JP2011092329A - Clothes dryer - Google Patents

Clothes dryer Download PDF

Info

Publication number
JP2011092329A
JP2011092329A JP2009247702A JP2009247702A JP2011092329A JP 2011092329 A JP2011092329 A JP 2011092329A JP 2009247702 A JP2009247702 A JP 2009247702A JP 2009247702 A JP2009247702 A JP 2009247702A JP 2011092329 A JP2011092329 A JP 2011092329A
Authority
JP
Japan
Prior art keywords
air
evaporator
circulation
drying
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009247702A
Other languages
Japanese (ja)
Inventor
Tsutomu Sakuma
勉 佐久間
Satoshi Nishiwaki
智 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Electronics Holdings Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Electronics Holdings Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2009247702A priority Critical patent/JP2011092329A/en
Publication of JP2011092329A publication Critical patent/JP2011092329A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clothes dryer configured such that even a large air flow path resistance of an evaporator of a heat pump unit enables an air flow rate to be compensated according to the resistance and to secure an effective circulation air flow. <P>SOLUTION: The clothes dryer includes: a drying compartment 3 for drying a dried object while applying a hot air; a circulation air flow path 7 and a circulation fan 9 for circulatively supplying the hot air to the drying compartment 3; the heat pump unit 10 sequentially disposed with the evaporator 11 and a condenser 12 at intermediate parts of the circulation air flow path 7, including a compressor 13, a decompressor 14, and the like, and functioning as a heat source of the hot air; a bypass flow path 16 for forming an air flow not passing through the evaporator 11 in the circulation air flow path 7; and an air outlet 17 and an air inlet 18 positioned at the front and back parts of the bypass flow path 16 and communicating with the outside, respectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、乾燥運転時に衣類等を収容した乾燥室内に温風を循環供給するとともに、その温風の加熱源として機能するヒートポンプユニットを備えた衣類乾燥機に関する。   The present invention relates to a clothes dryer having a heat pump unit that circulates and supplies hot air into a drying chamber containing clothes and the like during a drying operation and functions as a heating source of the hot air.

従来、この種乾燥機の一般的構成は、乾燥室としての閉空間を形成するドラム形状の外槽内に回転ドラムを設け、該ドラム内に収容した衣類等を回転して撹拌しながら温風を当てて乾燥する構成としている。この場合、特に乾燥に供する熱エネルギーの効率化や、設置場所の快適環境を維持すべく、空気を所定温度に加熱した温風を外部(設置場所)に排出することなく、つまり前記外槽を介して閉ループの風回路、つまり循環風路を形成して前記ドラム内に循環供給可能としている。なお、この乾燥機能と併せて洗い,すすぎ,脱水等の洗濯機能も備えた洗濯乾燥機としても市場に広く普及している。   Conventionally, this type of dryer generally has a configuration in which a rotating drum is provided in a drum-shaped outer tub that forms a closed space as a drying chamber, and warm air is supplied while rotating and stirring clothes and the like housed in the drum. To dry. In this case, in order to improve the efficiency of the thermal energy used for drying and maintain a comfortable environment at the installation location, the warm air heated to a predetermined temperature is not discharged outside (installation location), that is, the outer tub is installed. Thus, a closed-loop wind circuit, that is, a circulation air passage is formed so as to be circulated and supplied into the drum. In addition, in addition to this drying function, a washing / drying machine having washing functions such as washing, rinsing, and dehydration is also widely used in the market.

更に、温風の加熱源としてヒータ方式に比べて消費電力量が少なく効率的な乾燥運転が可能であるとしてヒートポンプユニットが採用されている。このヒートポンプユニットは、周知のように冷媒を圧縮機により凝縮器、膨張弁などの減圧装置、及び蒸発器の順に循環させる冷凍サイクルからなるもので、これを循環風路の途中部位に、循環ファンにより該風路中を流れる空気に対し、熱交換作用により冷却除湿する蒸発器、及び加熱する凝縮器を順に配した構成としている。   Furthermore, a heat pump unit has been adopted as a hot air heating source because it consumes less power than the heater method and allows an efficient drying operation. As is well known, this heat pump unit is composed of a refrigeration cycle in which refrigerant is circulated in the order of a condenser, a decompression device such as an expansion valve, and an evaporator by a compressor. Thus, an evaporator that cools and dehumidifies the air flowing in the air passage by a heat exchange action and a condenser that heats the air are arranged in this order.

ところが、冷凍サイクルの特徴として凝縮器の放熱熱量が蒸発器の冷却熱量より勝ること、そして衣類などの乾燥運転が進み後半に至ると外槽に出入りする温風温度の差がなくなるなど循環空気全体が温度上昇するなどにより、冷凍サイクルの冷媒が有する熱量が増大して圧力が高まり、つまり除湿熱量が大きくなるとともに、圧縮機に過負荷がかかるなどの不具合が懸念される。そこで、循環風路にあって、例えば蒸発器の上流側に循環空気の一部を排出する排気口を設けるとともに、この排気量を補うべく循環風路外の空気を吸入する吸気口を設けた乾燥機が提案されている(例えば、特許文献1参照)。   However, as a feature of the refrigeration cycle, the total amount of circulating air is such that the heat dissipation heat of the condenser is superior to the cooling heat amount of the evaporator, and that the temperature of the hot air entering and exiting the outer tub disappears when the drying operation of clothes and so on progresses to the second half. As the temperature rises, the amount of heat of the refrigerant in the refrigeration cycle increases and the pressure increases, that is, the heat of dehumidification increases, and there is a concern that the compressor is overloaded. Therefore, in the circulating air passage, for example, an exhaust port for discharging a part of the circulating air is provided on the upstream side of the evaporator, and an intake port for sucking air outside the circulating air passage is provided to supplement the exhaust amount. A dryer has been proposed (see, for example, Patent Document 1).

他の手段として、循環風路内において、蒸発器を通過しないバイパス流路を形成するとともに、蒸発器及びバイパス流路を通過する空気量を調整するダンパを設けた乾燥機が提案されている(例えば、特許文献2参照)。   As another means, there has been proposed a dryer in which a bypass passage that does not pass through the evaporator is formed in the circulation air passage, and a damper that adjusts the amount of air that passes through the evaporator and the bypass passage is provided ( For example, see Patent Document 2).

特開2008−301941号公報(例えば、段落[0038]、及び図1参照)JP 2008-301941 A (see, for example, paragraph [0038] and FIG. 1) 特開2008−220814号公報(例えば、段落[0061]、及び図2参照)JP 2008-220814 A (see, for example, paragraph [0061] and FIG. 2)

上記特許文献1記載の構成によれば、循環風路の吸気口から低温度の外気が取り込まれ、また特許文献2記載の構成によればダンパにて大きく開放されたバイパス流路を除湿されないまま循環空気が通り抜けるようにしている。これにより、乾燥運転の後半においても絶対湿度が増加し、空気の露点温度が上がるため、蒸発器にて水分を凝縮除去するための除湿熱量を減らすことができ、圧縮機の過負荷運転を回避して安定した冷凍サイクルによる効率的な乾燥運転が期待できるとするものである。   According to the configuration described in Patent Document 1, low temperature outside air is taken in from the inlet of the circulation air passage, and according to the configuration described in Patent Document 2, the bypass flow path that is largely opened by the damper is not dehumidified. Circulating air is allowed to pass through. As a result, the absolute humidity increases and the dew point temperature of the air rises even in the latter half of the drying operation, so the amount of dehumidification heat for condensing and removing moisture in the evaporator can be reduced, and overload operation of the compressor is avoided. Thus, an efficient drying operation with a stable refrigeration cycle can be expected.

ところが、乾燥運転の前半から中半にかけて、被乾燥物たる衣類から盛んに水分を凝縮除去できる運転時間帯を有しており、つまり乾燥作用が効率良く盛んに行われる時間帯であるが、この場合、飽和蒸気圧が高くて除湿量が多く、このため蒸発器の放熱フィンなどの表面に水分が結露する量も多い。このことは、実用上において滴下前の多くの結露水が付着した状態を招き、該蒸発器の放熱フィン間の狭隘な通路を通り抜けようとする空気流の大きな抵抗(以下、「風路抵抗)という)となる。これにより、循環風量が減少し、効率的な乾燥運転ができなくなり、この傾向はヒートポンプユニット(蒸発器)の小型化を図るほど顕著となる。   However, from the first half to the middle half of the drying operation, it has an operation time zone in which moisture can be actively condensed and removed from the clothes to be dried, that is, a time zone in which the drying action is performed actively and actively, In this case, the saturated vapor pressure is high and the amount of dehumidification is large, so that a large amount of moisture is condensed on the surface of the radiator fins of the evaporator. This leads to a state in which a large amount of condensed water before dropping is attached in practical use, and a large resistance of the air flow (hereinafter referred to as “air path resistance”) that tries to pass through a narrow path between the radiator fins of the evaporator. As a result, the amount of circulating air decreases and efficient drying operation becomes impossible, and this tendency becomes more prominent as the heat pump unit (evaporator) becomes smaller.

このような問題に対し、前記特許文献1記載の構成によれば乾燥運転中、常時開口した吸気口から外部空気を一部補充できるが、全体の循環空気量としては不十分となり加熱温度や飽和蒸気圧を早期に高めることができず、効率的な乾燥作用が得られない。また、特許文献2記載の構成にあっては、運転前半ではバイパス流路はダンパで塞がれており(当文献の段落[0048]及び図3参照)、蒸発器を通り抜ける空気量が減少しても他からの補充はなく、同様の問題点を有している。なお、これら特許文献1、2とも結露水による循環空気の流れが減少する問題とか、それを示唆するような記載は何ら認められない。   With respect to such a problem, according to the configuration described in Patent Document 1, a part of the external air can be replenished from the intake port that is always open during the drying operation. However, the amount of circulating air becomes insufficient and the heating temperature and saturation are increased. The vapor pressure cannot be increased early and an efficient drying action cannot be obtained. Further, in the configuration described in Patent Document 2, the bypass flow path is blocked by a damper in the first half of operation (see paragraph [0048] and FIG. 3 of this document), and the amount of air passing through the evaporator is reduced. However, there is no replenishment from others, and there are similar problems. In addition, neither of these Patent Documents 1 and 2 describes a problem that the flow of circulating air due to condensed water decreases, or a description suggesting it.

本発明は上記問題を解消するため、ヒートポンプユニットの蒸発器の風路抵抗が大きくなったとき、それに応じた風量を補充でき有効な循環空気量を確保でき所期の乾燥性能が期待できる衣類乾燥機を提供することを目的とする。   In order to solve the above problems, the present invention eliminates the above problems, and when the air path resistance of the evaporator of the heat pump unit is increased, the air volume corresponding to the resistance can be replenished to ensure an effective circulation air amount and expected drying performance can be expected. The purpose is to provide a machine.

上記目的を達成するために本発明の衣類乾燥機は、被乾燥物に温風を当て乾燥する乾燥室と、前記乾燥室に設けられた温風の出入口に接続された循環風路、及び該循環風路を介して前記乾燥室に空気を循環供給する循環ファンと、前記循環風路の途中の上流側に蒸発器を配し、下流側に凝縮器を配するとともに圧縮機及び減圧装置等を備え、前記循環空気を温風化する加熱源として機能するヒートポンプユニットと、前記循環風路内において前記蒸発器を経由しない空気流を形成するバイパス流路と、前記バイパス流路の前後に位置し外部に連通して夫々設けられた排気口及び吸気口と、を具備したことを特徴とする(請求項1の発明)。   In order to achieve the above object, a clothes dryer of the present invention comprises a drying chamber for drying by applying hot air to an object to be dried, a circulation air passage connected to a hot air inlet / outlet provided in the drying chamber, and A circulation fan that circulates air to the drying chamber via a circulation air passage, an evaporator is disposed on the upstream side of the circulation air passage, a condenser is disposed on the downstream side, and a compressor, a decompression device, and the like A heat pump unit that functions as a heating source for warming the circulating air, a bypass channel that forms an air flow that does not pass through the evaporator in the circulating air channel, and a front and rear of the bypass channel. An exhaust port and an intake port provided in communication with each other are provided (invention of claim 1).

上記手段によれば、蒸発器の結露水による風路抵抗が大きくなったとき、その大きさに応じてバイパス流路の通過風量が増えるとともに、更には万一バイパス流路にも多量の結露が生じるなどで風路抵抗が増大したときにも吸排気口の吸排作用により該吸気口からも循環風路外の空気が補充される。以って、必要な循環空気量が常時確保でき、効率の良い乾燥作用が維持できる。しかも、排気口からは高温多湿の空気の一部を排出し、乾いた外気を上記吸気口から補充できるので、バイパス流路を通過した多くの湿気を含んだままの空気に対し、湿気分を減少した循環空気とすることができる。これにより、熱交換作用を効率良く実行できるとともに、除湿に必要な熱量を減らすことができて消費電力量を軽減できるなど、ヒートポンプユニットの小型化も可能な衣類乾燥機を提供できる。   According to the above means, when the air path resistance due to the dew condensation water of the evaporator increases, the amount of air passing through the bypass passage increases according to the magnitude, and in addition, a large amount of condensation also occurs in the bypass passage. Even when the air path resistance is increased due to the occurrence of the air, the air outside the circulation air path is also replenished from the intake port by the intake and exhaust action of the intake and exhaust port. Therefore, the necessary amount of circulating air can always be secured, and an efficient drying action can be maintained. Moreover, a part of the hot and humid air is exhausted from the exhaust port, and dry outside air can be replenished from the intake port, so that the moisture content of the air that contains a lot of moisture that has passed through the bypass channel is reduced. Reduced circulating air. Thereby, while being able to perform a heat exchange effect efficiently, the amount of heat required for dehumidification can be reduced, and the amount of power consumption can be reduced. Thus, a clothes dryer capable of downsizing the heat pump unit can be provided.

本発明の一実施例を示す衣類乾燥機の構成を模式的に示した作用説明図Action explanatory drawing which showed typically the composition of the clothes dryer which shows one example of the present invention. 衣類乾燥機の側方から見た概略構成を示す側面図Side view showing a schematic configuration viewed from the side of the clothes dryer 衣類乾燥機の背面側から見た概略構成を示す背面図Rear view showing a schematic configuration as seen from the back side of the clothes dryer 具現化したヒートポンプユニットの外観構成を示す外観斜視図External perspective view showing the external configuration of the embodied heat pump unit 蒸発器及びバイパス流路の通過風量を示す風量特性図Air flow characteristic diagram showing the air flow through the evaporator and bypass channel 空気が出入りする主要な開口部位の開口面積を示す図The figure which shows the opening area of the main opening part where air enters and exits 本発明の変形例を示す図1相当図FIG. 1 equivalent view showing a modification of the present invention ダンパ装置の動作の制御内容を示すタイムチャート図Time chart showing the control content of the operation of the damper device

以下、本発明の衣類乾燥機を示す一実施例につき、図1ないし図6を参照して説明する。そのうち、図1は同乾燥機の構成を模式的に示した作用説明図、図2は同乾燥機の側方から透視するように見た概略構成を示す側面図、図3は同背面側から見た概略構成を示す背面図、図4は具現化したヒートポンプユニットの外観構成を示す外観斜視図、図5は蒸発器及びバイパス流路の通過風量を示す風量特性図、及び図6は空気が出入りする主要な開口部位における開口面積を示す図である。   Hereinafter, an embodiment showing a clothes dryer of the present invention will be described with reference to FIGS. Among them, FIG. 1 is a functional explanatory view schematically showing the configuration of the dryer, FIG. 2 is a side view showing a schematic configuration as seen through from the side of the dryer, and FIG. 3 is from the back side. FIG. 4 is an external perspective view showing the external configuration of the embodied heat pump unit, FIG. 5 is an air flow characteristic diagram showing the air flow through the evaporator and the bypass channel, and FIG. It is a figure which shows the opening area in the main opening site | part which goes in and out.

まず、図1、2、3に基づき衣類乾燥機の全体構成につき説明すると、外殻を形成する箱状の本体1は、前面側(衣類乾燥機の正面側)を若干傾斜面状に形成し、該傾斜面に衣類を出し入れする投入口(図示せず)を開閉するドア2や、その上部に図示しない操作パネル等を備えている。この本体1内には、実質的に無孔状で例えば円筒状をなし固定的に設けられた外槽3、及び外槽3の内部に周壁に多数の透孔4aなどを有し横軸周りに回転可能な回転槽4が同心状に配設されている。   First, the overall structure of the clothes dryer will be described with reference to FIGS. 1, 2, and 3. The box-shaped main body 1 forming the outer shell has a slightly inclined surface on the front side (front side of the clothes dryer). The door 2 that opens and closes an insertion port (not shown) for putting clothes in and out of the inclined surface, and an operation panel (not shown) are provided on the upper portion thereof. The main body 1 has a substantially non-perforated outer tub 3 that is fixed in a cylindrical shape, for example, and a large number of through-holes 4a in the outer wall of the outer tub 3. A rotating tub 4 that is rotatable is disposed concentrically.

これら、外槽3及び回転槽4は、共に前面側(正面側)を大きく開口して、前記ドア2と対向配置しており、且つ外槽3の開口部と前記本体1の投入口との間には、可撓性のベローズ5が水密に装着されている。従って、ドア2が閉鎖された状態では外槽3は、乾燥室としてほぼ閉鎖された空間を形成する(詳細は後述する)。また回転槽4は、詳細には若干前上がりの傾斜状態に支持されるように、外槽3が図示しないサスペンションを介して本体1内の底部に弾性支持されている。   The outer tub 3 and the rotating tub 4 both have a large opening on the front side (front side) and are disposed opposite to the door 2, and the opening of the outer tub 3 and the inlet of the main body 1 Between them, a flexible bellows 5 is mounted in a watertight manner. Therefore, when the door 2 is closed, the outer tub 3 forms a substantially closed space as a drying chamber (details will be described later). In addition, the outer tub 3 is elastically supported on the bottom of the main body 1 via a suspension (not shown) so that the rotating tub 4 is supported in a slightly upwardly inclined state in detail.

前記外槽3の背面中央には、回転槽4を回転駆動するモータ6が設けられている。該モータ6は、例えばアウタロータ形のDCブラシレスモータからなり、特に図示しないがそのロータに連結された回転軸を介して回転槽4をダイレクトに回転駆動する構成としている。   In the center of the back surface of the outer tub 3, a motor 6 that rotates the rotating tub 4 is provided. The motor 6 is composed of, for example, an outer rotor type DC brushless motor, and is configured to directly rotate the rotating tub 4 through a rotating shaft connected to the rotor, although not particularly shown.

また、ほぼ閉鎖状の空間を形成する外槽3の周壁部にあって、上部の前方側に位置して空気の出口3aが形成され、他方背面部の上方寄りに位置して入口3bが形成されている(特に図2参照)。これら前後に離間した出入口3a、3bに、ダクト状の循環風路7が連通接続されている。この循環風路7は、例えば、図2に示すように出口3a側から後方に向かい、一旦本体1の上面を臨んだ後、外槽3の背面側にまで延出され下方に垂下している。なお、上記した本体1の上面を臨む部位には、糸屑等を捕獲するフィルタ装置8が設けられ、図示しない開閉蓋を開閉することで、本体1の上面外方から該フィルタ装置8の点検や清掃等の作業が容易に行えるようにしている。   Further, in the peripheral wall portion of the outer tub 3 that forms a substantially closed space, an air outlet 3a is formed on the front side of the upper portion, and an inlet 3b is formed on the other side of the back surface portion. (See particularly FIG. 2). A duct-shaped circulation air passage 7 is connected to the entrances 3a and 3b spaced apart in the front-rear direction. For example, as shown in FIG. 2, the circulation air passage 7 extends rearward from the outlet 3 a side and once faces the upper surface of the main body 1, and then extends to the rear side of the outer tub 3 and hangs downward. . A filter device 8 that captures lint and the like is provided at a portion facing the upper surface of the main body 1 described above, and the filter device 8 is inspected from outside the upper surface of the main body 1 by opening and closing an opening / closing lid (not shown). Work such as cleaning and cleaning.

一方、入口3bに接続された循環風路7は、特に図3に明示するように同背面側の前記モータ6を回避するように延びて垂下している。
この場合、出口3aに接続された循環風路7は、乾燥運転時に循環空気たる温風が外槽3から排出される排気ダクト7aとして機能し、一方入口3b側に接続された部位は温風が外槽3に供給される給気ダクト7bとして機能する。
On the other hand, the circulation air passage 7 connected to the inlet 3b extends and hangs down so as to avoid the motor 6 on the back side as particularly shown in FIG.
In this case, the circulation air passage 7 connected to the outlet 3a functions as an exhaust duct 7a through which hot air as circulation air is discharged from the outer tub 3 during the drying operation, while a portion connected to the inlet 3b side is hot air. Functions as an air supply duct 7 b supplied to the outer tub 3.

このように、外槽3から後方に導出され背面側に沿って垂下した排気ダクト7a及び給気ダクト7bは、その下端部において詳細は後述する熱交換ダクト7cに接続されることで環状に連なり、これらダクトを主体に循環風路7が構成される。なお、具体的には図3に示すように給気ダクト7bの下端部には循環ファン9が配設され、そのファンケーシングを介して熱交換ダクト7cと連通接続されている。この循環ファン9は、図1〜図4中に示す実線矢印で示す方向の循環空気(温風)の流れを生成する。   As described above, the exhaust duct 7a and the air supply duct 7b which are led out rearward from the outer tub 3 and hang down along the back surface side are connected to a heat exchange duct 7c, which will be described in detail later, at a lower end portion thereof, and are connected in an annular shape. The circulation air passage 7 is mainly composed of these ducts. Specifically, as shown in FIG. 3, a circulation fan 9 is disposed at the lower end of the air supply duct 7b, and is connected to the heat exchange duct 7c through the fan casing. The circulation fan 9 generates a flow of circulating air (warm air) in a direction indicated by a solid line arrow shown in FIGS.

前記熱交換ダクト7cにつき詳述すると、該熱交換ダクト7cは、ヒートポンプユニット10を構成するうちの蒸発器11を上流側に、及び凝縮器12を下流側に夫々配置して、該熱交換ダクト7cを流れる空気との間で熱交換が行われるようにしている。このヒートポンプユニット10は、特に模式的に示す図1に明示するように、冷媒を圧縮して吐出する圧縮機13、吐出された高温高圧の冷媒を放熱して凝縮する前記凝縮器12、高圧冷媒を減圧する減圧装置としての膨張弁14、減圧された冷媒を蒸発させて吸熱する前記蒸発器11、そして前記圧縮機13に至り接続された冷媒を封入した冷媒管15等を具備してなる冷凍サイクルから構成されている。   The heat exchange duct 7c will be described in detail. The heat exchange duct 7c includes an evaporator 11 of the heat pump unit 10 on the upstream side and a condenser 12 on the downstream side. Heat exchange is performed with the air flowing through 7c. The heat pump unit 10 includes a compressor 13 that compresses and discharges the refrigerant, the condenser 12 that dissipates and condenses the discharged high-temperature and high-pressure refrigerant, as specifically shown in FIG. Refrigeration comprising an expansion valve 14 as a decompression device for decompressing the refrigerant, the evaporator 11 for evaporating the decompressed refrigerant to absorb heat, and a refrigerant pipe 15 enclosing the refrigerant connected to the compressor 13. It consists of a cycle.

従って、熱交換ダクト7cに流入した循環空気(温風)は、蒸発器11の吸熱作用を受けて冷却され、空気中の水分が凝縮されて結露し、水滴となって滴下して機外に排出される。除湿された後の空気は凝縮器12に至り、ここで高温高圧の冷媒と熱交換され、すなわち放熱作用を受けて加熱される。なお、熱交換ダクト7cに内設された蒸発器11及び凝縮器12は、冷媒管15に小さなピッチ間隔で設けられた放熱フィン(図示せず)が設けられ、ここを通過する間に熱交換が有効且つ迅速に行われる構成としている。   Accordingly, the circulating air (warm air) that has flowed into the heat exchange duct 7c is cooled by the endothermic action of the evaporator 11, the moisture in the air is condensed and condensed, dripping into water droplets, and dropping outside the machine. Discharged. The air after being dehumidified reaches the condenser 12, where heat is exchanged with the high-temperature and high-pressure refrigerant, that is, heat is received by heat radiation. The evaporator 11 and the condenser 12 installed in the heat exchange duct 7c are provided with heat radiation fins (not shown) provided at a small pitch interval in the refrigerant pipe 15, and heat exchange is performed while passing through the fins. Is effective and quick.

ところが、本実施例では熱交換ダクト7c内にあって、前記蒸発器11の例えば上部に隙間が形成され、つまり該蒸発器11による熱交換作用を受けないバイパス流路16を形成している(特には、図1、3参照)。従って、蒸発器11を経て除湿された空気と、バイパス流路16を経た除湿されない空気は、これらが混合されて凝縮器12に流入することになる。   However, in the present embodiment, a gap is formed in the heat exchange duct 7c, for example, at the upper part of the evaporator 11, that is, a bypass flow path 16 that does not receive heat exchange action by the evaporator 11 is formed ( In particular, see FIGS. Therefore, the air that has been dehumidified via the evaporator 11 and the air that has not been dehumidified via the bypass channel 16 are mixed and flow into the condenser 12.

更に、熱交換ダクト7cには上記バイパス流路16の前後たる上流側と下流側とに位置して、外部に連通した排気口17と吸気口18を設けている。詳細な説明は後述するが、基本的には循環空気の一部が排気口17から排出可能としており、その排出された相当量の外気が吸気口18から吸入可能とする吸排作用を可能としている。この場合、上記したバイパス流路16と同様に蒸発器11を経ない空気である点で共通であるが、低温(外気温度)であること、及び乾いた新鮮な空気である点で相違する。   Further, the heat exchange duct 7c is provided with an exhaust port 17 and an intake port 18 which are located upstream and downstream of the bypass flow path 16 and communicate with the outside. Although a detailed description will be given later, basically, a part of the circulating air can be discharged from the exhaust port 17, and an intake / exhaust action that allows a large amount of the discharged outside air to be sucked from the intake port 18 is enabled. . In this case, similar to the bypass flow path 16 described above, it is common in that the air does not pass through the evaporator 11, but is different in that it is low temperature (outside air temperature) and dry fresh air.

なお、図4は具現化されたヒートポンプユニット10の外観斜視図を示したもので、前記熱交換ダクト7cの上部に形成された排気口17は横長の矩形状に開口しており、吸気口18はこれより倍以上の大きな開口面積を有し(後述する図6参照)、吸気し易い開口形状としている。また、蒸発器11及び凝縮器12以外の圧縮機13や膨張弁14及び冷媒管15(図1参照)等は、図4に示すユニットケース19により上面及び側面が覆われた構成としており、共通の台板20に取付固定され、以ってヒートポンプユニット10を構成している。   4 shows an external perspective view of the embodied heat pump unit 10. The exhaust port 17 formed in the upper part of the heat exchange duct 7c is opened in a horizontally long rectangular shape, and the intake port 18 is formed. Has an opening area that is at least twice as large as this (see FIG. 6 described later), and has an opening shape that facilitates intake. Further, the compressor 13, the expansion valve 14 and the refrigerant pipe 15 (see FIG. 1) other than the evaporator 11 and the condenser 12 are configured such that the upper surface and side surfaces are covered by the unit case 19 shown in FIG. The heat pump unit 10 is configured by being fixedly attached to the base plate 20.

斯くして、ヒートポンプユニット10は、乾燥運転時に空気を加熱し温風化する加熱源として機能するとともに、図2に示すように後方の背面側に集められた循環風路7(排気ダクト7aと給気ダクト7b)の配置構成に基づき、熱交換ダクト7cとともに本体1内後方の背面に沿ってコンパクトに配置されている。
なお、図5、6については、以降の作用説明において参照して述べる。
Thus, the heat pump unit 10 functions as a heating source for heating the air and warming it during the drying operation, and as shown in FIG. 2, the circulation air path 7 (supplied with the exhaust duct 7a) is gathered on the rear rear side. Based on the arrangement of the air duct 7b), the air duct 7b) is compactly arranged along with the heat exchange duct 7c along the back surface behind the main body 1.
5 and 6 will be described with reference to the following description of the operation.

次に、上記構成の衣類乾燥機の作用について説明する。
乾燥運転は、図示しない制御手段を介してモータ6を駆動し、回転槽4を低速回転制御する。同時に、ヒートポンプユニット10の圧縮機13や循環ファン9が通電駆動されることでスタートする。この結果、特に図1に示されるように乾燥室としての閉鎖された空間をなす外槽3を介して接続された循環風路7には、実線矢印で示す方向の空気流が生じ凝縮器12により加熱され温風化される。
Next, the operation of the clothes dryer configured as described above will be described.
In the drying operation, the motor 6 is driven via a control means (not shown) to control the rotation tank 4 at a low speed. At the same time, the compressor 13 and the circulation fan 9 of the heat pump unit 10 are driven by energization. As a result, an air flow in the direction indicated by the solid line arrow is generated in the circulation air passage 7 connected through the outer tub 3 forming a closed space as a drying chamber, as shown in FIG. Is heated to warm air.

温風は、給気ダクト7bを経て外槽3の背面側の入口3bから吹き込まれ、回転槽4の内部に供給される。回転槽4内に収容された衣類などの被乾燥物は、回転槽4の回転により撹拌され、温風との接触が良好に行われ乾燥作用が実行される。水分を奪うなどの乾燥作用を経た排気風たる温風は、外槽3の前方側に位置する出口3aから排気ダクト7aに排出され、途中フィルタ装置8(図2参照)を経て外槽3の背面側を垂下し、下部の熱交換ダクト7cに至り、蒸発器11に達する。   Hot air is blown from the inlet 3b on the back side of the outer tub 3 through the air supply duct 7b and supplied to the inside of the rotating tub 4. An object to be dried such as clothes accommodated in the rotating tub 4 is agitated by the rotation of the rotating tub 4, and is brought into good contact with warm air to perform a drying action. Warm air as exhaust air that has undergone a drying action such as depriving of moisture is discharged from an outlet 3a located on the front side of the outer tub 3 to the exhaust duct 7a, and passes through the filter device 8 (see FIG. 2) to pass through the outer tub 3 The rear side is drooped, reaches the lower heat exchange duct 7c, and reaches the evaporator 11.

ここでは、既述の如く温風は蒸発器11にて冷却除湿されることで、除湿後の乾いた空気が下流側の凝縮器12に流入し、ここで再び加熱温風化される。この温風の再生が繰り返し行われ循環供給されることで、被乾燥物の基本的な乾燥作用が実行される。   Here, as described above, the warm air is cooled and dehumidified by the evaporator 11, so that dry air after dehumidification flows into the condenser 12 on the downstream side, where it is heated and warmed again. By repeating this warm air regeneration and circulating supply, the basic drying action of the material to be dried is executed.

ところで、本実施例では熱交換ダクト7cにおいて、内設した蒸発器11を通らないで温風が流れるバイパス流路16を備えている。このバイパス流路16は、常時連通開口した通路であるが、乾燥運転の進行に応じて通過風量が変化し調整される。以下、その風量特性につき図5を参照して述べる。   By the way, in this embodiment, the heat exchange duct 7c is provided with a bypass passage 16 through which hot air flows without passing through the evaporator 11 provided therein. This bypass flow path 16 is a passage that is always open for communication, but the amount of passing air changes and is adjusted as the drying operation proceeds. Hereinafter, the air flow characteristics will be described with reference to FIG.

図5は、縦軸に風量、横軸に乾燥時間を示しており、つまり乾燥運転スタートの前半から中半にかけて、熱交換ダクト7cにおける蒸発器11及びバイパス流路16の通過風量の変化を示している。しかるに、乾燥運転のスタート初期の時間帯である区分Aでは、被乾燥物たる衣類も低温度で水分の蒸発も少なくヒートポンプユニット10による熱交換作用も低調で、蒸発器11による温風中からの水分を凝縮して除去する量、つまり除湿量は少ない。従って、蒸発器11内の通路に付着する結露水は少なく風路抵抗は小さいことから、図示するように該蒸発器11の通過風量が多くてバイパス流路16の通過風量は少なく、これによりできるだけ多くの風量に対して蒸発器11を介して除湿効果を得るように作用する。   FIG. 5 shows the air volume on the vertical axis and the drying time on the horizontal axis, that is, the change in the air flow passing through the evaporator 11 and the bypass channel 16 in the heat exchange duct 7c from the first half to the middle half of the start of the drying operation. ing. However, in section A, which is the time zone at the beginning of the drying operation, the clothes to be dried are low in temperature, the evaporation of moisture is low, and the heat exchange action by the heat pump unit 10 is low. The amount of moisture condensed and removed, that is, the amount of dehumidification is small. Therefore, since the condensed water adhering to the passage in the evaporator 11 is small and the air passage resistance is small, as shown in the figure, the amount of air passing through the evaporator 11 is large and the amount of air passing through the bypass passage 16 is small. It acts to obtain a dehumidifying effect via the evaporator 11 for a large amount of air.

乾燥運転が進行して、区分Bに達すると、温風による熱交換作用が進み衣類温度が上昇し、多くの水分を含んだ温風(排気風)が外槽3から排気ダクト7aを経て熱交換ダクト7cに流れるようになり、蒸発器11における除湿量も次第に多くなる。つまり、飽和蒸気圧が高く熱交換作用による除湿量が最も多くなる時間帯である。このため、蒸発器11では放熱フィン等に付着した結露水が多くなり、これが風路抵抗を大きくし図5中実線で示す「蒸発器通過風量」は徐々に減少する。これは、全体の循環風量の減少にあって、この風量不足は既述の如く乾燥性能の低下等を招く。   When the drying operation proceeds and reaches section B, the heat exchange action by the warm air proceeds and the clothing temperature rises, and warm air (exhaust air) containing a large amount of moisture is heated from the outer tub 3 through the exhaust duct 7a. It flows to the exchange duct 7c, and the dehumidification amount in the evaporator 11 gradually increases. That is, it is a time zone in which the saturated vapor pressure is high and the amount of dehumidification due to the heat exchange action is the largest. For this reason, in the evaporator 11, the dew condensation water adhering to the radiation fins or the like increases, and this increases the air path resistance, and the “evaporator passing air volume” shown by the solid line in FIG. 5 gradually decreases. This is due to a decrease in the total circulating air volume, and this lack of air volume leads to a decrease in drying performance as described above.

しかるに、本実施例では図1に示すように蒸発器11と熱交換ダクト7cとの間に形成したバイパス流路16の通過風量(図5中破線で示す「バイパス風量」)が増えることで、全体の循環風量の減少を抑制できる。すなわち、図5に示すようにバイパス流路16は常時連通開口した状態にあるので、運転初期の区分Aでも比較的少量ではあるが常時空気が流れるが、上記のように蒸発器11の風路抵抗が増大するに伴い、バイパス流路16側への流入が促進されて破線で示す「バイパス風量」も多くなる風量調整が行われる。従って、図中実線で示す「蒸発器通過風量」が減少する傾向を表しているのに対し、同破線で示す「バイパス風量」が増えることで対応でき、循環風量の減少を抑え所期の乾燥性能を維持できる。   However, in this embodiment, as shown in FIG. 1, the passing air volume (the “bypass air volume” indicated by the broken line in FIG. 5) of the bypass passage 16 formed between the evaporator 11 and the heat exchange duct 7 c increases. It is possible to suppress a decrease in the total circulating air volume. That is, as shown in FIG. 5, since the bypass channel 16 is always open in communication, air flows constantly even in a relatively small amount even in the initial section A, but the air path of the evaporator 11 as described above. As the resistance increases, the inflow to the bypass channel 16 side is promoted, and the air volume adjustment is performed so that the “bypass air volume” indicated by the broken line increases. Therefore, while the “evaporator passing air volume” indicated by the solid line in the figure shows a tendency to decrease, this can be dealt with by increasing the “bypass air volume” indicated by the broken line, suppressing the decrease in the circulating air volume and the expected drying. Performance can be maintained.

この「バイパス風量」が調整可能であることは、衣類の乾燥が進み除湿量が次第に減少する区分Cに達すると、蒸発器11の風路抵抗が小さくなり通過風量が多くなることから、バイパス流路16の通過風量は次第に減少するように機能することでも分る。そして、風量の多くを蒸発器11による熱交換作用(除湿作用)を享受できるようにする。   The fact that this “bypass air volume” can be adjusted means that when the clothing reaches dryness and reaches a section C where the dehumidification volume gradually decreases, the wind path resistance of the evaporator 11 decreases and the passing air volume increases. It can also be seen that the amount of air passing through the path 16 functions to gradually decrease. And much of air volume can be enjoyed now by the heat exchange effect | action (dehumidification effect | action) by the evaporator 11. FIG.

なお、上記風量特性は、図6に示す通路面積をなしており、例えば蒸発器11では温風が流入する前面側の通路面積が210cm2であり、これに対しバイパス流路16の通路面積は9cm2であるのに基づくものである。また、同図には後述する吸排気口18,17の面積を表示しており、例えば吸気口18の開口面積は14cm2で、排気口17の6cm2より大きく設定している。 The air volume characteristic has the passage area shown in FIG. 6. For example, in the evaporator 11, the passage area on the front side through which warm air flows is 210 cm 2 , whereas the passage area of the bypass passage 16 is It is based on being 9 cm 2 . Further, in FIG have to view the area of the intake and exhaust ports 18 and 17 to be described later, for example, the opening area of the intake port 18 by 14cm 2, is set larger than 6 cm 2 of the exhaust port 17.

ところで、上記した「バイパス風量」は、蒸発器11による熱交換作用(除湿作用)を受けることなく通過した温風(排気風)であるため、多くの湿気を含んだ温風となる。従って、図6に示したように蒸発器前面面積に比しバイパス流路面積は小さく設定され、例えば蒸発器11の上面に沿って扁平な開口形状としている。それでも、乾燥作用が盛んに行われる図5の区分Bでは、「バイパス風量」は最大となる上に多量の湿気を含んでおり、このまま下流側に流すことは凝縮器12の熱交換作用(加熱作用)への影響も懸念され、乾燥性能の低下が危惧される。   By the way, the “bypass air volume” described above is warm air (exhaust air) that has passed without being subjected to the heat exchange action (dehumidification action) by the evaporator 11, and thus becomes warm air containing a lot of moisture. Therefore, as shown in FIG. 6, the bypass flow passage area is set smaller than the front surface area of the evaporator, and for example, a flat opening shape is formed along the upper surface of the evaporator 11. Nevertheless, in the section B of FIG. 5 where the drying action is actively performed, the “bypass air volume” is maximized and contains a large amount of moisture, and flowing downstream as it is is the heat exchange action (heating) of the condenser 12. There is also concern about the effect on the action), and there is a concern that the drying performance will be degraded.

しかるに、本実施例では上記した排気口17、吸気口18を、バイパス流路16を挟むように前後に位置して熱交換ダクト7cに開口形成しており、この吸排気口18,17による吸排作用により、上記湿気分を減少した温風とすることができる。具体的には、図1に示すように熱交換ダクト7c内における蒸発器11の前方圧力P1は、通常同後方圧力P2より大きく(P1>P2)、この場合、前方圧力P1は大気圧以上となり、後方圧力P2は負圧となる。   However, in the present embodiment, the exhaust port 17 and the intake port 18 described above are positioned at the front and rear so as to sandwich the bypass flow path 16 and are formed in the heat exchange duct 7c. Due to the action, it is possible to obtain warm air with reduced moisture content. Specifically, as shown in FIG. 1, the front pressure P1 of the evaporator 11 in the heat exchange duct 7c is usually larger than the same rear pressure P2 (P1> P2), and in this case, the front pressure P1 is equal to or higher than atmospheric pressure. The rear pressure P2 is a negative pressure.

従って、湿気を含んだ温風(排気風)の一部は排気口17から外部たる本体1内の空間に排出され、一方吸気口18から排気量に相当する外気が吸入される。この圧力差(P1>P2)は、蒸発器11の結露水による風路抵抗が大きくなるに伴い大きくなることから、吸排気量も増え湿気分の少ない外気が吸気口18から取り込まれる。この結果、新鮮な外気が混合され湿気分が減少した循環空気が凝縮器12に流入し、加熱温風化される。湿気の多い循環空気の場合、冷凍サイクルでは高い除湿熱量を必要とし圧縮機13の入力も増大するが、上記したように吸排作用で湿気分を減少させることができることから、除湿に必要な消費電力量を軽減するに有効である。   Accordingly, a part of the warm air (exhaust air) containing moisture is discharged from the exhaust port 17 to the space inside the main body 1, and outside air corresponding to the exhaust amount is sucked from the intake port 18. This pressure difference (P1> P2) increases as the wind path resistance due to the condensed water in the evaporator 11 increases, so that the amount of intake and exhaust air increases and the outside air with less moisture is taken in from the intake port 18. As a result, the circulated air in which fresh outside air is mixed and the moisture content is reduced flows into the condenser 12 and is heated and warmed. In the case of circulating air with high humidity, the refrigeration cycle requires a high amount of dehumidification heat and the input of the compressor 13 increases. However, as described above, the moisture content can be reduced by the intake and exhaust action, so that the power consumption required for dehumidification It is effective in reducing the amount.

また、上記したようにバイパス流路16は開口面積が小さい扁平な形状であるため、このバイパス流路16を高温多湿の空気が通過するうちに、流路内壁面に多量に結露することが考えられる。この場合、蒸発器11の場合と同様に該結露水による風路抵抗が大きくなって通過風量が減少し、バイパス流路16本来の循環風量を確保する目的が達成できないおそれがある。しかしながら、前記の如く蒸発器11の前後における圧力差(P1>P2)は大きくなる傾向にあることから、排気口17及び吸気口18による吸排作用が一層促進され、吸気による風量補充により循環風量の減少を効果的に抑制でき、良好な乾燥性能を維持できる。   Further, as described above, since the bypass channel 16 has a flat shape with a small opening area, a large amount of dew condensation may occur on the inner wall surface of the channel while high-temperature and high-humidity air passes through the bypass channel 16. It is done. In this case, as in the case of the evaporator 11, the air passage resistance due to the dew condensation water increases, the passing air volume decreases, and the purpose of securing the original circulating air volume of the bypass passage 16 may not be achieved. However, since the pressure difference (P1> P2) before and after the evaporator 11 tends to increase as described above, the intake / exhaust action by the exhaust port 17 and the intake port 18 is further promoted, and the replenishment of the air volume by the intake air reduces the circulation air volume. Reduction can be effectively suppressed and good drying performance can be maintained.

なお、この吸排作用は乾燥運転後半においては(図5中の区分C参照)、衣類からの水分蒸発は少なく除湿量も減少することから、蒸発器11の通過風量は多くなり、バイパス流露16の通過風量及び吸気口18からの外気の吸気量も減少し、つまり蒸発器11を有効利用して除湿できるので、蒸発器11をはじめヒートポンプユニット10の小型化が可能となる。   In the latter half of the drying operation (see section C in FIG. 5), this intake / exhaust action causes less moisture evaporation from the clothing and reduces the dehumidification amount. Therefore, the amount of air passing through the evaporator 11 increases, and the bypass dew 16 The amount of passing air and the amount of outside air intake from the intake port 18 are also reduced, that is, the evaporator 11 can be effectively used for dehumidification, so that the heat pump unit 10 including the evaporator 11 can be downsized.

上記実施例によれば、次のような効果を奏する。
本実施例では、循環風路7を構成する熱交換ダクト7c内において、循環空気たる温風が蒸発器11を通らないバイパス流路16を設けるとともに、該バイパス流路16の前後に位置して外部に連通する排気口17及び吸気口18を設けた構成とした。これにより、乾燥運転の前半から中半にかけて、被乾燥物たる衣類からの水分蒸発が盛んとなり温風中(排気風中)に多量の湿気を含んでいる場合には、蒸発器11の熱交換作用による除湿量が多くなり、蒸発器11には結露水として付着し温風の流れを妨げる風路抵抗となる。
According to the said Example, there exist the following effects.
In the present embodiment, in the heat exchange duct 7 c constituting the circulation air path 7, a bypass flow path 16 through which the warm air as the circulation air does not pass through the evaporator 11 is provided, and is positioned before and after the bypass flow path 16. An exhaust port 17 and an intake port 18 communicating with the outside are provided. Thereby, from the first half to the middle half of the drying operation, when the moisture evaporation from the clothes to be dried becomes active and a large amount of moisture is contained in the warm air (in the exhaust air), heat exchange of the evaporator 11 is performed. The amount of dehumidification due to the action increases, and it adheres to the evaporator 11 as condensed water, resulting in air path resistance that hinders the flow of hot air.

しかるに、この風路抵抗が大きくなるに伴い、バイパス流路16を通過する風量が自動的に増えることで、以降の凝縮器12への風量減少を抑えることができ、加熱温度を高くでき飽和蒸気圧を早期に高めることができ、しかもバイパス流路16は常時連通開口した状態の簡単構成にて上記通過風量の調整が可能であるとする利点を有している。   However, as the airflow resistance increases, the airflow passing through the bypass passage 16 automatically increases, so that subsequent airflow reduction to the condenser 12 can be suppressed, the heating temperature can be increased, and the saturated steam The pressure can be increased at an early stage, and the bypass flow passage 16 has the advantage that the passing air volume can be adjusted with a simple configuration in which the pressure is always open.

但し、バイパス流路16を通過する温風(排気風)は除湿されておらず、当然多くの湿気分を含んだままである。ところが、上記風路抵抗に加えて蒸発器11の前後における圧力差(P1>P2)に基づき、その多湿温風の一部を排気口17から排出するのが促進され、従って吸気口18から新鮮な外気の導入も促進される。この外気が混合される結果、湿気分を減少した有効な風量の循環空気とすることができる。   However, the warm air (exhaust air) passing through the bypass passage 16 is not dehumidified and naturally contains a lot of moisture. However, on the basis of the pressure difference (P1> P2) before and after the evaporator 11 in addition to the above air path resistance, it is promoted to discharge a part of the humid hot air from the exhaust port 17 and therefore fresh from the intake port 18. Introduction of fresh air is also promoted. As a result of mixing the outside air, it is possible to obtain circulating air having an effective air volume with reduced moisture content.

なお、上記した蒸発器11の結露水による風路抵抗が大きくなる現象は、同様にバイパス流路16でも起り得る。図6で示したように流路(開口)面積は小さく、蒸発器11の上面に沿って扁平な開口形状をなしていることから、その内壁面に多量に付着した結露水は大きな風路抵抗となる。しかしながら、この場合も上記同様に排気口17と吸気口18による吸排作用が一層促進されることとなり、外気の補充により循環風量の減少を抑制することができる。   It should be noted that the phenomenon that the air path resistance due to the dew condensation water of the evaporator 11 increases can also occur in the bypass channel 16 as well. As shown in FIG. 6, since the flow path (opening) area is small and a flat opening shape is formed along the upper surface of the evaporator 11, condensed water adhering to the inner wall surface has a large airflow resistance. It becomes. However, in this case as well, the intake / exhaust action by the exhaust port 17 and the intake port 18 is further promoted as described above, and the reduction of the circulating air volume can be suppressed by the replenishment of outside air.

これにより、除湿熱量が大きくなって冷凍サイクル(圧縮機13)への負荷(消費電力量)が大きくなることを軽減できるとともに、循環風量の減少を抑え乾燥性能に支障を来たすことはない。また、乾燥運転の後半に至り衣類の乾燥が進み除湿熱量が小さくなった場合には、吸排作用は減少し温風は主として蒸発器11を通過するようになり、熱交換作用(除湿作用)を有効に活用でき効率の良い乾燥性能を発揮し得るもので、延いてはヒートポンプユニット10を小型化するに有利である。   As a result, it is possible to reduce an increase in the amount of heat for dehumidification and an increase in the load (power consumption) on the refrigeration cycle (compressor 13), and it is possible to suppress a decrease in the circulation air volume and not hinder the drying performance. In addition, when the drying of the clothing progresses in the latter half of the drying operation and the heat of dehumidification becomes small, the suction / exhaust action decreases and the warm air mainly passes through the evaporator 11 to perform the heat exchange action (dehumidification action). It can be used effectively and can exhibit efficient drying performance, which is advantageous for downsizing the heat pump unit 10.

また、本実施例では循環風路7を外槽3の後方背面側に集めるとともに、ヒートポンプユニット10も本体1内底部に背面側に沿って配置したので、そのコンパクト配置に基づき前方側に空間を確保でき、例えば外槽3を弾性支持する複数のサスペンション(図示せず)を、底部上の最適位置に設置できるなど、設計製造を容易にする点で有利である。   In the present embodiment, the circulation air passage 7 is gathered on the rear rear side of the outer tub 3, and the heat pump unit 10 is also arranged on the inner bottom of the main body 1 along the rear side. For example, a plurality of suspensions (not shown) that elastically support the outer tub 3 can be installed at optimal positions on the bottom, which is advantageous in terms of facilitating design and manufacturing.

(変形例)
図7、8は、本発明の変形例を示すもので、上記実施例と同一部分には同一符号を付して説明を省略し、異なる点につき詳細に説明する。なお、図7は図1相当図で、図8はダンパ装置の動作の制御内容を示すタイムチャート図である。このものは、上記実施例に対し前記排気口17を開閉可能に制御するダンパ装置21を設けた点で異なり、他は共通の構成としている。
(Modification)
7 and 8 show a modification of the present invention. The same parts as those in the above embodiment are denoted by the same reference numerals, description thereof is omitted, and different points will be described in detail. 7 is a view corresponding to FIG. 1, and FIG. 8 is a time chart showing the control contents of the operation of the damper device. This is different from the above embodiment in that a damper device 21 for controlling the exhaust port 17 so as to be openable and closable is provided.

図7に示すように、ダンパ装置21は排気口17を開閉可能に設けられ、例えば図示しないステッピングモータを駆動して開閉可能に制御される。しかるに、本実施例では乾燥運転の前半から中半にかけて、除湿量が大となる区分Bにおいては、排気口17を閉鎖するよう制御され、他は開放された態様に制御される。この区分Bでは、衣類温度も上昇し水分の蒸発量も多くなるとともに、蒸発器11による除湿量が増し冷媒の蒸発温度と凝縮温度も高くなる。そこで、例えば凝縮器12の冷媒管15或は放熱フィンなどにサーミスタからなる温度センサ(図示せず)を設け、例えば凝縮器12の温度が70℃を超えたことを検知したとき、ダンパ装置21を開放動作するようにしている。なお、その後の閉鎖動作は時間制御でもよいし或は温度検知に基づき制御するようにしてもよい。   As shown in FIG. 7, the damper device 21 is provided so that the exhaust port 17 can be opened and closed, and is controlled to be opened and closed by driving a stepping motor (not shown), for example. However, in this embodiment, from the first half to the middle half of the drying operation, in the section B where the dehumidification amount is large, the exhaust port 17 is controlled to be closed, and the others are controlled to be opened. In this category B, the clothing temperature also rises and the amount of moisture evaporated increases, the amount of dehumidification by the evaporator 11 increases, and the evaporation temperature and condensation temperature of the refrigerant also increase. Therefore, for example, a temperature sensor (not shown) made of a thermistor is provided in the refrigerant pipe 15 or the heat radiation fin of the condenser 12, for example, when it is detected that the temperature of the condenser 12 exceeds 70 ° C., the damper device 21. Is to be opened. The subsequent closing operation may be time-controlled or controlled based on temperature detection.

斯かる構成によれば、除湿器11による除湿量が多い区分Bの時間帯においてダンパ装置21が排気口17を開放する。この結果、上記実施例と同様に除湿量が増え蒸発器11の結露水による風路抵抗が大きくなった場合、湿った温風の一部を排出し乾いた新鮮な外気を吸気口18から導入でき、以って、圧縮機13への入力を低減でき冷凍サイクルへの負荷を軽減できるなど、上記実施例と同様の効果が期待できる。   According to such a configuration, the damper device 21 opens the exhaust port 17 in the time zone of the section B where the dehumidification amount by the dehumidifier 11 is large. As a result, when the amount of dehumidification increases and the wind path resistance due to the dew condensation water of the evaporator 11 increases as in the above-described embodiment, a part of the wet warm air is discharged and fresh fresh outside air is introduced from the intake port 18. Therefore, it is possible to expect the same effects as in the above embodiment, such as reducing the input to the compressor 13 and reducing the load on the refrigeration cycle.

一方、ダンパ装置21は図8に明示するように運転初期及び後半の、いずれも除湿量が少ない区分A及び区分Cの時間帯において排気口17を閉鎖するようにしている。そのうち、区分Aにおいては乾燥運転のスタート直後にあって、未だ衣類温度も低温で水分の蒸発も低調である。また、区分Cの運転後半では衣類の乾燥が進み、やはり水分の蒸発も少なくなっている。従って、湿気の少ない温風を排気口17から排出するよりも、蒸発器11を有効活用して除湿することが乾燥作用としては有効であり、特に運転スタート直後では、循環空気たる温風も温度上昇過程の中で、該温風を排出して熱エネルギーを無駄にすることを回避できる点で有効である。   On the other hand, as clearly shown in FIG. 8, the damper device 21 is configured to close the exhaust port 17 in the time zone of the section A and the section C where the dehumidification amount is small in both the initial stage and the latter half of the operation. Among them, in category A, immediately after the start of the drying operation, the clothing temperature is still low, and the evaporation of moisture is still low. Further, in the second half of the operation of section C, the drying of clothes progresses, and the evaporation of moisture is also reduced. Accordingly, it is more effective as a drying action to dehumidify by using the evaporator 11 more effectively than exhausting the warm air with low humidity from the exhaust port 17. This is effective in that it is possible to avoid wasting the heat energy by discharging the warm air during the rising process.

また、ダンパ装置21の開閉制御に基づく吸排作用は確実で安定性に優れ、冷凍サイクルにおける入力制御が的確にできて圧縮機13の信頼性を向上できる。しかも、ダンパ装置21による排気口17の開閉、少なくとも開放動作は、吸排作用の開始時期として重要であり、これを凝縮器12の検知温度に基づき制御するようにしている。つまり、蒸発器11における除湿量が多くなってくると、冷媒の蒸発温度や凝縮温度が高くなることから、温度上昇する凝縮器12の温度検知に基づきダンパ装置21を駆動し、吸排作用を制御できるようにしたのである。   Further, the intake / exhaust action based on the opening / closing control of the damper device 21 is reliable and excellent in stability, the input control in the refrigeration cycle can be accurately performed, and the reliability of the compressor 13 can be improved. In addition, the opening / closing operation and at least the opening operation of the exhaust port 17 by the damper device 21 are important as the start timing of the intake / exhaust action, and are controlled based on the detected temperature of the condenser 12. That is, as the dehumidification amount in the evaporator 11 increases, the evaporation temperature and condensation temperature of the refrigerant increase, so that the damper device 21 is driven based on the temperature detection of the condenser 12 that rises in temperature to control the intake / exhaust action. I made it possible.

これにより、ダンパ装置21による排気口17を開放し循環空気に対する吸排作用が行われ、増大傾向にある圧縮機13の入力を許容範囲に抑えることができ、該圧縮機13の信頼性を向上できる。また、ダンパ装置21は、循環風路7たる熱交換ダクト7cの外部に配置できるので、簡単に装備することができる。   Thereby, the exhaust port 17 by the damper device 21 is opened, and the intake / exhaust action with respect to the circulating air is performed, so that the input of the compressor 13, which tends to increase, can be suppressed within an allowable range, and the reliability of the compressor 13 can be improved. . Moreover, since the damper apparatus 21 can be arrange | positioned outside the heat exchange duct 7c which is the circulation air path 7, it can equip easily.

なお、本発明は上記し且つ図面に示した実施例に限定されることなく、例えば回転槽の回転制御に基づき、洗い、すすぎ、脱水などの洗濯機能を搭載した洗濯乾燥機の構成としてもよい。或は、乾燥室としての外槽内に配置した回転槽は、乾燥運転時における衣類などの撹拌手段として有効であるが、該回転槽に代えて、例えば乾燥室内に静止状態に衣類などを吊下げ支持する構成としてもよいなど、実施に際して本発明の要旨を逸脱しない範囲で種々変更して実施できるものである。   The present invention is not limited to the embodiment described above and shown in the drawings. For example, the present invention may be configured as a washing / drying machine equipped with washing functions such as washing, rinsing, and dehydration based on rotation control of a rotating tub. . Alternatively, a rotating tub disposed in an outer tub serving as a drying chamber is effective as a stirring means for clothes during drying operation. Instead of the rotating tub, for example, clothes are suspended in a drying chamber in a stationary state. The present invention can be implemented with various modifications without departing from the gist of the present invention.

図面中、1は本体、3は外槽(乾燥室)、4は回転槽、7は循環風路、7aは排気ダクト、7bは給気ダクト、7cは熱交換ダクト、9は循環ファン、10はヒートポンプユニット、11は蒸発器、12は凝縮器、13は圧縮機、14は膨張弁(減圧装置)、15は冷媒管、16はバイパス流路、17は排気口、18は吸気口、及び21はダンパ装置を示す。   In the drawings, 1 is a main body, 3 is an outer tub (drying chamber), 4 is a rotating tub, 7 is a circulation air passage, 7a is an exhaust duct, 7b is an air supply duct, 7c is a heat exchange duct, 9 is a circulation fan, 10 Is a heat pump unit, 11 is an evaporator, 12 is a condenser, 13 is a compressor, 14 is an expansion valve (decompression device), 15 is a refrigerant pipe, 16 is a bypass flow path, 17 is an exhaust port, 18 is an intake port, and Reference numeral 21 denotes a damper device.

Claims (3)

被乾燥物に温風を当て乾燥する乾燥室と、
前記乾燥室に設けられた温風の出入口に接続された循環風路、及び該循環風路を介して前記乾燥室に空気を循環供給する循環ファンと、
前記循環風路の途中の上流側に蒸発器を配し、下流側に凝縮器を配するとともに圧縮機及び減圧装置等を備え、前記循環空気を温風化する加熱源として機能するヒートポンプユニットと、
前記循環風路内において前記蒸発器を経由しない空気流を形成するバイパス流路と、
前記バイパス流路の前後に位置し外部に連通して夫々設けられた排気口及び吸気口と、を具備したことを特徴とする衣類乾燥機。
A drying chamber for drying by applying warm air to the object to be dried;
A circulation air passage connected to a hot air inlet / outlet provided in the drying chamber, and a circulation fan for circulating air to the drying chamber via the circulation air passage;
A heat pump unit that serves as a heating source that warms the circulating air by arranging an evaporator on the upstream side in the middle of the circulating air path, a condenser on the downstream side, and a compressor and a decompressor.
A bypass flow path that forms an air flow that does not pass through the evaporator in the circulation air path;
A clothes dryer comprising an exhaust port and an air intake port that are positioned before and after the bypass flow path and communicate with the outside.
排気口は、ダンパ装置により開閉される構成としたことを特徴とする請求項1記載の衣類乾燥機。   The clothes dryer according to claim 1, wherein the exhaust port is configured to be opened and closed by a damper device. ダンパ装置は、凝縮器の所定温度の検知に基づき、少なくとも排気口を開放動作する構成としたことを特徴とする請求項2記載の衣類乾燥機。


The clothes dryer according to claim 2, wherein the damper device is configured to open at least the exhaust port based on detection of a predetermined temperature of the condenser.


JP2009247702A 2009-10-28 2009-10-28 Clothes dryer Withdrawn JP2011092329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247702A JP2011092329A (en) 2009-10-28 2009-10-28 Clothes dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247702A JP2011092329A (en) 2009-10-28 2009-10-28 Clothes dryer

Publications (1)

Publication Number Publication Date
JP2011092329A true JP2011092329A (en) 2011-05-12

Family

ID=44109982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247702A Withdrawn JP2011092329A (en) 2009-10-28 2009-10-28 Clothes dryer

Country Status (1)

Country Link
JP (1) JP2011092329A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174656B1 (en) 2005-11-16 2012-08-21 엘지전자 주식회사 Clothes dryer with vapor compression cycle system
WO2013073340A2 (en) * 2011-11-18 2013-05-23 シャープ株式会社 Washer dryer
KR20140065267A (en) * 2012-11-21 2014-05-29 엘지전자 주식회사 Dryer with heat pump
JP2015154825A (en) * 2014-02-20 2015-08-27 株式会社東芝 Washing and drying machine
WO2016050436A1 (en) * 2014-10-02 2016-04-07 Arcelik Anonim Sirketi A heat pump laundry dryer
JP2016096885A (en) * 2014-11-19 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. Dryer
CN105671902A (en) * 2014-12-08 2016-06-15 Lg电子株式会社 CONDENSING TYPE CLOTHES DRYER and CONTROLING METHOD FOR SAME
WO2023277314A1 (en) * 2021-06-29 2023-01-05 삼성전자주식회사 Apparatus for dehumidification, and method for dehumidification using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174656B1 (en) 2005-11-16 2012-08-21 엘지전자 주식회사 Clothes dryer with vapor compression cycle system
WO2013073340A2 (en) * 2011-11-18 2013-05-23 シャープ株式会社 Washer dryer
JP2013106716A (en) * 2011-11-18 2013-06-06 Sharp Corp Washing and drying machine
WO2013073340A3 (en) * 2011-11-18 2013-07-11 シャープ株式会社 Washer dryer
KR101961141B1 (en) * 2012-11-21 2019-03-25 엘지전자 주식회사 Dryer with heat pump
KR20140065267A (en) * 2012-11-21 2014-05-29 엘지전자 주식회사 Dryer with heat pump
JP2015154825A (en) * 2014-02-20 2015-08-27 株式会社東芝 Washing and drying machine
WO2016050436A1 (en) * 2014-10-02 2016-04-07 Arcelik Anonim Sirketi A heat pump laundry dryer
JP2016096885A (en) * 2014-11-19 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. Dryer
CN105671902A (en) * 2014-12-08 2016-06-15 Lg电子株式会社 CONDENSING TYPE CLOTHES DRYER and CONTROLING METHOD FOR SAME
US10196772B2 (en) 2014-12-08 2019-02-05 Lg Electronics Inc. Condensing type clothes dryer having a heat pump cycle and a method for controlling a condensing type clothes dryer having a heat pump cycle
US10793995B2 (en) 2014-12-08 2020-10-06 Lg Electronics Inc. Condensing type clothes dryer having a heat pump cycle and a method for controlling a condensing type clothes dryer having a heat pump cycle
WO2023277314A1 (en) * 2021-06-29 2023-01-05 삼성전자주식회사 Apparatus for dehumidification, and method for dehumidification using same

Similar Documents

Publication Publication Date Title
JP4679384B2 (en) Washing and drying machine
JP4676291B2 (en) Clothes dryer
EP1408151B1 (en) Condensation clothes dryer and method for controlling operation thereof
JP2011092329A (en) Clothes dryer
KR100764344B1 (en) Clothes dryer
JP4550747B2 (en) Clothes dryer
JP4388088B2 (en) Clothes dryer
KR100595763B1 (en) Clothes dryer with a dehumidifier
JP5091891B2 (en) Washing and drying machine
JP5251173B2 (en) Dehumidifying and heating device and drying device using the same
JP2005253588A (en) Drier
JP2007175528A (en) Washing and drying machine
JP5075771B2 (en) Washing and drying machine
WO2006054431A1 (en) Drum-type washer-dryer
JP2011194035A (en) Washing and drying machine
JP2007082834A (en) Clothing dryer
JP2006212265A (en) Drier
JP2010088659A (en) Washing/drying machine
JP2011087623A (en) Clothes dryer
JP4791881B2 (en) Clothes dryer
JP2013179953A (en) Heat pump type drying machine
JP2004358028A (en) Clothing drying apparatus
JP2011244924A (en) Clothes dryer
KR100977926B1 (en) Clothing dryer
JP2005230322A (en) Clothes dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130304