JP2011094644A - Method and device for manufacturing high-pressure gas tank - Google Patents

Method and device for manufacturing high-pressure gas tank Download PDF

Info

Publication number
JP2011094644A
JP2011094644A JP2009246536A JP2009246536A JP2011094644A JP 2011094644 A JP2011094644 A JP 2011094644A JP 2009246536 A JP2009246536 A JP 2009246536A JP 2009246536 A JP2009246536 A JP 2009246536A JP 2011094644 A JP2011094644 A JP 2011094644A
Authority
JP
Japan
Prior art keywords
liner
resin layer
tank
thermosetting
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246536A
Other languages
Japanese (ja)
Inventor
Takeshi Hatta
健 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009246536A priority Critical patent/JP2011094644A/en
Publication of JP2011094644A publication Critical patent/JP2011094644A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for manufacturing a high-pressure gas tank formed with a fiber reinforcement resin layer on an outer periphery of a resin liner, which is useful for maintaining the shape of the high-pressure gas tank. <P>SOLUTION: An intermediate product tank 12 includes the fiber reinforcement resin layer 20 impregnated with epoxy resin before heat curing, on the outer periphery of the liner 10 made of a resin container. In the heat curing of the epoxy resin of the fiber reinforcement resin layer 20, the intermediate product tank 12 is heated for heat-curing the epoxy resin while applying ultrasonic vibration along the axial direction of the liner to the intermediate product tank 12 pivotally supported by a tank pivotally-supporting shaft 112. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高圧ガスタンクの製造方法と製造装置に関するものである。   The present invention relates to a manufacturing method and a manufacturing apparatus for a high-pressure gas tank.

従来、高圧ガスタンクの製造方法について、種々の技術が提案されている。例えば、下記特許文献1には、ライナーとしての金属製タンクの外面に帯状の炭素繊維強化プラスチック材を複数層にわたって巻き付けてなる複合高圧タンクの製作方法が記載されている。   Conventionally, various techniques have been proposed for manufacturing a high-pressure gas tank. For example, Patent Document 1 described below describes a method for manufacturing a composite high-pressure tank in which a belt-like carbon fiber reinforced plastic material is wound around a plurality of layers on the outer surface of a metal tank as a liner.

近年では、燃料ガスの燃焼エネルギや、燃料ガスの電気化学反応によって発電された電気エネルギによって駆動する車両が開発されており、高圧ガスタンクには、天然ガスや水素等の燃料ガスが貯蔵され、車両に搭載される場合がある。このため、高圧ガスタンクの軽量化が求められており、炭素繊維強化プラスチックや、ガラス繊維強化プラスチック(以下、これらを総称して、繊維強化樹脂層と呼ぶ)で被覆するライナーとして、樹脂製容器を用いることが検討されている。   In recent years, vehicles that are driven by combustion energy of fuel gas or electric energy generated by electrochemical reaction of fuel gas have been developed. Fuel gas such as natural gas or hydrogen is stored in the high-pressure gas tank, and the vehicle May be installed. For this reason, weight reduction of a high-pressure gas tank is required, and a resin container is used as a liner for covering with carbon fiber reinforced plastic or glass fiber reinforced plastic (hereinafter collectively referred to as a fiber reinforced resin layer). Use is under consideration.

一般に、このような高圧ガスタンクは、エポキシ樹脂等の熱硬化性樹脂を含浸した繊維強化樹脂層をライナー外周に形成する。こうした繊維強化樹脂層の形成に際しては、熱硬化性樹脂を含浸した繊維を樹脂製容器の外周に繰り返し巻き付けて繊維強化樹脂層とし、その後に、当該樹脂層に含まれる熱硬化樹脂を熱硬化させる。これにより、樹脂製容器のライナーを繊維強化樹脂層で被覆した高圧ガスタンクが製造される。   In general, such a high-pressure gas tank has a fiber reinforced resin layer impregnated with a thermosetting resin such as an epoxy resin formed on the outer periphery of the liner. When forming such a fiber reinforced resin layer, a fiber impregnated with a thermosetting resin is repeatedly wound around the outer periphery of a resin container to form a fiber reinforced resin layer, and then the thermosetting resin contained in the resin layer is thermally cured. . Thus, a high-pressure gas tank in which the liner of the resin container is covered with the fiber reinforced resin layer is manufactured.

特開2001−153296号公報JP 2001-153296 A

ところで、ライナー外周への上述した繊維強化樹脂層の形成に用いられる熱硬化性樹脂は、その熱硬化の間に与えられる熱により低粘度となった後に熱硬化し、この熱硬化を起こす際に接着剤として機能する。ライナーにあっては、樹脂製である都合上、熱硬化の間に熱収縮を起こす。このため、ライナー表面と繊維強化樹脂層の最下層との間には隙間が生じ、その隙間に入り込んだ熱硬化性樹脂は、ライナーと繊維強化樹脂層とを固着させる。こうした熱硬化性樹脂によるライナー固着がライナー外周において部分的に起きると、タンク使用期間においてその部分的なライナー固着部位の接着界面に応力の集中が起きやすくなる。ライナーは、軽量化のために樹脂製とされた上で薄肉とされることから、上記した部分的な応力集中によるライナーの変形が危惧されるに至った。   By the way, the thermosetting resin used for forming the above-described fiber reinforced resin layer on the outer periphery of the liner is thermoset after becoming low viscosity due to heat applied during the thermosetting, and this thermosetting occurs. Acts as an adhesive. In the liner, due to the fact that it is made of resin, heat shrinkage occurs during thermosetting. Therefore, a gap is generated between the liner surface and the lowermost layer of the fiber reinforced resin layer, and the thermosetting resin that has entered the gap fixes the liner and the fiber reinforced resin layer. When such liner fixing by the thermosetting resin partially occurs on the outer periphery of the liner, stress concentration tends to occur at the adhesive interface of the partial liner fixing part during the use period of the tank. Since the liner is made of resin for weight reduction and thin, the liner has been feared to be deformed due to the partial stress concentration described above.

本発明は、上述の課題を解決するためになされたものであり、熱硬化性樹脂の熱硬化を経て繊維強化樹脂層をライナー外周に形成した高圧ガスタンクの形状維持に有益な新たな製造手法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and provides a new manufacturing method useful for maintaining the shape of a high-pressure gas tank in which a fiber-reinforced resin layer is formed on the outer periphery of a liner through thermosetting of a thermosetting resin. The purpose is to provide.

上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。   In order to achieve at least a part of the above object, the present invention adopts the following configuration.

[適用1:高圧ガスタンクの製造方法]
高圧ガスタンクの製造方法であって、
樹脂製容器をライナーとして用意する工程と、
前記ライナーの外周に、熱硬化性樹脂を含浸した繊維強化樹脂層を形成する繊維強化樹脂層形成工程と、
前記繊維強化樹脂層の形成済みの前記ライナーを軸支し、該軸支したライナーにライナー軸方向に沿った振動を付与しつつ前記繊維強化樹脂層を熱硬化させる熱硬化工程とを備える
ことを要旨とする。
[Application 1: Manufacturing method of high-pressure gas tank]
A method for manufacturing a high-pressure gas tank, comprising:
Preparing a resin container as a liner;
A fiber reinforced resin layer forming step for forming a fiber reinforced resin layer impregnated with a thermosetting resin on the outer periphery of the liner;
A thermosetting step of supporting the liner on which the fiber reinforced resin layer has been formed, and thermosetting the fiber reinforced resin layer while applying vibration along the liner axial direction to the supported liner. The gist.

上記構成を備える高圧ガスタンクの製造方法では、樹脂性容器のライナー外周に繊維強化樹脂層を形成した後に、軸支したライナーにライナー軸方向に沿った振動を付与しつつ、繊維強化樹脂層に含まれる熱硬化性樹脂を熱硬化させる。このため、ライナー表面と繊維強化樹脂層の最下層との間に生じた隙間に、熱硬化前で低粘度の熱硬化性樹脂が入り込んでも、その樹脂は、ライナー軸方向に沿った振動に伴う力を受けて、部分的に留まり難くなる。この結果、熱硬化した熱硬化性樹脂によるライナー固着は、ライナー外周において部分的に起きる可能性は低くなり、ライナー外周においてほぼ均等化する。よって、上記構成を備える高圧ガスタンクの製造方法によれば、ライナーと繊維強化樹脂層の接着界面における応力集中を抑制でき、高圧ガスタンクの形状維持に寄与できる。   In the manufacturing method of the high-pressure gas tank having the above-described configuration, after forming the fiber reinforced resin layer on the outer periphery of the liner of the resinous container, it is included in the fiber reinforced resin layer while giving vibration along the axial direction of the liner to the supported liner. The thermosetting resin is cured. For this reason, even if a low-viscosity thermosetting resin enters the gap formed between the liner surface and the lowermost layer of the fiber reinforced resin layer before thermosetting, the resin is accompanied by vibration along the liner axial direction. Receiving power, it becomes difficult to stay partially. As a result, the liner fixing by the thermosetting resin that has been thermoset is less likely to occur partially on the outer periphery of the liner, and is almost equalized on the outer periphery of the liner. Therefore, according to the method for manufacturing a high-pressure gas tank having the above-described configuration, it is possible to suppress stress concentration at the bonding interface between the liner and the fiber reinforced resin layer, and to contribute to maintaining the shape of the high-pressure gas tank.

軸支したライナーにライナー軸方向に沿った振動を付与するには、振動発生源、例えば超音波振動発振機をライナーの軸支軸端面に装着することが簡便である。   In order to apply vibration along the liner axial direction to the supported liner, it is convenient to attach a vibration source, for example, an ultrasonic vibration oscillator to the end shaft of the liner.

本発明は、上述した高圧ガスタンクの製造方法としての構成の他、この製造方法によって製造された高圧ガスタンクや、高圧ガスタンクの製造装置の発明として構成することもできる。   The present invention can be configured as an invention of a high-pressure gas tank manufactured by this manufacturing method and a high-pressure gas tank manufacturing apparatus in addition to the above-described configuration as a high-pressure gas tank manufacturing method.

本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing process of the high pressure gas tank as one Example of this invention. 熱硬化炉100における中間生成品タンク12の保持の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the holding | maintenance of the intermediate product tank 12 in the thermosetting furnace 100. FIG.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の一実施例としての高圧ガスタンクの製造工程を模式的に示す説明図である。本実施例では、高圧ガスタンクを、高圧水素を貯蔵する高圧水素タンクとした。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view schematically showing a manufacturing process of a high-pressure gas tank as an embodiment of the present invention. In this embodiment, the high-pressure gas tank is a high-pressure hydrogen tank that stores high-pressure hydrogen.

本実施例のタンク製造工程では、まず、図1(a)に示したように、樹脂製容器をライナー10として用意する。本実施例では、樹脂容器として、ナイロン系樹脂からなる樹脂製容器を用いるものとした。樹脂容器として、他の樹脂からなる樹脂容器を用いるものとしてもよい。   In the tank manufacturing process of the present embodiment, first, a resin container is prepared as a liner 10 as shown in FIG. In this embodiment, a resin container made of a nylon resin is used as the resin container. As the resin container, a resin container made of another resin may be used.

次に、図1(b)に示したように、ライナー10の外周部に、繊維強化樹脂層20を形成する(繊維強化樹脂層形成工程)。本実施例では、繊維強化樹脂層形成工程として、ライナーの外周部に、フィラメント・ワインディング法(FW法)によって、熱硬化性樹脂としてのエポキシ樹脂を含浸したカーボン繊維を繰り返し巻き付けることにより、カーボン繊維層を形成する(図1(b−1))。その後、カーボン繊維層外周部に、さらに、フィラメント・ワインディング法(FW法)によって、熱硬化性樹脂としてのエポキシ樹脂を含浸したガラス繊維を繰り返し巻き付けることにより、ガラス繊維層をカーボン繊維層に重ねて形成する(図1(b−2))。こうして重なったカーボン繊維層とガラス繊維層が、ライナー外周表面の繊維強化樹脂層20となり、樹脂層形成済みの中間生成品タンク12が得られる。ガラス繊維層はカーボン繊維層よりも機械的強度が高いため、高圧水素タンクの機械的強度を高くすることができる。エポキシ樹脂に代えて、ポリエステル樹脂やポリアミド樹脂等の熱硬化性樹脂を用いることもできる。   Next, as shown in FIG.1 (b), the fiber reinforced resin layer 20 is formed in the outer peripheral part of the liner 10 (fiber reinforced resin layer formation process). In this embodiment, as a fiber reinforced resin layer forming step, carbon fibers impregnated with an epoxy resin as a thermosetting resin are repeatedly wound around the outer periphery of a liner by a filament winding method (FW method). A layer is formed (FIG. 1B-1). Thereafter, the glass fiber layer is overlapped on the carbon fiber layer by repeatedly winding the glass fiber impregnated with an epoxy resin as a thermosetting resin by the filament winding method (FW method) around the outer periphery of the carbon fiber layer. It forms (FIG.1 (b-2)). The overlapped carbon fiber layer and glass fiber layer become the fiber reinforced resin layer 20 on the outer peripheral surface of the liner, and the intermediate product tank 12 having the resin layer formed thereon is obtained. Since the glass fiber layer has higher mechanical strength than the carbon fiber layer, the mechanical strength of the high-pressure hydrogen tank can be increased. Instead of the epoxy resin, a thermosetting resin such as a polyester resin or a polyamide resin can be used.

上述した繊維強化樹脂層形成工程では、ライナー10の外周にカーボン繊維とガラス繊維を重ねて繰り返し巻き付けて、カーボン繊維層とガラス繊維層を形成するが、その際に、ガラス繊維層の表面には、過剰なエポキシ樹脂が浮き出す。この浮き出したエポキシ樹脂は、後述の熱硬化工程を経て繊維強化樹脂層の最外周部で熱硬化して樹脂熱硬化層(エポキシ樹脂硬化層)となる。そして、樹脂浮き出しの程度は、FW法により繊維巻き付けの条件、例えば、巻き取り速度や樹脂含浸の程度等によって定まり、通常は1〜2mmと想定され、この厚みで樹脂熱硬化層(エポキシ樹脂硬化層)が形成されることになる。ライナー10の外周表面の側では、図1(b)に示す繊維強化樹脂層形成工程において、カーボン繊維層が熱硬化前のエポキシ樹脂を含浸した状態でライナー外周表面にほぼ密着している。なお、本実施例では、カーボン繊維とこれに重なるガラス繊維とで繊維強化樹脂層20を形成したが、カーボン繊維での繊維強化樹脂層20の形成、ガラス繊維での繊維強化樹脂層20の形成とすることもできる。また、アラミド繊維での繊維強化樹脂層20の形成を行うようにすることもできる。   In the fiber reinforced resin layer forming step described above, the carbon fiber and the glass fiber are overlapped and repeatedly wound around the outer periphery of the liner 10 to form the carbon fiber layer and the glass fiber layer. Excess epoxy resin pops up. This raised epoxy resin is thermally cured at the outermost peripheral portion of the fiber reinforced resin layer through a thermosetting process described later to become a resin thermosetting layer (epoxy resin cured layer). The degree of the resin protrusion is determined by the fiber winding condition by the FW method, for example, the winding speed and the degree of resin impregnation, and is normally assumed to be 1 to 2 mm. With this thickness, the resin thermosetting layer (epoxy resin curing) Layer) will be formed. On the outer peripheral surface side of the liner 10, in the fiber reinforced resin layer forming step shown in FIG. 1B, the carbon fiber layer is almost in close contact with the liner outer peripheral surface in a state of being impregnated with the epoxy resin before thermosetting. In this embodiment, the fiber reinforced resin layer 20 is formed of carbon fibers and glass fibers overlapping with the carbon fibers. However, the fiber reinforced resin layer 20 is formed of carbon fibers, and the fiber reinforced resin layer 20 of glass fibers is formed. It can also be. Alternatively, the fiber reinforced resin layer 20 may be formed of aramid fibers.

繊維強化樹脂層20の形成に続いては、熱硬化を行う。図2は熱硬化炉100における中間生成品タンク12の保持の様子を模式的に示す説明図である。熱硬化工程では、図1(c)と図2に示す熱硬化炉100を用いる。この熱硬化炉100は、架台110にタンク軸支シャフト112を回転可能に軸支する他、軸支済みのタンク軸支シャフト112の炉内上方に長尺状の放熱ヒーター114を備える。よって、熱硬化炉100は、中間生成品タンク12をタンク軸方向において均等に加熱する。また、熱硬化炉100は、タンク軸支シャフト112の図における右端において、タンク軸支シャフト112をチャック116を経てタンク回転機構118に連結する。タンク回転機構118は、超音波振動発振機120を内蔵し、この発振機は、タンク軸支シャフト112にシャフト右端面からシャフト軸方向に沿った超音波振動を付与する。このため、タンク軸支シャフト112の装着を経て熱硬化炉100にセットされた中間生成品タンク12は、タンク軸支シャフト112を介して、図中矢印Aに示すようにライナー軸方向に沿って超音波振動しつつ、ライナー軸周りに回転する。   Subsequent to the formation of the fiber reinforced resin layer 20, thermosetting is performed. FIG. 2 is an explanatory view schematically showing how the intermediate product tank 12 is held in the thermosetting furnace 100. In the thermosetting process, a thermosetting furnace 100 shown in FIG. 1C and FIG. 2 is used. The thermosetting furnace 100 includes a tank heat-supporting shaft 112 rotatably supported on a gantry 110 and a long radiating heater 114 above the shaft-supported tank shaft support shaft 112 in the furnace. Therefore, the thermosetting furnace 100 heats the intermediate product tank 12 evenly in the tank axial direction. Further, the thermosetting furnace 100 connects the tank support shaft 112 to the tank rotation mechanism 118 via the chuck 116 at the right end of the tank support shaft 112 in the drawing. The tank rotation mechanism 118 incorporates an ultrasonic vibration oscillator 120, and this oscillator applies ultrasonic vibration along the shaft axis direction from the right end surface of the shaft to the tank shaft 112. For this reason, the intermediate product tank 12 set in the thermosetting furnace 100 through the mounting of the tank shaft 112 is moved along the liner shaft direction through the tank shaft 112 as shown by an arrow A in the figure. It rotates around the liner axis while vibrating ultrasonically.

上記した熱硬化炉100を用いた熱硬化工程では、熱硬化炉100への搬入に先だち、樹脂層形成済みの中間生成品タンク12にタンク軸支シャフト112を装着する。タンク軸支シャフト112は、中間生成品タンク12の両端の口金14に挿入され、タンク両端からシャフトを出した状態で、架台110に軸支される。こうして中間生成品タンク12を軸支した後、熱硬化炉100は、超音波振動発振機120によるタンク軸支シャフト112を介した中間生成品タンク12への軸方向の超音波振動付与と、タンク回転機構118によるタンク軸支シャフト112を介した回転付与と、放熱ヒーター114による熱放射とを並行して実施する。このため、中間生成品タンク12は、ライナー軸方向に沿って超音波振動しつつ回転しながら熱放射を受けることになる。この熱放射により、中間生成品タンク12を構成するライナー10は、樹脂製であるために熱収縮を起こし、繊維強化樹脂層20のエポキシ樹脂は、低粘度となった上で熱硬化する。繊維強化樹脂層20の熱硬化後に冷却養生を経ることで、ライナー10の外周にエポキシ樹脂を含浸して熱硬化した繊維強化樹脂層20を有する高圧水素タンク30が得られる。   In the thermosetting process using the thermosetting furnace 100 described above, the tank shaft 112 is attached to the intermediate product tank 12 on which the resin layer has been formed prior to carrying into the thermosetting furnace 100. The tank pivot shaft 112 is inserted into the caps 14 at both ends of the intermediate product tank 12 and is pivotally supported by the gantry 110 with the shaft extending from both ends of the tank. After the intermediate product tank 12 is pivotally supported in this way, the thermosetting furnace 100 applies the ultrasonic vibration in the axial direction to the intermediate product tank 12 via the tank pivot shaft 112 by the ultrasonic vibration oscillator 120, and the tank. The rotation imparting via the tank shaft 112 by the rotation mechanism 118 and the heat radiation by the heat radiating heater 114 are performed in parallel. For this reason, the intermediate product tank 12 receives heat radiation while rotating while ultrasonically vibrating along the liner axial direction. Due to this heat radiation, the liner 10 constituting the intermediate product tank 12 is made of resin, and thus heat shrinks, and the epoxy resin of the fiber reinforced resin layer 20 is thermoset after becoming low viscosity. By passing through cooling curing after the thermosetting of the fiber reinforced resin layer 20, the high pressure hydrogen tank 30 having the fiber reinforced resin layer 20 that is thermoset by impregnating the outer periphery of the liner 10 with an epoxy resin is obtained.

以上説明したように、本実施例の製造方法では、繊維強化樹脂層20のエポキシ樹脂の熱硬化に際して、中間生成品タンク12を回転させつつ放熱するだけではなく、熱硬化のための放熱の際に、中間生成品タンク12にライナー軸方向に沿った超音波振動を付与する。よって、次の利点がある。   As described above, in the manufacturing method of the present embodiment, when the epoxy resin of the fiber reinforced resin layer 20 is thermally cured, not only is the heat dissipated while rotating the intermediate product tank 12, but also the heat radiation for heat curing. In addition, ultrasonic vibration along the liner axial direction is applied to the intermediate product tank 12. Therefore, there are the following advantages.

エポキシ樹脂は、図1に中間生成品タンク12の一部を破断して模式的に示すように、ライナー10の外周表面で繊維巻回が層状となった繊維強化樹脂層20の各層の繊維に含浸されて各層間にも浸み込む他、低粘度であるために、熱収縮したライナー10の外周表面と繊維強化樹脂層20の最下層との間に生じた隙間にも入り込む。これらのエポキシ樹脂は、放熱ヒーター114からの放熱を受けて低粘度化を経て熱硬化するが、低粘度の状態にある間は元より熱硬化の間においても、ライナー軸方向に沿った超音波振動に伴う力を受ける。このため、熱硬化前で低粘度のエポキシ樹脂は、熱収縮したライナー10の外周表面と繊維強化樹脂層20の最下層との間隙に入り込んでも、その入り込んだ間隙に部分的に留まる様なことはなく、ライナー10の外周表面に沿って広がることになる。このため、熱硬化したエポキシ樹脂によるライナー10と繊維強化樹脂層20との固着は、ライナー外周において部分的に起きる難くなり、ライナー外周においてほぼ均等化する。この結果、本実施例の高圧ガスタンクの製造方法によれば、ライナー10と繊維強化樹脂層20の接着界面における応力集中を抑制でき、高圧水素タンク30の形状を高い実効性で維持できる。   The epoxy resin is formed on the fibers of each layer of the fiber reinforced resin layer 20 in which the fiber winding is layered on the outer peripheral surface of the liner 10 as schematically shown in FIG. In addition to being impregnated and soaked in the respective layers, since it has a low viscosity, it also enters a gap formed between the outer peripheral surface of the thermally contracted liner 10 and the lowermost layer of the fiber reinforced resin layer 20. These epoxy resins receive heat from the heat radiating heater 114 and are cured through low viscosity. However, while the epoxy resin is in a low viscosity state, ultrasonic waves along the liner axial direction are also used during heat curing. Subject to vibrational forces. For this reason, even if the epoxy resin having low viscosity before thermosetting enters the gap between the outer peripheral surface of the heat-shrinkable liner 10 and the lowermost layer of the fiber reinforced resin layer 20, the epoxy resin should remain partially in the gap. Rather, it will spread along the outer peripheral surface of the liner 10. For this reason, the fixing between the liner 10 and the fiber reinforced resin layer 20 by the thermosetting epoxy resin is difficult to occur partially at the outer periphery of the liner, and is almost equalized at the outer periphery of the liner. As a result, according to the high pressure gas tank manufacturing method of the present embodiment, stress concentration at the bonding interface between the liner 10 and the fiber reinforced resin layer 20 can be suppressed, and the shape of the high pressure hydrogen tank 30 can be maintained with high effectiveness.

また、本実施例では、中間生成品タンク12にライナー軸方向に沿った振動を付与するに当たり、タンク軸支シャフト112の端部に超音波振動発振機120を装着して当該発振機にて超音波振動をタンク軸支シャフト112を介して中間生成品タンク12に伝搬するだけに過ぎない。このため、中間生成品タンク12にライナー軸方向に沿った振動を容易且つ確実に付与でき、簡便である。   Further, in this embodiment, when applying vibration along the liner axial direction to the intermediate product tank 12, an ultrasonic vibration oscillator 120 is attached to the end of the tank shaft 112, and the oscillator The sonic vibration is merely propagated to the intermediate product tank 12 via the tank pivot shaft 112. For this reason, vibration along the liner axial direction can be easily and reliably applied to the intermediate product tank 12, which is simple.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、中間生成品タンク12に付与するライナー軸方向に沿った振動を、タンク軸支シャフト112の端部に装着した超音波振動発振機120で起こすようにしたが、タンク軸支シャフト112の端部に往復駆動するピストン装置を装着するようにすることもできる。   Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, the vibration along the liner axial direction applied to the intermediate product tank 12 is caused by the ultrasonic vibration oscillator 120 attached to the end of the tank pivot shaft 112. It is also possible to mount a piston device that reciprocates on the part.

また、高圧水素タンク30の製造工程の繊維強化樹脂層形成工程(図1(b))において、カーボン繊維とガラス繊維とをそれぞれフィラメント・ワインディング法によってライナー10に繰り返し巻き付けて繊維強化樹脂層20を形成するものとしたが、本発明は、これに限られない。この繊維強化樹脂層形成工程において、例えば、エポキシ樹脂等の熱硬化性樹脂を含浸させた繊維(糸)の代わりに、エポキシ樹脂等の熱硬化性樹脂を含浸させた織布をライナー10の外周に重ねて巻き付けるようにしてもよい。   Further, in the fiber reinforced resin layer forming step (FIG. 1B) in the manufacturing process of the high-pressure hydrogen tank 30, the carbon fiber and the glass fiber are repeatedly wound around the liner 10 by the filament winding method to form the fiber reinforced resin layer 20. Although formed, the present invention is not limited to this. In this fiber reinforced resin layer forming step, for example, instead of fibers (threads) impregnated with a thermosetting resin such as an epoxy resin, a woven fabric impregnated with a thermosetting resin such as an epoxy resin is used as the outer periphery of the liner 10. You may make it wrap around and wind.

上記実施例では、熱硬化性樹脂として、エポキシ樹脂を用いるものとしたが、他の熱硬化性樹脂を用いるものとしてもよい。   In the said Example, although the epoxy resin was used as a thermosetting resin, it is good also as what uses another thermosetting resin.

上記実施例では、高圧ガスタンクは、高圧水素タンク30であるものとしたが、本発明は、これに限られない。例えば、天然ガス等、他の高圧ガスを貯蔵する高圧ガスタンクとしてもよい。   In the above embodiment, the high-pressure gas tank is the high-pressure hydrogen tank 30, but the present invention is not limited to this. For example, a high-pressure gas tank that stores other high-pressure gas such as natural gas may be used.

10…ライナー
12…中間生成品タンク
14…口金
20…繊維強化樹脂層
30…高圧水素タンク
100…熱硬化炉
110…架台
112…タンク軸支シャフト
114…放熱ヒーター
116…チャック
118…タンク回転機構
120…超音波振動発振機
DESCRIPTION OF SYMBOLS 10 ... Liner 12 ... Intermediate product tank 14 ... Base 20 ... Fiber reinforced resin layer 30 ... High pressure hydrogen tank 100 ... Thermosetting furnace 110 ... Stand 112 ... Tank support shaft 114 ... Radiation heater 116 ... Chuck 118 ... Tank rotation mechanism 120 ... Ultrasonic vibration oscillator

Claims (2)

高圧ガスタンクの製造方法であって、
樹脂製容器をライナーとして用意する工程と、
前記ライナーの外周に、熱硬化性樹脂を含浸した繊維強化樹脂層を形成する繊維強化樹脂層形成工程と、
前記繊維強化樹脂層の形成済みの前記ライナーを軸支し、該軸支したライナーにライナー軸方向に沿った振動を付与しつつ前記繊維強化樹脂層を熱硬化させる熱硬化工程とを備える
高圧ガスタンクの製造方法。
A method for manufacturing a high-pressure gas tank, comprising:
Preparing a resin container as a liner;
A fiber reinforced resin layer forming step for forming a fiber reinforced resin layer impregnated with a thermosetting resin on the outer periphery of the liner;
A high pressure gas tank comprising: a thermosetting step of supporting the liner on which the fiber reinforced resin layer has been formed, and thermosetting the fiber reinforced resin layer while applying vibration along the axial direction of the liner to the supported liner. Manufacturing method.
樹脂製容器をライナーとして該ライナーの外周に熱硬化性樹脂を含浸して熱硬化した繊維強化樹脂層を有する高圧ガスタンクの製造に用いる装置であって、
熱硬化前の前記繊維強化樹脂層を外周に形成済みの前記ライナーを軸支した上で、該軸支したライナーにライナー軸方向に沿った振動を付与するライナー軸支手段と、
該ライナー軸支手段に軸支された前記ライナーを加熱して、前記繊維強化樹脂層を熱硬化させる熱硬化手段とを備える
高圧ガスタンクの製造装置。
An apparatus used for manufacturing a high-pressure gas tank having a fiber reinforced resin layer that is thermoset by impregnating a thermosetting resin on the outer periphery of the liner with a resin container as a liner,
Liner support means for applying vibration along the axial direction of the liner to the supported liner after supporting the liner on which the fiber-reinforced resin layer before thermosetting is formed on the outer periphery;
An apparatus for manufacturing a high-pressure gas tank, comprising: a thermosetting unit that heats the liner supported by the liner shaft supporting unit to thermally cure the fiber reinforced resin layer.
JP2009246536A 2009-10-27 2009-10-27 Method and device for manufacturing high-pressure gas tank Pending JP2011094644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246536A JP2011094644A (en) 2009-10-27 2009-10-27 Method and device for manufacturing high-pressure gas tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246536A JP2011094644A (en) 2009-10-27 2009-10-27 Method and device for manufacturing high-pressure gas tank

Publications (1)

Publication Number Publication Date
JP2011094644A true JP2011094644A (en) 2011-05-12

Family

ID=44111791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246536A Pending JP2011094644A (en) 2009-10-27 2009-10-27 Method and device for manufacturing high-pressure gas tank

Country Status (1)

Country Link
JP (1) JP2011094644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217573A (en) * 2014-05-16 2015-12-07 トヨタ自動車株式会社 Method for producing tank
JP2015217607A (en) * 2014-05-19 2015-12-07 トヨタ自動車株式会社 Method for manufacturing storage tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217573A (en) * 2014-05-16 2015-12-07 トヨタ自動車株式会社 Method for producing tank
JP2015217607A (en) * 2014-05-19 2015-12-07 トヨタ自動車株式会社 Method for manufacturing storage tank

Similar Documents

Publication Publication Date Title
JP5468418B2 (en) High pressure tank manufacturing apparatus and manufacturing method
EP2821209A1 (en) Method for manufacturing high pressure gas tank
JP6588360B2 (en) Tank manufacturing method
JP2016223569A (en) Method for manufacturing tank
JP6099039B2 (en) Manufacturing method of composite container
JP2012042032A (en) High pressure gas tank, its manufacturing method and manufacturing device
JP2008286297A (en) High-pressure tank manufacturing method
JP2017101763A (en) High-pressure tank
JP5218889B2 (en) Tank manufacturing method and retaining member
JP2011094644A (en) Method and device for manufacturing high-pressure gas tank
JP5737047B2 (en) High pressure gas tank manufacturing method and manufacturing apparatus
JP5257736B2 (en) Tank manufacturing method and tank manufacturing equipment
JP2007313697A (en) Apparatus for opening fiber bundle, method for opening fiber bundle, and pressure vessel
CN111664348B (en) Method for manufacturing can
US20140299259A1 (en) Method of manufacturing and structure of prestressed composite reinforcements
JP5569142B2 (en) Prepreg manufacturing apparatus and prepreg manufacturing method
JP2011025497A (en) Method for manufacturing high pressure gas tank
JP2014124864A (en) Method for producing high pressure tank
JP2011230398A (en) Method and equipment for manufacturing high pressure gas tank
JP2013103395A (en) Method and apparatus for manufacturing high pressure gas tank
JP2017172713A (en) Tank manufacturing method
JP6926796B2 (en) tank
JP2013064430A (en) Device and method for manufacturing high-pressure gas tank
JP2009184223A (en) Apparatus and method for manufacturing fiber-reinforced plastic molded object
JP4973168B2 (en) Fiber reinforced composite material molding equipment