JP2011112931A - Method for manufacturing electrophotographic photoreceptor - Google Patents

Method for manufacturing electrophotographic photoreceptor Download PDF

Info

Publication number
JP2011112931A
JP2011112931A JP2009270200A JP2009270200A JP2011112931A JP 2011112931 A JP2011112931 A JP 2011112931A JP 2009270200 A JP2009270200 A JP 2009270200A JP 2009270200 A JP2009270200 A JP 2009270200A JP 2011112931 A JP2011112931 A JP 2011112931A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
particle size
metal oxide
resin particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009270200A
Other languages
Japanese (ja)
Other versions
JP2011112931A5 (en
JP5479053B2 (en
Inventor
Takeshi Nishida
孟 西田
Hideaki Nagasaka
秀昭 長坂
Atsushi Okuda
篤 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009270200A priority Critical patent/JP5479053B2/en
Publication of JP2011112931A publication Critical patent/JP2011112931A/en
Publication of JP2011112931A5 publication Critical patent/JP2011112931A5/ja
Application granted granted Critical
Publication of JP5479053B2 publication Critical patent/JP5479053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrophotographic photoreceptor having proper adhesiveness, the electrophotographic photoreceptor having a base coat layer formed of an aqueous dispersed coating liquid for the base coat layer, containing water-insoluble thermoplastic resin particles and metal oxide particles. <P>SOLUTION: The base coat layer is formed, by applying the following aqueous dispersion coating liquid for the base coat layer containing thermoplastic resin particles and metal oxide particles, and heating the coating film to melt the thermoplastic resin particles, when the volume particle size distribution of the thermoplastic resin particles in the aqueous dispersion coating liquid for the base coat layer, a particle size dispersion coefficient ε defined by ε=(D90-D10)/D50 is set at 0.2 or more and 1.0 or less, where D10, D50 and D90 represent the particle diameters corresponding to the 10% volume, 50% volume and 90% volume, respectively, of the distribution, and the metal oxide particles have a primary particle diameter of not more than 0.5 time that of D50. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子写真感光体の製造方法に関する。詳しくは、特定の粒径分布を有する熱可塑性樹脂粒子、及び金属酸化物粒子を含有する水性分散下引層塗布液を用いた電子写真感光体の製造方法に関するものである。   The present invention relates to a method for producing an electrophotographic photoreceptor. More specifically, the present invention relates to a method for producing an electrophotographic photoreceptor using an aqueous dispersion subbing layer coating solution containing thermoplastic resin particles having a specific particle size distribution and metal oxide particles.

電子写真感光体(以降、場合により単に「感光体」という)は、基本的には帯電及び光を用いた露光により潜像を形成する感光層と、その感光層を設けるための支持体としての導電性の支持体がある。そして支持体から感光層への電荷の注入を防ぐ為に下引層と呼ばれる層(中間層と呼ばれることもある)が感光層と支持体の間に設けられている。
下引層は、電気的抵抗が高過ぎると感光層で発生した電荷が支持体へ抜けず感光層内部に滞留し、結果として残留電位の上昇や繰り返し使用による電位変動の原因になる。
An electrophotographic photoreceptor (hereinafter, simply referred to as “photoreceptor” in some cases) basically includes a photosensitive layer that forms a latent image by charging and exposure using light, and a support for providing the photosensitive layer. There is a conductive support. In order to prevent charge injection from the support to the photosensitive layer, a layer called an undercoat layer (sometimes called an intermediate layer) is provided between the photosensitive layer and the support.
If the electrical resistance of the undercoat layer is too high, the charge generated in the photosensitive layer does not escape to the support and stays in the photosensitive layer, resulting in an increase in residual potential and potential fluctuation due to repeated use.

一方、電子写真感光体に電圧を印加したとき支持体から感光層へ電荷の注入が起こらないように電気的ブロッキング機能も要求される。これは、支持体から電荷注入があると、帯電能の低下、画像コントラストの低下や、反転現像方式の場合は白地に黒点や地カブリの原因になり画質を低下させる。また、近年の高画質化の要求に対し、感光体の薄膜化は有効であるが、感光層の薄膜化は、高画質化には有利である反面、支持体からの電荷の注入を促進させるため、電気的抵抗特性を維持しつつブロッキング機能をより高める必要があった。
これらの特性を満足させる適度な範囲の電気的抵抗特性及びブロッキング機能を有する下引層が求められている。その中で樹脂中に酸化スズ、酸化チタンの如き金属酸化物を含有する下引層(特許文献1)が検討されている。樹脂と金属酸化物を含有する下引層は、電気的抵抗が高い樹脂でも金属酸化物の含有量を増やすことで、感光層内部の電荷の滞留を抑制することが出来る。
On the other hand, an electrical blocking function is also required so that charges are not injected from the support to the photosensitive layer when a voltage is applied to the electrophotographic photoreceptor. This is because when charge is injected from the support, the charging performance and image contrast are lowered, and in the case of the reversal development method, black spots and fogging are caused on a white background, thereby degrading image quality. Also, in response to the recent demand for higher image quality, it is effective to reduce the thickness of the photoreceptor. However, reducing the thickness of the photosensitive layer is advantageous for improving the image quality, but promotes the injection of charges from the support. Therefore, it was necessary to further enhance the blocking function while maintaining the electrical resistance characteristics.
There is a need for an undercoat layer having an appropriate range of electrical resistance characteristics and a blocking function that satisfies these characteristics. Among them, an undercoat layer (Patent Document 1) containing a metal oxide such as tin oxide or titanium oxide in a resin has been studied. The subbing layer containing a resin and a metal oxide can suppress the retention of charge inside the photosensitive layer by increasing the content of the metal oxide even in a resin having a high electrical resistance.

しかし、金属酸化物の含有量が多すぎると感光体として下引層に必要な密着性を十分に得られないという課題がある。更に、表面粗さが大きくなることによってブロッキング機能が十分でなく、帯電能の低下、画像コントラストの低下や反転現像方式の場合は白地に黒点や地カブリが生じることがあった。
特許文献2には金属酸化物粒子を含む液安定性に優れたポリオレフィン樹脂水性分散体を乾燥することで、耐水性や透明性、基材フィルムとの密着性が良好な帯電防止膜が得られることが記載されている。従来の水性分散液塗布液を用いて下引層を成膜し、感光体を製造した場合においても、解像力に問題はなかった。しかし、金属酸化物の含有量が多くなると、やはり感光体の密着性が未だ不十分であった。そのため、長期の繰り返し使用による感光層の剥が生じることがあった。
However, if the content of the metal oxide is too large, there is a problem that sufficient adhesion required for the undercoat layer as a photoreceptor cannot be obtained. Further, since the surface roughness is increased, the blocking function is not sufficient, and in the case of the charging ability, the image contrast, and the reversal development method, black spots and fogging may occur on a white background.
Patent Document 2 discloses that an antistatic film having good water resistance, transparency, and adhesion to a substrate film can be obtained by drying a polyolefin resin aqueous dispersion excellent in liquid stability containing metal oxide particles. It is described. There was no problem in resolving power even when the undercoat layer was formed using a conventional aqueous dispersion coating solution to produce a photoreceptor. However, when the content of the metal oxide is increased, the adhesion of the photoreceptor is still insufficient. Therefore, the photosensitive layer may be peeled off due to repeated use over a long period of time.

特開昭56−52757号公報JP-A-56-52757 特開2003−268164号公報JP 2003-268164 A

本発明の目的は、下引層を成膜する水性分散下引層塗布液が水に不溶な熱可塑性樹脂粒子と金属酸化物粒子を含有する電子写真感光体の製造方法において、感光体として良好な下引層の密着性を得られる製造方法を提供することにある。   It is an object of the present invention to provide an aqueous dispersion undercoating layer coating solution for forming an undercoating layer, which is suitable as a photoconductor in a method for producing an electrophotographic photosensitive member containing thermoplastic resin particles and metal oxide particles insoluble in water. Another object of the present invention is to provide a production method capable of obtaining the adhesion of the undercoat layer.

本発明は、支持体の上に下引層と感光層を有し、該下引層を成膜するために塗布する水性分散下引層塗布液が水に不溶な熱可塑性樹脂粒子と金属酸化物粒子を含有し、該熱可塑性樹脂粒子に対する該金属酸化物粒子の体積比が0.5〜2.0倍である電子写真感光体の製造方法であり、該熱可塑性樹脂粒子の該水性分散下引層塗布液中の体積粒度分布が、10%、50%、90%体積に対応する粒子径をそれぞれD10、D50、D90とし、粒度分散係数ε=(D90−D10)/D50とするとき、粒度分散係数εが0.2以上1.0以下を満たし、該金属酸化物粒子の一次粒径が該D50の0.5倍以下である該水性分散下引層塗布液を塗布して塗膜を形成後、該塗膜を加熱して該熱可塑性樹脂粒子を融解して下引層を成膜することを特徴とする電子写真感光体の製造方法に関する。   The present invention has an undercoating layer and a photosensitive layer on a support, and an aqueous dispersion undercoating layer coating solution applied to form the undercoating layer is water-insoluble thermoplastic resin particles and metal oxide. An electrophotographic photosensitive member having a volume ratio of the metal oxide particles to the thermoplastic resin particles of 0.5 to 2.0 times, and the aqueous dispersion of the thermoplastic resin particles When the particle size distribution in the undercoat layer coating liquid is 10%, 50%, and 90% of the particle sizes corresponding to D10, D50, and D90, respectively, and the particle size dispersion coefficient ε = (D90−D10) / D50 The aqueous dispersion subbing layer coating solution having a particle size dispersion coefficient ε of 0.2 to 1.0 and a primary particle size of the metal oxide particles being 0.5 times or less of the D50 is applied. After forming the film, the coating film is heated to melt the thermoplastic resin particles to form an undercoat layer. The present invention relates to a method for producing an electrophotographic photosensitive member.

本発明によれば、感光層と支持体の接着性に特に優れ、繰り返し使用による電位変動が少なく、高温高湿及び低温低湿のいずれの環境下においても、十分なコントラスト電位が得られ、黒点やカブリが生じない電子写真感光体の製造方法を提供することができる。   According to the present invention, the adhesion between the photosensitive layer and the support is particularly excellent, the potential fluctuation due to repeated use is small, and a sufficient contrast potential can be obtained in any environment of high temperature and high humidity and low temperature and low humidity. It is possible to provide a method for producing an electrophotographic photosensitive member in which fog does not occur.

以下に本発明を詳細に説明する。
本発明の水性分散下引層塗布液とは、溶媒全量に対する水の割合が50質量%以上の溶媒中に熱可塑性樹脂粒子および金属酸化物粒子が分散されている液をいう。
一定範囲内の条件下において特に良好な下引層の接着性を得る為には、水性分散下引層塗布液中の熱可塑性樹脂粒子の粒度分散係数がある一定の範囲にあることが必要であることを見出し、本発明に至ったものである。
The present invention is described in detail below.
The aqueous dispersion subbing layer coating liquid of the present invention refers to a liquid in which thermoplastic resin particles and metal oxide particles are dispersed in a solvent having a water ratio of 50% by mass or more based on the total amount of the solvent.
In order to obtain particularly good adhesion of the undercoat layer under conditions within a certain range, the particle size dispersion coefficient of the thermoplastic resin particles in the aqueous dispersion undercoat layer coating solution must be within a certain range. The present invention has been found and has been accomplished.

すなわち、本発明の電子写真感光体の製造方法は、支持体の上に下引層と感光層を有し、下引層を成膜するために塗布する水性分散下引層塗布液が水に不溶な熱可塑性樹脂粒子と金属酸化物粒子を含有し、熱可塑性樹脂粒子に対する金属酸化物粒子の体積比が0.5〜2.0倍である電子写真感光体の製造方法において、熱可塑性樹脂粒子の水性分散下引層塗布液中の体積粒度分布が、10%、50%、90%体積に対応する粒子径をそれぞれD10、D50、D90とし、粒度分散係数ε=(D90−D10)/D50とするとき、粒度分散係数εが0.2以上1.0以下を満たし、金属酸化物粒子の一次粒径がD50の0.5倍以下である水性分散下引層塗布液を塗布して塗膜を形成後、該塗膜を加熱して熱可塑性樹脂粒子を融解して下引層を成膜することを特徴とする。   That is, the method for producing an electrophotographic photosensitive member of the present invention includes an undercoat layer and a photosensitive layer on a support, and the aqueous dispersion undercoat layer coating solution applied to form the undercoat layer is water. In the method for producing an electrophotographic photosensitive member, which contains insoluble thermoplastic resin particles and metal oxide particles, and the volume ratio of the metal oxide particles to the thermoplastic resin particles is 0.5 to 2.0 times, the thermoplastic resin The particle size distribution corresponding to 10%, 50%, and 90% volume of the particle size distribution in the aqueous dispersion subbing layer coating solution of particles is D10, D50, and D90, respectively, and the particle size dispersion coefficient ε = (D90−D10) / When D50, an aqueous dispersion subbing layer coating solution having a particle size dispersion coefficient ε of 0.2 to 1.0 and a primary particle size of metal oxide particles of 0.5 times or less of D50 is applied. After forming the coating film, the coating film is heated to melt the thermoplastic resin particles and subbing. A layer is formed.

下引層塗布液に熱可塑性樹脂粒子と金属酸化物粒子を含む場合、熱可塑性樹脂粒子に対する金属酸化物粒子の体積比が0.5〜2.0倍である必要がある。0.5倍未満だと下引層に必要な感光層からの電荷の抜けが低下して感光層中に電荷の滞留が起こり、画像弊害が発生する可能性がある。また、2.0倍を超えると下引層中の金属酸化物粒子の含有体積が大きく、熱可塑性樹脂粒子が本発明で述べられている粒度分散係数の範囲内であっても十分な接着性を得ることは難しい。   When the undercoat layer coating liquid contains thermoplastic resin particles and metal oxide particles, the volume ratio of the metal oxide particles to the thermoplastic resin particles needs to be 0.5 to 2.0 times. If it is less than 0.5 times, the loss of charge from the photosensitive layer required for the undercoat layer is reduced, and charge stays in the photosensitive layer, which may cause image defects. Further, if it exceeds 2.0 times, the content volume of the metal oxide particles in the undercoat layer is large, and sufficient adhesiveness is obtained even when the thermoplastic resin particles are within the range of the particle size dispersion coefficient described in the present invention. Hard to get.

粒度分散係数εはε=(D90−D10)/D50と定義され、D10、D50、D90はそれぞれ水性分散下引層塗布液中の熱可塑性樹脂粒子の10%、50%、90%体積に対応する粒子径と定義する。下引層中の熱可塑性樹脂粒子の粒度分散係数εは0.2〜1.0の範囲であるのが好ましい。特に、0.3〜0.5の範囲が更に好ましい。   The particle size dispersion coefficient ε is defined as ε = (D90−D10) / D50, and D10, D50, and D90 correspond to 10%, 50%, and 90% volume of the thermoplastic resin particles in the aqueous dispersion subbing layer coating liquid, respectively. It is defined as the particle size. The particle size dispersion coefficient ε of the thermoplastic resin particles in the undercoat layer is preferably in the range of 0.2 to 1.0. In particular, the range of 0.3 to 0.5 is more preferable.

粒度分散係数εが0.2未満だと、熱可塑性樹脂粒子の体積粒度分布が極めてシャープで粒径がほぼ一定に近くなっている。この場合、支持体の上に水分散性下引層塗布液を塗布し乾燥工程により下引層を形成する工程において、熱可塑性樹脂粒子間に生じる隙間が小さくなり金属酸化物粒子は熱可塑性樹脂粒子を引き離すような位置に配置される。このため乾燥工程において熱可塑性樹脂粒子が融解する時、熱可塑性樹脂粒子同士が十分に混ざり合わず接着性が十分に得られない可能性がある。   When the particle size dispersion coefficient ε is less than 0.2, the volume particle size distribution of the thermoplastic resin particles is extremely sharp and the particle size is almost constant. In this case, in the step of applying the water-dispersible undercoat layer coating solution on the support and forming the undercoat layer by the drying step, the gaps generated between the thermoplastic resin particles are reduced, and the metal oxide particles are thermoplastic resin. It is arranged at a position that separates the particles. For this reason, when the thermoplastic resin particles are melted in the drying step, the thermoplastic resin particles may not be sufficiently mixed with each other and adhesiveness may not be sufficiently obtained.

粒度分散係数εが1.0を超えると、熱可塑性樹脂粒子の体積粒度分布が極めてブロードで粒径のバラツキが大きくなる。この場合、支持体の上に水性分散下引層塗布液を塗布し乾燥工程により下引層を形成する工程において、熱可塑性樹脂粒子間に生じる隙間が大きくなり金属酸化物粒子はその隙間に集中する。このため乾燥工程において熱可塑性樹脂粒子が溶解する時、金属酸化物粒子が下引層中に偏っており、下引層に必要な感光層からの電荷の抜けが悪く感光層中に電荷の滞留が起こり、画像弊害が発生する可能性がある。   When the particle size dispersion coefficient ε exceeds 1.0, the volume particle size distribution of the thermoplastic resin particles is extremely broad and the variation in the particle size increases. In this case, in the step of applying the aqueous dispersion subbing layer coating liquid on the support and forming the subbing layer by the drying step, the gap generated between the thermoplastic resin particles becomes large, and the metal oxide particles are concentrated in the gap. To do. For this reason, when the thermoplastic resin particles are dissolved in the drying process, the metal oxide particles are biased in the undercoat layer, and the charge removal from the photosensitive layer required for the undercoat layer is poor and the charge stays in the photosensitive layer. May occur, and image damage may occur.

金属酸化物粒子の一次粒径は、熱可塑性樹脂粒子のD50の0.5倍以下であることが好ましい。金属酸化物粒子の一次粒径がこの範囲内の場合、本発明で述べられている効果が特に得られやすい。この範囲を外れると、金属酸化物の下引層中の分布は熱可塑性樹脂粒子の粒径と相関関係が小さくなり、接着性が得られない可能性が出てくる。金属酸化物粒子の一次粒径下限は特に設けられず、1nmまで本発明の効果は得られる。   The primary particle diameter of the metal oxide particles is preferably 0.5 times or less of D50 of the thermoplastic resin particles. When the primary particle diameter of the metal oxide particles is within this range, the effects described in the present invention are particularly easily obtained. Outside this range, the distribution in the undercoat layer of the metal oxide has a small correlation with the particle size of the thermoplastic resin particles, and there is a possibility that adhesiveness cannot be obtained. The lower limit of the primary particle size of the metal oxide particles is not particularly provided, and the effect of the present invention can be obtained up to 1 nm.

本発明による電子写真感光体の製造方法は、熱可塑性樹脂粒子の50%体積であるD50が50〜500nmであることが好ましい。この範囲が本発明の効果を発現させるのに好ましい。更に好ましくは200〜400nmである。D50が50nm以下の場合、本発明の効果が十分に発現出来ない可能性がある。D50が500nm以上の場合、粒子一粒が大きくなり熱可塑性樹脂粒子同士の結着が弱くなり十分な接着性を得られない可能性がある。
本発明による電子写真感光体の製造方法は、水性分散下引層塗布液に含まれる熱可塑性樹脂粒子がポリオレフィン樹脂であることが好ましい。ポリオレフィン樹脂は電子写真特性、環境変動、及び成膜性も良好なため、電子写真感光体の下引層に適している。
In the method for producing an electrophotographic photoreceptor according to the present invention, D50, which is 50% volume of thermoplastic resin particles, is preferably 50 to 500 nm. This range is preferable for expressing the effects of the present invention. More preferably, it is 200-400 nm. When D50 is 50 nm or less, the effect of the present invention may not be sufficiently exhibited. When D50 is 500 nm or more, one particle becomes large and the binding between the thermoplastic resin particles becomes weak, and there is a possibility that sufficient adhesion cannot be obtained.
In the method for producing an electrophotographic photoreceptor according to the present invention, it is preferable that the thermoplastic resin particles contained in the aqueous dispersion subbing layer coating solution be a polyolefin resin. Polyolefin resins are suitable for the undercoat layer of an electrophotographic photosensitive member because they have good electrophotographic characteristics, environmental fluctuations, and film formability.

本発明による電子写真感光体の製造方法は、塗膜の加熱温度が水性分散下引層塗布液に含まれる熱可塑性樹脂粒子の融点以上であることが好ましい。熱可塑性樹脂粒子の融点以上の加熱乾燥をすることで、良好な膜特性が得られる。
本発明に用いるポリオレフィン樹脂の具体例としては、エチレン−アクリル酸メチル−無水マレイン酸共重合体、またはエチレン−アクリル酸エチル−無水マレイン酸共重合体が好ましい。
なお、無水マレイン酸単位等の不飽和カルボン酸無水物単位は、樹脂の乾燥状態では隣接するカルボキシル基が脱水環化した酸無水物構造を形成している。しかし、特に塩基性化合物を含有する水性媒体中では、その一部または全部が開環してカルボン酸あるいはその塩の構造を取りやすくなる。
In the method for producing an electrophotographic photoreceptor according to the present invention, the heating temperature of the coating film is preferably equal to or higher than the melting point of the thermoplastic resin particles contained in the aqueous dispersion subbing layer coating solution. Good film characteristics can be obtained by heating and drying at a temperature equal to or higher than the melting point of the thermoplastic resin particles.
Specific examples of the polyolefin resin used in the present invention are preferably ethylene-methyl acrylate-maleic anhydride copolymer or ethylene-ethyl acrylate-maleic anhydride copolymer.
In addition, unsaturated carboxylic anhydride units such as maleic anhydride units form an acid anhydride structure in which adjacent carboxyl groups are dehydrated and cyclized in the dry state of the resin. However, particularly in an aqueous medium containing a basic compound, a part or all of the ring is opened to easily form a structure of a carboxylic acid or a salt thereof.

本発明に用いるポリオレフィン樹脂は合成して得てもよいし、市販されている樹脂を用いても良い。
ポリオレフィン樹脂の合成法は特に限定されないが、一般的には、ポリオレフィン樹脂を構成するモノマーをラジカル発生剤の存在下、高圧ラジカル共重合して得られる。ポリオレフィン樹脂の合成方法は、「新高分子実験学2 高分子の合成・反応(1)」の第4章(共立出版株式会社)、特開2003−105145公報、特開2003−147028公報などに記述された公知の方法で合成される。
市販されているものとしては、住友化学工業(株)製の「ボンダイン(登録商標)」や、ダウ・ケミカル社製の「プリマコール(登録商標)」が挙げられる。
本発明に用いられる金属酸化物粒子は、酸化アルミニウム、酸化チタン、酸化亜鉛、酸化セリウム、酸化イットリウム、酸化ケイ素、酸化ジルコニウム、酸化鉄、酸化スズ、酸化マグネシウム、酸化銅、酸化マンガン、アンチモンド−プ酸化スズ、インジウムド−プ酸化スズ、アルミニウムド−プ酸化スズやこれら酸化物の2種以上の混合物又は複合酸化物が挙げられる。
金属酸化物粒子は、必要に応じて、表面処理剤を用いて表面処理することができる。
The polyolefin resin used in the present invention may be obtained by synthesis or a commercially available resin may be used.
The method for synthesizing the polyolefin resin is not particularly limited, but it is generally obtained by high-pressure radical copolymerization of the monomer constituting the polyolefin resin in the presence of a radical generator. The synthesis method of polyolefin resin is described in Chapter 4 (Kyoritsu Shuppan Co., Ltd.) of "New Polymer Experiment 2 Polymer Synthesis and Reaction (1)", JP-A 2003-105145, JP-A 2003-147028, and the like. Synthesized by known methods.
Examples of commercially available products include “Bondyne (registered trademark)” manufactured by Sumitomo Chemical Co., Ltd. and “Primacol (registered trademark)” manufactured by Dow Chemical.
The metal oxide particles used in the present invention are aluminum oxide, titanium oxide, zinc oxide, cerium oxide, yttrium oxide, silicon oxide, zirconium oxide, iron oxide, tin oxide, magnesium oxide, copper oxide, manganese oxide, antimony- Examples thereof include tin oxide, indium oxide-tin oxide, aluminum oxide tin oxide, and a mixture or composite oxide of two or more of these oxides.
The metal oxide particles can be surface treated using a surface treating agent as necessary.

次に、本発明の水性分散下引層塗布液の製造方法について述べる。熱可塑性樹脂粒子及び金属酸化物粒子を含有する水性分散下引層塗布液を製造する方法は特に限定されないが、金属酸化物粒子の分散性の観点から、熱可塑性樹脂粒子分散液と金属酸化物粒子分散液とを別々に調製しておき、これを混合して得る方法が好ましい。以下、この方法について詳述する。
熱可塑性樹脂粒子分散液の調製方法は、例えば、ポリオレフィン樹脂、水、さらに必要に応じて有機溶剤とを密閉可能な容器中で加熱、攪拌する方法を採用することができる。このとき、ポリオレフィン樹脂の形状は特に限定されないが、粒子化速度を速めるという点から、粒子径1cm以下、好ましくは0.8cm以下の粒状ないしは粉末状のものを用いることが好ましい。
Next, a method for producing the aqueous dispersion undercoat layer coating solution of the present invention will be described. The method for producing the aqueous dispersion subbing layer coating liquid containing thermoplastic resin particles and metal oxide particles is not particularly limited, but from the viewpoint of dispersibility of the metal oxide particles, the thermoplastic resin particle dispersion and the metal oxide are used. A method of preparing the particle dispersion separately and mixing them is preferred. Hereinafter, this method will be described in detail.
As a method for preparing the thermoplastic resin particle dispersion, for example, a method of heating and stirring in a container that can be sealed with polyolefin resin, water, and if necessary, an organic solvent can be employed. At this time, the shape of the polyolefin resin is not particularly limited, but it is preferable to use a granular or powdery particle having a particle diameter of 1 cm or less, preferably 0.8 cm or less, from the viewpoint of increasing the particle formation rate.

容器としては、液体を投入できる槽を備え、槽内に投入された樹脂と水性溶媒の混合物を適度に撹拌できるものであればよい。そのような装置としては、固/液撹拌装置や乳化機として広く当業者に知られている装置を使用することができ、0.1MPa以上の加圧が可能な装置を使用することが好ましい。撹拌の方法、撹拌の回転速度は特に限定されない。
この装置の槽内に各原料を投入した後、好ましくは40℃以下の温度で攪拌混合しておく。次いで、槽内の温度を50〜200℃、好ましくは60〜200℃の温度に保ちつつ、5〜120分間攪拌を続けることにより水性分散液を得ることができる。
Any container may be used as long as it is equipped with a tank into which liquid can be charged and can appropriately stir the mixture of the resin and the aqueous solvent charged into the tank. As such an apparatus, an apparatus widely known to those skilled in the art as a solid / liquid stirring apparatus or an emulsifier can be used, and an apparatus capable of pressurization of 0.1 MPa or more is preferably used. The stirring method and the rotation speed of stirring are not particularly limited.
After each raw material is put into the tank of this apparatus, it is preferably stirred and mixed at a temperature of 40 ° C. or lower. Next, an aqueous dispersion can be obtained by continuing stirring for 5 to 120 minutes while maintaining the temperature in the tank at 50 to 200 ° C, preferably 60 to 200 ° C.

この際に、ポリオレフィン樹脂の不飽和カルボン酸単位をアニオン化するために、塩基性化合物を添加することが好ましい。塩基性化合物の添加量は、ポリオレフィン樹脂中のカルボキシル基(酸無水物基1モルはカルボキシル基2モルとみなす)に対して0.5〜3.0倍当量であることが好ましく、0.8〜2.5倍当量がより好ましく、1.0〜2.0倍当量が特に好ましい。0.5倍当量未満では、塩基性化合物の添加効果が認められず、3.0倍当量を超えると塗膜形成時の乾燥時間が長くなったり、水性分散液が着色する場合がある。
ここで添加される塩基性化合物としては、塗膜形成時に揮発する化合物が好ましく、アンモニアまたは各種の有機アミン化合物が好ましい。有機アミン化合物の具体例としては、トリエチルアミン、N,N−ジメチルエタノールアミン、アミノエタノールアミン、N−メチル−N,N−ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3−エトキシプロピルアミン、3−ジエチルアミノプロピルアミン、sec−ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、メチルイミノビスプロピルアミン、3−メトキシプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、N−メチルモルホリン、N−エチルモルホリンを挙げることができる。
At this time, it is preferable to add a basic compound in order to anionize the unsaturated carboxylic acid unit of the polyolefin resin. The addition amount of the basic compound is preferably 0.5 to 3.0 times equivalent to the carboxyl group in the polyolefin resin (1 mol of acid anhydride group is regarded as 2 mol of carboxyl group), 0.8 -2.5 times equivalent is more preferable and 1.0-2.0 times equivalent is especially preferable. If it is less than 0.5 times equivalent, the addition effect of a basic compound is not recognized, and if it exceeds 3.0 times equivalent, the drying time at the time of coating film formation may become long, or an aqueous dispersion may color.
As a basic compound added here, the compound which volatilizes at the time of coating film formation is preferable, and ammonia or various organic amine compounds are preferable. Specific examples of the organic amine compound include triethylamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, and 3-ethoxypropylamine. , 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, methyliminobispropylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, triethanolamine, morpholine, N-methylmorpholine, N- Mention may be made of ethylmorpholine.

上記のようにして得られるポリオレフィン樹脂粒子分散液は、ポリオレフィン樹脂が水性媒体中に分散され、均一な液状である。均一な液状であるとは、外観上、水性分散体中に沈殿、相分離あるいは皮張りといった、固形分濃度が局部的に他の部分と相違する部分が見いだされない状態にあることをいう。
金属酸化物粒子分散液の調製方法は、たとえば、市販の金属酸化物をボールミル、振動ボールミル、ロールミル、トライター、又は、サンドミル及びコロイドミルで湿式粉砕して分散液を得る。もしくは市販の水性溶媒に分散されているスラリー、ゾル液等をそのまま使用することもできる。また、金属酸化物を加水分解または熱加水分解する方法や、金属イオンを含む酸性溶液をアルカリ加水分解する方法、金属イオンを含む溶液をイオン交換膜やイオン交換樹脂によりイオン交換する方法も用いることができる。
The polyolefin resin particle dispersion obtained as described above is a uniform liquid in which the polyolefin resin is dispersed in an aqueous medium. “Uniform liquid” means that, in terms of appearance, a portion where the solid content concentration is locally different from other portions such as precipitation, phase separation or skinning is not found in the aqueous dispersion.
As a method for preparing the metal oxide particle dispersion, for example, a commercially available metal oxide is wet pulverized by a ball mill, a vibration ball mill, a roll mill, a triter, a sand mill and a colloid mill to obtain a dispersion. Alternatively, a slurry, a sol solution or the like dispersed in a commercially available aqueous solvent can be used as it is. Also, a method of hydrolyzing or thermally hydrolyzing metal oxides, a method of alkaline hydrolysis of an acidic solution containing metal ions, or a method of ion exchange of a solution containing metal ions with an ion exchange membrane or ion exchange resin is used. Can do.

このようにして別々の操作によって得られた熱可塑性樹脂粒子分散液と金属酸化物粒子分散液を混合する際には、熱可塑性樹脂粒子分散液に金属酸化物粒子分散液を加えて混合してもよい。逆に金属酸化物粒子分散液に上記熱可塑性樹脂粒子分散液を加えて混合してもよい。
本発明に用いられる溶媒は水以外に親水性の有機溶剤が含まれていても良い。熱可塑性樹脂粒子分散液を作成する際、金属酸化物粒子分散液を作製する際、熱可塑性樹脂粒子分散液と金属酸化物粒子分散液を混合する際に適宜調整されることが好ましい。有機溶剤として、例えばメチルエチルケトン、アセトン、ジエチルケトン、プロパノール、ブタノール、メタノール、エタノール、テトラヒドロフランやジオキサン、エチレングリコールモノブチルエーテルが挙げられる。また、これらの有機溶剤が水性分散体全量に占める量は40質量%以下が好ましく、20質量%以下がさらに好ましく、5質量%以下がさらに好ましい。
When mixing the thermoplastic resin particle dispersion and the metal oxide particle dispersion obtained by separate operations in this way, the metal oxide particle dispersion is added to the thermoplastic resin particle dispersion and mixed. Also good. Conversely, the thermoplastic resin particle dispersion may be added to and mixed with the metal oxide particle dispersion.
The solvent used in the present invention may contain a hydrophilic organic solvent in addition to water. When preparing the thermoplastic resin particle dispersion, when preparing the metal oxide particle dispersion, it is preferable to adjust appropriately when mixing the thermoplastic resin particle dispersion and the metal oxide particle dispersion. Examples of the organic solvent include methyl ethyl ketone, acetone, diethyl ketone, propanol, butanol, methanol, ethanol, tetrahydrofuran, dioxane, and ethylene glycol monobutyl ether. The amount of these organic solvents in the total amount of the aqueous dispersion is preferably 40% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less.

本発明は、上記のようにして得られた水性分散下引層塗布液を導電性支持体上、または導電層の上に塗布し、加熱溶解して成膜して下引層を形成することを特徴とする電子写真感光体の製造方法である。
水性分散下引層塗布液の塗布手段としては、通常、この分野で用いられる方法が適用できるが、浸漬塗布が特に好ましい。
本発明の感光体の製造方法においては、水性分散下引層塗布液の塗布を浸漬塗布で行なう場合には、温度23℃での相対湿度が60%以下であり、かつ風速が1m/s以下である環境下に設置された浸漬塗布装置で行なうのが好ましい。
下引層の膜厚としては、0.1〜20μmの範囲が好ましい。
In the present invention, the aqueous dispersion subbing layer coating solution obtained as described above is applied on a conductive support or a conductive layer, heated and dissolved to form a subbing layer. Is a method for producing an electrophotographic photosensitive member.
As a means for applying the aqueous dispersion subbing layer coating solution, a method used in this field is usually applicable, but dip coating is particularly preferable.
In the method for producing a photoreceptor of the present invention, when the aqueous dispersion subbing layer coating solution is applied by dip coating, the relative humidity at a temperature of 23 ° C. is 60% or less and the wind speed is 1 m / s or less. It is preferable to carry out with a dip coating apparatus installed in an environment.
The thickness of the undercoat layer is preferably in the range of 0.1 to 20 μm.

電子写真感光体に用いられる支持体としては、導電性のもの(導電性支持体)であればよく、アルミニウム、ニッケル、銅、金および鉄の如き金属または合金製のものが挙げられる。また、ポリエステル、ポリカーボネート、ポリイミドおよびガラスの如き絶縁性支持体の上にアルミニウム、銀、金の如き金属や、酸化インジウム、酸化スズの如き導電性材料の薄膜を形成したものでもよい。また、カーボンや導電性フィラーを樹脂中に分散し、導電性を付与した支持体でもよい。
支持体の表面は、電気的特性や密着性の改善のために、陽極酸化などの電気化学的な処理を施してもよい。また、支持体の表面を、アルカリリン酸塩あるいはリン酸やタンニン酸を主成分とする酸性水溶液に金属塩の化合物またはフッ素化合物の金属塩を溶解してなる溶液で化学処理を施してもよい。
The support used for the electrophotographic photosensitive member may be a conductive one (conductive support), and examples thereof include a metal or an alloy such as aluminum, nickel, copper, gold and iron. Further, a thin film made of a metal such as aluminum, silver or gold, or a conductive material such as indium oxide or tin oxide may be formed on an insulating support such as polyester, polycarbonate, polyimide or glass. Moreover, the support body which disperse | distributed carbon and the electroconductive filler in resin, and provided electroconductivity may be sufficient.
The surface of the support may be subjected to electrochemical treatment such as anodization in order to improve electrical characteristics and adhesion. Further, the surface of the support may be chemically treated with a solution obtained by dissolving a metal salt compound or a fluorine compound metal salt in an acidic aqueous solution mainly composed of alkali phosphate or phosphoric acid or tannic acid. .

また、露光光(画像露光光)としてレーザー光の如き単一波長光を用いる電子写真装置に本発明の電子写真感光体を用いる場合、干渉縞を抑制するために、支持体の表面を適度に粗面化しておくことが好ましい。具体的には、支持体の表面に、ホーニング、ブラスト、切削、電界研磨の如き処理を施すことや、支持体の上に導電性金属酸化物および結着樹脂を含む導電性皮膜を設けることが好ましい。
ホーニング処理には、乾式での処理および湿式での処理があるが、どちらを採用してもよい。湿式ホーニング処理とは、水の如き液体に粉末状の研磨材を懸濁させてなる懸濁液を、高速度で支持体の表面に吹き付けて粗面化する方法である。湿式ホーニング処理の場合、支持体の表面粗さは、懸濁液の吹き付け圧力、速度、研磨材の量、種類、形状、大きさ、硬度、比重および懸濁温度により制御することができる。乾式ホーニング処理は、研磨剤をエアーにより、高速度で支持体の表面に吹き付けて粗面化する方法である。乾式ホーニング処理の場合も、支持体の表面粗さは、湿式ホーニング処理と同じようにして制御することができる。ホーニング処理に用いる研磨剤としては、例えば、炭化ケイ素、アルミナ、鉄およびガラスビーズの如き粒子が挙げられる。
In addition, when the electrophotographic photosensitive member of the present invention is used in an electrophotographic apparatus that uses single-wavelength light such as laser light as exposure light (image exposure light), the surface of the support is appropriately adjusted to suppress interference fringes. It is preferable to roughen the surface. Specifically, the surface of the support is subjected to treatment such as honing, blasting, cutting, and electropolishing, or a conductive film containing a conductive metal oxide and a binder resin is provided on the support. preferable.
The honing process includes a dry process and a wet process, either of which may be adopted. The wet honing treatment is a method in which a suspension obtained by suspending a powdery abrasive in a liquid such as water is sprayed on the surface of a support at a high speed to roughen the surface. In the case of the wet honing treatment, the surface roughness of the support can be controlled by the spraying pressure of the suspension, the speed, the amount of the abrasive, the type, shape, size, hardness, specific gravity and suspension temperature. The dry honing treatment is a method in which an abrasive is sprayed onto the surface of a support with air at a high speed to roughen the surface. Also in the case of the dry honing treatment, the surface roughness of the support can be controlled in the same manner as the wet honing treatment. Examples of the abrasive used for the honing treatment include particles such as silicon carbide, alumina, iron, and glass beads.

支持体と本発明の下引層との間には、レーザー光の散乱による干渉縞の抑制や、支持体の傷の被覆を目的とした導電層を設けてもよい。
導電層は、カーボンブラック、金属粒子、金属酸化物粒子などの導電性粒子を結着樹脂に分散させて形成することができる。金属酸化物粒子としては、酸化亜鉛や酸化チタンの粒子が挙げられる。また、導電性粒子として、酸素欠損型SnOを被覆した硫酸バリウム粒子を用いることもできる。
導電層に用いられる結着樹脂としては、例えば、フェノール樹脂、ポリウレタン樹脂およびポリアミド樹脂が挙げられる。これらは、支持体に対する接着性が良好であるとともに、導電性粒子の分散性が向上し、成膜後の耐溶剤性が良好である。
また、導電層には、導電層の表面性を高めるために、レベリング剤を添加してもよい。
A conductive layer may be provided between the support and the undercoat layer of the present invention for the purpose of suppressing interference fringes due to laser light scattering and covering the support.
The conductive layer can be formed by dispersing conductive particles such as carbon black, metal particles, and metal oxide particles in a binder resin. Examples of the metal oxide particles include zinc oxide and titanium oxide particles. Further, barium sulfate particles coated with oxygen-deficient SnO 2 can also be used as the conductive particles.
Examples of the binder resin used for the conductive layer include a phenol resin, a polyurethane resin, and a polyamide resin. These have good adhesion to the support, improve the dispersibility of the conductive particles, and have good solvent resistance after film formation.
Further, a leveling agent may be added to the conductive layer in order to improve the surface property of the conductive layer.

本発明の下引層と感光層との間に、さらに接着機能などの機能を持つ層を更にもう一層設けても良い。その例として、カゼイン、ポリビニルアルコール、ニトロセルロース、ポリアミド(ナイロン6、ナイロン66、ナイロン610、共重合ナイロン、アルコキシメチル化ナイロンなど)、ポリウレタンおよび酸化アルミニウムが挙げられる。
電荷発生層は、電荷発生物質を結着樹脂および溶剤と共に分散して得られる電荷発生層用塗布液を塗布し、これを乾燥させることによって形成することができる。
A further layer having a function such as an adhesive function may be provided between the undercoat layer and the photosensitive layer of the present invention. Examples include casein, polyvinyl alcohol, nitrocellulose, polyamide (such as nylon 6, nylon 66, nylon 610, copolymer nylon, alkoxymethylated nylon), polyurethane and aluminum oxide.
The charge generation layer can be formed by applying a charge generation layer coating solution obtained by dispersing a charge generation material together with a binder resin and a solvent and drying the coating solution.

本発明に用いられる電荷発生物質としては、
(1)モノアゾ、ジスアゾ、トリスアゾの如きアゾ顔料、
(2)金属フタロシアニンや非金属フタロシアニンの如きフタロシアニン顔料、
(3)インジゴやチオインジゴの如きインジゴ顔料、
(4)ペリレン酸無水物やペリレン酸イミドの如きペリレン顔料、
(5)アンスラキノンやピレンキノンの如き多環キノン顔料、
(6)スクワリリウム色素、
(7)ピリリウム塩、チアピリリウム塩類、
(8)トリフェニルメタン色素、
(9)アモルファスシリコンの如き無機物質、
(10)キナクリドン顔料、
(11)アズレニウム塩顔料、
(12)シアニン染料、
(13)キサンテン色素、
(14)キノンイミン色素、
(15)スチリル色素、
(16)硫化カドミウム、
(17)酸化亜鉛
が挙げられる。これらの中でも、特に、金属フタロシアニン顔料が好ましい。その中でも、オキシチタニウムフタロシアニン、クロロガリウムフタロシアニン、ジクロロスズフタロシアニン、ヒドロキシガリウムフタロシアニンが好ましい。その中でも、ヒドロキシガリウムフタロシアニンが特に好ましい。
As the charge generation material used in the present invention,
(1) Azo pigments such as monoazo, disazo, trisazo,
(2) phthalocyanine pigments such as metal phthalocyanines and nonmetal phthalocyanines;
(3) Indigo pigments such as indigo and thioindigo,
(4) Perylene pigments such as perylene anhydride and perylene imide,
(5) polycyclic quinone pigments such as anthraquinone and pyrenequinone,
(6) squarylium dye,
(7) pyrylium salt, thiapyrylium salt,
(8) triphenylmethane dye,
(9) Inorganic materials such as amorphous silicon,
(10) quinacridone pigment,
(11) an azulenium salt pigment,
(12) cyanine dyes,
(13) a xanthene dye,
(14) quinoneimine dye,
(15) styryl dye,
(16) cadmium sulfide,
(17) Examples include zinc oxide. Among these, metal phthalocyanine pigments are particularly preferable. Among these, oxytitanium phthalocyanine, chlorogallium phthalocyanine, dichlorotin phthalocyanine, and hydroxygallium phthalocyanine are preferable. Of these, hydroxygallium phthalocyanine is particularly preferred.

オキシチタニウムフタロシアニンとしては、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の9.0°、14.2°、23.9°および27.1°に強いピークを有するオキシチタニウムフタロシアニン結晶、および、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の9.5°、9.7°、11.7°、15.0°、23.5°、24.1°および27.3°に強いピークを有するオキシチタニウムフタロシアニン結晶
が好ましい。
As oxytitanium phthalocyanine,
An oxytitanium phthalocyanine crystal having strong peaks at 9.0 °, 14.2 °, 23.9 ° and 27.1 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction; and
Bragg angles (2θ ± 0.2 °) of 9.5 °, 9.7 °, 11.7 °, 15.0 °, 23.5 °, 24.1 ° and 27.3 in CuKα characteristic X-ray diffraction Oxytitanium phthalocyanine crystals having a strong peak at ° are preferred.

クロロガリウムフタロシアニンとしては、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.4°、16.6°、25.5および28.2°に強いピークを有するクロロガリウムフタロシアニン結晶、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の6.8°、17.3°、23.6°および26.9°に強いピークを有するクロロガリウムフタロシアニン結晶、および、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の8.7°〜9.2°、17.6°、24.0°、27.4°および28.8°に強いピークを有するクロロガリウムフタロシアニン結晶
が好ましい。
As chlorogallium phthalocyanine,
Chlorogallium phthalocyanine crystals having strong peaks at 7.4 °, 16.6 °, 25.5 and 28.2 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction,
Chlorogallium phthalocyanine crystals having strong peaks at 6.8 °, 17.3 °, 23.6 ° and 26.9 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction, and
Strong peaks at Bragg angles (2θ ± 0.2 °) of 8.7 ° to 9.2 °, 17.6 °, 24.0 °, 27.4 ° and 28.8 ° in CuKα characteristic X-ray diffraction A chlorogallium phthalocyanine crystal is preferable.

ジクロロスズフタロシアニンとしては、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の8.3°、12.2°、13.7°、15.9°、18.9°および28.2°に強いピークを有するジクロロスズフタロシアニン結晶、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の8.5°、11.2°、14.5°および27.2°に強いピークを有するジクロロスズフタロシアニン結晶、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の8.7°、9.9°、10.9°、13.1°、15.2°、16.3°、17.4°、21.9°および25.5°に強いピークを有するジクロロスズフタロシアニン結晶、および、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の9.2°、12.2°、13.4°、14.6°、17.0°および25.3°に強いピークを有するジクロロスズフタロシアニン結晶が好ましい。
As dichlorotin phthalocyanine,
Strong peaks at 8.3 °, 12.2 °, 13.7 °, 15.9 °, 18.9 ° and 28.2 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction Having dichlorotin phthalocyanine crystals,
Dichlorotin phthalocyanine crystals having strong peaks at 8.5 °, 11.2 °, 14.5 ° and 27.2 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction;
Bragg angles (2θ ± 0.2 °) of 8.7 °, 9.9 °, 10.9 °, 13.1 °, 15.2 °, 16.3 °, 17.4 in CuKα characteristic X-ray diffraction Dichlorotin phthalocyanine crystals with strong peaks at °, 21.9 ° and 25.5 °, and
Strong peaks at 9.2 °, 12.2 °, 13.4 °, 14.6 °, 17.0 ° and 25.3 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction The dichlorotin phthalocyanine crystal | crystallization which has is preferable.

ヒドロキシガリウムフタロシアニンとしては、
CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.3°、24.9°および28.1°に強いピークを有するヒドロキシガリウムフタロシアニン結晶、および、
ブラッグ角度(2θ±0.2°)の7.5°、9.9°、12.5°、16.3°、18.6°、25.1°および28.3°に強いピークを有するヒドロキシガリウムフタロシアニン結晶
が好ましい。
As hydroxygallium phthalocyanine,
Hydroxygallium phthalocyanine crystals having strong peaks at 7.3 °, 24.9 ° and 28.1 ° of the Bragg angle (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction; and
Strong peaks at Bragg angles (2θ ± 0.2 °) of 7.5 °, 9.9 °, 12.5 °, 16.3 °, 18.6 °, 25.1 ° and 28.3 ° Hydroxygallium phthalocyanine crystals are preferred.

電荷発生層の結着樹脂としては、例えば、ブチラール樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルメタクリレート樹脂、ポリビニルアクリレート樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリウレタン樹脂、シリコーン樹脂、アルキッド樹脂、エポキシ樹脂、セルロース樹脂、メラミン樹脂が挙げられる。これらの中でも、ブチラール樹脂が好ましい。
電荷発生層中の電荷発生物質の分散粒径は、0.5μm以下が好ましく、0.3μm以下がより好ましく、0.01μm以上0.2μm以下がより好ましい。
電荷発生層の膜厚は0.01μm以上2μm以下が好ましく、0.05μm以上0.3μm以下がより好ましい。
Examples of the binder resin for the charge generation layer include butyral resin, polyester resin, polycarbonate resin, polyarylate resin, polystyrene resin, polyvinyl methacrylate resin, polyvinyl acrylate resin, polyvinyl acetate resin, polyvinyl chloride resin, polyamide resin, polyurethane Examples thereof include resins, silicone resins, alkyd resins, epoxy resins, cellulose resins, and melamine resins. Among these, a butyral resin is preferable.
The dispersed particle diameter of the charge generation material in the charge generation layer is preferably 0.5 μm or less, more preferably 0.3 μm or less, and more preferably 0.01 μm or more and 0.2 μm or less.
The film thickness of the charge generation layer is preferably from 0.01 μm to 2 μm, more preferably from 0.05 μm to 0.3 μm.

電荷輸送層は適当な電荷輸送物質、例えばポリ−N−ビニルカルバゾール、ポリスチリルアントラセンの如き複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール、カルバゾールの如き複素環化合物、トリフェニルメタンの如きトリアリールアルカン誘導体、トリフェニルアミンの如きトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体、ヒドラゾン誘導体などの低分子化合物を適当な結着樹脂(前述の電荷発生層用樹脂の中から選択できる)と共に溶剤に分散/溶解した溶液を前述の公知の方法によって塗布し、乾燥して形成することができる。この場合の電荷輸送物質と結着樹脂の比率は、両者の全質量を100とした場合に電荷輸送物質の質量が好ましくは20〜100、より好ましくは30〜100の範囲である。電荷輸送物質の量がそれより少ないと、電荷輸送能が低下し、感度低下及び残留電位の上昇などの問題点が生ずる。この場合の電荷輸送層の膜厚は好ましくは1〜50μm、より好ましくは3〜30μmの範囲で調整される。
更に、電荷輸送層の上に表面保護層を形成してもよい。
The charge transport layer is formed of a suitable charge transport material, for example, a heterocyclic compound such as poly-N-vinylcarbazole or polystyrylanthracene or a polymer compound having a condensed polycyclic aromatic compound, or a complex such as pyrazoline, imidazole, oxazole, triazole or carbazole. Low molecular weight compounds such as ring compounds, triarylalkane derivatives such as triphenylmethane, triarylamine derivatives such as triphenylamine, phenylenediamine derivatives, N-phenylcarbazole derivatives, stilbene derivatives, and hydrazone derivatives are appropriately bound to resins ( A solution dispersed / dissolved in a solvent together with the resin for charge generation layer) can be applied by the above-mentioned known method and dried. In this case, the ratio of the charge transport material to the binder resin is such that the mass of the charge transport material is preferably 20 to 100, more preferably 30 to 100 when the total mass of both is 100. If the amount of the charge transport material is smaller than that, the charge transport ability is lowered, and problems such as a decrease in sensitivity and an increase in residual potential occur. In this case, the thickness of the charge transport layer is preferably adjusted in the range of 1 to 50 μm, more preferably 3 to 30 μm.
Furthermore, a surface protective layer may be formed on the charge transport layer.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。以下、「部」は、「質量部」を示し、「%」は、「質量%」を示す。
熱可塑性樹脂粒子の粒径及び粒度分散係数ε、金属酸化物粒子の粒径は、Malvern Instrument Ltd社製、Zetasizer NanoZS光散乱粒度分布計(MODEL ZEN3600)を用いた。測定溶媒は水性分散下引層塗布液の溶媒組成と同一とし、測定温度25℃での体積粒度分布を求めた。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, “part” indicates “part by mass”, and “%” indicates “% by mass”.
The particle size and particle size dispersion coefficient ε of the thermoplastic resin particles and the particle size of the metal oxide particles were obtained from Malvern Instrument Ltd. Zetasizer NanoZS light scattering particle size distribution meter (MODEL ZEN 3600). The measurement solvent was the same as the solvent composition of the aqueous dispersion subbing layer coating solution, and the volume particle size distribution at a measurement temperature of 25 ° C. was determined.

〔実施例1〕
熱間押し出しにより得たA3003の外径φ30.5mm、内径φ28.5mm、長さ260.5mmのアルミニウム素管(ED管)を準備した。
次に、酸化スズで形成された被覆層を有する硫酸バリウム微粒子からなる粉体 120部
(被覆率50質量%、粉体比抵抗700Ω・cm)
レゾール型フェノール樹脂 70部
(商品名:ブライオーフェンJ−325、大日本インキ化学工業(株)製、固形分70%)
2−メトキシ−1−プロパノール 100部
上記材料なる溶液を約20時間ボールミルで分散し、導電性粒子樹脂分散層用塗布液を調製した(この塗布液に含有するフィラーの平均粒径は0.22μmであった)。この液を上記アルミニウム素管の上に浸漬コーティング法によって塗布し、温度140℃で30分間加熱硬化することにより、膜厚が15μmの導電性粒子樹脂分散層を形成し、これを導電性支持体とした。
[Example 1]
An aluminum base tube (ED tube) of A3003 obtained by hot extrusion and having an outer diameter of 30.5 mm, an inner diameter of 28.5 mm, and a length of 260.5 mm was prepared.
Next, 120 parts of powder composed of fine particles of barium sulfate having a coating layer formed of tin oxide (coverage: 50 mass%, powder specific resistance: 700 Ω · cm)
70 parts of resol type phenolic resin (Brand Orphen J-325, manufactured by Dainippon Ink & Chemicals, solid content 70%)
2-Methoxy-1-propanol 100 parts The above material solution was dispersed in a ball mill for about 20 hours to prepare a coating solution for conductive particle resin dispersion layer (the average particle size of the filler contained in this coating solution is 0.22 μm). Met). This liquid is applied onto the aluminum base tube by a dip coating method, and is heated and cured at a temperature of 140 ° C. for 30 minutes to form a conductive particle resin dispersion layer having a thickness of 15 μm. It was.

次に、水性分散下引層塗布液を下記のように作製した。ヒーター付きの密閉できる耐圧1リットル用ガラス容器を備えた撹拌機を用いて、
熱可塑性樹脂A 75.0g
(熱可塑性樹脂Aは質量比で、無水マレイン酸3部、エチレン79部、エチルアクリレート18部で構成されるポリオレフィン共重合体とする)
2−プロパノール(IPA) 60.0g
トリエチルアミン(TEA) 5.1g
及び159.9gの蒸留水をガラス容器内に仕込み、撹拌翼の回転速度を300rpmとして撹拌したところ、容器底部には樹脂粒状物の沈澱は認められず、浮遊状態となっていることが確認された。そこでこの状態を保ちつつ、10分後にヒーターの電源を入れ加熱した。そして系内温度を140℃乃至145℃に保って更に20分間撹拌した。その後、水浴につけて、回転速度300rpmのまま攪拌しつつ室温(約25℃)まで冷却した後、300メッシュのステンレス製フィルター(線径0.035mm、平織)で加圧濾過(空気圧0.2MPa)した。そして、乳白色の均一なポリオレフィン樹脂粒子を含有する水性分散液Aを得た。
Next, an aqueous dispersion subbing layer coating solution was prepared as follows. Using a stirrer equipped with a glass container for a pressure-resistant 1 liter that can be sealed with a heater,
Thermoplastic resin A 75.0g
(The thermoplastic resin A is a polyolefin copolymer composed of 3 parts maleic anhydride, 79 parts ethylene, and 18 parts ethyl acrylate).
2-Propanol (IPA) 60.0g
Triethylamine (TEA) 5.1g
And 159.9 g of distilled water were charged into a glass container and stirred at a rotating speed of the stirring blade of 300 rpm. It was confirmed that no sedimentation of resin particles was observed at the bottom of the container, and that it was in a floating state. It was. Therefore, while maintaining this state, the heater was turned on and heated after 10 minutes. The system temperature was kept at 140 ° C. to 145 ° C. and further stirred for 20 minutes. Then, after putting in a water bath and cooling to room temperature (about 25 ° C.) while stirring at a rotational speed of 300 rpm, pressure filtration (air pressure 0.2 MPa) with a 300 mesh stainless steel filter (wire diameter 0.035 mm, plain weave) did. And the aqueous dispersion A containing milky white uniform polyolefin resin particle was obtained.

塩化第二スズ五水和物0.2モルを200mlの水に溶解して0.5Mの水溶液とし、撹拌しながら28%のアンモニア水を添加することでpH1.5の白色酸化スズ超微粒子含有スラリーを得た。得られた酸化スズ超微粒子含有スラリーを温度70℃まで加熱した後、温度約50℃まで自然冷却したうえで純水を加え1Lの酸化スズ超微粒子含有スラリーとし、遠心分離器を用いて固液分離を行った。この含水固形分に800mlの純水を加えて、ホモジナイザーにより撹拌・分散を行った後、遠心分離器を用いて固液分離を行うことで洗浄を行った。洗浄後の含水固形分に純水を75ml加えて酸化スズ超微粒子含有スラリーを調製した。得られた酸化スズ超微粒子含有スラリーにトリエチルアミン(沸点89.7℃)3.0mlを加え撹拌し、透明感が出てきたところで温度70℃まで昇温した。その後、加温をやめ自然冷却することで固形分濃度20質量%の有機アミンを分散安定剤とする酸化スズゾル溶液を得た。   Dissolve 0.2 mol of stannic chloride pentahydrate in 200 ml of water to make a 0.5M aqueous solution, and add white tin oxide ultrafine particles with pH 1.5 by adding 28% ammonia water while stirring A slurry was obtained. The obtained tin oxide ultrafine particle-containing slurry is heated to a temperature of 70 ° C. and then naturally cooled to a temperature of about 50 ° C., and then pure water is added to obtain a 1 L tin oxide ultrafine particle-containing slurry. Separation was performed. After adding 800 ml of pure water to this water-containing solid content, stirring and dispersing with a homogenizer, washing was performed by solid-liquid separation using a centrifuge. 75 ml of pure water was added to the water-containing solid content after washing to prepare a tin oxide ultrafine particle-containing slurry. To the obtained tin oxide ultrafine particle-containing slurry, 3.0 ml of triethylamine (boiling point: 89.7 ° C.) was added and stirred. Then, the tin oxide sol solution which used organic amine with a solid content concentration of 20 mass% as a dispersion stabilizer was obtained by stopping heating and naturally cooling.

水性分散液Aを99部、上記酸化スズゾル溶液875部、IPA350部を混合し水性分散下引層塗布液とした。この水性分散下引層塗布液溶媒組成中での樹脂粒子径は0.240μm、粒度分散係数εは0.37あった。
上記導電性支持体の上に得られた水性分散下引層塗布液を浸漬塗布法で塗布し、温度120℃で10分間乾燥し、膜厚が0.8μmの下引層を形成した。
99 parts of aqueous dispersion A, 875 parts of the above tin oxide sol solution, and 350 parts of IPA were mixed to prepare an aqueous dispersion undercoat layer coating solution. The resin particle size in the aqueous dispersion undercoat layer coating solution solvent composition was 0.240 μm, and the particle size dispersion coefficient ε was 0.37.
The aqueous dispersion undercoat layer coating solution obtained on the conductive support was applied by a dip coating method and dried at a temperature of 120 ° C. for 10 minutes to form an undercoat layer having a thickness of 0.8 μm.

ヒドロキシガリウムフタロシアニン(電荷発生材料) 20部
(CuKαの特性X線回折におけるブラッグ角(2θ±0.2°)の7.3°、24.9°および28.1°に強いピークを有する結晶形)
ポリビニルブチラール樹脂(商品名:BX−1、積水化学工業株式会社製) 10部
シクロヘキサノン 350部
上記材料を、直径1mmのガラスビーズを用いたサンドミルで3時間分散し、これに酢酸エチル1200部を加えて希釈した。このときの電荷発生材料のCAPA−700(堀場製作所(株)製)による分散粒径は0.15μmであった。下引層の上に、この電荷発生層用塗布液を浸漬塗布し、温度100℃で10分間乾燥して、膜厚が0.2μmの電荷発生層を形成した。なお、下引層の水性分散塗布液の熱可塑性樹脂粒子は電荷発生層用塗布液に不溶であった。
Hydroxygallium phthalocyanine (charge generating material) 20 parts (crystal form having strong peaks at 7.3 °, 24.9 ° and 28.1 ° of Bragg angles (2θ ± 0.2 °) in characteristic X-ray diffraction of CuKα) )
Polyvinyl butyral resin (trade name: BX-1, manufactured by Sekisui Chemical Co., Ltd.) 10 parts Cyclohexanone 350 parts The above materials are dispersed in a sand mill using glass beads having a diameter of 1 mm for 3 hours, and 1200 parts of ethyl acetate is added thereto. Diluted. At this time, the dispersed particle diameter of the charge generation material CAPA-700 (manufactured by Horiba, Ltd.) was 0.15 μm. On the undercoat layer, this charge generation layer coating solution was applied by dip coating and dried at a temperature of 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.2 μm. The thermoplastic resin particles in the aqueous dispersion coating solution for the undercoat layer were insoluble in the charge generation layer coating solution.

次に、下記構造式(1)で示される化合物7部、式(2)で示される化合物1部、及び、下記式(3)で示される構成単位を有するビスフェノールC型ポリアリレート樹脂(Mw110000)10部をモノクロルベンゼン50部/メチラール10部に混合溶媒に溶解し、電荷輸送層用塗料を調製した。この塗料を電荷発生層の上に浸漬塗布法で塗布し、温度110℃で1時間乾燥して、膜厚18μmの電荷輸送層を形成した。こうして電子写真感光体を作製した。   Next, 7 parts of a compound represented by the following structural formula (1), 1 part of a compound represented by the following formula (2), and a bisphenol C-type polyarylate resin (Mw110000) having a structural unit represented by the following formula (3) 10 parts was dissolved in 50 parts of monochlorobenzene / 10 parts of methylal in a mixed solvent to prepare a coating for a charge transport layer. This paint was applied on the charge generation layer by a dip coating method and dried at a temperature of 110 ° C. for 1 hour to form a charge transport layer having a thickness of 18 μm. Thus, an electrophotographic photosensitive member was produced.

Figure 2011112931
Figure 2011112931

Figure 2011112931
Figure 2011112931

評価には電子写真装置、ヒューレット−パッカード(株)製カラーレーザープリンター、レーザージェット4600改造機(クリーニングブレードの電子写真感光体に対する当接線圧を550mN/cmに設定)を使用した。上記作製した電子写真感光体を装着し10000枚印字後の感光体表面を観察した。評価は以下のように行った。
・外観異常なし ○
・感光層の浮き上がりが見られる △
・感光層が剥がれている ×
粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
For the evaluation, an electrophotographic apparatus, a color laser printer manufactured by Hewlett-Packard Co., Ltd., and a modified laser jet 4600 (the contact line pressure of the cleaning blade with respect to the electrophotographic photosensitive member is set to 550 mN / cm) were used. The prepared electrophotographic photosensitive member was mounted, and the surface of the photosensitive member after 10000 sheets printing was observed. Evaluation was performed as follows.
・ No appearance abnormality ○
・ The photosensitive layer is lifted.
・ Photosensitive layer is peeled off ×
Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔実施例2〕
酸化チタン(PT401M、石原産業株式会社製)100部、メタノール750部、蒸留水50部に直径1mmのガラスビーズを1000部加え、ペイントシェーカにより15時間分散した。
水性分散下引層塗布液の酸化スズゾル溶液に変え、上記酸化チタン分散液900部を用いた以外は、実施例1と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
[Example 2]
1000 parts of glass beads having a diameter of 1 mm were added to 100 parts of titanium oxide (PT401M, manufactured by Ishihara Sangyo Co., Ltd.), 750 parts of methanol, and 50 parts of distilled water, and dispersed for 15 hours with a paint shaker.
An undercoat layer and a photoreceptor were prepared and evaluated in the same manner as in Example 1 except that 900 parts of the titanium oxide dispersion liquid was used instead of the tin oxide sol solution of the aqueous dispersion undercoat layer coating liquid. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔実施例3〕
酸化チタン(PT401M、石原産業株式会社製)に変え、酸化チタン(TTO−51A、石原産業株式会社製)とした以外は、実施例2と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
Example 3
An undercoat layer and a photoconductor were prepared and evaluated in the same manner as in Example 2 except that titanium oxide (PT401M, manufactured by Ishihara Sangyo Co., Ltd.) was used instead of titanium oxide (TTO-51A, manufactured by Ishihara Sangyo Co., Ltd.). went. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔実施例4〕
撹拌翼の回転速度を100rpmとし、ヒーターの加熱温度を120±5℃に保って更に20分間撹拌した以外は、実施例1と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
Example 4
An undercoat layer and a photoreceptor were prepared and evaluated in the same manner as in Example 1 except that the rotation speed of the stirring blade was 100 rpm and the heating temperature of the heater was kept at 120 ± 5 ° C. and stirring was continued for 20 minutes. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔実施例5〕
撹拌翼の回転速度を500rpmとし、ヒーターの加熱温度を150±5℃に保って更に1時間撹拌した以外は、実施例1と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
Example 5
An undercoat layer and a photoreceptor were prepared and evaluated in the same manner as in Example 1 except that the rotation speed of the stirring blade was 500 rpm and the heating temperature of the heater was maintained at 150 ± 5 ° C. and stirring was continued for 1 hour. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔実施例6〕
熱可塑性樹脂Aを質量比で、無水マレイン酸1部、エチレン60部、エチルアクリレート39部で構成されるポリオレフィン共重合体とした以外は、実施例3と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
Example 6
An undercoat layer and a photoconductor were prepared in the same manner as in Example 3 except that the thermoplastic resin A was a polyolefin copolymer composed of 1 part maleic anhydride, 60 parts ethylene, and 39 parts ethyl acrylate in terms of mass ratio. And evaluated. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔実施例7〕
熱可塑性樹脂Aを質量比で、無水マレイン酸3部、エチレン87部、エチルアクリレート10部で構成されるポリオレフィン共重合体とし、酸化チタン(PT401M、石原産業株式会社製)に変え、酸化チタン(CR−EL、石原産業株式会社製)とした以外は、実施例2と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
Example 7
The thermoplastic resin A is made into a polyolefin copolymer composed of 3 parts of maleic anhydride, 87 parts of ethylene and 10 parts of ethyl acrylate by mass ratio, and is changed to titanium oxide (PT401M, manufactured by Ishihara Sangyo Co., Ltd.). An undercoat layer and a photoconductor were prepared and evaluated in the same manner as in Example 2 except that CR-EL (manufactured by Ishihara Sangyo Co., Ltd.) was used. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔実施例8〕
熱可塑性樹脂Aを質量比で、無水マレイン酸3部、エチレン90部、エチルアクリレート7部で構成されるポリオレフィン共重合体とし、酸化チタン(PT401M、石原産業株式会社製)に変え、酸化チタン(PT−301、石原産業株式会社製)とした以外は、実施例2と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
Example 8
The thermoplastic resin A is made into a polyolefin copolymer composed of 3 parts of maleic anhydride, 90 parts of ethylene and 7 parts of ethyl acrylate by mass ratio, and is changed to titanium oxide (PT401M, manufactured by Ishihara Sangyo Co., Ltd.). An undercoat layer and a photoreceptor were prepared and evaluated in the same manner as in Example 2 except that PT-301 (manufactured by Ishihara Sangyo Co., Ltd.) was used. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔比較例1〕
撹拌翼の回転速度を50rpmとし、ヒーターの加熱温度を110±5℃に保って更に20分間撹拌した以外は、実施例2と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
[Comparative Example 1]
An undercoat layer and a photoreceptor were prepared and evaluated in the same manner as in Example 2 except that the rotation speed of the stirring blade was 50 rpm and the heating temperature of the heater was maintained at 110 ± 5 ° C. and stirring was continued for 20 minutes. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔比較例2〕
撹拌翼の回転速度を1000rpmとし、ヒーターの加熱温度を170±5℃に保って更に2時間撹拌した以外は、実施例2と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
[Comparative Example 2]
An undercoat layer and a photoreceptor were prepared and evaluated in the same manner as in Example 2 except that the rotation speed of the stirring blade was 1000 rpm and the heating temperature of the heater was maintained at 170 ± 5 ° C. and stirring was further performed for 2 hours. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

〔比較例3〕
酸化チタン(TTO51A、石原産業株式会社製)に変え、酸化チタン(PT−301、石原産業株式会社製)とした以外は、実施例2と同様に下引層及び感光体を作製し、評価を行った。粒径、粒度分散係数の測定結果、及び評価結果を表1に示す。
[Comparative Example 3]
An undercoat layer and a photoconductor were prepared and evaluated in the same manner as in Example 2 except that titanium oxide (TTO51A, manufactured by Ishihara Sangyo Co., Ltd.) was used instead of titanium oxide (PT-301, manufactured by Ishihara Sangyo Co., Ltd.). went. Table 1 shows the particle diameter, the measurement result of the particle size dispersion coefficient, and the evaluation result.

Figure 2011112931
以上のように、本発明により、支持体と感光層の接着性が良好な電子写真感光体の製造方法を見出した。
Figure 2011112931
As described above, the present invention has found a method for producing an electrophotographic photoreceptor having good adhesion between the support and the photosensitive layer.

Claims (4)

支持体の上に下引層と感光層を有し、該下引層を成膜するために塗布する水性分散下引層塗布液が水に不溶な熱可塑性樹脂粒子と金属酸化物粒子を含有し、該熱可塑性樹脂粒子に対する該金属酸化物粒子の体積比が0.5〜2.0倍である電子写真感光体の製造方法であり、
該熱可塑性樹脂粒子の該水性分散下引層塗布液中の体積粒度分布が、10%、50%、90%体積に対応する粒子径をそれぞれD10、D50、D90とし、粒度分散係数ε=(D90−D10)/D50とするとき、粒度分散係数εが0.2以上1.0以下を満たし、該金属酸化物粒子の一次粒径が該D50の0.5倍以下である該水性分散下引層塗布液を塗布して塗膜を形成後、該塗膜を加熱して該熱可塑性樹脂粒子を融解して下引層を成膜することを特徴とする電子写真感光体の製造方法。
The substrate has a subbing layer and a photosensitive layer, and the aqueous dispersion subbing layer coating liquid applied to form the subbing layer contains thermoplastic resin particles and metal oxide particles that are insoluble in water. The volume ratio of the metal oxide particles to the thermoplastic resin particles is 0.5 to 2.0 times,
The particle size distribution of the thermoplastic resin particles in the aqueous dispersion subbing layer coating solution corresponding to 10%, 50%, and 90% volume is D10, D50, and D90, respectively, and the particle size dispersion coefficient ε = ( D90−D10) / D50, the particle size dispersion coefficient ε satisfies 0.2 or more and 1.0 or less, and the primary particle size of the metal oxide particles is 0.5 times or less of the D50. A method for producing an electrophotographic photoreceptor, comprising: forming an undercoat layer by applying an undercoat layer coating solution to form a coating film, and then heating the coating film to melt the thermoplastic resin particles.
前記D50が50〜500nmであることを特徴とする請求項1に記載の電子写真感光体の製造方法。   The method for producing an electrophotographic photosensitive member according to claim 1, wherein the D50 is 50 to 500 nm. 前記熱可塑性樹脂粒子がポリオレフィン樹脂であることを特徴とする請求項1又は2に記載の電子写真感光体の製造方法。   The method for producing an electrophotographic photosensitive member according to claim 1, wherein the thermoplastic resin particles are a polyolefin resin. 塗膜の加熱温度が前記熱可塑性樹脂粒子の融点以上であることを特徴とする請求項1乃至3のいずれか一項に記載の電子写真感光体の製造方法。
The method for producing an electrophotographic photosensitive member according to any one of claims 1 to 3, wherein a heating temperature of the coating film is equal to or higher than a melting point of the thermoplastic resin particles.
JP2009270200A 2009-11-27 2009-11-27 Method for producing electrophotographic photosensitive member Active JP5479053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270200A JP5479053B2 (en) 2009-11-27 2009-11-27 Method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270200A JP5479053B2 (en) 2009-11-27 2009-11-27 Method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2011112931A true JP2011112931A (en) 2011-06-09
JP2011112931A5 JP2011112931A5 (en) 2013-01-17
JP5479053B2 JP5479053B2 (en) 2014-04-23

Family

ID=44235288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270200A Active JP5479053B2 (en) 2009-11-27 2009-11-27 Method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP5479053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099191A1 (en) * 2013-12-26 2015-07-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114853A (en) * 1987-10-28 1989-05-08 Showa Alum Corp Electrophotograhic sensitive body
JPH07234533A (en) * 1994-02-23 1995-09-05 New Oji Paper Co Ltd Electrophotographic lithographic plate material
JPH08240882A (en) * 1994-11-21 1996-09-17 Eastman Kodak Co Imaging element and its manufacture
JPH11194520A (en) * 1997-12-26 1999-07-21 Sharp Corp Electrophotographic photoreceptor, production thereof, and image forming device using the same
JP2003119328A (en) * 2001-01-15 2003-04-23 Unitika Ltd Aqueous dispersion of polyolefin resin and method for producing the same
JP2003268164A (en) * 2002-03-13 2003-09-25 Unitika Ltd Aqueous dispersion and laminated film
JP2004054122A (en) * 2002-07-23 2004-02-19 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2005292782A (en) * 2004-03-08 2005-10-20 Konica Minolta Business Technologies Inc Organophotoreceptor, process cartridge and image forming apparatus
JP2009288629A (en) * 2008-05-30 2009-12-10 Canon Inc Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP2009288621A (en) * 2008-05-30 2009-12-10 Canon Inc Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus using the same
JP2011095663A (en) * 2009-11-02 2011-05-12 Canon Inc Method for manufacturing electrophotographic photoreceptor
JP2011095672A (en) * 2009-11-02 2011-05-12 Canon Inc Method for manufacturing electrophotographic photoreceptor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114853A (en) * 1987-10-28 1989-05-08 Showa Alum Corp Electrophotograhic sensitive body
JPH07234533A (en) * 1994-02-23 1995-09-05 New Oji Paper Co Ltd Electrophotographic lithographic plate material
JPH08240882A (en) * 1994-11-21 1996-09-17 Eastman Kodak Co Imaging element and its manufacture
JPH11194520A (en) * 1997-12-26 1999-07-21 Sharp Corp Electrophotographic photoreceptor, production thereof, and image forming device using the same
JP2003119328A (en) * 2001-01-15 2003-04-23 Unitika Ltd Aqueous dispersion of polyolefin resin and method for producing the same
JP2003268164A (en) * 2002-03-13 2003-09-25 Unitika Ltd Aqueous dispersion and laminated film
JP2004054122A (en) * 2002-07-23 2004-02-19 Canon Inc Electrophotographic photoreceptor, process cartridge, and electrophotographic device
JP2005292782A (en) * 2004-03-08 2005-10-20 Konica Minolta Business Technologies Inc Organophotoreceptor, process cartridge and image forming apparatus
JP2009288629A (en) * 2008-05-30 2009-12-10 Canon Inc Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP2009288621A (en) * 2008-05-30 2009-12-10 Canon Inc Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus using the same
JP2011095663A (en) * 2009-11-02 2011-05-12 Canon Inc Method for manufacturing electrophotographic photoreceptor
JP2011095672A (en) * 2009-11-02 2011-05-12 Canon Inc Method for manufacturing electrophotographic photoreceptor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099191A1 (en) * 2013-12-26 2015-07-02 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2015143832A (en) * 2013-12-26 2015-08-06 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge, and electrophotographic device
US9904188B2 (en) 2013-12-26 2018-02-27 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Also Published As

Publication number Publication date
JP5479053B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
KR101250144B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
EP2816412B1 (en) Process for producing electrophotographic photosensitive member
JP5054238B1 (en) Method for producing electrophotographic photosensitive member
JP6108842B2 (en) Method for producing electrophotographic photosensitive member
JP5361666B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3522604B2 (en) Electrophotographic photoreceptor
JP2009288629A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP4505513B2 (en) Electrophotographic photosensitive member undercoat coating liquid, electrophotographic photosensitive member, and image forming apparatus
JP5430354B2 (en) Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus
JP5361667B2 (en) Method for producing electrophotographic photosensitive member
JP5479053B2 (en) Method for producing electrophotographic photosensitive member
JP5479031B2 (en) Method for producing electrophotographic photosensitive member and electrophotographic photosensitive member
JP2009288628A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP5479041B2 (en) Method for producing electrophotographic photosensitive member
JP2009288623A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus including the electrophotographic photoreceptor
JP5268407B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP2000267323A (en) Electrophotographic photoreceptor
JP2001188376A (en) Electrophotographic photoreceptor
JP5483849B2 (en) Method for producing coating liquid for electrophotographic photosensitive member, and method for producing electrophotographic photosensitive member
JP5517579B2 (en) Method for producing electrophotographic photosensitive member
JP3617292B2 (en) Electrophotographic photoreceptor
JPH1115183A (en) Electrophotographic photoreceptor
JP2023109504A (en) Electrophotographic photoreceptor and image forming apparatus including the same, and method for manufacturing electrophotographic photoreceptor and coating liquid for undercoat layer used for the same
JP6413762B2 (en) Electrophotographic photosensitive member, image forming apparatus, and cartridge
JP5499580B2 (en) Method for producing coating liquid for forming undercoat layer of electrophotographic photosensitive member, and electrophotographic photosensitive member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R151 Written notification of patent or utility model registration

Ref document number: 5479053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03