JP2011093982A - Polylactic acid-based resin foamed sheet molding and method for producing the same - Google Patents

Polylactic acid-based resin foamed sheet molding and method for producing the same Download PDF

Info

Publication number
JP2011093982A
JP2011093982A JP2009247711A JP2009247711A JP2011093982A JP 2011093982 A JP2011093982 A JP 2011093982A JP 2009247711 A JP2009247711 A JP 2009247711A JP 2009247711 A JP2009247711 A JP 2009247711A JP 2011093982 A JP2011093982 A JP 2011093982A
Authority
JP
Japan
Prior art keywords
polylactic acid
foam sheet
based resin
resin foam
foamed sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009247711A
Other languages
Japanese (ja)
Inventor
Hironori Kobayashi
弘典 小林
Shosuke Kawamorita
祥介 川守田
Kazuma Kimura
和真 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2009247711A priority Critical patent/JP2011093982A/en
Publication of JP2011093982A publication Critical patent/JP2011093982A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid-based resin foamed sheet molding having excellent heat and impact resistances. <P>SOLUTION: The polylactic acid-based resin foamed sheet molding is formed by thermoforming a polylactic acid-based resin foamed sheet formed from a polylactic acid-based resin composition containing a polylactic acid-based resin, has a degree of crystallinity of ≥25%, and produces an exothermic peak in the range of 130-170°C in heat flux differential scanning calorimetry at a heating rate of 5°C/min. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリ乳酸系樹脂発泡シート成形体、およびポリ乳酸系樹脂発泡シート成形体の製造方法に関する。   The present invention relates to a polylactic acid resin foamed sheet molded article and a method for producing a polylactic acid resin foamed sheet molded article.

従来より、ポリ乳酸系樹脂発泡シートならびにその成形体に関しては、多くの文献より報告がされている。従来のポリ乳酸系樹脂発泡シート成形体のほとんどは、発泡が容易である非結晶性のポリ乳酸系樹脂組成物を材料として形成されたものである。しかるに、斯かるポリ乳酸系樹脂発泡シート成形体は、耐熱性が低いという問題があった。
斯かる観点から、結晶化度が上昇するのを押さえた状態で結晶性のポリ乳酸系樹脂組成物を発泡成形してポリ乳酸系樹脂発泡シートを形成し、該ポリ乳酸系樹脂発泡シートを熱成形する際に、結晶化度を上昇させることで、耐熱性の優れたポリ乳酸系樹脂発泡シート成形体を得る方法が提案されている(例えば、特許文献1)。
Conventionally, many literatures have reported about a polylactic acid-type resin foam sheet and its molded object. Most of the conventional polylactic acid-based resin foam sheet moldings are formed using a non-crystalline polylactic acid-based resin composition that can be easily foamed as a material. However, such a polylactic acid-based resin foam sheet molded body has a problem of low heat resistance.
From this point of view, a crystalline polylactic acid resin composition is foam-molded while suppressing an increase in crystallinity to form a polylactic acid resin foam sheet, and the polylactic acid resin foam sheet is heated. There has been proposed a method of obtaining a polylactic acid resin foamed sheet molded article having excellent heat resistance by increasing the crystallinity during molding (for example, Patent Document 1).

特開2004−359910号公報JP 2004-359910 A

しかしながら、ポリ乳酸系樹脂発泡シート成形体の結晶化度が上昇することで耐熱性が高まる代わりに、樹脂組成の脆性が強くなり、その結果、ポリ乳酸系樹脂発泡シート成形体の耐衝撃性が低下してしまうという問題がある。   However, instead of increasing the heat resistance by increasing the crystallinity of the polylactic acid-based resin foam sheet molded body, the brittleness of the resin composition becomes strong, and as a result, the impact resistance of the polylactic acid resin foam sheet molded body is increased. There is a problem that it falls.

本発明は、上記問題点に鑑み、耐熱性及び耐衝撃性が優れたポリ乳酸系樹脂発泡シート成形体を提供することを課題とする。   This invention makes it a subject to provide the polylactic acid-type resin foam sheet molded object which was excellent in heat resistance and impact resistance in view of the said problem.

本発明は、ポリ乳酸系樹脂を含むポリ乳酸系樹脂組成物から形成されてなるポリ乳酸系樹脂発泡シートを熱成形することによって形成され、
結晶化度が25%以上であり、且つ加熱速度5℃/分における熱流束示差走査熱量測定において130〜170℃の範囲に発熱ピークが生じるものであることを特徴とするポリ乳酸系樹脂発泡シート成形体にある。
The present invention is formed by thermoforming a polylactic acid resin foam sheet formed from a polylactic acid resin composition containing a polylactic acid resin,
A polylactic acid resin foam sheet having a crystallinity of 25% or more and an exothermic peak in the range of 130 to 170 ° C. in heat flux differential scanning calorimetry at a heating rate of 5 ° C./min It is in the molded body.

また、本発明は、ポリ乳酸系樹脂を含むポリ乳酸系樹脂組成物から形成されてなるポリ乳酸系樹脂発泡シートを加熱する第1加熱工程と、該第1加熱工程で加熱したポリ乳酸系樹脂発泡シートを、加熱した成形型で一定時間挟む第2加熱工程とを実施してポリ乳酸系樹脂発泡シート成形体を形成し、該ポリ乳酸系樹脂発泡シート成形体の結晶化度を上昇させることにより、ポリ乳酸系樹脂発泡シート成形体を、結晶化度が25%以上であり且つ加熱速度5℃/分における熱流束示差走査熱量測定において130〜170℃の範囲に発熱ピークが生じるものにすることを特徴とするポリ乳酸系樹脂発泡シートの製造方法にある。   The present invention also provides a first heating step for heating a polylactic acid resin foam sheet formed from a polylactic acid resin composition containing a polylactic acid resin, and a polylactic acid resin heated in the first heating step. A second heating step of sandwiching the foamed sheet with a heated mold for a certain period of time to form a polylactic acid resin foamed sheet molded article, and increasing the crystallinity of the polylactic acid resin foamed sheet molded article Thus, the polylactic acid-based resin foam sheet molded body has a crystallinity of 25% or more and an exothermic peak in the range of 130 to 170 ° C. in heat flux differential scanning calorimetry at a heating rate of 5 ° C./min. The present invention resides in a method for producing a polylactic acid-based resin foam sheet.

本発明によれば、耐熱性及び耐衝撃性が優れたポリ乳酸系樹脂発泡シート成形体を提供し得る。   ADVANTAGE OF THE INVENTION According to this invention, the polylactic acid-type resin foam sheet molded object excellent in heat resistance and impact resistance can be provided.

実施例1のDSCチャート例。2 is a DSC chart example of the first embodiment. 実施例2のDSCチャート例。6 is a DSC chart example of Example 2. 比較例1のDSCチャート例。2 is a DSC chart example of Comparative Example 1. 比較例3のDSCチャート例。10 is a DSC chart example of Comparative Example 3.

以下、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described.

本実施形態のポリ乳酸系樹脂発泡シート成形体は、ポリ乳酸系樹脂を含むポリ乳酸系樹脂組成物から形成されてなるポリ乳酸系樹脂発泡シートを熱成形することによって形成されてなる。   The molded body of the polylactic acid resin foam sheet of the present embodiment is formed by thermoforming a polylactic acid resin foam sheet formed from a polylactic acid resin composition containing a polylactic acid resin.

また、本実施形態のポリ乳酸系樹脂発泡シート成形体は、結晶化度が25%以上、好ましくは30%以上、さらに好ましくは35%以上である。本実施形態のポリ乳酸系樹脂発泡シート成形体は、結晶化度が25%以上であることにより、耐熱性が優れたものとなるという利点がある。
尚、前記ポリ乳酸系樹脂発泡シートの結晶化度は、実施例に記載の方法で求めることができる。
Further, the polylactic acid resin foamed sheet molded body of the present embodiment has a crystallinity of 25% or more, preferably 30% or more, and more preferably 35% or more. The polylactic acid-based resin foamed sheet molded body of this embodiment has an advantage that the heat resistance is excellent when the crystallinity is 25% or more.
In addition, the crystallinity degree of the said polylactic acid-type resin foam sheet can be calculated | required by the method as described in an Example.

さらに、本実施形態のポリ乳酸系樹脂発泡シート成形体は、加熱速度5℃/分における熱流束示差走査熱量測定において130〜170℃の範囲に発熱ピークが生じるものである。
また、本実施形態のポリ乳酸系樹脂発泡シート成形体は、加熱速度5℃/分における熱流束示差走査熱量測定において、結晶化度にもよるが概ね60〜110℃において第1発熱ピーク(ΔHexo1 :5℃/分)が生じ、融解吸収ピークの手前に第2発熱ピーク(ΔHexo2 :5℃/分)(130〜170℃)が生じる。本実施形態のポリ乳酸系樹脂発泡シート成形体は、この第2発熱ピークが生じることより、理由はよくは分からないが、耐衝撃性が優れたものとなるという利点がある。本実施形態のポリ乳酸系樹脂発泡シート成形体は、加熱速度5℃/分における熱流束示差走査熱量測定において130℃〜170℃の範囲に生じる発熱ピークの発熱量(ΔHexo2 :5℃/分)は、好ましくは1mJ/mg以上、より好ましくは1〜5mJ/mgであり、さらにより好ましくは1〜4mJ/mgである。本実施形態のポリ乳酸系樹脂発泡シート成形体は、該発熱ピークの発熱量(ΔHexo2 :5℃/分)が1mJ/mg以上であることにより、耐衝撃性が優れたものとなるという利点がある。
尚、熱流束示差走査熱量測定は、実施例に記載の方法で行うものを意味する。
Furthermore, the polylactic acid resin foamed sheet molded body of the present embodiment has an exothermic peak in the range of 130 to 170 ° C. in heat flux differential scanning calorimetry at a heating rate of 5 ° C./min.
In addition, the polylactic acid-based resin foamed sheet molded body of the present embodiment has a first exothermic peak (ΔHexo) at about 60 to 110 ° C. in the heat flux differential scanning calorimetry at a heating rate of 5 ° C./min. 1 : 5 ° C./min), and a second exothermic peak (ΔHexo 2 : 5 ° C./min) (130 to 170 ° C.) occurs before the melting absorption peak. The polylactic acid-based resin foamed sheet molded body of the present embodiment has an advantage that the impact resistance is excellent, although the reason is not well understood because the second exothermic peak occurs. The polylactic acid-based resin foam sheet molded body of the present embodiment has a calorific value (ΔHexo 2 : 5 ° C./min) of an exothermic peak generated in the range of 130 ° C. to 170 ° C. in the heat flux differential scanning calorimetry at a heating rate of 5 ° C./min. ) Is preferably 1 mJ / mg or more, more preferably 1 to 5 mJ / mg, and even more preferably 1 to 4 mJ / mg. The polylactic acid-based resin foamed sheet molded body of the present embodiment has an advantage that it has excellent impact resistance when the calorific value (ΔHexo 2 : 5 ° C./min) of the exothermic peak is 1 mJ / mg or more. There is.
In addition, heat flux differential scanning calorimetry means what is performed by the method as described in an Example.

前記ポリ乳酸系樹脂組成物は、ポリ乳酸系樹脂を基材樹脂の主成分とする。   The polylactic acid resin composition contains a polylactic acid resin as a main component of the base resin.

該ポリ乳酸系樹脂とは、乳酸成分単位を50モル%以上含むポリマーを言う。該ポリマーとしては、(1)乳酸の重合体、(2)乳酸と他の脂肪族ヒドロキシカルボン酸とのコポリマー、(3)乳酸と脂肪族多価アルコールと脂肪族多価カルボン酸とのコポリマー、(4)乳酸と脂肪族多価カルボン酸とのコポリマー、(5)乳酸と脂肪族多価アルコールとのコポリマー、(6)前記(1)〜(5)の何れかの組み合わせによる混合物等を挙げることができる。尚、上記乳酸の具体例としては、L−乳酸、D−乳酸、DL−乳酸又はそれらの環状2量体であるL−ラクチド、D−ラクチド、DL−ラクチド又はそれらの混合物を挙げることができる。   The polylactic acid resin refers to a polymer containing 50 mol% or more of lactic acid component units. The polymer includes (1) a polymer of lactic acid, (2) a copolymer of lactic acid and another aliphatic hydroxycarboxylic acid, (3) a copolymer of lactic acid, an aliphatic polyhydric alcohol and an aliphatic polycarboxylic acid, (4) Copolymer of lactic acid and aliphatic polyhydric carboxylic acid, (5) Copolymer of lactic acid and aliphatic polyhydric alcohol, (6) Mixture by any combination of (1) to (5) be able to. Specific examples of the lactic acid include L-lactic acid, D-lactic acid, DL-lactic acid or their cyclic dimer L-lactide, D-lactide, DL-lactide or a mixture thereof. .

また、該ポリ乳酸系樹脂は、結晶性ポリ乳酸系樹脂、或いは、結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂との混合物を含む。
結晶性ポリ乳酸系樹脂、或いは、結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂との混合物としては、前記熱流束示差走査熱量測定によって求められる吸熱量(ΔHendo)が10mJ/mg以上、好ましくは20mJ/mg以上、更に好ましくは30mJ/mg以上のものである。尚、本発明にて用いるポリ乳酸系樹脂の該吸熱量(ΔHendo)の上限は、特に限定されるものではないが、概ね60mJ/mgである。
また、結晶性ポリ乳酸とは、前記熱流束示差走査熱量測定によって求められる吸熱量(ΔHendo)が2mJ/mgを超えるものとする。尚、該結晶性ポリ乳酸の吸熱量(ΔHendo)は通常20〜65mJ/mgである。
尚、熱流束示差走査熱量測定によって求められる吸熱量(ΔHendo)は、後述の方法にて測定する。
The polylactic acid-based resin includes a crystalline polylactic acid-based resin or a mixture of a crystalline polylactic acid-based resin and an amorphous polylactic acid-based resin.
As the crystalline polylactic acid-based resin or the mixture of the crystalline polylactic acid-based resin and the amorphous polylactic acid-based resin, the endothermic amount (ΔHendo) determined by the heat flux differential scanning calorimetry is 10 mJ / mg or more, Preferably it is 20 mJ / mg or more, more preferably 30 mJ / mg or more. The upper limit of the endothermic amount (ΔHendo) of the polylactic acid resin used in the present invention is not particularly limited, but is generally 60 mJ / mg.
In addition, crystalline polylactic acid has an endothermic amount (ΔHendo) obtained by the heat flux differential scanning calorimetry of more than 2 mJ / mg. The endothermic amount (ΔHendo) of the crystalline polylactic acid is usually 20 to 65 mJ / mg.
The endothermic amount (ΔHendo) obtained by heat flux differential scanning calorimetry is measured by the method described later.

前記ポリ乳酸系樹脂が、乳酸のD−体とL−体とが共重合されたものを含み、該共重合体のD−体比率が0.5〜5モル%であり、且つ該ポリ乳酸系樹脂の融点が130〜170℃であることが好ましい。該共重合体のD−体比率が0.5〜5モル%であり、且つ該ポリ乳酸系樹脂の融点が130〜170℃であることにより、該ポリ乳酸系樹脂組成物を発泡させた際におけるポリ乳酸系樹脂組成物の発泡性、ポリ乳酸系樹脂発泡シートの成形性、及びポリ乳酸系樹脂発泡シート成形体の耐熱性が優れたものとなるという利点がある。   The polylactic acid-based resin includes a copolymer in which a D-form and an L-form of lactic acid are copolymerized, the D-form ratio of the copolymer is 0.5 to 5 mol%, and the polylactic acid The melting point of the resin is preferably 130 to 170 ° C. When the polylactic acid resin composition is foamed when the D-form ratio of the copolymer is 0.5 to 5 mol% and the melting point of the polylactic acid resin is 130 to 170 ° C. There is an advantage that the foaming property of the polylactic acid-based resin composition, the moldability of the polylactic acid-based resin foamed sheet, and the heat resistance of the polylactic acid-based resin foamed sheet are excellent.

前記ポリ乳酸系樹脂組成物は、前記ポリ乳酸系樹脂を100重量%備えてなる。或いは、前記ポリ乳酸系樹脂組成物は、前記ポリ乳酸系樹脂と、該ポリ乳酸系樹脂以外の熱可塑性樹脂との混合物であり、該ポリ乳酸系樹脂を50重量%以上100重量%未満の割合で、該熱可塑性樹脂を0重量%を超え且つ50重量%以下の割合で備えてなる。即ち、前記ポリ乳酸系樹脂組成物は、本発明の目的及び効果を達成できる範囲内において、前記ポリ乳酸系樹脂以外の熱可塑性樹脂を50重量%以下の割合を含有してもよい。
また、前記ポリ乳酸系樹脂組成物は、前記ポリ乳酸系樹脂以外の熱可塑性樹脂を含有してなる場合には、好ましくは60重量%以上、更に好ましくは70重量%以上の割合で前記ポリ乳酸系樹脂を含有してなる。尚、ポリ乳酸系樹脂以外の熱可塑性樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等が挙げられる。本発明では、前記ポリ乳酸系樹脂組成物は、ポリ乳酸系樹脂発泡シート成形体の耐衝撃性が向上するという観点から、熱可塑性エラストマーを含むことが好ましい。
前記熱可塑性エラストマーとしては、オレフィン系エラストマー、スチレン系エラストマー、アクリル系エラストマー、エステル系エラストマーが挙げられるが、それらの中でもポリ乳酸系樹脂との相溶性が良い、アクリル系エラストマー、酸変性させたスチレン系エラストマー、エステル系エラストマーが好ましい。具体的には、三菱レーヨン社製メタブレンW-600A、旭化成社製タフテックMP10、日油社製ノフアロイTZ810などを市販品として好適に使用することができる。
The polylactic acid resin composition comprises 100% by weight of the polylactic acid resin. Alternatively, the polylactic acid-based resin composition is a mixture of the polylactic acid-based resin and a thermoplastic resin other than the polylactic acid-based resin, and the proportion of the polylactic acid-based resin is 50% by weight or more and less than 100% by weight. The thermoplastic resin is provided in a proportion exceeding 0% by weight and not more than 50% by weight. That is, the polylactic acid resin composition may contain a thermoplastic resin other than the polylactic acid resin in a proportion of 50% by weight or less within a range in which the object and effect of the present invention can be achieved.
Further, when the polylactic acid resin composition contains a thermoplastic resin other than the polylactic acid resin, the polylactic acid resin composition is preferably 60% by weight or more, more preferably 70% by weight or more. Containing a resin. Examples of the thermoplastic resin other than the polylactic acid resin include a polyethylene resin, a polypropylene resin, a polystyrene resin, and a polyester resin. In this invention, it is preferable that the said polylactic acid-type resin composition contains a thermoplastic elastomer from a viewpoint that the impact resistance of a polylactic acid-type resin foam sheet molded object improves.
Examples of the thermoplastic elastomer include olefin elastomers, styrene elastomers, acrylic elastomers, and ester elastomers. Among them, acrylic elastomers and acid-modified styrenes that have good compatibility with polylactic acid resins. Of these, elastomers and ester elastomers are preferred. Specifically, Metablene W-600A manufactured by Mitsubishi Rayon Co., Ltd., Asahi Kasei Co., Ltd. Tuftec MP10, NOF alloy TZ810 manufactured by NOF Corporation, etc. can be suitably used as commercial products.

前記ポリ乳酸系樹脂発泡シートの見掛け密度は、好ましくは0.063〜0.5g/cm3 であり、より好ましくは0.083〜0.25g/cm3 である。前記ポリ乳酸系樹脂発泡シートの見掛け密度が0.063g/cm3 以上であることにより、本実施形態のポリ乳酸系樹脂発泡シート成形体は、強度が高いものとなり、さらに、前記ポリ乳酸系樹脂発泡シートの熱成型性が良好となり金型通りの形状の成形体となるという利点がある。また、ポリ乳酸系樹脂発泡シートの見掛け密度が0.5g/cm3 以下であることにより、本実施形態のポリ乳酸系樹脂発泡シート成形体は、軽量性、断熱性、緩衝性等の発泡体としての特徴が良好となるという利点がある。
尚、ポリ乳酸系樹脂発泡シートの見掛け密度は、実施例に記載の方法で求めることができる。
The apparent density of the polylactic acid-based resin foam sheet is preferably 0.063 to 0.5 g / cm 3 , more preferably 0.083 to 0.25 g / cm 3 . When the apparent density of the polylactic acid-based resin foamed sheet is 0.063 g / cm 3 or more, the polylactic acid-based resin foamed sheet molded body of the present embodiment has high strength, and further, the polylactic acid-based resin There is an advantage that the thermoformability of the foamed sheet is good and the molded body has a shape as in the mold. Further, since the apparent density of the polylactic acid-based resin foamed sheet is 0.5 g / cm 3 or less, the polylactic acid-based resin foamed sheet molded body of the present embodiment is a foam having light weight, heat insulating properties, buffering properties, etc. There is an advantage that the characteristics of the are improved.
In addition, the apparent density of a polylactic acid-type resin foam sheet can be calculated | required by the method as described in an Example.

前記ポリ乳酸系樹脂発泡シートの厚みは、好ましくは0.5〜7mm、より好ましくは0.5〜5mm、更により好ましくは0.7〜3mmである。前記ポリ乳酸系樹脂発泡シートの厚みが0.5mm以上であることにより、本実施形態のポリ乳酸系樹脂発泡シート成形体は、強度が高いものとなるという利点がある。また、前記ポリ乳酸系樹脂発泡シートの厚みが7mm以下であることにより、前記ポリ乳酸系樹脂発泡シートの熱成型性が良好となり、その結果、本実施形態のポリ乳酸系樹脂発泡シート成形体は、厚みムラが少ないものとなるという利点がある。
尚、前記ポリ乳酸系樹脂発泡シートの厚みは、実施例に記載の方法で求めることができる。
The thickness of the polylactic acid-based resin foam sheet is preferably 0.5 to 7 mm, more preferably 0.5 to 5 mm, and still more preferably 0.7 to 3 mm. When the thickness of the polylactic acid-based resin foam sheet is 0.5 mm or more, the polylactic acid-based resin foam sheet molded body of the present embodiment has an advantage that the strength is high. Moreover, when the thickness of the polylactic acid-based resin foam sheet is 7 mm or less, the thermoformability of the polylactic acid-based resin foam sheet is improved, and as a result, the polylactic acid-based resin foam sheet molded body of the present embodiment is There is an advantage that thickness unevenness is reduced.
In addition, the thickness of the said polylactic acid-type resin foam sheet can be calculated | required by the method as described in an Example.

前記ポリ乳酸系樹脂発泡シートの平均気泡径は、好ましくは0.1〜1mm、より好ましくは0.1〜0.8mm、さらにより好ましくは0.1〜0.6mmである。前記ポリ乳酸系樹脂発泡シートの平均気泡径が0.1mm以上であることにより、ポリ乳酸系樹脂発泡シートの連続気泡率が低下しやすくなり、その結果、本実施形態のポリ乳酸系樹脂発泡シート成形体は、見掛け密度が大きなものになるという利点や、ポリ乳酸系樹脂発泡シートの熱成型性が良好となり、その結果、本実施形態のポリ乳酸系樹脂発泡シート成形体は、厚みムラが少ないものとなるという利点がある。また、前記ポリ乳酸系樹脂発泡シートの平均気泡径が1mm以下であることにより、本実施形態のポリ乳酸系樹脂発泡シート成形体は、断熱性、緩衝性等の発泡体としての特徴が良好となるという利点がある。
尚、前記ポリ乳酸系樹脂発泡シートの平均気泡径は、実施例に記載の方法で求めることができる。
The average cell diameter of the polylactic acid-based resin foam sheet is preferably 0.1 to 1 mm, more preferably 0.1 to 0.8 mm, and still more preferably 0.1 to 0.6 mm. When the average cell diameter of the polylactic acid-based resin foamed sheet is 0.1 mm or more, the open cell ratio of the polylactic acid-based resin foamed sheet is likely to decrease, and as a result, the polylactic acid-based resin foamed sheet of the present embodiment. The molded body has the advantage that the apparent density is large and the thermoformability of the polylactic acid-based resin foam sheet is good. As a result, the polylactic acid-based resin foam sheet molded body of the present embodiment has little thickness unevenness. There is an advantage of becoming a thing. Moreover, since the average cell diameter of the polylactic acid-based resin foam sheet is 1 mm or less, the polylactic acid-based resin foam sheet molded body of the present embodiment has good characteristics as a foam such as heat insulation and buffering properties. There is an advantage of becoming.
In addition, the average cell diameter of the said polylactic acid-type resin foam sheet can be calculated | required by the method as described in an Example.

前記ポリ乳酸系樹脂発泡シートの連続気泡率は、50%以下が好ましく、40%以下がより好ましく、30%以下が更に好ましい。前記ポリ乳酸系樹脂発泡シートの連続気泡率が50%以下であることにより、ポリ乳酸系樹脂発泡シートの機械的強度、及び熱成形時の二次発泡性が特に優れたものとなるという利点があり、また、本実施形態のポリ乳酸系樹脂発泡シート成形体は、機械的強度が優れ、更に金型再現性などの外観においても優れたものとなるという利点がある。
尚、前記ポリ乳酸系樹脂発泡シートの連続気泡率は、実施例に記載の方法で求めることができる。
The open cell ratio of the polylactic acid-based resin foam sheet is preferably 50% or less, more preferably 40% or less, and still more preferably 30% or less. When the open cell ratio of the polylactic acid-based resin foamed sheet is 50% or less, the mechanical strength of the polylactic acid-based resin foamed sheet and the secondary foamability during thermoforming are particularly excellent. In addition, the polylactic acid-based resin foamed sheet molded body of the present embodiment has an advantage that it has excellent mechanical strength and is excellent in appearance such as mold reproducibility.
In addition, the open cell rate of the said polylactic acid-type resin foam sheet can be calculated | required by the method as described in an Example.

本実施形態のポリ乳酸系樹脂発泡シート成形体は、前記ポリ乳酸系樹脂発泡シートを熱成形することによって形成されるものである。このため、前記ポリ乳酸系樹脂発泡シートに関して、結晶状態を調整することにより、結晶化度が上昇しすぎて熱成形性を損なわないようにすることが必要である。
斯かる観点から、前記ポリ乳酸系樹脂発泡シートは、加熱速度5℃/分における熱流束示差走査熱量測定によって求められる、吸熱量(ΔHendo:5℃/分)と発熱量(ΔHexo:5℃/分)との差(ΔHendo:5℃/分−ΔHexo:5℃/分)が好ましくは30mJ/mg未満(0mJ/mgも含む)、より好ましくは1〜25mJ/mgである。
前記ポリ乳酸系樹脂発泡シートは、前記(ΔHendo:5℃/分−ΔHexo:5℃/分)が30mJ/mg未満であることにより、熱成形性が優れたものとなるという利点がある。
尚、前記ポリ乳酸系樹脂発泡シートの熱流束示差走査熱量測定は、実施例に記載のポリ乳酸系樹脂発泡シート成形体の熱流束示差走査熱量測定の方法と同様の方法で実施することができる。
The polylactic acid-based resin foamed sheet molding of this embodiment is formed by thermoforming the polylactic acid-based resin foamed sheet. For this reason, it is necessary to adjust the crystal state of the polylactic acid-based resin foam sheet so that the degree of crystallization does not increase so much that the thermoformability is not impaired.
From such a viewpoint, the polylactic acid-based resin foamed sheet has an endothermic amount (ΔHendo: 5 ° C./min) and a calorific value (ΔHexo: 5 ° C./min) determined by heat flux differential scanning calorimetry at a heating rate of 5 ° C./min. Min) (ΔHendo: 5 ° C./min−ΔHexo: 5 ° C./min) is preferably less than 30 mJ / mg (including 0 mJ / mg), more preferably 1 to 25 mJ / mg.
The polylactic acid-based resin foamed sheet has an advantage that the above-mentioned (ΔHendo: 5 ° C./min−ΔHexo: 5 ° C./min) is less than 30 mJ / mg, so that the thermoformability is excellent.
The heat flux differential scanning calorimetry of the polylactic acid resin foam sheet can be carried out by the same method as the method of heat flux differential scanning calorimetry of the polylactic acid resin foam sheet molded article described in the examples. .

本実施形態のポリ乳酸系樹脂発泡シート成形体は、上記の如く構成されてなるが、次ぎに、本実施形態のポリ乳酸系樹脂発泡シート成形体の製造方法について説明する。   The polylactic acid resin foamed sheet molded article of the present embodiment is configured as described above. Next, a method for producing the polylactic acid resin foamed sheet molded article of the present embodiment will be described.

本実施形態のポリ乳酸系樹脂発泡シート成形体の製造方法は、前記ポリ乳酸系樹脂発泡シートを加熱する第1加熱工程と、該第1加熱工程で加熱したポリ乳酸系樹脂発泡シートを、加熱した成形型で一定時間挟む第2加熱工程とを実施してポリ乳酸系樹脂発泡シート成形体を形成し、該ポリ乳酸系樹脂発泡シート成形体の結晶化度を上昇させることにより、ポリ乳酸系樹脂発泡シート成形体を、結晶化度が25%以上であり且つ加熱速度5℃/分における熱流束示差走査熱量測定において130〜170℃の範囲に発熱ピークが生じるものにする方法である。   The manufacturing method of the polylactic acid-based resin foam sheet molded body of the present embodiment includes a first heating step for heating the polylactic acid-based resin foam sheet, and heating the polylactic acid-based resin foam sheet heated in the first heating step. Forming a polylactic acid resin foamed sheet molded body by performing a second heating step of sandwiching the molded mold for a certain period of time, and increasing the crystallinity of the polylactic acid resin foamed sheet molded body. In this method, the resin foam sheet molded body has a crystallinity of 25% or more and an exothermic peak occurs in the range of 130 to 170 ° C. in heat flux differential scanning calorimetry at a heating rate of 5 ° C./min.

また、本実施形態のポリ乳酸系樹脂発泡シート成形体の製造方法は、前記第2加熱工程で前記加熱した成形型として雄型及び雌型を用い、該第2加熱工程で加熱成形されたポリ乳酸系樹脂発泡シートを前記成形型と同形状の成形体により冷却する冷却工程を実施することにより、ポリ乳酸系樹脂発泡シート成形体を形成する。   Further, the method for producing a polylactic acid-based resin foamed sheet molded body of the present embodiment uses a male mold and a female mold as the heated molds in the second heating step, and the poly-molded by the second heating step. A polylactic acid-based resin foam sheet molded body is formed by performing a cooling step of cooling the lactic acid-based resin foam sheet with a molded body having the same shape as the mold.

前記第1加熱工程では、前記ポリ乳酸系樹脂発泡シートを加熱する方法として、加熱板により発泡シートを挟む方法、電熱ヒーターにより、発泡シートを加熱する方法など公知の方法を採用することができる。   In the first heating step, a known method such as a method of sandwiching the foam sheet with a heating plate or a method of heating the foam sheet with an electric heater can be adopted as a method of heating the polylactic acid resin foam sheet.

また、本実施形態のポリ乳酸系樹脂発泡シート成形体の製造方法は、前記第1加熱工程において、ポリ乳酸系樹脂発泡シートの表面温度を好ましくは110〜130℃、より好ましくは120〜130℃にした後に、前記第2加熱工程を実施する。本実施形態のポリ乳酸系樹脂発泡シート成形体の製造方法は、前記第1加熱工程において、ポリ乳酸系樹脂発泡シートの表面温度を110℃以上にした後に、前記第2加熱工程を実施することにより、成形型の転写性が良好となり、更にポリ乳酸系樹脂発泡シートの軟化状態が良好となり、成型時にポリ乳酸系樹脂発泡シートが破れてしまうことが抑制される。また、本実施形態のポリ乳酸系樹脂発泡シート成形体の製造方法は、前記第1加熱工程において、ポリ乳酸系樹脂発泡シートの表面温度を130℃以下にした後に、前記第2加熱工程を実施することにより、ポリ乳酸系樹脂発泡シートの表面状態が良好となり、更に、加熱の段階での結晶化が抑制されることにより、形成されるポリ乳酸系樹脂発泡シート成形体の加熱速度5℃/分における熱流束示差走査熱量測定による130〜170℃の範囲に発熱ピークの発熱量が高まりやすくなり、形成されるポリ乳酸系樹脂発泡シート成形体の耐衝撃性が優れたものとなるという利点がある。   Moreover, the manufacturing method of the polylactic acid-type resin foam sheet molded object of this embodiment WHEREIN: In the said 1st heating process, Preferably the surface temperature of a polylactic acid-type resin foam sheet is 110-130 degreeC, More preferably, it is 120-130 degreeC. Then, the second heating step is performed. The manufacturing method of the polylactic acid-based resin foamed sheet molded body of the present embodiment includes performing the second heating step after the surface temperature of the polylactic acid-based resin foamed sheet is set to 110 ° C. or higher in the first heating step. As a result, the transferability of the mold is improved, the softened state of the polylactic acid resin foam sheet is improved, and the polylactic acid resin foam sheet is suppressed from being torn during molding. Moreover, the manufacturing method of the polylactic acid-type resin foam sheet molded object of this embodiment implements the said 2nd heating process, after making the surface temperature of a polylactic acid-type resin foam sheet into 130 degrees C or less in the said 1st heating process. By doing so, the surface state of the polylactic acid-based resin foamed sheet becomes good, and further, the crystallization at the heating stage is suppressed, whereby the heating rate of the formed polylactic acid-based resin foamed sheet is 5 ° C. / The heat generation of the exothermic peak tends to increase in the range of 130 to 170 ° C. by heat flux differential scanning calorimetry in minutes, and the impact resistance of the formed polylactic acid resin foamed sheet molded article is excellent. is there.

また、第2加熱工程は、加熱された雄雌の成形型により、加熱され軟化したポリ乳酸系樹脂発泡シートを挟み込み賦形し、その状態を一定時間保持することで、ポリ乳酸系樹脂発泡シート成形体の結晶化度を上昇させることが出来る。   In the second heating step, the heated and softened polylactic acid resin foam sheet is sandwiched and shaped by a heated male and female mold, and the state is maintained for a certain period of time, so that the polylactic acid resin foam sheet is maintained. The crystallinity of the molded body can be increased.

また、第2加熱工程では、加熱された成形型を好ましくは80〜110℃、より好ましくは85〜100℃の温度とする。第2加熱工程は、加熱された成形型を80℃以上とすることにより、ポリ乳酸系樹脂発泡シート成形体の結晶化度が上昇しやすくなるという利点があり、また、結晶化させるための時間を短縮しやすくなり生産性が高まりやすくなるという利点もある。また、第2加熱工程は、加熱された成形型を110℃以下とすることにより、ポリ乳酸系樹脂発泡シートの表面状態が良好となり、結晶化が抑制されてポリ乳酸系樹脂発泡シート成形体の耐衝撃性が優れたものとなるという利点がある。   In the second heating step, the heated mold is preferably set to a temperature of 80 to 110 ° C, more preferably 85 to 100 ° C. The second heating step has an advantage that the degree of crystallization of the polylactic acid-based resin foam sheet molded article is likely to increase by setting the heated mold at 80 ° C. or higher, and the time for crystallization is increased. There is also an advantage that the productivity can be easily increased by shortening the time. Further, in the second heating step, by setting the heated mold to 110 ° C. or lower, the surface state of the polylactic acid resin foamed sheet becomes good, and crystallization is suppressed, so that the polylactic acid resin foamed sheet molded article There is an advantage that the impact resistance is excellent.

また、本実施形態のポリ乳酸系樹脂発泡シート成形体の製造方法は、基材樹脂としての前記ポリ乳酸系樹脂組成物と気泡調整剤とを押出機に供給し加熱溶融混練した後、発泡剤を押出機内に圧入して混練し、樹脂温度を発泡適正温度に調整してダイから押出して発泡させ発泡体を得、得られた発泡体表面を押出し直後に空気またはミストを吹き付けるなどして急冷、もしくは温風などを吹き付けて保温又は加温することによってポリ乳酸系樹脂発泡シートを得るポリ乳酸系樹脂発泡シート生成工程を備えてなる。   The method for producing a polylactic acid-based resin foam sheet molded body according to the present embodiment includes supplying the polylactic acid-based resin composition as a base resin and a cell regulator to an extruder, heating and kneading, and then blowing the foaming agent. The mixture is pressed into an extruder and kneaded, and the resin temperature is adjusted to an appropriate foaming temperature and extruded from a die to foam to obtain a foam, and the resulting foam surface is immediately cooled by blowing air or mist immediately after extrusion. Alternatively, it includes a polylactic acid resin foam sheet producing step for obtaining a polylactic acid resin foam sheet by keeping warm or warming by blowing warm air or the like.

前記ダイとしては、環状ダイやTダイ等が挙げられるが、前記好ましい見掛け密度を有し、均一な前記好ましい厚みを有するポリ乳酸系樹脂発泡シートを得るには環状ダイが好ましい。前記ポリ乳酸系樹脂発泡シート生成工程では、環状ダイを用いて押出発泡すると、円筒状の発泡体が得られるので、該発泡体をマンドレルの側面に沿わせて引き取り、押出方向に切り開けば広幅のポリ乳酸系樹脂発泡シートを得ることができる。   Examples of the die include an annular die and a T die. An annular die is preferable for obtaining a polylactic acid resin foamed sheet having the preferred apparent density and the uniform preferred thickness. In the polylactic acid-based resin foamed sheet production step, a cylindrical foam can be obtained by extrusion foaming using an annular die. Therefore, if the foam is taken along the side surface of the mandrel and cut in the extrusion direction, a wide width is obtained. A polylactic acid resin foam sheet can be obtained.

前記ポリ乳酸系樹脂組成物のポリ乳酸系樹脂は、押出発泡に適していることが、ポリ乳酸系樹脂発泡シートを製造する上で好ましい。押出発泡には一般的に溶融張力の高い樹脂を使うことで発泡倍率の高いポリ乳酸系樹脂発泡シートを得られることが知られており、特に結晶性樹脂の場合は、一般的に溶融張力が低いため、化学架橋や電子線架橋などの方法で樹脂架橋を施したり、高分子量成分を混合するなどして樹脂の溶融張力を高め、押出発泡性を向上させられることが知られている。このような溶融張力を高めた、結晶性ポリ乳酸系樹脂としては、市販品として例えばユニチカ社製テラマックHV6250H、HV8250H、ネイチャーワークス社製INGEO8251Dなどが挙げられる。   The polylactic acid resin of the polylactic acid resin composition is preferably suitable for extrusion foaming in producing a polylactic acid resin foam sheet. It is known that a polylactic acid resin foam sheet having a high expansion ratio can be obtained by using a resin having a high melt tension for extrusion foaming. Particularly, in the case of a crystalline resin, the melt tension is generally low. Since it is low, it is known that the resin can be cross-linked by a method such as chemical cross-linking or electron beam cross-linking or the high molecular weight component can be mixed to increase the melt tension of the resin and improve the extrusion foamability. Examples of such crystalline polylactic acid resins with increased melt tension include commercially available products such as Terramac HV6250H and HV8250H manufactured by Unitika, and INGEO8251D manufactured by Nature Works.

前記発泡剤としては、低い見掛け密度の発泡シートを得るという観点から、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等の低級アルカン等の炭化水素類、ジメチルエーテルなどのエーテル類、メチルクロライド、エチルクロライド等のハロゲン化炭化水素類、二酸化炭素等の無機ガス類などの物理発泡剤が挙げられる。これらの中でも、ノルマルブタン、イソブタン、ジメチルエーテル、二酸化炭素が好ましい。尚、前記発泡剤として、上記物理発泡剤の他、化学発泡剤、或いは物理発泡剤と化学発泡剤とを併用して使用することもできる。   As the foaming agent, from the viewpoint of obtaining a foam sheet having a low apparent density, hydrocarbons such as lower alkanes such as propane, normal butane, isobutane, normal pentane, isopentane and hexane, ethers such as dimethyl ether, methyl chloride, Examples thereof include physical foaming agents such as halogenated hydrocarbons such as ethyl chloride and inorganic gases such as carbon dioxide. Among these, normal butane, isobutane, dimethyl ether, and carbon dioxide are preferable. As the foaming agent, in addition to the above physical foaming agent, a chemical foaming agent, or a physical foaming agent and a chemical foaming agent may be used in combination.

前記気泡調整剤としては、例えばタルク、シリカ等の無機系核剤やポリテトラフルオロエチレンなどの有機系核剤などが好適に使用できる。特にタルクやポリテトラフルオロエチレンが気泡調整のしやすさの点で好ましい。また、前記気泡調整剤は、ステアリン酸カルシウム等の脂肪酸金属塩系の気泡調整剤を適宜含むこともできる。さらに、ポリ乳酸系樹脂発泡シート生成工程においては、目的に応じて着色剤、酸化防止剤、加水分解抑制等の各種添加剤を基材樹脂に添加することもできる。   As the bubble adjusting agent, for example, an inorganic nucleating agent such as talc or silica, an organic nucleating agent such as polytetrafluoroethylene, or the like can be preferably used. In particular, talc and polytetrafluoroethylene are preferable in terms of ease of air bubble adjustment. In addition, the bubble regulator may appropriately include a fatty acid metal salt-based bubble regulator such as calcium stearate. Furthermore, in the polylactic acid-based resin foam sheet production step, various additives such as a colorant, an antioxidant, and hydrolysis inhibition can be added to the base resin depending on the purpose.

本実施形態のポリ乳酸系樹脂発泡シート成形体の製造方法は、吸熱量と発熱量との差が好ましい範囲内にあるポリ乳酸系樹脂発泡シートを得るという観点から、押出発泡法により得られた発泡体を押出し直後に空気や水などによる発泡体の冷却、もしくは加熱空気や温水などによる発泡体の保温や加温することで発泡体を温調し、調整することが好ましい。   The method for producing a polylactic acid-based resin foam sheet molded body of the present embodiment was obtained by an extrusion foaming method from the viewpoint of obtaining a polylactic acid-based resin foam sheet in which the difference between the heat absorption amount and the heat generation amount is within a preferable range. Immediately after the foam is extruded, it is preferable to adjust the temperature of the foam by cooling the foam with air or water, or by maintaining or warming the foam with heated air or warm water.

本実施形態のポリ乳酸系樹脂発泡シート成形体の製造方法により形成されたポリ乳酸系樹脂発泡シート成形体は、耐熱性及び耐衝撃性に優れた成形体となる。
本実施形態のポリ乳酸系樹脂発泡シート成形体は、耐熱性及び耐衝撃性が優れていることから、弁当箱、カップ麺容器、果物容器、野菜容器等の食品包装容器、精密機器、電気製品の緩衝包装容器等として好適に使用できる。
The polylactic acid-based resin foam sheet molded body formed by the method for producing a polylactic acid-based resin foam sheet molded body of the present embodiment is a molded body excellent in heat resistance and impact resistance.
Since the polylactic acid-based resin foam sheet molded body of the present embodiment is excellent in heat resistance and impact resistance, food packaging containers such as lunch boxes, cup noodle containers, fruit containers, vegetable containers, precision instruments, electrical products It can be suitably used as a buffer packaging container.

尚、本実施形態のポリ乳酸系樹脂発泡シート成形体、及びポリ乳酸系樹脂発泡シート成形体の製造方法は、上記構成を有するものであったが、本発明のポリ乳酸系樹脂発泡シート成形体、及びポリ乳酸系樹脂発泡シート成形体の製造方法は、上記構成に限定されず、適宜設計変更可能である。   In addition, although the manufacturing method of the polylactic acid-based resin foamed sheet molded body and the polylactic acid-based resin foamed sheet molded body of the present embodiment has the above-described configuration, the polylactic acid-based resin foamed sheet molded body of the present invention is used. And the manufacturing method of a polylactic acid-type resin foam sheet molded object is not limited to the said structure, A design change is possible suitably.

次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。   Next, the present invention will be described more specifically with reference to examples and comparative examples.

(実施例1)
まず、口径が50mmの第一押出機の先端に、口径が65mmの第二押出機を接続してなるタンデム型押出機を用意した。
そして、このタンデム型押出機の第一押出機に、ポリ乳酸系樹脂としてのユニチカ社製ポリ乳酸系樹脂(製品名:テラマック HV8250H D体量:約1.4モル%)と、発泡核剤としてのタルクを配合した配合樹脂とを、ポリ乳酸系樹脂100重量部に対してタルク3重量部となるように、供給して溶融混練して溶融樹脂組成物を得た。次に、第一押出機の途中から発泡剤としてブタンを圧入し、溶融状態の溶融樹脂組成物とブタンを均一に混合混練した上で、この発泡剤を含む溶融樹脂組成物を第二押出機に連続的に供給して溶融混練しつつ発泡に適した樹脂温度に冷却した。その後、第二押出機の先端に取り付けたスリット口径70mmのサーキュラー金型から吐出量30kg/hr、樹脂温度168℃の条件で該溶融樹脂組成物を押出発泡させ、金型スリットから押出発泡された発泡体を冷却されているマンドレル上に添わせるとともに、その外面をエアリングからエアーを吹き付けて冷却成形し、マンドレル上の一点で、カッターにより円筒状の発泡体を切開して、シート状のポリ乳酸系樹脂発泡シートを得た。
次に、上下加熱板と、雄雌のグラタン容器形状の加熱成形型(容器開口部(リブを含む)外寸法:114mm×175mm、底部外寸法:80mm×125mm、容器深さ外寸法:26mm)と、同様な形状且つ同様な大きさの雄雌のグラタン容器形状の冷却型とを備えたマッチモールドタイプの成形機を用意した。加熱板の温度を140℃、加熱成形型の温度を90℃、冷却型の温度を25℃にセットし、上記で得られた発泡シートを成形機にセットして、加熱板に5秒間挟み加熱した後、直ちに加熱成形型で60秒間プレスして成形及び結晶化促進を行った。次に冷却型で30秒間冷却し、グラタン容器形状のポリ乳酸系樹脂発泡シート成形体を得た。
Example 1
First, a tandem type extruder in which a second extruder having a diameter of 65 mm was connected to the tip of a first extruder having a diameter of 50 mm was prepared.
Then, in the first extruder of this tandem type extruder, a polylactic acid resin (product name: Terramac HV8250H D body amount: about 1.4 mol%) manufactured by Unitika as a polylactic acid resin and a foam nucleating agent The blended resin blended with talc was supplied and melt-kneaded so as to be 3 parts by weight of talc with respect to 100 parts by weight of the polylactic acid resin to obtain a molten resin composition. Next, butane is press-fitted from the middle of the first extruder as a foaming agent, and the molten resin composition and butane in a molten state are uniformly mixed and kneaded, and then the molten resin composition containing this foaming agent is added to the second extruder. The mixture was continuously supplied and cooled to a resin temperature suitable for foaming while being melt-kneaded. Thereafter, the molten resin composition was extruded and foamed from a circular mold having a slit diameter of 70 mm attached to the tip of the second extruder under conditions of a discharge rate of 30 kg / hr and a resin temperature of 168 ° C., and extruded and foamed from the mold slit. The foam is attached to the cooled mandrel, and the outer surface is blown by air from an air ring to cool and form, and at one point on the mandrel, the cylindrical foam is cut by a cutter to form a sheet-like poly A lactic acid resin foam sheet was obtained.
Next, an upper and lower heating plate and a male / female gratin container-shaped thermoforming mold (container opening (including ribs) outer dimensions: 114 mm × 175 mm, bottom outer dimensions: 80 mm × 125 mm, container depth outer dimensions: 26 mm) And a match mold type molding machine provided with a cooling mold of a male and female gratin container shape having the same shape and the same size. Set the temperature of the heating plate to 140 ° C, the temperature of the heating mold to 90 ° C, the temperature of the cooling mold to 25 ° C, set the foamed sheet obtained above in the molding machine, and sandwich and heat it for 5 seconds. Immediately after that, pressing for 60 seconds with a thermoforming mold was carried out to promote molding and crystallization. Next, it was cooled with a cooling mold for 30 seconds to obtain a polylactic acid-based resin foam sheet molded body in the form of a gratin container.

(実施例2)
ポリ乳酸系樹脂としてのユニチカ社製ポリ乳酸系樹脂(製品名:テラマック HV8250H D体量:約1.4モル%)と、熱可塑性エラストマーとしての旭化成社製SEBS(製品名:タフテックMP10)と、発泡核剤としてのタルクを配合した配合樹脂とを、ポリ乳酸系樹脂80重量部に対して、熱可塑性エラストマー20重量部、タルク6重量部となるように、第1押出機に供給して溶融混練して溶融樹脂組成物を得たこと、サキュラーからの吐出量を31kg/hrとしてポリ乳酸系樹脂発泡シートを得たこと以外は、実施例1と同様にポリ乳酸系樹脂発泡シート成形体を作製した。
(Example 2)
Unitika polylactic acid resin (product name: Terramac HV8250H D body amount: about 1.4 mol%) as a polylactic acid resin, SEBS (product name: Tuftec MP10) manufactured by Asahi Kasei as a thermoplastic elastomer, A compounded resin blended with talc as a foam nucleating agent is supplied to the first extruder and melted so that 80 parts by weight of the polylactic acid resin is 20 parts by weight of thermoplastic elastomer and 6 parts by weight of talc. A polylactic acid resin foam sheet molded body was obtained in the same manner as in Example 1 except that a molten resin composition was obtained by kneading, and a polylactic acid resin foam sheet was obtained with a discharge rate from a circular of 31 kg / hr. Produced.

(実施例3)
加熱成形型での加熱成形時間を180秒としたこと以外は、実施例1と同様にポリ乳酸系樹脂発泡シート成形体を作製した。
(Example 3)
A polylactic acid-based resin foam sheet molded body was produced in the same manner as in Example 1 except that the heat molding time in the thermoforming mold was 180 seconds.

(実施例4)
加熱成形型での加熱成形時間を40秒としたこと以外は、実施例1と同様にポリ乳酸系樹脂発泡シート成形体を作製した。
Example 4
A polylactic acid-based resin foam sheet molded body was produced in the same manner as in Example 1 except that the heat molding time in the thermoforming mold was 40 seconds.

(実施例5)
加熱板での加熱時間を10秒としたこと以外は、実施例1と同様にポリ乳酸系樹脂発泡シート成形体を作製した。
(Example 5)
A polylactic acid resin foamed sheet molded article was produced in the same manner as in Example 1 except that the heating time on the heating plate was 10 seconds.

(比較例1)
加熱成形型での加熱成形を実施しなかったこと以外は、実施例1と同様にポリ乳酸系樹脂発泡シート成形体を作製した。
(Comparative Example 1)
A polylactic acid resin foamed sheet molded body was produced in the same manner as in Example 1 except that the thermoforming with the thermoforming mold was not performed.

(比較例2)
加熱成形型での加熱成形を実施しなかったこと以外は、実施例1と同様にポリ乳酸系樹脂発泡シート成形体を作製した。
(Comparative Example 2)
A polylactic acid resin foamed sheet molded body was produced in the same manner as in Example 1 except that the thermoforming with the thermoforming mold was not performed.

(比較例3)
加熱板での加熱時間を20秒としたこと以外は、実施例1と同様にポリ乳酸系樹脂発泡シート成形体を作製した。
(Comparative Example 3)
A polylactic acid resin foamed sheet molded article was produced in the same manner as in Example 1 except that the heating time on the heating plate was 20 seconds.

実施例及び比較例のポリ乳酸系樹脂発泡シートの見掛け密度、厚み、秤量、平均気泡径、連続気泡率、および加熱板での加熱工程直後の表面温度を測定し、また、ポリ乳酸系樹脂発泡シート成形体の熱流束示差走査熱量、容器落球試験高さ、および加熱寸法変化率を測定した。試験方法を以下に示す。   Measure the apparent density, thickness, weight, average cell diameter, open cell ratio, and surface temperature of the polylactic acid resin foamed sheets of Examples and Comparative Examples immediately after the heating process with a heating plate. The heat flux differential scanning calorific value, container drop ball test height, and heating dimensional change rate of the sheet molded body were measured. The test method is shown below.

(見掛け密度)
見掛け密度に関しては、ポリ乳酸系樹脂発泡シートから10×10cmの測定サンプルを幅方向に3枚切出し、それぞれのサンプルの厚みと重量を測定して、各サンプルの重量と体積から算出した密度の算術平均値をポリ乳酸系樹脂発泡シートの見掛け密度とした。
(Apparent density)
Regarding the apparent density, three 10 × 10 cm measurement samples were cut out from the polylactic acid resin foam sheet in the width direction, the thickness and weight of each sample were measured, and the density arithmetic calculated from the weight and volume of each sample The average value was taken as the apparent density of the polylactic acid resin foam sheet.

(厚み)
厚みに関しては、発泡シートの全幅を幅方向に12等分した間隔において厚みを測定し、求められた各測定値の算術平均値をポリ乳酸系樹脂発泡シートの厚みとした。
(Thickness)
Regarding the thickness, the thickness was measured at intervals obtained by dividing the entire width of the foamed sheet into 12 equal parts in the width direction, and the arithmetic average value of each measured value was used as the thickness of the polylactic acid resin foamed sheet.

(秤量)
秤量は、ポリ乳酸系樹脂発泡シートを押出方向に20cmの幅で押出方向と直交方向に切取り、その切片の重量W(g)と面積S(cm2 )から下記式にて求めた。
坪量(g/m2)=W/S×10000
(Weighing)
The weighing was obtained by cutting the polylactic acid-based resin foam sheet in the extrusion direction with a width of 20 cm in the direction perpendicular to the extrusion direction, and calculating the weight from the section W (g) and area S (cm 2 ) by the following formula.
Basis weight (g / m 2 ) = W / S × 10000

(平均気泡径)
平均気泡径は、ASTM D2842−69の試験方法に準拠して測定した。
具体的には、発泡シートをMD方向(押出方向)及びTD方向(押出方向に直交する方向)に沿って切断し、それぞれの切断面の中央部を走査型電子顕微鏡((株)日立製作所製S−3000N)で拡大して場所を変えて2枚撮影した。
次に、撮影した画像をA4用紙上に印刷し、画像上に長さ60mmの直線を3本、描いた。なお、MD方向に切断した切断面についてはMD方向に平行に、TD方向に切断した切断面についてはTD方向に平行に直線を描いた。さらにVD方向は、MD、TDそれぞれ1枚の画像上に直線を描いた。このとき直線上に気泡が10〜20個存在するように、上記電子顕微鏡での拡大倍率を調整した。
そして、上記各方向に6本引いた直線上に存在するそれぞれの方向の平均気泡数から気泡の平均弦長(t)を下記式によりそれぞれ算出し、この平均弦長から下記式により各方向(MD方向、TD方向、VD方向)の気泡径をそれぞれ算出した。
平均弦長t=60(mm)/(気泡数×写真の倍率)
気泡径 D=t/0.616(mm)
なお、直線を描くにあたっては、できるだけ直線が気泡に点接触することなく貫通した状態となるようにした。又、一部の気泡が直線に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含めた。
そして、得られたMD方向の気泡径(DMD)とTD方向の気泡径(DTD)とVD方向の気泡径(DVD)との相乗平均値をポリ乳酸系樹脂発泡シートの平均気泡径とした。即ち、下記式により、ポリ乳酸系樹脂発泡シートの平均気泡径を算出した。
平均気泡径(mm)=(DMD×DTD×DVD1/3
(Average bubble diameter)
The average cell diameter was measured according to the test method of ASTM D2842-69.
Specifically, the foamed sheet is cut along the MD direction (extrusion direction) and the TD direction (direction perpendicular to the extrusion direction), and the center of each cut surface is scanned by an electron microscope (manufactured by Hitachi, Ltd.). In S-3000N), two pictures were taken at different locations.
Next, the photographed image was printed on A4 paper, and three straight lines having a length of 60 mm were drawn on the image. In addition, about the cut surface cut | disconnected in MD direction, the straight line was drawn in parallel with MD direction, and the cut surface cut | disconnected in TD direction was drawn in parallel with TD direction. Further, in the VD direction, a straight line was drawn on one image each of MD and TD. At this time, the magnification of the electron microscope was adjusted so that 10 to 20 bubbles were present on the straight line.
Then, the average chord length (t) of the bubbles is calculated from the average number of bubbles in each direction existing on the straight line drawn by six in each direction by the following formula, and each direction ( The bubble diameters in the MD direction, the TD direction, and the VD direction were calculated.
Average chord length t = 60 (mm) / (number of bubbles × photo magnification)
Bubble diameter D = t / 0.616 (mm)
When drawing a straight line, the straight line was penetrated as much as possible without making point contact with the bubbles. Also, if some of the bubbles come into point contact with a straight line, this bubble is included in the number of bubbles, and if both ends of the straight line are located in the bubble without penetrating the bubbles Included the number of bubbles including both ends of the straight line.
And the geometrical average value of the obtained bubble diameter in the MD direction (D MD ), the bubble diameter in the TD direction (D TD ), and the bubble diameter in the VD direction (D VD ) is the average bubble diameter of the polylactic acid resin foam sheet. It was. That is, the average cell diameter of the polylactic acid-based resin foam sheet was calculated from the following formula.
Average bubble diameter (mm) = (D MD × D TD × D VD ) 1/3

(連続気泡率)
連続気泡率は、東京サイエンス(株)社製 空気比較式比重計を用いて測定される、ポリ乳酸系樹脂発泡シートの試験片の体積Vから、下記式より算出した。
連続気泡率(%)=(V0 −V)/V0 ×100
尚、上記式において、Vは上記した方法で測定される試験片の体積(cm3)、V0は測定に使用した試験片の外形寸法から計算される試験片の見掛けの体積(cm3)である。
(Open cell ratio)
The open cell ratio was calculated from the following formula from the volume V of the test piece of the polylactic acid resin foam sheet measured using an air comparison type hydrometer made by Tokyo Science Co., Ltd.
Open cell ratio (%) = (V 0 −V) / V 0 × 100
In the above equation, V is the volume (cm 3 ) of the test piece measured by the above method, and V 0 is the apparent volume (cm 3 ) of the test piece calculated from the outer dimensions of the test piece used for the measurement. It is.

(加熱工程直後の表面温度)
ポリ乳酸系樹脂発泡シートを熱成形機にセットし、加熱板での加熱工程が終了した直後のポリ乳酸系樹脂発泡シートの表面温度を堀場製作所社製放射温度計IT−550を用いて測定した。このときポリ乳酸系樹脂発泡シートの放射率を0.85として、放射温度計を設定し測定した。
加熱工程直後とは、熱成形機が加熱工程を加熱板に挟んで行うタイプのものである場合には、加熱が終わり、加熱板が開いて加熱板からポリ乳酸系樹脂発泡シートが離れて2秒以内のことを意味し、熱成形機が加熱を電気ヒーターなどの加熱炉で行うタイプのものである場合には、加熱炉からポリ乳酸系樹脂発泡シートが出て2秒以内のことを意味する。
(Surface temperature immediately after heating process)
The polylactic acid resin foamed sheet was set in a thermoforming machine, and the surface temperature of the polylactic acid resin foamed sheet immediately after the heating step with the heating plate was completed was measured using a radiation thermometer IT-550 manufactured by Horiba. . At this time, the emissivity of the polylactic acid resin foamed sheet was set to 0.85, and a radiation thermometer was set and measured.
Immediately after the heating process, when the thermoforming machine is of a type in which the heating process is sandwiched between heating plates, the heating is finished, the heating plate is opened, and the polylactic acid resin foam sheet is separated from the heating plate. This means within seconds, and when the thermoforming machine is of a type that heats in a heating furnace such as an electric heater, it means that within 2 seconds the polylactic acid resin foam sheet comes out of the heating furnace. To do.

(熱流束示差走査熱量、および結晶化度)
熱流束示差走査熱量は、JIS K7122−1987に記載される熱流束示差走査熱量測定(熱流束DSC)に準拠して測定した。
具体的には、エスアイアイナノテクノロジー(株)製示差走査熱量計装置 DSC6220型を用いて測定容器にポリ乳酸系樹脂発泡シート成形体の試料を6〜7mg充てんして、窒素ガス流量30mL/minのもと5℃/minの加熱速度で30〜210℃の範囲で結晶化発熱量と融解吸熱量を測定し、結晶化度を次式により求めた。
結晶化度(%)=[吸熱量(ΔHendo:5℃/分)(mJ)−発熱量(ΔHexo:5℃/分)(mJ)]/完全結晶の融解熱量(mJ)×100
ただし、ポリ乳酸系樹脂の完全結晶の融解熱量を93mJとした。
ここで、測定される融解吸熱量と結晶化発熱量は、上記熱流束示差走査熱量測定によって得られるDSCチャートの各ピークの面積である。面積を求める場合は、各ピーク毎にベースラインから離れる点とベースラインに戻る点を直線で結び、直線とDSCカーブとに囲まれた部分を各ピークの面積とした。ただし、結晶化度にもよるが概ね60〜110において第1発熱ピーク(ΔHexo1 :5℃/分)が観察され、融解吸収ピークの手前に第2発熱ピーク(ΔHexo2 :5℃/分)(130〜170℃)が観察される場合がある。この場合、第1発熱ピーク(ΔHexo1 :5℃/分)の面積は、第2発熱ピークのベースライン第1発熱ピークに延長して、延長したベースラインをもとに、第1発熱ピークの高温側のベースラインから離れた点と、第1発熱ピークの低温側のピークとベースラインが交わった点とで囲まれた部分をピーク面積とした。第2発熱ピークの発熱量(ΔHexo2 :5℃/分)を求める場合は、上記の測定方法により、第2発熱ピークから続く融解吸熱ピークを含めたピーク曲線について、第2発熱ピークの低温側のベースラインから離れる点と、第2発熱ピークの高温側のベースラインに戻る点を直線で結び、第2発熱量(ΔHexo2 :5℃/分)とした。そして、第1発熱ピークと第2発熱ピークが観察される場合は、その総和を結晶化発熱量とした。
ポリ乳酸系樹脂発泡シート成形体の結晶化度は、ポリ乳酸系樹脂発泡シート成形体から試験片2つを切り取り、それぞれについて、上記方法で測定した結晶化度の算術平均値をもって、ポリ乳酸系樹脂発泡シート成形体の結晶化度とした。また、本発明の発泡シートが結晶性ポリ乳酸樹脂に非結晶性ポリ乳酸樹脂又は、その他の非結晶性の熱可塑性樹脂を含んでいる場合は、結晶性ポリ乳酸樹脂の混合割合にて、測定で得られた結晶化度の値を割り返すことにより得られた値をその成形体の結晶化度とした。
また、ポリ乳酸系樹脂発泡シートを熱成形したポリ乳酸系樹脂発泡シート成形体の第2発熱ピークの発熱量(ΔHexo2 :5℃/分)は、成形体から試験片2つを切り取り、それぞれについて、上記測定法で求めた第2発熱ピークの発熱量(ΔHexo2 :5℃/分)の算術平均値を第2発熱ピークの発熱量(ΔHexo2 :5℃/分)とした。また、ポリ乳酸系樹脂発泡シートが結晶性ポリ乳酸樹脂に非結晶性ポリ乳酸樹脂又は、その他の非結晶性の熱可塑性樹脂を含んでいる場合は、結晶性ポリ乳酸樹脂の混合割合にて、測定で得られた第2発熱ピークの発熱量(ΔHexo2 :5℃/分)の値を割り返すことにより得られた値をそのポリ乳酸系樹脂発泡シート成形体の第2発熱ピークの発熱量(ΔHexo2 :5℃/分)とした。
(Heat flux differential scanning calorimetry and crystallinity)
The heat flux differential scanning calorific value was measured according to the heat flux differential scanning calorimetry (heat flux DSC) described in JIS K7122-1987.
Specifically, 6 to 7 mg of a sample of a polylactic acid-based resin foamed sheet molded product is filled into a measurement container using a DSC 6220 type differential scanning calorimeter device manufactured by SII Nano Technology Co., Ltd., and a nitrogen gas flow rate of 30 mL / min. Then, the crystallization exotherm and the melting endotherm were measured in the range of 30 to 210 ° C. at a heating rate of 5 ° C./min, and the crystallinity was determined by the following equation.
Crystallinity (%) = [Endotherm (ΔHendo: 5 ° C./min) (mJ) −Exotherm (ΔHexo: 5 ° C./min) (mJ)] / Heat of fusion of complete crystal (mJ) × 100
However, the heat of fusion of the complete crystal of polylactic acid resin was 93 mJ.
Here, the measured melting endotherm and crystallization exotherm are the area of each peak of the DSC chart obtained by the above heat flux differential scanning calorimetry. When determining the area, the points that depart from the base line and the points that return to the base line are connected by straight lines for each peak, and the area surrounded by the straight line and the DSC curve is defined as the area of each peak. However, although depending on the degree of crystallinity, the first exothermic peak (ΔHexo 1 : 5 ° C./min) is generally observed at 60 to 110, and the second exothermic peak (ΔHexo 2 : 5 ° C./min) before the melting absorption peak. (130-170 ° C.) may be observed. In this case, the area of the first exothermic peak (ΔHexo 1 : 5 ° C./min) is extended to the baseline first exothermic peak of the second exothermic peak, and based on the extended baseline, The area surrounded by the point away from the base line on the high temperature side and the point where the base line intersects the peak on the low temperature side of the first exothermic peak was taken as the peak area. When calculating the calorific value (ΔHexo 2 : 5 ° C./min) of the second exothermic peak, the peak curve including the melting endothermic peak that follows the second exothermic peak is measured on the low temperature side of the second exothermic peak by the above measurement method. The point deviating from the base line and the point returning to the base line on the high temperature side of the second exothermic peak were connected by a straight line to obtain the second exotherm (ΔHexo 2 : 5 ° C./min). And when the 1st exothermic peak and the 2nd exothermic peak were observed, the sum total was made into the crystallization calorific value.
The crystallinity of the polylactic acid-based resin foamed sheet molded body was determined by cutting out two test pieces from the polylactic acid-based resin foamed sheet molded body, and using the arithmetic average value of the crystallinity measured by the above method for each, It was set as the crystallinity degree of the resin foam sheet molding. In addition, when the foamed sheet of the present invention contains a non-crystalline polylactic acid resin or other non-crystalline thermoplastic resin in the crystalline polylactic acid resin, measurement is performed at a mixing ratio of the crystalline polylactic acid resin. The value obtained by repeating the value of the crystallinity obtained in step 1 was taken as the crystallinity of the molded body.
In addition, the calorific value (ΔHexo 2 : 5 ° C./min) of the second exothermic peak of the polylactic acid resin foamed sheet molded body obtained by thermoforming the polylactic acid resin foamed sheet was obtained by cutting two test pieces from the molded body, for, the heat generation amount of the second exothermic peak obtained by the above measurement method: calorific value of the second exothermic peak the arithmetic mean value of (ΔHexo 2 5 ℃ / min): was (ΔHexo 2 5 ℃ / min). In addition, when the polylactic acid resin foamed sheet contains an amorphous polylactic acid resin or other non-crystalline thermoplastic resin in the crystalline polylactic acid resin, in a mixing ratio of the crystalline polylactic acid resin, The value obtained by repeating the calorific value (ΔHexo 2 : 5 ° C./min) of the second exothermic peak obtained by the measurement is the calorific value of the second exothermic peak of the polylactic acid resin foamed sheet molded body. (ΔHexo 2 : 5 ° C./min).

(容器落球試験高さ)
高さ調整の出来る電磁石を有する鉄球落下装置を用意し、電磁石の直下にポリ乳酸系樹脂発泡シート成形体(グラタン容器成形体)を底部を上に向けて設置した。電磁石に重さ510gの鉄球を吸着させて、所定の高さから電磁石の電源を切って鉄球を落下させて、グラタン容器成形体に衝撃させ、鉄球を5回落下させて1回も容器が破損しないことを確認し、試験高さを5cmずつ上げていき、1回でも容器が破損したときのひとつ前の試験高さを容器落球試験高さ(cm)とした。
(Container falling ball test height)
An iron ball dropping device having an electromagnet capable of height adjustment was prepared, and a polylactic acid-based resin foam sheet molded body (gratin container molded body) was placed directly below the electromagnet with the bottom facing up. Attach an iron ball with a weight of 510 g to the electromagnet, turn off the electromagnet from a predetermined height, drop the iron ball, impact the gratin container molding, drop the iron ball 5 times, and once After confirming that the container was not damaged, the test height was increased by 5 cm, and the previous test height when the container was damaged even once was defined as the container drop ball test height (cm).

(加熱寸法変化率)
140℃に設定した熱風循環式のオーブンにポリ乳酸系樹脂発泡シート成形体を入れて10分間加熱した後、オーブンから取り出して室温に自然冷却させた。加熱前と加熱後のポリ乳酸系樹脂発泡シート成形体の容器高さを測定し、加熱寸法変化率を下記式より計算した。なお、試験体数を2とし、その平均値をもって加熱寸法変化率とした。
加熱寸法変化率(%)=(加熱後の容器高さ−加熱前の容器高さ)×100
尚、容器高さは、ポリ乳酸系樹脂発泡シート成形体(グラタン容器形状成形体)を底部
が上向きとなるように水平台に静置させたときの台面から容器底部までの距離とした。
(Heating dimensional change rate)
The molded body of the polylactic acid resin foamed sheet was placed in a hot air circulation oven set at 140 ° C. and heated for 10 minutes, then taken out of the oven and allowed to cool naturally to room temperature. The container height of the polylactic acid resin foamed sheet molded body before and after heating was measured, and the heating dimensional change rate was calculated from the following formula. The number of test specimens was 2, and the average value was used as the heating dimensional change rate.
Heating dimensional change rate (%) = (container height after heating−container height before heating) × 100
The container height was defined as the distance from the base surface to the bottom of the container when the polylactic acid resin foam sheet molded body (gratin container shape molded body) was allowed to stand on a horizontal base so that the bottom faced upward.

上記試験の結果を表1、2に示す。また、実施例1、2、比較例1、3のDSCチャート例を図1〜4に示す。   The results of the above test are shown in Tables 1 and 2. Examples of DSC charts of Examples 1 and 2 and Comparative Examples 1 and 3 are shown in FIGS.

Figure 2011093982
Figure 2011093982

Figure 2011093982
Figure 2011093982

表2に示すように、本発明の範囲内である実施例1〜5のポリ乳酸系樹脂発泡シート成形体は、結晶化度が本発明の範囲内の値よりも小さい比較例1、2に比して、加熱寸法変化率が小さいこと、即ち、耐熱性が優れていることが示された。また、本発明の範囲内である実施例1〜5のポリ乳酸系樹脂発泡シート成形体は、第2発熱ピークが生じない比較例3に比して、容器落球試験高さが高いこと、即ち、耐衝撃性が優れていることが示された。   As shown in Table 2, the polylactic acid-based resin foamed sheet moldings of Examples 1 to 5 which are within the scope of the present invention are compared with Comparative Examples 1 and 2 in which the degree of crystallinity is smaller than the value within the scope of the present invention. In comparison, the heating dimensional change rate was small, that is, the heat resistance was excellent. Moreover, the polylactic acid-based resin foamed sheet moldings of Examples 1 to 5 within the scope of the present invention have a higher container drop ball test height as compared with Comparative Example 3 in which the second exothermic peak does not occur. It was shown that the impact resistance is excellent.

Claims (10)

ポリ乳酸系樹脂を含むポリ乳酸系樹脂組成物から形成されてなるポリ乳酸系樹脂発泡シートを熱成形することによって形成され、
結晶化度が25%以上であり、且つ加熱速度5℃/分における熱流束示差走査熱量測定において130〜170℃の範囲に発熱ピークが生じるものであることを特徴とするポリ乳酸系樹脂発泡シート成形体。
It is formed by thermoforming a polylactic acid resin foam sheet formed from a polylactic acid resin composition containing a polylactic acid resin,
A polylactic acid resin foam sheet having a crystallinity of 25% or more and an exothermic peak in the range of 130 to 170 ° C. in heat flux differential scanning calorimetry at a heating rate of 5 ° C./min Molded body.
前記加熱速度5℃/分における熱流束示差走査熱量測定における130〜170℃の範囲の発熱ピークの発熱量(ΔHexo2 :5℃/分)が、1mJ/mg以上である請求項1に記載のポリ乳酸系樹脂発泡シート成形体。 The calorific value (ΔHexo 2 : 5 ° C / min) of an exothermic peak in the range of 130 to 170 ° C in the heat flux differential scanning calorimetry at the heating rate of 5 ° C / min is 1 mJ / mg or more. Polylactic acid resin foam sheet molding. 前記ポリ乳酸系樹脂が乳酸のD−体とL−体とが共重合されたものを含み、該共重合体のD−体比率が0.5〜5モル%であり、且つ該ポリ乳酸系樹脂の融点が130〜170℃である請求項1又は2のいずれか1項に記載のポリ乳酸系樹脂発泡シート成形体。   The polylactic acid-based resin includes a copolymer in which a D-form and an L-form of lactic acid are copolymerized, the D-form ratio of the copolymer is 0.5 to 5 mol%, and the polylactic acid series The polylactic acid resin foamed sheet molded article according to any one of claims 1 and 2, wherein the melting point of the resin is 130 to 170 ° C. 前記ポリ乳酸系樹脂発泡シートの見掛け密度が0.063〜0.5g/cm3 である請求項1〜3のいずれか1項に記載のポリ乳酸系樹脂発泡シート成形体。 The apparent density of the said polylactic acid-type resin foam sheet is 0.063-0.5 g / cm < 3 >, The polylactic acid-type resin foam sheet molded object of any one of Claims 1-3. 前記ポリ乳酸系樹脂発泡シートの厚みが0.5〜7mmである請求項1〜4のいずれか1項に記載のポリ乳酸系樹脂発泡シート成形体。   The thickness of the said polylactic acid-type resin foam sheet is 0.5-7 mm, The polylactic acid-type resin foam sheet molded object of any one of Claims 1-4. 前記ポリ乳酸系樹脂発泡シートの連続気泡率が50%以下である請求項1〜5のいずれかに記載のポリ乳酸系樹脂発泡シート成形体。   The polylactic acid resin foamed sheet molded article according to any one of claims 1 to 5, wherein the polylactic acid resin foamed sheet has an open cell ratio of 50% or less. ポリ乳酸系樹脂を含むポリ乳酸系樹脂組成物から形成されてなるポリ乳酸系樹脂発泡シートを加熱する第1加熱工程と、該第1加熱工程で加熱したポリ乳酸系樹脂発泡シートを、加熱した成形型で一定時間挟む第2加熱工程とを実施してポリ乳酸系樹脂発泡シート成形体を形成し、該ポリ乳酸系樹脂発泡シート成形体の結晶化度を上昇させることにより、ポリ乳酸系樹脂発泡シート成形体を、結晶化度が25%以上であり且つ加熱速度5℃/分における熱流束示差走査熱量測定において130〜170℃の範囲に発熱ピークが生じるものにすることを特徴とするポリ乳酸系樹脂発泡シートの製造方法。   A first heating step for heating a polylactic acid resin foam sheet formed from a polylactic acid resin composition containing a polylactic acid resin, and the polylactic acid resin foam sheet heated in the first heating step were heated. Forming a polylactic acid resin foamed sheet molded body by performing a second heating step sandwiched between molds for a certain period of time, and increasing the crystallinity of the polylactic acid resin foamed sheet molded body. A foam sheet molded article having a crystallinity of 25% or more and an exothermic peak in a range of 130 to 170 ° C. in a heat flux differential scanning calorimetry at a heating rate of 5 ° C./min. A method for producing a lactic acid resin foam sheet. 前記第2加熱工程で前記加熱した成形型として雄型及び雌型を用い、該第2加熱工程で加熱成形されたポリ乳酸系樹脂発泡シートを前記成形型と同形状の成形体により冷却する冷却工程を実施することにより、ポリ乳酸系樹脂発泡シート成形体を形成する請求項7記載のポリ乳酸系樹脂発泡シートの製造方法。   Cooling using a male mold and a female mold as the heated mold in the second heating step, and cooling the polylactic acid resin foamed sheet thermoformed in the second heating step with a molded body having the same shape as the mold. The manufacturing method of the polylactic acid-type resin foam sheet of Claim 7 which forms a polylactic acid-type resin foam sheet molded object by implementing a process. 前記第1加熱工程において、ポリ乳酸系樹脂発泡シートの表面温度を110〜130℃にした後に、前記第2加熱工程を実施する請求項7又は8記載のポリ乳酸系樹脂発泡シートの熱成形方法。   The method for thermoforming a polylactic acid-based resin foamed sheet according to claim 7 or 8, wherein, in the first heating step, the second heating step is performed after the surface temperature of the polylactic acid-based resin foamed sheet is set to 110 to 130 ° C. . 前記成形型を80〜110℃にして第2加熱工程を実施する請求項7〜9の何れか1項に記載のポリ乳酸系樹脂発泡シートの熱成形方法。   The thermoforming method for a polylactic acid-based resin foamed sheet according to any one of claims 7 to 9, wherein the second heating step is performed with the mold set at 80 to 110 ° C.
JP2009247711A 2009-10-28 2009-10-28 Polylactic acid-based resin foamed sheet molding and method for producing the same Pending JP2011093982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247711A JP2011093982A (en) 2009-10-28 2009-10-28 Polylactic acid-based resin foamed sheet molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247711A JP2011093982A (en) 2009-10-28 2009-10-28 Polylactic acid-based resin foamed sheet molding and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014096917A Division JP5883900B2 (en) 2014-05-08 2014-05-08 Polylactic acid-based resin foam sheet molded body and method for producing polylactic acid-based resin foam sheet molded body

Publications (1)

Publication Number Publication Date
JP2011093982A true JP2011093982A (en) 2011-05-12

Family

ID=44111271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247711A Pending JP2011093982A (en) 2009-10-28 2009-10-28 Polylactic acid-based resin foamed sheet molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011093982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019188781A (en) * 2018-04-27 2019-10-31 日立化成テクノサービス株式会社 Hollow plate and method for producing hollow plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359910A (en) * 2003-06-06 2004-12-24 Jsp Corp Polylactic acid resin foamed sheet for thermal forming and polylactic acid resin formed foam
JP2006348060A (en) * 2005-06-13 2006-12-28 Cp Kasei Kk Foamed sheet made of thermoplastic resin and method for producing container made of the same sheet
JP2007056116A (en) * 2005-08-23 2007-03-08 Sekisui Plastics Co Ltd Polylactic acid resin foam and method for producing the same
JP2007069965A (en) * 2005-09-08 2007-03-22 Unitika Ltd Biodegradable resin vessel having gas barrier property
WO2007052543A1 (en) * 2005-11-04 2007-05-10 Unitika Ltd. Biodegradable resin foam sheet, biodegradable resin foam article and biodegradable resin molded container
JP2009068021A (en) * 2009-01-06 2009-04-02 Jsp Corp Polylactic acid-based resin foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359910A (en) * 2003-06-06 2004-12-24 Jsp Corp Polylactic acid resin foamed sheet for thermal forming and polylactic acid resin formed foam
JP2006348060A (en) * 2005-06-13 2006-12-28 Cp Kasei Kk Foamed sheet made of thermoplastic resin and method for producing container made of the same sheet
JP2007056116A (en) * 2005-08-23 2007-03-08 Sekisui Plastics Co Ltd Polylactic acid resin foam and method for producing the same
JP2007069965A (en) * 2005-09-08 2007-03-22 Unitika Ltd Biodegradable resin vessel having gas barrier property
WO2007052543A1 (en) * 2005-11-04 2007-05-10 Unitika Ltd. Biodegradable resin foam sheet, biodegradable resin foam article and biodegradable resin molded container
JP2009068021A (en) * 2009-01-06 2009-04-02 Jsp Corp Polylactic acid-based resin foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019188781A (en) * 2018-04-27 2019-10-31 日立化成テクノサービス株式会社 Hollow plate and method for producing hollow plate

Similar Documents

Publication Publication Date Title
JP4446385B2 (en) Multi-layer polylactic acid resin foam for thermoforming
JP5360975B2 (en) Method for producing polyethylene resin foam blow molded article and polyethylene resin foam blow molded article
JP4084209B2 (en) Foam molded body and method for producing the same
JP4820623B2 (en) Method for producing foamable polylactic acid resin
JP5883900B2 (en) Polylactic acid-based resin foam sheet molded body and method for producing polylactic acid-based resin foam sheet molded body
JP5478310B2 (en) Polystyrene resin heat resistant foam sheet and container
JP4258758B2 (en) Polylactic acid resin foam sheet for thermoforming
JP4578309B2 (en) Method for producing polylactic acid resin foam, method for producing polylactic acid resin foam molded article, and polylactic acid resin foam
JP4064754B2 (en) Polypropylene resin foam sheet
JP4842745B2 (en) Polylactic acid resin foam sheet molded body and method for producing the same
JP2907749B2 (en) Method for producing modified polypropylene resin foam, method for producing molded article, and foam and molded article obtained from those methods
JP5517280B2 (en) Polylactic acid resin foam molding
JP2011093982A (en) Polylactic acid-based resin foamed sheet molding and method for producing the same
JP5795926B2 (en) Polylactic acid resin foam sheet and method for producing polylactic acid resin foam sheet
KR101780794B1 (en) Expandable-molded polylactide article having heat resistance and biodegradable container using the same
JP4258769B2 (en) Polystyrene resin laminated foam sheet
JP6864775B1 (en) Thermoplastic resin foam sheet, thermoplastic resin foam sheet molded product and manufacturing method thereof
JP4570033B2 (en) Method for producing polylactic acid resin foamed molded article and polylactic acid resin foamed sheet for thermoforming
JP5877111B2 (en) Manufacturing method of polylactic acid resin foam sheet for thermoforming, and manufacturing method of sheet molded product
JP5808841B2 (en) Method for producing polyethylene resin extruded foam sheet
JP2013203063A (en) Polylactic acid resin foamed sheet for thermoforming and method of manufacturing the same
JP5110615B2 (en) Polylactic acid resin foam molding
JP2022156132A (en) Extrusion foam sheet and method for manufacturing extrusion foam sheet
JP2023147657A (en) Extrusion foamed sheet and method for manufacturing extrusion foamed sheet
JP4111435B2 (en) Polypropylene resin foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140221