JP4706835B2 - Method for producing gold fine particles - Google Patents

Method for producing gold fine particles Download PDF

Info

Publication number
JP4706835B2
JP4706835B2 JP2005317036A JP2005317036A JP4706835B2 JP 4706835 B2 JP4706835 B2 JP 4706835B2 JP 2005317036 A JP2005317036 A JP 2005317036A JP 2005317036 A JP2005317036 A JP 2005317036A JP 4706835 B2 JP4706835 B2 JP 4706835B2
Authority
JP
Japan
Prior art keywords
gold
solution
fine particles
thpc
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005317036A
Other languages
Japanese (ja)
Other versions
JP2006152438A (en
Inventor
芳昌 林
寛樹 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005317036A priority Critical patent/JP4706835B2/en
Publication of JP2006152438A publication Critical patent/JP2006152438A/en
Application granted granted Critical
Publication of JP4706835B2 publication Critical patent/JP4706835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電子部品の配線材料、色材、光学フィルター、触媒などに用いられるナノサイズの金微粒子(金ナノ粒子と云うことがある)の製造方法に関する。
The present invention relates to a method for producing nano-sized gold fine particles (sometimes referred to as gold nanoparticles) used for wiring materials, color materials, optical filters, catalysts and the like of electronic components.

従来、金ナノ粒子は金イオンを含む溶液に還元液を添加して金イオンを還元する液相還元法によって主に製造されている。例えば、塩化金酸水溶液に還元剤溶液(水素化ホウ素ナトリウム溶液)を添加して金イオンを還元し、さらに、水と相溶しない有機溶媒に分散させた保護剤溶液(1−オクタンチオールヘキサン溶液)を添加して攪拌し、有機溶媒中に金微粒子を抽出する方法が知られている(特許文献1、特許文献2)。しかし、これらの方法によって製造される金微粒子の平均粒子径は何れも3nmより大きい。 Conventionally, gold nanoparticles are mainly produced by a liquid phase reduction method in which a reducing solution is added to a solution containing gold ions to reduce the gold ions. For example, a reducing agent solution (sodium borohydride solution) is added to a chloroauric acid aqueous solution to reduce gold ions, and further a protective agent solution (1-octanethiol hexane solution) dispersed in an organic solvent incompatible with water. ) Is added and stirred to extract gold fine particles in an organic solvent (Patent Documents 1 and 2). However, the average particle diameter of the gold fine particles produced by these methods is larger than 3 nm.

また、塩化金酸水溶液にトルエンと界面活性剤(TOAB等)を加えて攪拌し、塩化金酸をトルエンに抽出した後に還元剤溶液(水素化ホウ素ナトリウム溶液)を加え、固形分を回収して加熱処理し、冷却後に固形物をトルエンに再溶解し、この沈澱物を濾過して金微粒子を得る製造方法が知られている(特許文献3)。しかし、この方法によって得られる金微粒子の平均粒子径もまた3nmより大きい。 In addition, toluene and a surfactant (TOAB, etc.) are added to an aqueous chloroauric acid solution and stirred. After extracting chloroauric acid into toluene, a reducing agent solution (sodium borohydride solution) is added to recover the solid content. A manufacturing method is known in which a solid is redissolved in toluene after heat treatment and cooled, and the precipitate is filtered to obtain gold fine particles (Patent Document 3). However, the average particle size of the gold fine particles obtained by this method is also larger than 3 nm.

また、水酸化ナトリウム水溶液とTHPC水溶液を予め混合した後に、この混合液に塩化金酸水溶液を混合して金コロイドを得る方法が知られている(特許文献4)。しかし、この製造方法では、金濃度が0.1mol/l以上になると、生成する金微粒子の粒子径が4nm以上になる。金濃度が0.001mol/l程度の薄い塩化金酸水溶液を用いれば、粒子径3nm以下の金微粒子を製造することができるが、濃度が極端に薄いため十分な収量を得ることができず、工業レベルでの実用化に適さない。
特開2003−253310号公報 特開2003−193118号公報 特開2003−049205号公報 J.Chem.Soc.,Chem.Commun.,96 (1993) p96-p98
In addition, a method is known in which an aqueous sodium hydroxide solution and an aqueous THPC solution are mixed in advance and then mixed with an aqueous chloroauric acid solution to obtain a gold colloid (Patent Document 4). However, in this manufacturing method, when the gold concentration is 0.1 mol / l or more, the particle diameter of the generated gold fine particles is 4 nm or more. If a gold chloroauric acid aqueous solution having a gold concentration of about 0.001 mol / l is used, gold fine particles having a particle diameter of 3 nm or less can be produced. However, since the concentration is extremely thin, a sufficient yield cannot be obtained. Not suitable for practical use at the industrial level.
JP 2003-253310 A JP 2003-193118 A JP 2003-049205 A J.Chem.Soc., Chem.Commun., 96 (1993) p96-p98

本発明は、従来の製造方法の上記問題を解決したものであり、金イオン溶液の金濃度が高くても平均粒子径3nm以下の金微粒子を十分な収量で得ることができる製造方法を提供するものであり、また、この方法によって製造された粒子径の変動係数と比抵抗率の小さい金ナノ粒子を提供するものである。 The present invention solves the above-mentioned problems of the conventional production method, and provides a production method capable of obtaining gold fine particles having an average particle diameter of 3 nm or less with a sufficient yield even when the gold concentration of the gold ion solution is high. In addition, the present invention provides gold nanoparticles having a small coefficient of variation in particle diameter and a small specific resistance produced by this method.

本発明は以下の金ナノ粒子の製造方法に関する。
〔1〕金イオン溶液に還元剤溶液を混合して金微粒子を製造する方法において、還元剤としてテトラキス(ヒドロキシメチル)ホスホニウムクロリド(以下、THPCと云う)を用い、金イオン溶液と還元剤溶液を混合した後に、この混合溶液をアルカリ溶液に添加して金イオンを還元することによって平均粒子径3nm以下であって粒子径の変動係数が20%以下である金微粒子を製造することを特徴とする方法。
〔2〕塩化金酸水溶液にTHPC水溶液を混合し、この混合溶液を水酸化ナトリウム水溶液に添加して金微粒子を製造する方法であって、塩化金酸水溶液の金濃度が0.025〜2.5mol/l、THPC量が金濃度の1〜4モル倍、水酸化ナトリウム量が金濃度の7〜15モル倍である上記[1]に記載する金微粒子の製造方法。
The present invention relates to the following method for producing gold nanoparticles.
[1] In a method for producing a gold fine particle by mixing a reducing agent solution with a gold ion solution, tetrakis (hydroxymethyl) phosphonium chloride (hereinafter referred to as THPC) is used as the reducing agent, and the gold ion solution and the reducing agent solution are mixed. After mixing, this mixed solution is added to an alkaline solution to reduce gold ions, thereby producing gold fine particles having an average particle size of 3 nm or less and a particle size variation coefficient of 20% or less. Method.
[2] A method in which a THPC aqueous solution is mixed with an aqueous chloroauric acid solution, and this mixed solution is added to an aqueous sodium hydroxide solution to produce gold fine particles. The gold concentration of the aqueous chloroauric acid solution is 0.025 to 2. The method for producing gold fine particles according to the above [1], wherein 5 mol / l, THPC amount is 1 to 4 mol times the gold concentration, and sodium hydroxide amount is 7 to 15 mol times the gold concentration.

〔具体的な説明〕
本発明の製造方法に係る金ナノ粒子は、平均粒子径3nm以下であって、粒子径の変動係数が20%以下の金微粒子である。本発明の金ナノ粒子は、金イオン溶液に還元剤溶液を混合して金微粒子を製造する方法において、アルカリ域で作用する還元剤の溶液と金イオン溶液とを予め混合した後に、この混合溶液にアルカリ溶液を混合して金イオンを還元することによって得ることができる。
[Specific description]
The gold nanoparticles according to the production method of the present invention are fine gold particles having an average particle diameter of 3 nm or less and a coefficient of variation of the particle diameter of 20% or less. In the method for producing gold fine particles by mixing a reducing agent solution into a gold ion solution, the gold nanoparticle of the present invention is prepared by previously mixing a solution of a reducing agent acting in an alkaline region and a gold ion solution. It can be obtained by mixing an alkaline solution and reducing gold ions.

具体的には、本発明の金ナノ粒子は、塩化金酸水溶液とTHPC水溶液を混合し、この混合水溶液を水酸化ナトリウム水溶液と混合して金イオンを還元することによって得ることができる。 Specifically, the gold nanoparticles of the present invention can be obtained by mixing a chloroauric acid aqueous solution and a THPC aqueous solution, mixing the mixed aqueous solution with a sodium hydroxide aqueous solution, and reducing gold ions.

還元剤のTHPCは強アルカリ域で急速に作用するので、従来の製造方法では、予めTHPC水溶液を水酸化ナトリウム水溶液と混合し、強アルカリ性のTHPC水溶液とし、これと塩化金酸水溶液とを混合して塩化金酸を還元している。しかし、このように強アルカリ性のTHPC水溶液を予め形成し、これと塩化金酸水溶液とを混合すると、塩化金酸の還元が急激に進行し、例えば、局所的に生成した金微粒子を核とし、周囲の金イオンが還元されてこの金微粒子の成長に費やされ、局所的に粒径の大きな金微粒子になるため、平均粒子径3nm以下の金ナノ粒子が生成し難い。 Since the reducing agent THPC acts rapidly in a strong alkali region, in the conventional production method, a THPC aqueous solution is mixed with a sodium hydroxide aqueous solution in advance to form a strong alkaline THPC aqueous solution, which is mixed with a chloroauric acid aqueous solution. Reducing chloroauric acid. However, when a strong alkaline THPC aqueous solution is formed in advance and this is mixed with a chloroauric acid aqueous solution, the reduction of chloroauric acid proceeds rapidly. For example, locally generated gold fine particles are used as nuclei, Since the surrounding gold ions are reduced and consumed for the growth of the gold fine particles, and locally become gold fine particles having a large particle diameter, it is difficult to produce gold nanoparticles having an average particle diameter of 3 nm or less.

一方、本発明の製造方法は、水酸化ナトリウム水溶液を加えずにTHPC水溶液を塩化金酸水溶液と混合する。このように、THPCの還元力が実質的に未だ作用しない状態で塩化金酸と混合することによって、THPCと塩化金酸とを均一に混合し、急激な還元作用による局部的な金微粒子の生成を抑制する。次いで、この混合水溶液に水酸化ナトリウム水溶液を添加して強アルカリ性に転化し、THPCの還元作用を発揮させる。このような方法によって、塩化金酸が液中で均一に還元され、金微粒子の成長が局部的に進行することがないので、平均粒子径3nm以下の金ナノ粒子を高い収率で得ることができる。 On the other hand, in the production method of the present invention, the THPC aqueous solution is mixed with the chloroauric acid aqueous solution without adding the sodium hydroxide aqueous solution. In this way, THPC and chloroauric acid are uniformly mixed by mixing with chloroauric acid in a state where the reducing power of THPC does not substantially act yet, and local gold fine particles are generated by abrupt reduction action. Suppress. Next, an aqueous sodium hydroxide solution is added to the mixed aqueous solution to convert it into a strong alkalinity, thereby exhibiting the reducing action of THPC. By such a method, since chloroauric acid is uniformly reduced in the liquid and the growth of gold fine particles does not proceed locally, gold nanoparticles having an average particle diameter of 3 nm or less can be obtained in a high yield. it can.

具体的には、例えば、塩化金酸水溶液の金濃度0.025〜2.5mol/lにおいて、THPC量を金濃度の1〜4モル倍、水酸化ナトリウム量を金濃度の7〜15モル倍とし、5〜60分間混合した後に、還元剤のTHPCを除去することによって、粒子径3nm以下の微細な金ナノ粒子を85%以上の収率で得ることができる。なお、THPCを除去するには、生成した金ナノ粒子を含む反応液を遠心分離して金ナノ粒子を回収し、または非水系溶剤などに金ナノ粒子を抽出するなどの方法によれば良い。 Specifically, for example, when the gold concentration of the chloroauric acid aqueous solution is 0.025 to 2.5 mol / l, the THPC amount is 1 to 4 mol times the gold concentration, and the sodium hydroxide amount is 7 to 15 mol times the gold concentration. Then, after mixing for 5 to 60 minutes, by removing the reducing agent THPC, fine gold nanoparticles having a particle diameter of 3 nm or less can be obtained in a yield of 85% or more. In order to remove THPC, the reaction solution containing the generated gold nanoparticles may be centrifuged to collect the gold nanoparticles, or the gold nanoparticles may be extracted into a non-aqueous solvent or the like.

本発明の方法によって製造した金ナノ粒子は、粒子径の変動係数(相対標準偏差)が20%以下であり、粒子径の均一な金ナノ粒子を得ることができる。 The gold nanoparticles produced by the method of the present invention have a particle diameter variation coefficient (relative standard deviation) of 20% or less, and gold nanoparticles having a uniform particle diameter can be obtained.

本発明の製造方法に係る金ナノ粒子は、平均粒子径3nm以下、例えば平均粒子径1〜3nmであり、粒子径の変動係数が20%以下の均一な微粒子であるので、これを配線材料、色材、光学フィルター、触媒などの機能性材料として均質な性能を得ることができる。さらに、この金微粒子を含む膜は、低い加熱焼成温度(300℃以下)でも比抵抗率が小さいので、特に高温加熱が困難な導電材料に適する。


Since the gold nanoparticles according to the production method of the present invention are uniform fine particles having an average particle diameter of 3 nm or less, for example, an average particle diameter of 1 to 3 nm and a coefficient of variation of the particle diameter of 20% or less, Homogeneous performance can be obtained as functional materials such as coloring materials, optical filters, and catalysts. Further, the film containing the gold fine particles has a small specific resistance even at a low heating and baking temperature (300 ° C. or lower), and is therefore suitable for a conductive material that is difficult to heat at high temperatures.


具体的には、例えば、ディスプレイなどの表面から発生する人体に有害な電磁波をシールドするために、その表面にITOなどの導電性の膜が設けられている。この導電性膜には比抵抗率が小さく、かつ高い透明度が要求される。しかし、ITOなどで十分な導電性を得るためには十分な膜厚が必要になり、コストが高い。本発明の金ナノ粒子は平均粒子径3nm以下の微細粒子であるので高い透明性を有し、かつ導電性に優れているので、電磁波シールド膜などの材料に適する。 Specifically, for example, in order to shield an electromagnetic wave harmful to the human body generated from the surface of a display or the like, a conductive film such as ITO is provided on the surface. This conductive film is required to have a low specific resistivity and high transparency. However, in order to obtain sufficient conductivity with ITO or the like, a sufficient film thickness is required, and the cost is high. Since the gold nanoparticles of the present invention are fine particles having an average particle diameter of 3 nm or less, they have high transparency and are excellent in conductivity, and are therefore suitable for materials such as an electromagnetic shielding film.

また、従来の金粒子は触媒活性が乏しいので触媒として利用されていないが、本発明の金ナノ粒子は平均粒子径を3nm以下にすることによって表面エネルギーが大きく、高い活性を有するので触媒として利用することができる。 In addition, conventional gold particles are not used as a catalyst because of their poor catalytic activity, but the gold nanoparticles of the present invention have a high surface energy and high activity when the average particle size is 3 nm or less, so they are used as a catalyst. can do.

また、配線材料として金微粒子を焼結して用いるが、従来の方法によって製造した金微粒子の焼結体に比べて、本発明の金ナノ粒子焼結体の比抵抗率は大幅に小さく、配線材料として有利である。具体的には、金微粒子を含むペーストを配線材料として用いる場合、このペーストを印刷した後に焼結して配線を形成するが、従来の液相還元法によって製造した金粒子は概ね直径5nm以上であり、これを配線材料として用いるには比較的高い温度で焼結しなければならない。一方、本発明に係る金ナノ粒子は平均粒子径3nm以下にすることによって表面エネルギーが大きくなるので、従来の焼成温度よりも低温での焼成が可能であり、比抵抗を格段に小さくすることができる。具体的には、本発明の金微粒子を配合し、焼成してなる被膜において、比抵抗率1×10-4Ω・cm以下の導電性に優れた被膜を得ることができる。因みに、表1に示すように、従来の金粒子を200〜300℃で15〜30分間焼成したときの比抵抗率は概ね23.0×10-5〜340.0×10-5Ω・cmであるが、本発明の金ナノ粒子は、同様の焼成条件において、2.3×10-5〜4.0×10-5Ω・cmであり、従来の約1/10〜1/150であって比抵抗率が格段に小さい。 In addition, gold fine particles are sintered and used as a wiring material, but the specific resistivity of the gold nanoparticle sintered body of the present invention is significantly smaller than that of a sintered gold fine particle produced by a conventional method. It is advantageous as a material. Specifically, when a paste containing gold fine particles is used as a wiring material, the paste is printed and then sintered to form a wiring. Gold particles produced by a conventional liquid phase reduction method generally have a diameter of 5 nm or more. In order to use it as a wiring material, it must be sintered at a relatively high temperature. On the other hand, since the surface energy of the gold nanoparticles according to the present invention is increased by making the average particle diameter 3 nm or less, firing can be performed at a temperature lower than the conventional firing temperature, and the specific resistance can be significantly reduced. it can. Specifically, in a film formed by blending and firing the gold fine particles of the present invention, a film having a specific resistivity of 1 × 10 −4 Ω · cm or less and excellent conductivity can be obtained. Incidentally, as shown in Table 1, the specific resistivity when the conventional gold particles are baked at 200 to 300 ° C. for 15 to 30 minutes is approximately 23.0 × 10 −5 to 340.0 × 10 −5 Ω · cm. However, the gold nanoparticles of the present invention are 2.3 × 10 −5 to 4.0 × 10 −5 Ω · cm under the same firing conditions, which is about 1/10 to 1/150 of the conventional one. And the specific resistivity is much smaller.

金コロイドなどの金粒子が分散した系では、粒子径に応じて紫、青、赤などの色を発色する。この発色はプラズモン吸収と呼ばれ、電子のプラズマ振動に起因する。プラズモン吸収が大きいとディスプレイの発色を阻害する。本発明の金ナノ粒子は平均粒径を3nm以下にすることによって、光吸収スペクトルにおいて520nm近傍のプラズモン吸収を小さくし、あるいは実質的に生じないようにした。この本発明の金ナノ粒子を用いれば、可視光域においてディスプレイの発色を阻害しない良好な光学フィルターを得ることができる。 In a system in which gold particles such as gold colloid are dispersed, colors such as purple, blue and red are developed according to the particle diameter. This color development is called plasmon absorption and is caused by electron plasma oscillation. If the plasmon absorption is large, the color development of the display is inhibited. The gold nanoparticles of the present invention have an average particle size of 3 nm or less, thereby reducing or substantially preventing plasmon absorption near 520 nm in the light absorption spectrum. By using this gold nanoparticle of the present invention, it is possible to obtain a good optical filter that does not inhibit display color development in the visible light region.

また、本発明の製造方法は、原料の金イオン濃度が0.1mol/l程度でも平均粒子径3nm以下の金ナノ粒子を容易に得ることができるので、工業的実施に適する。 Further, the production method of the present invention is suitable for industrial implementation because gold nanoparticles having an average particle diameter of 3 nm or less can be easily obtained even when the concentration of gold ions in the raw material is about 0.1 mol / l.

本発明の金微粒子は非常に微細であり、かつ粒子径が均一であるので、この金微粒子を含むペースト、コロイドを用いれば、光学特性に優れた被膜や光学フィルター材料を得ることができる。また、この金微粒子は、従来のものより微粒子であるので焼結温度が低く、従って、焼結温度以上で焼成して形成した被膜や光学フィルター材料なども光学特性に優れたものを得ることができる。 Since the gold fine particles of the present invention are very fine and have a uniform particle size, a coating or optical filter material having excellent optical properties can be obtained by using a paste or colloid containing the gold fine particles. Further, since the gold fine particles are finer than the conventional fine particles, the sintering temperature is lower, and therefore, a film formed by baking at a temperature higher than the sintering temperature, an optical filter material, etc. can be obtained with excellent optical characteristics. it can.

以下、本発明の実施例を示す。結果を表1に示した。
〔実施例1〕
THPC水溶液(濃度2.5mol/l)3mlと塩化金酸水溶液(濃度2.5mol/l)2mlとを混合した溶液を、水酸化ナトリウム水溶液(濃度10mol/l)5mlに純水40mlを加えて希釈した水溶液に加えて5分間攪拌し混合した。この混合溶液を遠心分離して金コロイドを回収した。この金コロイドは平均粒子径3nm以下であり、3nm以下の金微粒子の収量910mg(収率91%)であった。また、粒子径の変動係数は16%、300℃で15分〜30分焼成したときの比抵抗率は2.5×10-5〜3.5×10-5Ω・cmであった(表1No.1)。
Examples of the present invention will be described below. The results are shown in Table 1.
[Example 1]
A mixed solution of 3 ml of THPC aqueous solution (concentration 2.5 mol / l) and 2 ml of chloroauric acid aqueous solution (concentration 2.5 mol / l) was added to 40 ml of pure water to 5 ml of sodium hydroxide aqueous solution (concentration 10 mol / l). In addition to the diluted aqueous solution, the mixture was stirred for 5 minutes and mixed. The mixed solution was centrifuged to recover the colloidal gold. This gold colloid had an average particle diameter of 3 nm or less, and the yield of gold fine particles of 3 nm or less was 910 mg (yield 91%). The coefficient of variation of the particle diameter was 16%, and the specific resistivity when fired at 300 ° C. for 15 to 30 minutes was 2.5 × 10 −5 to 3.5 × 10 −5 Ω · cm (Table) 1 No. 1).

〔実施例2〜5〕
THPC水溶液、塩化金酸水溶液、水酸化ナトリウム水溶液について、表1に示す濃度および使用量を用いて金コロイドを製造した。また、実施例1と同一条件で焼成したときの比抵抗率を測定した。この結果を表1に示した(No.2〜No.5)。
[Examples 2 to 5]
Colloidal gold was produced using the concentrations and amounts used in Table 1 for the THPC aqueous solution, chloroauric acid aqueous solution, and sodium hydroxide aqueous solution. Moreover, the specific resistivity when baked on the same conditions as Example 1 was measured. The results are shown in Table 1 (No. 2 to No. 5).

〔比較例〕
THPC水溶液、塩化金酸水溶液、水酸化ナトリウム水溶液について、表1に示す濃度および使用量を用い、あらかじめTHPC水溶液と水酸化ナトリウム水溶液を混合した溶液に塩化金酸水溶液を添加して金コロイドを製造した。また、実施例1と同一条件で焼成したときの比抵抗率を測定した。この結果を表1に示したこの結果を表1に示した(No.6〜No.8)。
[Comparative example]
For the THPC aqueous solution, chloroauric acid aqueous solution, and sodium hydroxide aqueous solution, gold colloid is produced by adding the chloroauric acid aqueous solution to the solution in which the THPC aqueous solution and the sodium hydroxide aqueous solution are mixed in advance using the concentrations and usage amounts shown in Table 1. did. Moreover, the specific resistivity when baked on the same conditions as Example 1 was measured. The results are shown in Table 1. The results are shown in Table 1 (No. 6 to No. 8).

本発明の実施例では、金濃度0.25mol/l〜2.5mol/lにおいて、平均粒子径3nm以下の金ナノ粒子が87%以上の高収率で製造される。一方、比較例では、得られる金微粒子の平均粒子径は3nm以上であり、平均粒子径3nm以下の微細な金ナノ粒子の収率は、金濃度2.5mol/lでは36%以下と低く、金濃度0.25mol/lの薄い塩化金酸溶液を用いた場合でも65%であり、結局、平均粒子径3nm以下であって粒子径の変動係数20%以下の金微粒子を得ることはできない。 In the examples of the present invention, gold nanoparticles having an average particle diameter of 3 nm or less are produced in a high yield of 87% or more at a gold concentration of 0.25 mol / l to 2.5 mol / l. On the other hand, in the comparative example, the average particle diameter of the obtained gold fine particles is 3 nm or more, and the yield of fine gold nanoparticles having an average particle diameter of 3 nm or less is as low as 36% or less at a gold concentration of 2.5 mol / l. Even when a thin chloroauric acid solution having a gold concentration of 0.25 mol / l is used, it is 65%. As a result, it is impossible to obtain gold fine particles having an average particle diameter of 3 nm or less and a coefficient of variation of particle diameter of 20% or less.

Figure 0004706835
Figure 0004706835

Claims (2)

金イオン溶液に還元剤溶液を混合して金微粒子を製造する方法において、還元剤としてテトラキス(ヒドロキシメチル)ホスホニウムクロリド(以下、THPCと云う)を用い、金イオン溶液と還元剤溶液を混合した後に、この混合溶液をアルカリ溶液に添加して金イオンを還元することによって平均粒子径3nm以下であって粒子径の変動係数が20%以下である金微粒子を製造することを特徴とする方法。 In a method for producing a gold fine particle by mixing a reducing agent solution with a gold ion solution, tetrakis (hydroxymethyl) phosphonium chloride (hereinafter referred to as THPC) is used as the reducing agent, and after mixing the gold ion solution and the reducing agent solution. A method of producing gold fine particles having an average particle size of 3 nm or less and a coefficient of variation of particle size of 20% or less by adding the mixed solution to an alkaline solution and reducing gold ions. 塩化金酸水溶液にTHPC水溶液を混合し、この混合溶液を水酸化ナトリウム水溶液に添加して金微粒子を製造する方法であって、塩化金酸水溶液の金濃度が0.025〜2.5mol/l、THPC量が金濃度の1〜4モル倍、水酸化ナトリウム量が金濃度の7〜15モル倍である請求項1に記載する金微粒子の製造方法。 In this method, an aqueous THPC solution is mixed with an aqueous chloroauric acid solution, and this mixed solution is added to an aqueous sodium hydroxide solution to produce gold fine particles. The gold concentration of the aqueous chloroauric acid solution is 0.025 to 2.5 mol / l. The method for producing gold fine particles according to claim 1, wherein the THPC amount is 1 to 4 mol times the gold concentration and the sodium hydroxide amount is 7 to 15 mol times the gold concentration.
JP2005317036A 2004-11-02 2005-10-31 Method for producing gold fine particles Expired - Fee Related JP4706835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317036A JP4706835B2 (en) 2004-11-02 2005-10-31 Method for producing gold fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004318729 2004-11-02
JP2004318729 2004-11-02
JP2005317036A JP4706835B2 (en) 2004-11-02 2005-10-31 Method for producing gold fine particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010255919A Division JP5282915B2 (en) 2004-11-02 2010-11-16 Gold nanoparticles

Publications (2)

Publication Number Publication Date
JP2006152438A JP2006152438A (en) 2006-06-15
JP4706835B2 true JP4706835B2 (en) 2011-06-22

Family

ID=36631066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317036A Expired - Fee Related JP4706835B2 (en) 2004-11-02 2005-10-31 Method for producing gold fine particles

Country Status (1)

Country Link
JP (1) JP4706835B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945608B2 (en) * 2012-12-21 2016-07-05 日本板硝子株式会社 Gold nanoparticle dispersion for forming conductive film, method for producing the same, and conductive coating composition containing the dispersion
CN105252016B (en) * 2015-11-11 2016-10-12 西安电子科技大学 A kind of preparation method of gold nano grain self assembly transplantation single thin film
JP7454756B2 (en) 2019-12-05 2024-03-25 国立大学法人九州大学 Methods for diagnosing cancer, compositions for cancer diagnosis, kits for cancer diagnosis, methods for evaluating cancer status, and methods for screening cancer preventive and/or therapeutic drugs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277705A (en) * 1989-04-19 1990-11-14 Tanaka Kikinzoku Kogyo Kk Method for preparing ultra fine gold particles
WO2005023468A1 (en) * 2003-08-28 2005-03-17 Tama-Tlo, Ltd. Precious metal colloid, precious metal microparticle, composition and process for producing the precious metal microparticle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277705A (en) * 1989-04-19 1990-11-14 Tanaka Kikinzoku Kogyo Kk Method for preparing ultra fine gold particles
WO2005023468A1 (en) * 2003-08-28 2005-03-17 Tama-Tlo, Ltd. Precious metal colloid, precious metal microparticle, composition and process for producing the precious metal microparticle

Also Published As

Publication number Publication date
JP2006152438A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
CN111132533B (en) MXene/silver nanowire composite electromagnetic shielding film
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
JP5059317B2 (en) Method for producing silver particles
KR101251567B1 (en) Nickel powder, process for producing the same, and conductive paste
KR100681268B1 (en) High Concentrated Aqueous Carbon Nanotube Dispersion and Process for preparing the same
JP2010534932A (en) Method for forming electrically conductive copper pattern layer by laser irradiation
JP6666723B2 (en) Silver-coated tellurium powder, method for producing the same, and conductive paste
Amrutha et al. Enhanced Sunlight driven photocatalytic performance and visualization of latent fingerprint by green mediated ZnFe2O4–RGO nanocomposite
JP2007138249A (en) Method for producing silver grain, silver grain-containing composition containing the obtained silver grain and its use
CN104668572A (en) Silver powder and silver paste for back electrode of solar cell and solar cell
JP4706835B2 (en) Method for producing gold fine particles
WO2012077548A1 (en) Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
JP2014034697A (en) Method for producing copper fine particle, conductive paste and method for producing conductive paste
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
JP5282915B2 (en) Gold nanoparticles
JP2014224276A (en) Method for producing copper nanoparticle having high dispersion stability
JP6271231B2 (en) Silver-coated copper powder and conductive paste
Zhu et al. Plasmonic enhancement of the upconversion fluorescence in YVO4: Yb3+, Er3+ nanocrystals based on the porous Ag film
CN105788756B (en) A kind of transparent metal conducting film and preparation method thereof
CN101269417A (en) Method for manufacturing nano-platinum powder
Vélez et al. Manufacture of Pd/carbon Vulcan XC-72R nanoflakes catalysts for ethanol oxidation reaction in alkaline media by RoDSE method
JP5576319B2 (en) Copper particles
Verma et al. Enhancement in the magnetic, optical and electrical properties of Ti0. 97Co0. 03O2 and Ti0. 97Fe0. 03O2 nanoparticles with Ce co-doping
JP5435063B2 (en) Method for producing composition for forming electrode of solar cell and method for forming the electrode
KR101283984B1 (en) Silver nanowire having protuberance and Method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

LAPS Cancellation because of no payment of annual fees