JP2011094234A - Gold nanoparticle - Google Patents

Gold nanoparticle Download PDF

Info

Publication number
JP2011094234A
JP2011094234A JP2010255919A JP2010255919A JP2011094234A JP 2011094234 A JP2011094234 A JP 2011094234A JP 2010255919 A JP2010255919 A JP 2010255919A JP 2010255919 A JP2010255919 A JP 2010255919A JP 2011094234 A JP2011094234 A JP 2011094234A
Authority
JP
Japan
Prior art keywords
gold
solution
particle diameter
less
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010255919A
Other languages
Japanese (ja)
Other versions
JP5282915B2 (en
Inventor
Yoshimasa Hayashi
芳昌 林
Hiroki Hirata
寛樹 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010255919A priority Critical patent/JP5282915B2/en
Publication of JP2011094234A publication Critical patent/JP2011094234A/en
Application granted granted Critical
Publication of JP5282915B2 publication Critical patent/JP5282915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide gold nanoparticles having such a uniform particle diameter that an average particle diameter is 3 nm or less and the coefficient of variation of the particle diameters is 20% or less. <P>SOLUTION: The gold particulates have the average particle diameter of 3 nm or less, the coefficient of variation of the particle diameters of 20% or less and the resistivity of 2.3×10<SP>-5</SP>to 4.0×10<SP>-5</SP>Ω cm when having been baked at 200-300°C for 15-30 minutes; and are produced by preferably using tetrakis(hydroxymethyl)phosphonium chloride (hereinafter referred to as THPC) as a reducing agent, mixing a gold ion solution with a solution of the reducing agent, and then adding the mixed solution to an alkaline solution to reduce the gold ion, in a method of producing gold particulates by mixing a gold ion solution with a solution of a reducing agent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子部品の配線材料、色材、光学フィルター、触媒などに用いられるナノサイズの金微粒子(金ナノ粒子と云うことがある)に関する。 The present invention relates to nano-sized gold fine particles (sometimes referred to as gold nanoparticles) used for wiring materials, color materials, optical filters, catalysts, and the like of electronic components.

従来、金ナノ粒子は金イオンを含む溶液に還元液を添加して金イオンを還元する液相還元法によって主に製造されている。例えば、塩化金酸水溶液に還元剤溶液(水素化ホウ素ナトリウム溶液)を添加して金イオンを還元し、さらに、水と相溶しない有機溶媒に分散させた保護剤溶液(1−オクタンチオールヘキサン溶液)を添加して攪拌し、有機溶媒中に金微粒子を抽出する方法が知られている(特許文献1、特許文献2)。しかし、これらの方法によって製造される金微粒子の平均粒子径は何れも3nmより大きい。 Conventionally, gold nanoparticles are mainly produced by a liquid phase reduction method in which a reducing solution is added to a solution containing gold ions to reduce the gold ions. For example, a reducing agent solution (sodium borohydride solution) is added to a chloroauric acid aqueous solution to reduce gold ions, and further a protective agent solution (1-octanethiol hexane solution) dispersed in an organic solvent incompatible with water. ) Is added and stirred to extract gold fine particles in an organic solvent (Patent Documents 1 and 2). However, the average particle diameter of the gold fine particles produced by these methods is larger than 3 nm.

また、塩化金酸水溶液にトルエンと界面活性剤(TOAB等)を加えて攪拌し、塩化金酸をトルエンに抽出した後に還元剤溶液(水素化ホウ素ナトリウム溶液)を加え、固形分を回収して加熱処理し、冷却後に固形物をトルエンに再溶解し、この沈澱物を濾過して金微粒子を得る製造方法が知られている(特許文献3)。しかし、この方法によって得られる金微粒子の平均粒子径もまた3nmより大きい。 In addition, toluene and a surfactant (TOAB, etc.) are added to an aqueous chloroauric acid solution and stirred. After extracting chloroauric acid into toluene, a reducing agent solution (sodium borohydride solution) is added to recover the solid content. A manufacturing method is known in which a solid is redissolved in toluene after heat treatment and cooled, and the precipitate is filtered to obtain gold fine particles (Patent Document 3). However, the average particle size of the gold fine particles obtained by this method is also larger than 3 nm.

また、水酸化ナトリウム水溶液とTHPC水溶液を予め混合した後に、この混合液に塩化金酸水溶液を混合して金コロイドを得る方法が知られている(特許文献4)。しかし、この製造方法では、金濃度が0.1mol/l以上になると、生成する金微粒子の粒子径が4nm以上になる。金濃度が0.001mol/l程度の薄い塩化金酸水溶液を用いれば、粒子径3nm以下の金微粒子を製造することができるが、濃度が極端に薄いため十分な収量を得ることができず、工業レベルでの実用化に適さない。 In addition, a method is known in which an aqueous sodium hydroxide solution and an aqueous THPC solution are mixed in advance and then mixed with an aqueous chloroauric acid solution to obtain a gold colloid (Patent Document 4). However, in this manufacturing method, when the gold concentration is 0.1 mol / l or more, the particle diameter of the generated gold fine particles is 4 nm or more. If a gold chloroauric acid aqueous solution having a gold concentration of about 0.001 mol / l is used, gold fine particles having a particle diameter of 3 nm or less can be produced. However, since the concentration is extremely thin, a sufficient yield cannot be obtained. Not suitable for practical use at the industrial level.

特開2003−253310号公報JP 2003-253310 A 特開2003−193118号公報JP 2003-193118 A 特開2003−049205号公報JP 2003-049205 A

J.Chem.Soc.,Chem.Commun.,96(1993) p96-p98J. Chem. Soc., Chem. Commun., 96 (1993) p96-p98

本発明は、平均粒子径3nm以下であって、粒子径の変動係数と比抵抗率の小さい金ナノ粒子を提供する。 The present invention provides gold nanoparticles having an average particle diameter of 3 nm or less and a small coefficient of variation in particle diameter and small specific resistance.

本発明によれば、以下の金ナノ粒子に関する。
〔1〕平均粒子径3nm以下、および粒子径の変動係数20%以下であって、200℃〜300℃で15〜30分焼成したときの比抵抗率が2.3×10-5〜4.0×10-5Ω・cmであることを特徴とする金微粒子。
〔2〕金イオン溶液に還元剤溶液を混合して金微粒子を製造する方法において、還元剤としてテトラキス(ヒドロキシメチル)ホスホニウムクロリド(以下、THPCと云う)を用い、金イオン溶液と還元剤溶液を混合した後に、この混合溶液をアルカリ溶液に添加して金イオンを還元することによって製造された上記[1]に記載する金微粒子。
〔3〕上記[1]に記載する金微粒子を含むペースト、コロイド、被膜、または光学フィルター。
The present invention relates to the following gold nanoparticles.
[1] The average particle size is 3 nm or less, and the coefficient of variation of the particle size is 20% or less, and the specific resistivity when baked at 200 ° C. to 300 ° C. for 15 to 30 minutes is 2.3 × 10 −5 to 4. Gold fine particles characterized by 0 × 10 −5 Ω · cm.
[2] In a method for producing a fine gold particle by mixing a reducing agent solution with a gold ion solution, tetrakis (hydroxymethyl) phosphonium chloride (hereinafter referred to as THPC) is used as the reducing agent, and the gold ion solution and the reducing agent solution are mixed. The gold fine particles according to the above [1], which are produced by adding the mixed solution to an alkaline solution and reducing gold ions after mixing.
[3] A paste, colloid, film, or optical filter containing the gold fine particles described in [1] above.

本発明の金ナノ粒子は、平均粒子径3nm以下、例えば平均粒子径1〜3nmであり、粒子径の変動係数が20%以下の均一な微粒子であるので、配線材料、色材、光学フィルター、触媒などの機能性材料として好適である。さらに、本発明の金微粒子を含む膜は、低い加熱焼成温度(300℃以下)でも比抵抗率が小さいので、特に高温加熱が困難な導電材料に適する。 Since the gold nanoparticles of the present invention are uniform fine particles having an average particle diameter of 3 nm or less, for example, an average particle diameter of 1 to 3 nm and a coefficient of variation of the particle diameter of 20% or less, wiring materials, coloring materials, optical filters, It is suitable as a functional material such as a catalyst. Further, the film containing the gold fine particles of the present invention has a small specific resistance even at a low heating and baking temperature (300 ° C. or lower), and thus is particularly suitable for a conductive material that is difficult to heat at high temperatures.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の金ナノ粒子は、平均粒子径3nm以下であって、粒子径の変動係数が20%以下の金微粒子である。本発明の金ナノ粒子は、金イオン溶液に還元剤溶液を混合して金微粒子を製造する方法において、アルカリ域で作用する還元剤の溶液と金イオン溶液とを予め混合した後に、この混合溶液にアルカリ溶液を混合して金イオンを還元することによって得ることができる。
Hereinafter, the present invention will be specifically described based on embodiments.
The gold nanoparticles of the present invention are gold fine particles having an average particle diameter of 3 nm or less and a coefficient of variation of the particle diameter of 20% or less. In the method for producing gold fine particles by mixing a reducing agent solution into a gold ion solution, the gold nanoparticle of the present invention is prepared by previously mixing a solution of a reducing agent acting in an alkaline region and a gold ion solution. It can be obtained by mixing an alkaline solution and reducing gold ions.

具体的には、本発明の金ナノ粒子は、塩化金酸水溶液とTHPC水溶液を混合し、この混合水溶液を水酸化ナトリウム水溶液と混合して金イオンを還元することによって得ることができる。 Specifically, the gold nanoparticles of the present invention can be obtained by mixing a chloroauric acid aqueous solution and a THPC aqueous solution, mixing the mixed aqueous solution with a sodium hydroxide aqueous solution, and reducing gold ions.

還元剤のTHPCは強アルカリ域で急速に作用するので、従来の製造方法では、予めTHPC水溶液を水酸化ナトリウム水溶液と混合し、強アルカリ性のTHPC水溶液とし、これと塩化金酸水溶液とを混合して塩化金酸を還元している。しかし、このように強アルカリ性のTHPC水溶液を予め形成し、これと塩化金酸水溶液とを混合すると、塩化金酸の還元が急激に進行し、例えば、局所的に生成した金微粒子を核とし、周囲の金イオンが還元されてこの金微粒子の成長に費やされ、局所的に粒径の大きな金微粒子になるため、平均粒子径3nm以下の金ナノ粒子が生成し難い。 Since the reducing agent THPC acts rapidly in a strong alkali region, in the conventional production method, a THPC aqueous solution is mixed with a sodium hydroxide aqueous solution in advance to form a strong alkaline THPC aqueous solution, which is mixed with a chloroauric acid aqueous solution. Reducing chloroauric acid. However, when a strong alkaline THPC aqueous solution is formed in advance and this is mixed with a chloroauric acid aqueous solution, the reduction of chloroauric acid proceeds rapidly. For example, locally generated gold fine particles are used as nuclei, Since the surrounding gold ions are reduced and consumed for the growth of the gold fine particles, and locally become gold fine particles having a large particle diameter, it is difficult to produce gold nanoparticles having an average particle diameter of 3 nm or less.

一方、上記製造方法は水酸化ナトリウム水溶液を加えずにTHPC水溶液を塩化金酸水溶液と混合する。このように、THPCの還元力が実質的に未だ作用しない状態で塩化金酸と混合することによって、THPCと塩化金酸とを均一に混合し、急激な還元作用による局部的な金微粒子の生成を抑制する。次いで、この混合水溶液に水酸化ナトリウム水溶液を添加して強アルカリ性に転化し、THPCの還元作用を発揮させる。このような方法によって、塩化金酸が液中で均一に還元され、金微粒子の成長が局部的に進行することがないので、平均粒子径3nm以下の金ナノ粒子を高い収率で得ることができる。 On the other hand, in the above production method, an aqueous THPC solution is mixed with an aqueous chloroauric acid solution without adding an aqueous sodium hydroxide solution. In this way, THPC and chloroauric acid are uniformly mixed by mixing with chloroauric acid in a state where the reducing power of THPC does not substantially act yet, and local gold fine particles are generated by abrupt reduction action. Suppress. Next, an aqueous sodium hydroxide solution is added to the mixed aqueous solution to convert it into a strong alkalinity, thereby exhibiting the reducing action of THPC. By such a method, since chloroauric acid is uniformly reduced in the liquid and the growth of gold fine particles does not proceed locally, gold nanoparticles having an average particle diameter of 3 nm or less can be obtained in a high yield. it can.

具体的には、例えば、塩化金酸水溶液の金濃度0.025〜2.5mol/lにおいて、THPC量を金濃度の1〜4モル倍、水酸化ナトリウム量を金濃度の7〜15モル倍とし、5〜60分間混合した後に、還元剤のTHPCを除去することによって、粒子径3nm以下の微細な金ナノ粒子を85%以上の収率で得ることができる。なお、THPCを除去するには、生成した金ナノ粒子を含む反応液を遠心分離して金ナノ粒子を回収し、または非水系溶剤などに金ナノ粒子を抽出するなどの方法によれば良い。この方法によって製造した金ナノ粒子は、粒子径の変動係数(相対標準偏差)が20%以下であり、粒子径の均一な金ナノ粒子である。また、この製造方法によれば、原料の金イオン濃度が0.1mol/l程度でも平均粒子径3nm以下の金ナノ粒子を容易に得ることができる。 Specifically, for example, when the gold concentration of the chloroauric acid aqueous solution is 0.025 to 2.5 mol / l, the THPC amount is 1 to 4 mol times the gold concentration, and the sodium hydroxide amount is 7 to 15 mol times the gold concentration. Then, after mixing for 5 to 60 minutes, by removing the reducing agent THPC, fine gold nanoparticles having a particle diameter of 3 nm or less can be obtained in a yield of 85% or more. In order to remove THPC, the reaction solution containing the generated gold nanoparticles may be centrifuged to collect the gold nanoparticles, or the gold nanoparticles may be extracted into a non-aqueous solvent or the like. Gold nanoparticles produced by this method have a variation coefficient (relative standard deviation) of particle diameter of 20% or less, and are gold nanoparticles having a uniform particle diameter. Moreover, according to this production method, gold nanoparticles having an average particle diameter of 3 nm or less can be easily obtained even when the concentration of gold ions in the raw material is about 0.1 mol / l.

本発明の金ナノ粒子は、平均粒子径3nm以下、例えば平均粒子径1〜3nmであり、粒子径の変動係数が20%以下の均一な微粒子であるので、これを配線材料、色材、光学フィルター、触媒などの機能性材料として用いれば、均質な性能を得ることができる。さらに、本発明の金微粒子を含む膜は、低い加熱焼成温度(300℃以下)でも比抵抗率が小さいので、特に高温加熱が困難な導電材料に適する。 Since the gold nanoparticles of the present invention are uniform fine particles having an average particle diameter of 3 nm or less, for example, an average particle diameter of 1 to 3 nm and a coefficient of variation of the particle diameter of 20% or less, this is used as a wiring material, a coloring material, and an optical material. If it is used as a functional material such as a filter or a catalyst, homogeneous performance can be obtained. Further, the film containing the gold fine particles of the present invention has a small specific resistance even at a low heating and baking temperature (300 ° C. or lower), and thus is particularly suitable for a conductive material that is difficult to heat at high temperatures.

具体的には、例えば、ディスプレイなどの表面から発生する人体に有害な電磁波をシールドするために、その表面にITOなどの導電性の膜が設けられている。この導電性膜には比抵抗率が小さく、かつ高い透明度が要求される。しかし、ITOなどで十分な導電性を得るためには十分な膜厚が必要になり、コストが高い。本発明の金ナノ粒子は平均粒子径3nm以下の微細粒子であるので高い透明性を有し、かつ導電性に優れているので、電磁波シールド膜などの材料に適する。 Specifically, for example, in order to shield an electromagnetic wave harmful to the human body generated from the surface of a display or the like, a conductive film such as ITO is provided on the surface. This conductive film is required to have a low specific resistivity and high transparency. However, in order to obtain sufficient conductivity with ITO or the like, a sufficient film thickness is required, and the cost is high. Since the gold nanoparticles of the present invention are fine particles having an average particle diameter of 3 nm or less, they have high transparency and are excellent in conductivity, and are therefore suitable for materials such as an electromagnetic shielding film.

また、従来の金粒子は触媒活性が乏しいので触媒として利用されていないが、本発明の金ナノ粒子は平均粒子径を3nm以下にすることによって表面エネルギーが大きく、高い活性を有するので触媒として利用することができる。 In addition, conventional gold particles are not used as a catalyst because of their poor catalytic activity, but the gold nanoparticles of the present invention have a high surface energy and high activity when the average particle size is 3 nm or less, so they are used as a catalyst. can do.

また、配線材料として金微粒子を焼結して用いるが、従来の方法によって製造した金微粒子の焼結体に比べて、本発明の金ナノ粒子焼結体の比抵抗率は大幅に小さく、配線材料として有利である。具体的には、金微粒子を含むペーストを配線材料として用いる場合、このペーストを印刷した後に焼結して配線を形成するが、従来の液相還元法によって製造した金粒子は概ね直径5nm以上であり、これを配線材料として用いるには比較的高い温度で焼結しなければならない。 In addition, gold fine particles are sintered and used as a wiring material, but the specific resistivity of the gold nanoparticle sintered body of the present invention is significantly smaller than that of a sintered gold fine particle produced by a conventional method. It is advantageous as a material. Specifically, when a paste containing gold fine particles is used as a wiring material, the paste is printed and then sintered to form a wiring. Gold particles produced by a conventional liquid phase reduction method generally have a diameter of 5 nm or more. In order to use it as a wiring material, it must be sintered at a relatively high temperature.

一方、本発明に係る金ナノ粒子は平均粒子径3nm以下にすることによって表面エネルギーが大きくなるので、従来の焼成温度よりも低温での焼成が可能であり、比抵抗を格段に小さくすることができる。具体的には、本発明の金微粒子を配合し、焼成してなる被膜において、比抵抗率1×10-4Ω・cm以下の導電性に優れた被膜を得ることができる。因みに、表1に示すように、従来の金粒子を200〜300℃で15〜30分間焼成したときの比抵抗率は概ね23.0×10-5〜340.0×10-5Ω・cmであるが、本発明の金ナノ粒子は、同様の焼成条件において、2.3×10-5〜4.0×10-5Ω・cmであり、従来の約1/10〜1/150であって比抵抗率が格段に小さい。 On the other hand, since the surface energy of the gold nanoparticles according to the present invention is increased by making the average particle diameter 3 nm or less, firing can be performed at a temperature lower than the conventional firing temperature, and the specific resistance can be significantly reduced. it can. Specifically, in a film formed by blending and firing the gold fine particles of the present invention, a film having a specific resistivity of 1 × 10 −4 Ω · cm or less and excellent conductivity can be obtained. Incidentally, as shown in Table 1, the specific resistivity when the conventional gold particles are baked at 200 to 300 ° C. for 15 to 30 minutes is approximately 23.0 × 10 −5 to 340.0 × 10 −5 Ω · cm. However, the gold nanoparticles of the present invention have 2.3 × 10 −5 to 4.0 × 10 −5 Ω · cm under the same firing conditions, which is about 1/10 to 1/150 of the conventional case. And the specific resistivity is much smaller.

金コロイドなどの金粒子が分散した系では、粒子径に応じて紫、青、赤などの色を発色する。この発色はプラズモン吸収と呼ばれ、電子のプラズマ振動に起因する。プラズモン吸収が大きいとディスプレイの発色を阻害する。本発明の金ナノ粒子は平均粒径を3nm以下にすることによって、光吸収スペクトルにおいて520nm近傍のプラズモン吸収を小さくし、あるいは実質的に生じないようにした。この金ナノ粒子を用いれば、可視光域においてディスプレイの発色を阻害しない良好な光学フィルターを得ることができる。 In a system in which gold particles such as gold colloid are dispersed, colors such as purple, blue and red are developed according to the particle diameter. This color development is called plasmon absorption and is caused by electron plasma oscillation. If the plasmon absorption is large, the color development of the display is inhibited. The gold nanoparticles of the present invention have an average particle size of 3 nm or less, thereby reducing or substantially preventing plasmon absorption near 520 nm in the light absorption spectrum. By using the gold nanoparticles, it is possible to obtain a good optical filter that does not inhibit the color development of the display in the visible light region.

本発明の金微粒子は非常に微細であり、かつ粒子径が均一であるので、この金微粒子を含むペースト、コロイドを用いれば、光学特性に優れた被膜や光学フィルター材料を得ることができる。また、この金微粒子は、従来のものより微粒子であるので焼結温度が低く、従って、焼結温度以上で焼成して形成した被膜や光学フィルター材料なども光学特性に優れたものを得ることができる。 Since the gold fine particles of the present invention are very fine and have a uniform particle size, a coating or optical filter material having excellent optical properties can be obtained by using a paste or colloid containing the gold fine particles. Further, since the gold fine particles are finer than the conventional fine particles, the sintering temperature is lower, and therefore, a film formed by baking at a temperature higher than the sintering temperature, an optical filter material, etc. can be obtained with excellent optical characteristics. it can.

以下、本発明の実施例を示す。結果を表1に示した。
〔実施例1〕
THPC水溶液(濃度2.5mol/l)3mlと塩化金酸水溶液(濃度2.5mol/l)2mlとを混合した溶液を、水酸化ナトリウム水溶液(濃度10mol/l)5mlに純水40mlを加えて希釈した水溶液に加えて5分間攪拌し混合した。この混合溶液を遠心分離して金コロイドを回収した。この金コロイドは平均粒子径3nm以下であり、3nm以下の金微粒子の収量910mg(収率91%)であった。また、粒子径の変動係数は16%、300℃で15分〜30分焼成したときの比抵抗率は2.5×10-5〜3.5×10-5Ω・cmであった(表1No.1)。
Examples of the present invention will be described below. The results are shown in Table 1.
[Example 1]
A mixed solution of 3 ml of THPC aqueous solution (concentration 2.5 mol / l) and 2 ml of chloroauric acid aqueous solution (concentration 2.5 mol / l) was added to 40 ml of pure water to 5 ml of sodium hydroxide aqueous solution (concentration 10 mol / l). In addition to the diluted aqueous solution, the mixture was stirred for 5 minutes and mixed. The mixed solution was centrifuged to recover the colloidal gold. This gold colloid had an average particle diameter of 3 nm or less, and the yield of gold fine particles of 3 nm or less was 910 mg (yield 91%). The coefficient of variation of the particle diameter was 16%, and the specific resistivity when fired at 300 ° C. for 15 to 30 minutes was 2.5 × 10 −5 to 3.5 × 10 −5 Ω · cm (Table) 1 No. 1).

〔実施例2〜5〕
THPC水溶液、塩化金酸水溶液、水酸化ナトリウム水溶液について、表1に示す濃度および使用量を用いて金コロイドを製造した。また、実施例1と同一条件で焼成したときの比抵抗率を測定した。この結果を表1に示した(No.2〜No.5)。
[Examples 2 to 5]
Colloidal gold was produced using the concentrations and amounts used in Table 1 for the THPC aqueous solution, chloroauric acid aqueous solution, and sodium hydroxide aqueous solution. Moreover, the specific resistivity when baked on the same conditions as Example 1 was measured. The results are shown in Table 1 (No. 2 to No. 5).

〔比較例〕
THPC水溶液、塩化金酸水溶液、水酸化ナトリウム水溶液について、表1に示す濃度および使用量を用い、あらかじめTHPC水溶液と水酸化ナトリウム水溶液を混合した溶液に塩化金酸水溶液を添加して金コロイドを製造した。また、実施例1と同一条件で焼成したときの比抵抗率を測定した。この結果を表1に示したこの結果を表1に示した(No.6〜No.8)。
[Comparative Example]
For the THPC aqueous solution, chloroauric acid aqueous solution, and sodium hydroxide aqueous solution, gold colloid is produced by adding the chloroauric acid aqueous solution to the solution in which the THPC aqueous solution and the sodium hydroxide aqueous solution are mixed in advance using the concentrations and usage amounts shown in Table 1. did. Moreover, the specific resistivity when baked on the same conditions as Example 1 was measured. The results are shown in Table 1. The results are shown in Table 1 (No. 6 to No. 8).

本発明の実施例では、金濃度0.25mol/l〜2.5mol/lにおいて、平均粒子径3nm以下の金ナノ粒子が87%以上の高収率で製造される。一方、比較例では、得られる金微粒子の平均粒子径は3nm以上であり、平均粒子径3nm以下の微細な金ナノ粒子の収率は、金濃度2.5mol/lでは36%以下と低く、金濃度0.25mol/lの薄い塩化金酸溶液を用いた場合でも65%であり、結局、平均粒子径3nm以下であって粒子径の変動係数20%以下の金微粒子を得ることはできない。 In the examples of the present invention, gold nanoparticles having an average particle diameter of 3 nm or less are produced in a high yield of 87% or more at a gold concentration of 0.25 mol / l to 2.5 mol / l. On the other hand, in the comparative example, the average particle diameter of the obtained gold fine particles is 3 nm or more, and the yield of fine gold nanoparticles having an average particle diameter of 3 nm or less is as low as 36% or less at a gold concentration of 2.5 mol / l. Even when a thin chloroauric acid solution having a gold concentration of 0.25 mol / l is used, it is 65%. As a result, it is impossible to obtain gold fine particles having an average particle diameter of 3 nm or less and a coefficient of variation of particle diameter of 20% or less.

Figure 2011094234
Figure 2011094234

Claims (3)

平均粒子径3nm以下、および粒子径の変動係数20%以下であって、200℃〜300℃で15〜30分焼成したときの比抵抗率が2.3×10-5〜4.0×10-5Ω・cmであることを特徴とする金微粒子。
The average particle diameter is 3 nm or less, and the coefficient of variation of the particle diameter is 20% or less, and the specific resistivity when fired at 200 ° C. to 300 ° C. for 15 to 30 minutes is 2.3 × 10 −5 to 4.0 × 10. Gold fine particles characterized by -5 Ω · cm.
金イオン溶液に還元剤溶液を混合して金微粒子を製造する方法において、還元剤としてテトラキス(ヒドロキシメチル)ホスホニウムクロリド(以下、THPCと云う)を用い、金イオン溶液と還元剤溶液を混合した後に、この混合溶液をアルカリ溶液に添加して金イオンを還元することによって製造された請求項1に記載する金微粒子。
In a method for producing gold fine particles by mixing a reducing agent solution with a gold ion solution, tetrakis (hydroxymethyl) phosphonium chloride (hereinafter referred to as THPC) is used as the reducing agent, and after mixing the gold ion solution and the reducing agent solution. The gold fine particles according to claim 1, which are produced by adding the mixed solution to an alkaline solution to reduce gold ions.
請求項1に記載する金微粒子を含むペースト、コロイド、被膜、または光学フィルター。 A paste, colloid, film or optical filter comprising the gold fine particles according to claim 1.
JP2010255919A 2004-11-02 2010-11-16 Gold nanoparticles Expired - Fee Related JP5282915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255919A JP5282915B2 (en) 2004-11-02 2010-11-16 Gold nanoparticles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004318729 2004-11-02
JP2004318729 2004-11-02
JP2010255919A JP5282915B2 (en) 2004-11-02 2010-11-16 Gold nanoparticles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005317036A Division JP4706835B2 (en) 2004-11-02 2005-10-31 Method for producing gold fine particles

Publications (2)

Publication Number Publication Date
JP2011094234A true JP2011094234A (en) 2011-05-12
JP5282915B2 JP5282915B2 (en) 2013-09-04

Family

ID=44111459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255919A Expired - Fee Related JP5282915B2 (en) 2004-11-02 2010-11-16 Gold nanoparticles

Country Status (1)

Country Link
JP (1) JP5282915B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945608B2 (en) * 2012-12-21 2016-07-05 日本板硝子株式会社 Gold nanoparticle dispersion for forming conductive film, method for producing the same, and conductive coating composition containing the dispersion
CN112986555A (en) * 2021-02-07 2021-06-18 武汉生之源生物科技股份有限公司 GPC-3 chemiluminescence kit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277705A (en) * 1989-04-19 1990-11-14 Tanaka Kikinzoku Kogyo Kk Method for preparing ultra fine gold particles
JPH10330288A (en) * 1997-06-03 1998-12-15 Mitsubishi Chem Corp Metal fine particle complex and contrast media by using the same
JP2004051997A (en) * 2002-07-16 2004-02-19 Ulvac Japan Ltd Dispersion liquid of metallic microparticles, preparation method therefor, transparent colored film and manufacturing method therefor
JP2004190089A (en) * 2002-12-11 2004-07-08 Kyoritsu Kagaku Sangyo Kk Method for manufacturing inorganic-nanoparticle fusion or accretion structure, and fusion or accretion structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277705A (en) * 1989-04-19 1990-11-14 Tanaka Kikinzoku Kogyo Kk Method for preparing ultra fine gold particles
JPH10330288A (en) * 1997-06-03 1998-12-15 Mitsubishi Chem Corp Metal fine particle complex and contrast media by using the same
JP2004051997A (en) * 2002-07-16 2004-02-19 Ulvac Japan Ltd Dispersion liquid of metallic microparticles, preparation method therefor, transparent colored film and manufacturing method therefor
JP2004190089A (en) * 2002-12-11 2004-07-08 Kyoritsu Kagaku Sangyo Kk Method for manufacturing inorganic-nanoparticle fusion or accretion structure, and fusion or accretion structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945608B2 (en) * 2012-12-21 2016-07-05 日本板硝子株式会社 Gold nanoparticle dispersion for forming conductive film, method for producing the same, and conductive coating composition containing the dispersion
CN112986555A (en) * 2021-02-07 2021-06-18 武汉生之源生物科技股份有限公司 GPC-3 chemiluminescence kit
CN112986555B (en) * 2021-02-07 2024-05-07 武汉生之源生物科技股份有限公司 GPC-3 chemiluminescence kit

Also Published As

Publication number Publication date
JP5282915B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
CN111132533B (en) MXene/silver nanowire composite electromagnetic shielding film
Zhu et al. A new mild, clean and highly efficient method for the preparation of graphene quantum dots without by-products
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
JP5059317B2 (en) Method for producing silver particles
KR101251567B1 (en) Nickel powder, process for producing the same, and conductive paste
Liu et al. Ag 2 S quantum dots in situ coupled to hexagonal SnS 2 with enhanced photocatalytic activity for MO and Cr (VI) removal
WO2012077548A1 (en) Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
Amrutha et al. Enhanced Sunlight driven photocatalytic performance and visualization of latent fingerprint by green mediated ZnFe2O4–RGO nanocomposite
JP2007138249A (en) Method for producing silver grain, silver grain-containing composition containing the obtained silver grain and its use
CN104668572A (en) Silver powder and silver paste for back electrode of solar cell and solar cell
CN109401442A (en) A kind of silver-plated electrically conductive ink of UV curing nano and preparation method thereof
JP4706835B2 (en) Method for producing gold fine particles
JP2014034697A (en) Method for producing copper fine particle, conductive paste and method for producing conductive paste
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
JP2014224276A (en) Method for producing copper nanoparticle having high dispersion stability
Zhu et al. Plasmonic enhancement of the upconversion fluorescence in YVO4: Yb3+, Er3+ nanocrystals based on the porous Ag film
JP5282915B2 (en) Gold nanoparticles
CN101269417A (en) Method for manufacturing nano-platinum powder
CN105148916A (en) Palladium-ferrum bimetallic loaded phosphorus hybridization mesoporous carbon, preparation method of phosphorus hybridization mesoporous carbon and application of phosphorus hybridization mesoporous carbon
JP2006265714A (en) Method for producing metal acicular body-containing metal particulate
CN105665743A (en) Method for preparing copper nanowire at low temperature
JP2006265713A (en) Method for producing metal acicular body-containing metal particulate
KR20120129447A (en) Silver nanowire having protuberance and Method for preparing the same
JP2009242874A (en) Method for producing silver hyperfine particle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Ref document number: 5282915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees