(A2)および(A3)の質量比が下記式を満たす請求項4に記載の電子写真感光体の製造方法。
0.01≦(A2)/{(A1)+(A2)+(A3)}×100≦5
The method for producing an electrophotographic photosensitive member according to claim 4, wherein a mass ratio of (A1), (A2) and (A3) of the polyolefin resin satisfies the following formula.
0.01 ≦ (A2) / {(A1) + (A2) + (A3)} × 100 ≦ 5
前記中間層用塗布液が樹脂粒子を含有する水性分散液であって、前記水性分散液の調製に用いた水性媒体における水の含有比率が4質量%以上である請求項1〜5のいずれか1項に記載の電子写真感光体の製造方法。   The intermediate layer coating liquid is an aqueous dispersion containing resin particles, and the water content in the aqueous medium used for the preparation of the aqueous dispersion is 4% by mass or more. 2. A method for producing an electrophotographic photosensitive member according to item 1. 支持体上に中間層用塗布液を塗布して中間層を形成する工程において、前記支持体上に導電層が形成されており、前記中間層用塗布液を前記支持体上に形成された導電層上に塗布する請求項1〜6のいずれか1項に記載の電子写真感光体の製造方法。   In the step of forming the intermediate layer by applying the intermediate layer coating solution on the support, a conductive layer is formed on the support, and the intermediate layer coating solution is formed on the support. The method for producing an electrophotographic photoreceptor according to claim 1, wherein the electrophotographic photoreceptor is applied on the layer. 前記支持体上に中間層用塗布液を塗布して中間層を形成する工程の前に、前記支持体を洗浄する工程をさらに有し、前記支持体を洗浄する工程が、温度80℃以上の温水に前記支持体を浸漬することを含む請求項1〜7のいずれか1項に記載の電子写真感光体の製造方法。   Before the step of forming the intermediate layer by applying the intermediate layer coating solution on the support, the method further includes a step of cleaning the support, and the step of cleaning the support has a temperature of 80 ° C or higher. The method for producing an electrophotographic photosensitive member according to claim 1, comprising immersing the support in warm water.
JP2009252074A 2009-11-02 2009-11-02 Method for producing electrophotographic photosensitive member Expired - Fee Related JP5634048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009252074A JP5634048B2 (en) 2009-11-02 2009-11-02 Method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252074A JP5634048B2 (en) 2009-11-02 2009-11-02 Method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2011095663A true JP2011095663A (en) 2011-05-12
JP2011095663A5 JP2011095663A5 (en) 2012-12-13
JP5634048B2 JP5634048B2 (en) 2014-12-03

Family

ID=44112597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009252074A Expired - Fee Related JP5634048B2 (en) 2009-11-02 2009-11-02 Method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP5634048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112931A (en) * 2009-11-27 2011-06-09 Canon Inc Method for manufacturing electrophotographic photoreceptor
JPWO2017110300A1 (en) * 2015-12-24 2018-08-30 富士電機株式会社 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211466A (en) * 1984-04-05 1985-10-23 Oji Paper Co Ltd Electrophotographic lithographic plate material
JPS61149272A (en) * 1984-12-24 1986-07-07 Konishiroku Photo Ind Co Ltd Method for immersion coating of cylindrical substrate
JPH01114853A (en) * 1987-10-28 1989-05-08 Showa Alum Corp Electrophotograhic sensitive body
JPH04180068A (en) * 1990-11-15 1992-06-26 Konica Corp Production of electrophotographic sensitive body
JPH04352159A (en) * 1991-05-30 1992-12-07 Konica Corp Dip coating method for electrophotographic sensitive body
JPH05158268A (en) * 1991-12-06 1993-06-25 Sharp Corp Production of electrophotographic sensitive body
JPH07120955A (en) * 1993-10-21 1995-05-12 Fuji Electric Co Ltd Electrophotographic photoreceptor
JPH1165153A (en) * 1997-08-12 1999-03-05 Konica Corp Electrophotographic photoreceptor and image forming device
JP2003029431A (en) * 2001-07-18 2003-01-29 Konica Corp Electrophotographic photoreceptor, method for manufacturing the same, image forming method, image forming apparatus and process cartridge
JP2003119328A (en) * 2001-01-15 2003-04-23 Unitika Ltd Aqueous dispersion of polyolefin resin and method for producing the same
JP2003345042A (en) * 2002-05-30 2003-12-03 Canon Inc Electrophotographic photoreceptor and process cartridge and electrophotographic device having the electrophotographic photoreceptor
JP2006208449A (en) * 2005-01-25 2006-08-10 Ricoh Co Ltd Method for manufacturing photoreceptor and photoreceptor
JP2007284503A (en) * 2006-04-13 2007-11-01 Mitsubishi Chemicals Corp Method for producing coating liquid and coating liquid produced by the method
JP2009288628A (en) * 2008-05-30 2009-12-10 Canon Inc Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP2011095672A (en) * 2009-11-02 2011-05-12 Canon Inc Method for manufacturing electrophotographic photoreceptor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211466A (en) * 1984-04-05 1985-10-23 Oji Paper Co Ltd Electrophotographic lithographic plate material
JPS61149272A (en) * 1984-12-24 1986-07-07 Konishiroku Photo Ind Co Ltd Method for immersion coating of cylindrical substrate
JPH01114853A (en) * 1987-10-28 1989-05-08 Showa Alum Corp Electrophotograhic sensitive body
JPH04180068A (en) * 1990-11-15 1992-06-26 Konica Corp Production of electrophotographic sensitive body
JPH04352159A (en) * 1991-05-30 1992-12-07 Konica Corp Dip coating method for electrophotographic sensitive body
JPH05158268A (en) * 1991-12-06 1993-06-25 Sharp Corp Production of electrophotographic sensitive body
JPH07120955A (en) * 1993-10-21 1995-05-12 Fuji Electric Co Ltd Electrophotographic photoreceptor
JPH1165153A (en) * 1997-08-12 1999-03-05 Konica Corp Electrophotographic photoreceptor and image forming device
JP2003119328A (en) * 2001-01-15 2003-04-23 Unitika Ltd Aqueous dispersion of polyolefin resin and method for producing the same
JP2003029431A (en) * 2001-07-18 2003-01-29 Konica Corp Electrophotographic photoreceptor, method for manufacturing the same, image forming method, image forming apparatus and process cartridge
JP2003345042A (en) * 2002-05-30 2003-12-03 Canon Inc Electrophotographic photoreceptor and process cartridge and electrophotographic device having the electrophotographic photoreceptor
JP2006208449A (en) * 2005-01-25 2006-08-10 Ricoh Co Ltd Method for manufacturing photoreceptor and photoreceptor
JP2007284503A (en) * 2006-04-13 2007-11-01 Mitsubishi Chemicals Corp Method for producing coating liquid and coating liquid produced by the method
JP2009288628A (en) * 2008-05-30 2009-12-10 Canon Inc Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP2011095672A (en) * 2009-11-02 2011-05-12 Canon Inc Method for manufacturing electrophotographic photoreceptor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112931A (en) * 2009-11-27 2011-06-09 Canon Inc Method for manufacturing electrophotographic photoreceptor
JPWO2017110300A1 (en) * 2015-12-24 2018-08-30 富士電機株式会社 Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
US10585364B2 (en) 2015-12-24 2020-03-10 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for producing the same, and electrophotographic device including the same

Also Published As

Publication number Publication date
JP5634048B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5361665B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5430353B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5361666B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
EP2681627A1 (en) Process for producing electrophotographic photosensitive member
JP2015194717A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP5430354B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP5634048B2 (en) Method for producing electrophotographic photosensitive member
JP5361667B2 (en) Method for producing electrophotographic photosensitive member
JP6300590B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5479041B2 (en) Method for producing electrophotographic photosensitive member
JP2009288623A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus including the electrophotographic photoreceptor
JP2009288628A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP2011095664A (en) Method for manufacturing electrophotographic photoreceptor, and electrophotographic photoreceptor
JP5349932B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5550314B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5460258B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP5430355B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2023164048A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic device, and method of manufacturing electrophotographic photoreceptor
JP2003015326A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008026478A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2009288622A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2003241407A (en) Electrophotographic photoreceptor and image forming device using the same
JP2014026092A (en) Manufacturing method of electrophotographic photoreceptor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R151 Written notification of patent or utility model registration

Ref document number: 5634048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees