JP2011086406A - Lithium ion secondary battery, vehicle, and battery-mounted device - Google Patents

Lithium ion secondary battery, vehicle, and battery-mounted device Download PDF

Info

Publication number
JP2011086406A
JP2011086406A JP2009236485A JP2009236485A JP2011086406A JP 2011086406 A JP2011086406 A JP 2011086406A JP 2009236485 A JP2009236485 A JP 2009236485A JP 2009236485 A JP2009236485 A JP 2009236485A JP 2011086406 A JP2011086406 A JP 2011086406A
Authority
JP
Japan
Prior art keywords
negative electrode
separator
active material
positive electrode
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009236485A
Other languages
Japanese (ja)
Other versions
JP5343808B2 (en
Inventor
Hisao Yamashige
寿夫 山重
Shinobu Okayama
忍 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009236485A priority Critical patent/JP5343808B2/en
Publication of JP2011086406A publication Critical patent/JP2011086406A/en
Application granted granted Critical
Publication of JP5343808B2 publication Critical patent/JP5343808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery capable of suppressing insertion of lithium ion into a second negative electrode part of a negative electrode active material layer when charging, and suppressing degradation of a battery capacity, and to provide a vehicle with the lithium ion secondary battery and a battery-mounted device. <P>SOLUTION: The lithium ion secondary battery 1 includes a positive electrode plate 30, a negative electrode plate 40 having the negative electrode active material layer 41, a separator 20, and an electrolyte solution 60. The negative electrode active material layer is composed of a first negative electrode part 42 opposed to the positive electrode material layer 31 with the separator interposed and a second negative electrode part 43 having no opposing positive electrode material layer. The separator includes a first separator part 22 which is opposed to the first negative electrode part and is porous and capable of permeating lithium ion in its own thickness direction DC and a second separator part 23 opposed to the second negative electrode part. Part of the second separator part is made to be more difficult to permeate lithium ion in the thickness direction DC than the first separator part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、正極活物質層を有する正電極板と、負極活物質層を有する負電極板と、セパレータとを備えるリチウムイオン二次電池、このリチウムイオン二次電池を搭載した車両及び電池搭載機器に関する。   The present invention relates to a lithium ion secondary battery comprising a positive electrode plate having a positive electrode active material layer, a negative electrode plate having a negative electrode active material layer, and a separator, a vehicle equipped with this lithium ion secondary battery, and a battery-equipped device. About.

近年、ハイブリッド自動車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、リチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
特許文献1では、負極板(負電極板)の活物質塗着部(負極活物質層)の幅を、正極板(正電極板)の活物質塗着部(正極活物質層)の幅よりも大きく設定した捲回型のリチウムイオン二次電池が開示されている。
In recent years, lithium ion secondary batteries (hereinafter also simply referred to as batteries) have been used as power sources for driving portable electronic devices such as hybrid cars, notebook computers, and video camcorders.
In Patent Document 1, the width of the active material coating portion (negative electrode active material layer) of the negative electrode plate (negative electrode plate) is made larger than the width of the active material coating portion (positive electrode active material layer) of the positive electrode plate (positive electrode plate). Further, a wound type lithium ion secondary battery set to be larger is disclosed.

特開2005−190913号公報JP 2005-190913 A

ところで、特許文献1の電池では、負極活物質層は、セパレータを介して、正極活物質層に対向する第1負極部と、負極活物質層の幅方向(短手方向)両端側に位置し、セパレータを介して対向する正極活物質層が存在しない第2負極部とに分けられる。
この電池では、第1負極部と負極集電板との間のほか、第2負極部と負極集電板との間でも、電子のやりとりが可能である。このため、この電池を充電すると、正極活物質層から放出されたリチウムイオンが、対向する第1負極部内に挿入されるほか、正極活物質層の端部から外側に拡がるようにリチウムイオンが移動して、第2負極部の内部にも挿入される。
しかしながら、この第2負極部は、対向する正極活物質層が存在しないので、放電の際には、この第2負極部からその内部にあるリチウムイオンを放出させ難い。つまり、この第2負極部は、負極活物質層でありながら、リチウムイオンを吸蔵するだけで、放電に関与し難い。このため、充電の際に第2負極部に挿入されたリチウムイオンの分だけ、放電の際に負極活物質層から放出しうるリチウムイオンの量が減少してしまう、即ち、電池容量が低下してしまう。
By the way, in the battery of Patent Document 1, the negative electrode active material layer is located on both ends of the first negative electrode portion facing the positive electrode active material layer via the separator and the width direction (short direction) of the negative electrode active material layer. And a second negative electrode part in which no positive electrode active material layer is opposed through a separator.
In this battery, electrons can be exchanged not only between the first negative electrode portion and the negative electrode current collector plate but also between the second negative electrode portion and the negative electrode current collector plate. For this reason, when this battery is charged, lithium ions released from the positive electrode active material layer are inserted into the opposing first negative electrode portion, and the lithium ions move so as to spread outward from the end portion of the positive electrode active material layer. And it is inserted also into the inside of the 2nd negative electrode part.
However, since this second negative electrode portion does not have an opposing positive electrode active material layer, it is difficult to release lithium ions therein from this second negative electrode portion during discharge. That is, the second negative electrode portion is a negative electrode active material layer, but only absorbs lithium ions and hardly participates in discharge. For this reason, the amount of lithium ions that can be released from the negative electrode active material layer during discharge is reduced by the amount of lithium ions inserted into the second negative electrode portion during charging, that is, the battery capacity is reduced. End up.

本発明は、かかる問題点に鑑みてなされたものであって、充電の際に、負極活物質層の第2負極部内へのリチウムイオンの挿入を抑制して、電池容量の低下を抑制可能なリチウムイオン二次電池、このリチウムイオン二次電池を搭載した車両及び電池搭載機器を提供することを目的とする。   The present invention has been made in view of such problems, and can suppress the decrease in battery capacity by suppressing the insertion of lithium ions into the second negative electrode portion of the negative electrode active material layer during charging. An object of the present invention is to provide a lithium ion secondary battery, a vehicle equipped with the lithium ion secondary battery, and a battery-equipped device.

本発明の一態様は、導電性を有する正極集電板、及び、上記正極集電板上に配置された正極活物質層を有する正電極板と、導電性を有する負極集電板、及び、上記負極集電板上に配置された負極活物質層を有する負電極板と、上記正電極板と上記負電極板との間に介在してなるセパレータと、リチウムイオンを含む電解液と、を備えるリチウムイオン二次電池であって、上記負極活物質層は、上記セパレータを介して、上記正極活物質層に対向する第1負極部と、上記セパレータを介して対向する上記正極活物質層が存在しない第2負極部と、からなり、上記セパレータは、上記第1負極部に対向し、リチウムイオンを自身の厚み方向に透過可能な多孔質の第1セパレータ部と、上記第2負極部に対向する第2セパレータ部と、を有し、上記第2セパレータ部の少なくとも一部は、上記第1セパレータ部に比して、リチウムイオンの自身の厚み方向の透過が困難な形態とされた透過困難部とされてなるリチウムイオン二次電池である。   One embodiment of the present invention is a positive electrode current collector plate having conductivity, a positive electrode plate having a positive electrode active material layer disposed on the positive electrode current collector plate, a negative electrode current collector plate having conductivity, and A negative electrode plate having a negative electrode active material layer disposed on the negative electrode current collector plate, a separator interposed between the positive electrode plate and the negative electrode plate, and an electrolyte containing lithium ions. The negative electrode active material layer includes a first negative electrode portion that faces the positive electrode active material layer via the separator, and a positive electrode active material layer that faces the positive electrode active material layer via the separator. A second negative electrode portion that does not exist, and the separator is opposed to the first negative electrode portion, and has a porous first separator portion that can transmit lithium ions in its thickness direction, and the second negative electrode portion. A second separator portion facing each other, and At least a portion of the second separator unit is different from the aforementioned first separator unit, a lithium ion secondary battery formed by a transparent hard portion itself of the thickness direction transmission of lithium ions is a difficult form.

上述の電池では、第2セパレータ部のうちの少なくとも一部は、第1セパレータ部に比して、自身の厚み方向についてリチウムイオンの透過が困難な透過困難部とされている。このため、電池の充電の際、第2負極部、特に、このうち透過困難部に対向している部位にリチウムイオンが挿入されるのを抑えることができ、電池容量の低下を抑制することができる。   In the battery described above, at least a part of the second separator portion is a difficult-to-penetrate portion in which it is difficult for lithium ions to permeate in its own thickness direction as compared to the first separator portion. For this reason, when the battery is charged, it is possible to suppress the insertion of lithium ions into the second negative electrode portion, particularly the portion facing the difficult-to-permeate portion, thereby suppressing the decrease in battery capacity. it can.

なお、電池としては、いずれも帯状の正電極板と負電極板との間にセパレータを介して捲回してなる捲回型発電要素を有する捲回型電池や、複数の正電極板と複数の負電極板とを、セパレータを介して交互に積層してなる積層型発電要素を有する積層型電池が挙げられる。
また、透過困難部としては、多孔性を有しているが、第1セパレータ部に比して、多孔度を低くした部位のほか、透孔を有せずリチウムイオンが透過不能とした部位も含まれる。なお、透過困難部の多孔度を第1セパレータ部に比して低くする手法としては、例えば、多孔質のセパレータを熱圧縮して透過困難部としたり、溶剤を塗布してセパレータを溶かして孔を埋めたり、樹脂を含んだ溶液を塗布して孔を塞いだり、多孔質のセパレータに、リチウムイオンを透過困難な材質からなる部材を担持、接着(接合)、貼付或いは塗布するなどの手法が挙げられる。
In addition, as a battery, the winding type battery which has a wound type electric power generation element which all winds through a separator between a strip-like positive electrode plate and a negative electrode plate, a plurality of positive electrode plates, and a plurality of Examples include a stacked battery having a stacked power generation element in which negative electrode plates are alternately stacked via separators.
Moreover, as the difficult-to-permeate part, it has porosity, but in addition to the part where the porosity is lower than that of the first separator part, there are also parts that do not have through-holes and do not allow lithium ions to permeate. included. In addition, as a technique for lowering the porosity of the difficult-to-permeate portion as compared with the first separator portion, for example, the porous separator is thermally compressed to make the difficult-to-permeate portion, or a solvent is applied to dissolve the separator to obtain pores. Or by filling a porous separator with a member made of a material that is difficult to permeate lithium ions, bonding (bonding), pasting or coating the porous separator. Can be mentioned.

さらに、上述のリチウムイオン二次電池であって、前記透過困難部は、リチウムイオンを自身の厚み方向に透過不能とされてなる透過不能部であるリチウムイオン二次電池とすると良い。   Further, in the above-described lithium ion secondary battery, the difficult-to-transmit portion may be a lithium-ion secondary battery that is a non-transmittable portion formed by making lithium ions impermeable in its thickness direction.

上述の電池では、透過困難部が透過不能とされる透過不能部であるので、電池の充電の際、第2負極部のうち、透過困難部(透過不能部)に対向している部位にリチウムイオンが挿入されるのを確実に抑えることができる。   In the battery described above, the difficult-to-permeate part is an impervious part that is impervious to lithium. Therefore, when the battery is charged, lithium is placed in a portion of the second negative electrode part that faces the difficult-to-transmit part (non-permeable part). It is possible to reliably suppress the insertion of ions.

なお、透過不能部としては、リチウムイオンを自身の厚み方向に透過不能とされてなる部位であれば良く、例えば、多孔質のセパレータを熱圧縮して完全に透孔を塞いでなる部位、溶剤を塗布してセパレータを溶かして完全に透孔を埋めてなる部位、樹脂を含んだ溶液を塗布して孔を塞いでなる部位、多孔質のセパレータに、リチウムイオンを透過不能な材質からなる部材を担持、接着(接合)、貼付或いは塗布してなる部位などが挙げられる。   The non-permeable portion may be a portion where lithium ions cannot be permeated in its thickness direction. For example, a portion formed by thermally compressing a porous separator to completely close the through-hole, a solvent A part made of a material that does not allow lithium ions to permeate into a part where the separator is melted to completely fill the through hole, a part containing a resin-containing solution to close the hole, and a porous separator The site | part formed by carrying | supporting, adhere | attaching (bonding), sticking or apply | coating is mentioned.

さらに、上述のリチウムイオン二次電池であって、いずれも長手方向に延びる帯状の前記正電極板、前記負電極板及び前記セパレータは、上記長手方向に捲回されて捲回型発電要素をなし、上記長手方向に延びる帯状の前記負極活物質層のうち、前記第2負極部は、短手方向の両端側にそれぞれ位置する短手端側第2負極部を含み、前記第2セパレータ部は、上記短手方向の両端側にそれぞれ位置し、上記長手方向に延びる帯状の短手端側第2セパレータ部を含み、上記短手端側第2セパレータ部は、前記透過困難部からなるリチウムイオン二次電池とすると良い。   Furthermore, in the lithium ion secondary battery described above, the positive electrode plate, the negative electrode plate, and the separator each having a strip shape extending in the longitudinal direction are wound in the longitudinal direction to form a wound power generation element. Of the strip-like negative electrode active material layers extending in the longitudinal direction, the second negative electrode portion includes short end-side second negative electrode portions positioned on both ends in the short direction, and the second separator portion is And a strip-shaped short end side second separator portion located on both ends in the short direction and extending in the longitudinal direction, wherein the short end side second separator portion is a lithium ion comprising the difficult to transmit portion. A secondary battery is recommended.

上述の電池は、捲回型発電要素を備え、短手端側第2セパレータ部は透過困難部からなる。長手方向に延びる帯状の負極活物質層において、短手端側第2負極部は第2負極部の大半を占める。従って、ここに透過困難部からなる短手端側第2セパレータ部が対向することで、電池の充電の際に、第2負極部に挿入されるリチウムイオンを大幅に減少させることができ、これによる電池容量の低下を十分に抑制することができる。   The above-described battery includes a wound-type power generation element, and the short-side second separator portion includes a portion that is difficult to transmit. In the strip-shaped negative electrode active material layer extending in the longitudinal direction, the short-side second negative electrode portion occupies most of the second negative electrode portion. Therefore, the short end side second separator portion made of the difficult-to-penetrate portion faces here, so that the lithium ions inserted into the second negative electrode portion can be greatly reduced when the battery is charged. It is possible to sufficiently suppress the decrease in battery capacity due to.

或いは、本発明の他の態様は、前述のいずれかのリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを動力源の全部又は一部に使用する車両である。   Or the other aspect of this invention is a vehicle which mounts one of the above-mentioned lithium ion secondary batteries, and uses the electrical energy stored in this lithium ion secondary battery for all or one part of a motive power source.

上述の車両は、電池容量の低下を抑制した電池を搭載しているので、安定した性能の動力源を有する車両とすることができる。   Since the above-mentioned vehicle is equipped with a battery that suppresses a decrease in battery capacity, it can be a vehicle having a power source with stable performance.

なお、車両としては、電池による電気エネルギを動力源の全部又は一部に使用する車両であれば良く、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータが挙げられる。   The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric wheelchair, electric Examples include assist bicycles and electric scooters.

或いは、本発明の他の態様は、前述のいずれかのリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを駆動エネルギ源の全部又は一部に使用する電池搭載機器である。   Alternatively, according to another aspect of the present invention, a battery-mounted device in which any one of the above-described lithium ion secondary batteries is mounted and the electric energy stored in the lithium ion secondary battery is used for all or part of the driving energy source. It is.

上述の電池搭載機器は、電池容量の低下を抑制した電池を搭載しているので、安定した性能の駆動エネルギ源を有する電池搭載機器とすることができる。   Since the battery-mounted device described above is mounted with a battery in which a decrease in battery capacity is suppressed, it can be a battery-mounted device having a drive energy source with stable performance.

なお、電池搭載機器としては、電池を搭載し、これをエネルギ源の全部又は一部に使用する機器であれば良く、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器が挙げられる。   In addition, as a battery mounting apparatus, what is necessary is just an apparatus which mounts a battery and uses this for all or one part of an energy source, for example, a personal computer, a mobile telephone, a battery-powered electric tool, an uninterruptible power supply, etc. And various home appliances driven by batteries, office equipment, and industrial equipment.

実施形態1にかかる電池の斜視図である。1 is a perspective view of a battery according to Embodiment 1. FIG. 実施形態1の正電極板の斜視図である。2 is a perspective view of a positive electrode plate according to Embodiment 1. FIG. 実施形態1の負電極板の斜視図である。3 is a perspective view of a negative electrode plate according to Embodiment 1. FIG. 実施形態1のセパレータの斜視図である。It is a perspective view of the separator of Embodiment 1. 実施形態1にかかる電池の拡大断面図(図1のA−A部)である。It is an expanded sectional view (AA part of Drawing 1) of the battery concerning Embodiment 1. 変形形態1にかかる電池の斜視図である。6 is a perspective view of a battery according to a first modification. FIG. 変形形態1の正電極板の斜視図である。It is a perspective view of the positive electrode plate of modification 1. 変形形態1の負電極板の斜視図である。It is a perspective view of the negative electrode plate of modification 1. 変形形態1のセパレータの斜視図である。It is a perspective view of the separator of modification 1. 実施形態2にかかる車両の説明図である。It is explanatory drawing of the vehicle concerning Embodiment 2. FIG. 実施形態3にかかるハンマードリルの説明図である。It is explanatory drawing of the hammer drill concerning Embodiment 3. FIG.

(実施形態1)
次に、本発明の実施形態1について、図面を参照しつつ説明する。
まず、本実施形態1にかかる電池1について、図1を参照して説明する。
この電池1は、リチウムイオンを含む電解液60、いずれも長手方向DAに延びる帯状の正電極板30、負電極板40及びセパレータ20を備え、これら正電極板30、負電極板40及びセパレータ20を長手方向DAに捲回して捲回型の発電要素10をなすリチウムイオン二次電池である(図1参照)。なお、電池1は、図1に示すように、発電要素10を電池ケース80に収容してなる。
(Embodiment 1)
Next, Embodiment 1 of the present invention will be described with reference to the drawings.
First, the battery 1 according to the first embodiment will be described with reference to FIG.
The battery 1 includes an electrolytic solution 60 containing lithium ions, each of which includes a strip-like positive electrode plate 30, a negative electrode plate 40, and a separator 20 extending in the longitudinal direction DA. The positive electrode plate 30, the negative electrode plate 40, and the separator 20 are provided. Is a lithium ion secondary battery that is wound in the longitudinal direction DA to form a wound power generation element 10 (see FIG. 1). In addition, the battery 1 accommodates the electric power generation element 10 in the battery case 80, as shown in FIG.

この電池ケース80は、共にアルミニウム製の電池ケース本体81及び封口蓋82を有する。このうち電池ケース本体81は有底矩形箱形であり、この電池ケース80と発電要素10との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。また、封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。この封口蓋82には、発電要素10と接続している正極集電部材91及び負極集電部材92のうち、それぞれ先端に位置する正極端子部91A及び負極端子部92Aが貫通しており、図1中、上方に向く蓋表面82aから突出している。これら正極端子部91A及び負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、互いを絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。   The battery case 80 has a battery case body 81 and a sealing lid 82 both made of aluminum. Among these, the battery case main body 81 has a bottomed rectangular box shape, and an insulating film (not shown) made of resin and bent into a box shape is interposed between the battery case 80 and the power generation element 10. The sealing lid 82 has a rectangular plate shape, closes the opening of the battery case body 81, and is welded to the battery case body 81. Of the positive electrode current collecting member 91 and the negative electrode current collecting member 92 connected to the power generation element 10, the positive electrode terminal portion 91 </ b> A and the negative electrode terminal portion 92 </ b> A located at the tips of the sealing lid 82 pass through, respectively. 1 protrudes from the lid surface 82a facing upward. Insulating members 95 made of insulating resin are interposed between the positive electrode terminal portion 91A and the negative electrode terminal portion 92A and the sealing lid 82 to insulate each other. Further, a rectangular plate-shaped safety valve 97 is also sealed on the sealing lid 82.

また、電解液60は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを、体積比でEC:EMC=3:7に調整した混合有機溶媒に、溶質としてLiPF6を添加し、リチウムイオンを1mol/lの濃度とした非水電解液である。 In addition, the electrolytic solution 60 was prepared by adding LiPF 6 as a solute to a mixed organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were adjusted to EC: EMC = 3: 7 by volume ratio, and lithium ions were added. This is a non-aqueous electrolyte having a concentration of 1 mol / l.

また、発電要素10は、帯状の正電極板30及び負電極板40が、帯状のセパレータ20を介して扁平形状に捲回されてなる捲回型である(図1参照)。この発電要素10の最外側及び最内側には、セパレータ20のみが捲回されている。なお、この発電要素10の正電極板30及び負電極板40はそれぞれ、クランク状に屈曲した板状の正極集電部材91又は負極集電部材92と接合している(図1参照)。   The power generation element 10 is a wound type in which a strip-like positive electrode plate 30 and a negative electrode plate 40 are wound into a flat shape via a strip-like separator 20 (see FIG. 1). Only the separator 20 is wound on the outermost and innermost sides of the power generation element 10. The positive electrode plate 30 and the negative electrode plate 40 of the power generation element 10 are joined to a plate-like positive current collector 91 or negative current collector 92 bent in a crank shape, respectively (see FIG. 1).

このうち、正電極板30は、図2の斜視図に示すように、長手方向DAに延びる帯状で、アルミニウム製のアルミ箔38と、このアルミ箔38の両主面上に、それぞれ長手方向DAに延びる帯状に配置された2つの正極活物質層31,31とを有している。
この正極活物質層31は、LiCoO2からなる正極活物質粒子(図示しない)と、アセチレンブラックからなる導電材(図示しない)と、ポリフッ化ビニリデン(PVDF)からなる結着材(図示しない)とを含む。
Among these, the positive electrode plate 30 has a strip shape extending in the longitudinal direction DA, as shown in the perspective view of FIG. 2, and the aluminum foil 38 made of aluminum and the longitudinal direction DA on both main surfaces of the aluminum foil 38, respectively. And two positive electrode active material layers 31 arranged in a strip shape extending in the direction.
The positive electrode active material layer 31 includes positive electrode active material particles (not shown) made of LiCoO 2 , a conductive material (not shown) made of acetylene black, and a binder (not shown) made of polyvinylidene fluoride (PVDF). including.

また、負電極板40は、図3の斜視図に示すように、長手方向DAに延びる帯状で銅製の銅箔48と、この銅箔48の両主面上に、それぞれ長手方向DAに延びる帯状に配置された2つの負極活物質層41,41とを有している。
このうち負極活物質層41は、グラファイトからなる負極活物質粒子(図示しない)、及び、PVDFからなる結着材(図示しない)を含む。
Further, as shown in the perspective view of FIG. 3, the negative electrode plate 40 has a strip shape extending in the longitudinal direction DA and a copper copper foil 48 and strips extending in the longitudinal direction DA on both main surfaces of the copper foil 48. And two negative electrode active material layers 41, 41 disposed on the surface.
Among these, the negative electrode active material layer 41 includes negative electrode active material particles (not shown) made of graphite and a binder (not shown) made of PVDF.

この負極活物質層41は、図3、及び、図1の拡大断面図(A−A部)の図5に示すように、セパレータ20を介して、正極活物質層31に対向する第1負極部42と、セパレータ20を介して対向する正極活物質層31が存在しない第2負極部43(次述する短手端側第2負極部44及び長手端側第2負極部45)とからなる。
より詳細に説明すると、負極活物質層41は、その面積が対向する正極活物質層31に比して大きくされている。この負極活物質層41のうち、第1負極部42は、負極活物質層41の、長手方向DA及び短手方向DBのそれぞれ中央に位置する一方、第2負極部43は、第1負極部42に隣接した周囲に枠状に位置している(図3参照)。このため、電池1を充電した際、負極活物質層41の周縁に位置する銅箔48に金属リチウムが析出するのを防止できる。
As shown in FIG. 3 and FIG. 5 of the enlarged cross-sectional view (AA portion) of FIG. 1, the negative electrode active material layer 41 is a first negative electrode facing the positive electrode active material layer 31 through the separator 20. Part 42 and a second negative electrode part 43 (short end side second negative electrode part 44 and long end side second negative electrode part 45 described below) in which the positive electrode active material layer 31 opposed via the separator 20 does not exist. .
More specifically, the area of the negative electrode active material layer 41 is larger than that of the positive electrode active material layer 31 facing the negative electrode active material layer 41. Of the negative electrode active material layer 41, the first negative electrode portion 42 is located at the center of each of the longitudinal direction DA and the short direction DB of the negative electrode active material layer 41, while the second negative electrode portion 43 is the first negative electrode portion. It is located in a frame shape around 42 (see FIG. 3). For this reason, when the battery 1 is charged, it is possible to prevent metallic lithium from being deposited on the copper foil 48 located at the periphery of the negative electrode active material layer 41.

このうち第2負極部43は、負極活物質層41の長手方向DAの両端側にそれぞれ位置する2つの長手端側第2負極部45,45と、負極活物質層41の短手方向DBの両端側にそれぞれ位置する2つの短手端側第2負極部44,44とからなる(図3参照)。なお、負極活物質層41における第2負極部43(短手端側第2負極部44及び長手端側第2負極部45)と第1負極部42との境界の位置は、負電極板40、セパレータ20及び正電極板30を捲回して発電要素10を形成したときに決まる。   Among these, the second negative electrode portion 43 includes two long-end-side second negative electrode portions 45 and 45 positioned on both ends in the longitudinal direction DA of the negative electrode active material layer 41 and the short-side direction DB of the negative electrode active material layer 41. It consists of two short-end-side second negative electrode portions 44, 44 positioned on both ends (see FIG. 3). It should be noted that the position of the boundary between the second negative electrode portion 43 (the short end side second negative electrode portion 44 and the long end side second negative electrode portion 45) and the first negative electrode portion 42 in the negative electrode active material layer 41 is the negative electrode plate 40. It is determined when the power generation element 10 is formed by winding the separator 20 and the positive electrode plate 30.

また、図4,5を示す、ポリエチレンからなり、長手方向DAに延びる帯状のセパレータ20は、第1負極部42に対向し、リチウムイオンを自身の厚み方向DCに透過可能な多孔質の第1セパレータ部22と、第2負極部43に対向する第2セパレータ部23(後述する短手端側第2セパレータ部24及び長手端側第2セパレータ部25)と、正極活物質層31及び負極活物質層41のいずれにも接しない第3セパレータ部27(次述する短手端側第3セパレータ部28及び長手端側第3セパレータ部29)とからなる。   4 and 5, the strip-shaped separator 20 made of polyethylene and extending in the longitudinal direction DA is opposed to the first negative electrode portion 42, and is a porous first that can transmit lithium ions in its thickness direction DC. Separator part 22, second separator part 23 (short end side second separator part 24 and long end side second separator part 25 described later), positive electrode active material layer 31, and negative electrode active part facing second negative electrode part 43. It consists of a third separator portion 27 (a short end side third separator portion 28 and a long end side third separator portion 29 described below) that does not contact any of the material layers 41.

このうち、第3セパレータ部27は、セパレータ20の短手方向DBの両端側にそれぞれ位置する短手端側第3セパレータ部28,28と、セパレータ20の長手方向DAの両端側にそれぞれ位置する長手端側第3セパレータ部29,29とからなる(図4参照)。この長手端側第3セパレータ部29,29の一方は、それのみで捲回されて、発電要素10の最内側の軸芯付近に配置され、他方は、発電要素10の最外側を覆うように配置される。
なお、短手端側第3セパレータ部28は、隣接する、次述の短手端側第2セパレータ部24と同様、リチウムイオンの厚み方向DCの透過が不能な形態とされた透過不能部とされている。また、長手端側第3セパレータ部29は、第1セパレータ部22と同様、リチウムイオンを透過可能な長手第3透過部29Aと、短手端側第2セパレータ部24と同様、透過不能部とされた長手第3透過不能部29Bとからなる。
Among these, the 3rd separator part 27 is located in the short end side 3rd separator part 28 and 28 located in the both ends side of the transversal direction DB of the separator 20, respectively, and the both ends side of the longitudinal direction DA of the separator 20, respectively. It comprises longitudinal end side third separator portions 29, 29 (see FIG. 4). One of the longitudinal end side third separator portions 29, 29 is wound by itself and arranged near the innermost shaft core of the power generation element 10, and the other covers the outermost side of the power generation element 10. Be placed.
In addition, the short end side third separator part 28 is a non-permeable part formed in a form incapable of transmitting lithium ions in the thickness direction DC, similarly to the adjacent short end side second separator part 24 described below. Has been. In addition, the long-end-side third separator portion 29 is similar to the first separator portion 22, the long-length third permeable portion 29 </ b> A that can transmit lithium ions, and the short-end-side second separator portion 24 is not permeable. And a third third non-transparent portion 29B.

また、第2セパレータ部23は、セパレータ20の長手方向DA、第1セパレータ部22と2つの長手端側第3セパレータ部29,29の長手第3透過部29A,29Aとの間にそれぞれ位置する2つの長手端側第2セパレータ部25,25と、セパレータ20の短手方向DB、第1セパレータ部22と2つの短手端側第3セパレータ部28,28との間の両端側にそれぞれ位置する2つの短手端側第2セパレータ部24,24とからなる(図4参照)。なお、長手端側第2セパレータ部25は、負極活物質層41の長手端側第2負極部45に、また、短手端側第2セパレータ部24は、負極活物質層41の短手端側第2負極部44にそれぞれ対向する(短手端側第2セパレータ部24については、図5参照)。このため、セパレータ20における第1セパレータ部22と第2セパレータ部23(短手端側第2セパレータ部24及び長手端側第2セパレータ部25)、並びに、第3セパレータ部27(長手端側第3セパレータ部29)との境界の位置もまた、負電極板40、セパレータ20及び正電極板30を捲回して発電要素10を形成したときに決まる。   The second separator portion 23 is positioned between the longitudinal direction DA of the separator 20 and the first separator portion 22 and the longitudinal third transmission portions 29A and 29A of the two longitudinal end side third separator portions 29 and 29, respectively. Two longitudinal end side second separator portions 25, 25, short side direction DB of separator 20, and both end sides between first separator portion 22 and two short end side third separator portions 28, 28, respectively. It consists of two short end side second separator portions 24, 24 (see FIG. 4). The long end side second separator portion 25 is the long end side second negative electrode portion 45 of the negative electrode active material layer 41, and the short end side second separator portion 24 is the short end of the negative electrode active material layer 41. Opposite side second negative electrode portions 44 (refer to FIG. 5 for the short-side second separator portion 24). Therefore, the first separator portion 22 and the second separator portion 23 in the separator 20 (short end side second separator portion 24 and long end side second separator portion 25) and the third separator portion 27 (long end end side first) The position of the boundary with the three separator portions 29) is also determined when the power generating element 10 is formed by winding the negative electrode plate 40, the separator 20, and the positive electrode plate 30.

第2セパレータ部23のうち、短手端側第2セパレータ部24は、多孔質の第1セパレータ部22に比して、リチウムイオンの厚み方向DCの透過が困難な形態とされた透過困難部とされている。さらに詳しくは、この短手端側第2セパレータ部24は透過不能部となっている。このため、電池1の充電の際、負極活物質層41の第2負極部43のうち、短手端側第2セパレータ部24に対向している部位、即ち短手端側第2負極部44にリチウムイオンが挿入されるのを抑えることができ、電池容量の低下を抑制することができる。
一方、第2セパレータ部24のうち、長手端側第2セパレータ部25は、第1セパレータ部22と同様、多孔質の形態であり、リチウムイオンが透過可能である。
Among the second separator parts 23, the short-side second separator part 24 is a difficult-to-penetrate part in which it is difficult to transmit lithium ions in the thickness direction DC as compared with the porous first separator part 22. It is said that. More specifically, the short end-side second separator 24 is a non-transmittable part. For this reason, when the battery 1 is charged, a portion of the second negative electrode portion 43 of the negative electrode active material layer 41 that faces the short-end-side second separator portion 24, that is, the short-end-side second negative-electrode portion 44. Lithium ions can be prevented from being inserted into the battery, and a decrease in battery capacity can be suppressed.
On the other hand, in the second separator portion 24, the long-end-side second separator portion 25 is in a porous form like the first separator portion 22 and is capable of transmitting lithium ions.

特に、短手端側第2セパレータ部24は、リチウムイオンが透過不能の透過不能部とされているので、電池1の充電の際、第2負極部43のうち、その短手端側第2セパレータ部24に対向している短手端側第2負極部44にリチウムイオンが挿入されるのを確実に抑えることができる。   In particular, since the short side second separator part 24 is a non-permeable part through which lithium ions cannot permeate, when the battery 1 is charged, the short end side second of the second negative electrode part 43. Insertion of lithium ions into the short-end-side second negative electrode portion 44 facing the separator portion 24 can be reliably suppressed.

また、この電池1では、捲回型の発電要素10を備えており、第2セパレータ部23のうち、短手端側第2セパレータ部24が透過困難部(透過不能部)となっている。長手方向DAに延びる帯状の負極活物質層21において、この短手端側第2セパレータ部24に対向する短手端側第2負極部44は第2負極部43の大半を占める。従って、この第2負極部43と透過困難部(透過不能部)である短手端側第2セパレータ部24が対向する本実施形態1では、電池1の充電の際に、第2負極部43に挿入されるリチウムイオンを大幅に減少させることができ、これによる電池容量の低下を十分に抑制することができる。   In addition, the battery 1 includes the wound-type power generation element 10, and the second end portion of the second separator portion 23 has a short end side second separator portion 24 which is a difficult-to-transmit portion (non-transmittable portion). In the strip-shaped negative electrode active material layer 21 extending in the longitudinal direction DA, the short end-side second negative electrode portion 44 facing the short end-side second separator portion 24 occupies most of the second negative electrode portion 43. Therefore, in the first embodiment in which the second negative electrode portion 43 and the short-side-side second separator portion 24 which is a difficult to transmit portion (non-transmittable portion) face each other, the second negative electrode portion 43 is charged when the battery 1 is charged. Lithium ions inserted into the battery can be greatly reduced, and a decrease in battery capacity due to this can be sufficiently suppressed.

次に、本実施形態1にかかる電池1の製造方法について説明する。
まず、結着材を溶解したN−メチル−2−ピロリドン(NMP)中に、LiCoO2からなる正極活物質粒子及び導電材をそれぞれ投入し混練してできたペースト(図示しない)を、長手方向DAに延びる帯状のアルミ箔38に塗布した。塗布後、アルミ箔38上のペーストを乾燥させた。アルミ箔38の裏側についても、同様にペーストを塗布し、乾燥させた。その後、図示しないロールプレスで、アルミ箔38の両主面上で乾燥させたペーストを圧縮した正電極板30を作製した(図2参照)。
Next, a method for manufacturing the battery 1 according to the first embodiment will be described.
First, a paste (not shown) made by mixing and kneading positive electrode active material particles made of LiCoO 2 and a conductive material in N-methyl-2-pyrrolidone (NMP) in which a binder is dissolved is used in the longitudinal direction. It applied to the strip-shaped aluminum foil 38 extended to DA. After application, the paste on the aluminum foil 38 was dried. The paste was similarly applied to the back side of the aluminum foil 38 and dried. Then, the positive electrode plate 30 which compressed the paste dried on both the main surfaces of the aluminum foil 38 with the roll press which is not shown in figure was produced (refer FIG. 2).

一方、結着材を溶解したNMP中に、グラファイト粒子からなる負極活物質粒子を投入し混練してできたペースト(図示しない)を、長手方向DAに延びる帯状の銅箔48に塗布した。塗布後、銅箔48上のペーストを乾燥させた。銅箔48の裏側についても、同様にペーストを塗布し、乾燥させた。その後、図示しないロールプレスで、銅箔48の両主面上で乾燥させたペーストを圧縮した負電極板40を作製した(図3参照)。   On the other hand, a paste (not shown) made by adding negative electrode active material particles made of graphite particles and kneading them into NMP in which the binder was dissolved was applied to a strip-like copper foil 48 extending in the longitudinal direction DA. After the application, the paste on the copper foil 48 was dried. The paste was similarly applied to the back side of the copper foil 48 and dried. Then, the negative electrode plate 40 which compressed the paste dried on both the main surfaces of the copper foil 48 with the roll press which is not shown in figure was produced (refer FIG. 3).

次いで、全体に複数の透孔を有する多孔性のポリエチレンからなり、長手方向DAに延びる帯状の加工前セパレータ(図示しない)において、その短手方向DBの両端を、図示しない熱圧縮用プレス機を用いて熱圧縮した。なお、この加工前セパレータの短手方向DBの両端のうち、正電極板30と共に捲回する際に、正極活物質層31に対向しない部位について熱圧縮した。
これにより、熱圧縮した部位のポリエチレンを溶かして、その部位の透孔を完全に埋め、リチウムイオンが透過不能の透過不能部からなる短手端側第2セパレータ部24、第3セパレータ部27の短手端側第3セパレータ部28、及び、長手端側第3セパレータ部29の長手第3透過不能部29Bを有するセパレータ20ができあがる。
Next, in a strip-shaped pre-process separator (not shown) made of porous polyethylene having a plurality of through holes as a whole and extending in the longitudinal direction DA, both ends of the short direction DB are attached to a hot compression press machine (not shown). Used and heat compressed. In addition, among the both ends of the short direction DB of the separator before processing, when it was wound together with the positive electrode plate 30, the portion that did not face the positive electrode active material layer 31 was thermally compressed.
This melts the polyethylene in the heat-compressed portion, completely fills the through-hole in that portion, and makes the short end side second separator portion 24 and the third separator portion 27 of the non-permeable portion incapable of transmitting lithium ions. The separator 20 having the short-side third separator part 28 and the long third non-permeable part 29B of the long-end side third separator part 29 is completed.

上述のように作製した正電極板30と負電極板40との間に、セパレータ20を介在させて捲回し、発電要素10とする。なお、負電極板40の負極活物質層41における第1負極部42に、セパレータ20(第1セパレータ部22)を介して、正電極板30の正極活物質層31が対向するように、かつ、第2セパレータ部23のうちの短手端側第2セパレータ部24が、第2負極部43の短手端側第2負極部44に対向するように、セパレータ20、負電極板40、セパレータ20、正電極板30の順に重ねて捲回する。   The power generation element 10 is formed by winding the separator 20 between the positive electrode plate 30 and the negative electrode plate 40 manufactured as described above. The positive electrode active material layer 31 of the positive electrode plate 30 is opposed to the first negative electrode portion 42 of the negative electrode active material layer 41 of the negative electrode plate 40 via the separator 20 (first separator portion 22). The separator 20, the negative electrode plate 40, and the separator so that the short end side second separator portion 24 of the second separator portion 23 faces the short end side second negative electrode portion 44 of the second negative electrode portion 43. 20 and the positive electrode plate 30 are stacked in order.

その後は、正電極板30(アルミ箔38)及び負電極板40(銅箔48)にそれぞれ正極集電部材91或いは負極集電部材92を溶接し、電池ケース本体81に挿入し、前述した電解液60を注入後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池1が完成する(図1参照)。   Thereafter, the positive electrode current collecting member 91 or the negative electrode current collecting member 92 is welded to the positive electrode plate 30 (aluminum foil 38) and the negative electrode plate 40 (copper foil 48), respectively, inserted into the battery case body 81, and the electrolysis described above. After injecting the liquid 60, the battery case body 81 is sealed with a sealing lid 82 by welding. Thus, the battery 1 is completed (see FIG. 1).

(変形形態1)
次に、本発明の変形形態1にかかる電池101について、図6〜9を参照しつつ説明する。
この電池101は、複数の正電極板と複数の負電極板とを、セパレータを介して交互に積層してなる積層型発電要素を有する点で、前述の実施形態1にかかる電池1と異なり、それ以外は同様である。
そこで、実施形態1にかかる電池1と異なる点を中心に説明し、同様の部分の説明は省略、又は、簡略化する。なお、同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
(Modification 1)
Next, the battery 101 according to the first modification of the present invention will be described with reference to FIGS.
This battery 101 is different from the battery 1 according to Embodiment 1 described above in that it has a stacked power generation element in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked via separators. The rest is the same.
Therefore, the description will be focused on differences from the battery 1 according to the first embodiment, and description of similar parts will be omitted or simplified. In addition, about the same part, the same effect is produced. In addition, the same contents are described with the same numbers.

この電池101は、実施形態1と同様の電解液60、いずれも矩形板状の正電極板130、負電極板140及びセパレータ120を備え、これら正電極板130、負電極板140及びセパレータ120を交互に積層してなる積層型の発電要素110をなすリチウムイオン二次電池である(図6参照)。なお、電池101は、図6に示すように、発電要素110を、実施形態1と同様の電池ケース80に収容してなる。   The battery 101 includes the same electrolyte solution 60 as in the first embodiment, each including a positive electrode plate 130, a negative electrode plate 140, and a separator 120 each having a rectangular plate shape. This is a lithium ion secondary battery forming a stacked power generation element 110 that is alternately stacked (see FIG. 6). As shown in FIG. 6, the battery 101 includes the power generation element 110 accommodated in a battery case 80 similar to that of the first embodiment.

このうち、発電要素110は、正電極板130及び負電極板140が、矩形板状のセパレータ120を介して交互に積層してなる積層型である(図6参照)。なお、この発電要素110の正電極板130及び負電極板140はそれぞれ、クランク状に屈曲した板状の正極集電部材91又は負極集電部材92と接合している(図6参照)。   Among these, the power generation element 110 is a stacked type in which the positive electrode plates 130 and the negative electrode plates 140 are alternately stacked via the rectangular plate-shaped separators 120 (see FIG. 6). The positive electrode plate 130 and the negative electrode plate 140 of the power generation element 110 are respectively joined to a plate-like positive electrode current collector 91 or negative electrode current collector 92 bent in a crank shape (see FIG. 6).

また、正電極板130は、図7の斜視図に示すように、矩形板状でアルミニウム製のアルミ箔138と、このアルミ箔138の両主面上にそれぞれ配置された2つの正極活物質層131,131とを有している。
この正極活物質層131は、実施形態1と同様の、いずれも図示しない正極活物質粒子、導電材及び結着材を含む。
Further, as shown in the perspective view of FIG. 7, the positive electrode plate 130 is a rectangular plate-shaped aluminum foil 138 and two positive electrode active material layers respectively disposed on both main surfaces of the aluminum foil 138. 131, 131.
The positive electrode active material layer 131 includes positive electrode active material particles, a conductive material, and a binder, which are not shown, as in the first embodiment.

一方、負電極板140は、図8の斜視図に示すように、矩形板状で銅製の銅箔148と、この銅箔148の両主面上にそれぞれ配置された2つの負極活物質層141,141とを有している。
このうち負極活物質層141は、実施形態1と同様の、いずれも図示しない負極活物質粒子及び結着材を含む。
On the other hand, as shown in the perspective view of FIG. 8, the negative electrode plate 140 is a rectangular plate-shaped copper foil 148 and two negative electrode active material layers 141 respectively disposed on both main surfaces of the copper foil 148. , 141.
Of these, the negative electrode active material layer 141 includes negative electrode active material particles and a binder, both of which are not shown, as in the first embodiment.

この負極活物質層141は、図8に示すように、セパレータ120を介して、正極活物質層131に対向する第1負極部142と、セパレータ120を介して対向する正極活物質層131が存在しない第2負極部143とからなる。
より詳細に説明すると、負極活物質層141は、その面積が対向する正極活物質層131に比して大きくされている。この負極活物質層141のうち、第1負極部142は、負極活物質層141の中央に位置する一方、第2負極部143は、第1負極部142に隣接した周囲に位置している。このため、実施形態1の電池1と同様に、電池101を充電した際、負極活物質層141の周縁に位置する銅箔148に金属リチウムが析出するのを防止できる。
As shown in FIG. 8, the negative electrode active material layer 141 includes a first negative electrode portion 142 that faces the positive electrode active material layer 131 with the separator 120 interposed therebetween, and a positive electrode active material layer 131 that faces the positive electrode active material layer 131 with the separator 120 interposed therebetween. The second negative electrode part 143 is not formed.
More specifically, the area of the negative electrode active material layer 141 is larger than that of the positive electrode active material layer 131 facing the negative electrode active material layer 141. In the negative electrode active material layer 141, the first negative electrode portion 142 is located at the center of the negative electrode active material layer 141, while the second negative electrode portion 143 is located around the first negative electrode portion 142. For this reason, similarly to the battery 1 of the first embodiment, when the battery 101 is charged, it is possible to prevent metallic lithium from being deposited on the copper foil 148 located on the periphery of the negative electrode active material layer 141.

また、図9に斜視図を示す、ポリエチレンからなり、矩形板状のセパレータ120は、第1負極部142に対向し、リチウムイオンを自身の厚み方向DCに透過可能な多孔質の第1セパレータ部122と、第2負極部143に対向する第2セパレータ部123と、正極活物質層131及び負極活物質層141のいずれにも接しない第3セパレータ部127とからなる。第1セパレータ部122は、セパレータ120の中央に位置し、第3セパレータ部127は、逆にセパレータ120の周縁に位置する。そして、第2セパレータ部123は、第1セパレータ部122と第3セパレータ部127との間に、それぞれと隣接して配置されている。このうち、第3セパレータ部127は、隣接する第2セパレータ部123と同様、リチウムイオンの厚み方向DCの透過が不能な形態とされた透過不能部とされている。   Further, the separator 120 made of polyethylene and having a rectangular plate shape is shown in a perspective view in FIG. 9. The porous first separator portion is opposed to the first negative electrode portion 142 and can permeate lithium ions in its thickness direction DC. 122, a second separator portion 123 that faces the second negative electrode portion 143, and a third separator portion 127 that does not contact any of the positive electrode active material layer 131 and the negative electrode active material layer 141. The first separator portion 122 is located at the center of the separator 120, and the third separator portion 127 is located at the periphery of the separator 120. And the 2nd separator part 123 is arrange | positioned adjacent to each between the 1st separator part 122 and the 3rd separator part 127. FIG. Among these, the 3rd separator part 127 is made into the impermeable part made into the form which cannot permeate | transmit lithium ion thickness direction DC like the 2nd separator part 123 adjacent.

また、第2セパレータ部123は、多孔質の第1セパレータ部122に比して、リチウムイオンの厚み方向DCの透過が困難な形態とされた透過困難部とされている。さらに詳しくは、実施形態1と同様に、この第2セパレータ部123は透過不能部となっている。このため、電池101の充電の際、負極活物質層141のうち、第2セパレータ部123に対向している部位、即ち第2負極部143にリチウムイオンが挿入されるのを抑えることができ、電池容量の低下を抑制することができる。
特に、第2セパレータ部123は、リチウムイオンを透過不能とされる透過不能部とされているので、電池101の充電の際、第2負極部143にリチウムイオンが挿入されるのを確実に抑えることができる。
In addition, the second separator portion 123 is a difficult-to-permeate portion in which it is difficult to permeate lithium ions in the thickness direction DC as compared to the porous first separator portion 122. More specifically, as in the first embodiment, the second separator portion 123 is a non-permeable portion. For this reason, when the battery 101 is charged, lithium ions can be prevented from being inserted into the portion of the negative electrode active material layer 141 facing the second separator portion 123, that is, the second negative electrode portion 143. A decrease in battery capacity can be suppressed.
In particular, since the second separator portion 123 is a non-permeable portion that is impermeable to lithium ions, the lithium ion is reliably prevented from being inserted into the second negative electrode portion 143 when the battery 101 is charged. be able to.

次に、本変形形態1にかかる電池101の製造方法について説明する。
まず、結着材を溶解したNMP中に、LiCoO2からなる正極活物質粒子及び導電材をそれぞれ投入し混練してできたペースト(図示しない)を、矩形板状のアルミ箔138に塗布した。塗布後、アルミ箔138上のペーストを乾燥させた。アルミ箔138の裏側についても、同様にペーストを塗布し、乾燥させた。その後、図示しないロールプレスで、アルミ箔138の両主面上で乾燥させたペーストを圧縮した正電極板130を作製した(図7参照)。
Next, a method for manufacturing the battery 101 according to the first modification will be described.
First, a paste (not shown) made by adding and kneading positive electrode active material particles made of LiCoO 2 and a conductive material into NMP in which a binder was dissolved was applied to a rectangular aluminum foil 138. After application, the paste on the aluminum foil 138 was dried. The paste was similarly applied to the back side of the aluminum foil 138 and dried. Then, the positive electrode board 130 which compressed the paste dried on both the main surfaces of the aluminum foil 138 with the roll press which is not shown in figure was produced (refer FIG. 7).

一方、結着材を溶解したNMP中に、グラファイト粒子からなる負極活物質粒子を投入し混練してできたペースト(図示しない)を、矩形板状の銅箔148に塗布した。塗布後、銅箔148上のペーストを乾燥させた。銅箔148の裏側についても、同様にペーストを塗布し、乾燥させた。その後、図示しないロールプレスで、銅箔148の両主面上で乾燥させたペーストを圧縮した負電極板140を作製した(図8参照)。   On the other hand, a paste (not shown) made by adding negative electrode active material particles made of graphite particles and kneading them into NMP in which the binder was dissolved was applied to a rectangular copper foil 148. After application, the paste on the copper foil 148 was dried. The paste was similarly applied to the back side of the copper foil 148 and dried. Then, the negative electrode plate 140 which compressed the paste dried on both the main surfaces of the copper foil 148 with the roll press which is not shown in figure was produced (refer FIG. 8).

次いで、全体に複数の透孔を有する多孔性のポリエチレンからなる、矩形板状の加工前セパレータ(図示しない)について、その周縁を、図示しない熱圧縮用プレス機を用いて熱圧縮した。なお、この加工前セパレータの周縁のうち、正電極板130と共に積層した場合に、正極活物質層131に対向しない部位について熱圧縮した。
これにより、熱圧縮した部位のポリエチレンを溶かして、その部位の透孔を完全に埋め、リチウムイオンが透過不能の透過不能部からなる第2セパレータ部123及び第3セパレータ部127を有するセパレータ120ができあがる。
Subsequently, the periphery of a rectangular plate-shaped pre-processing separator (not shown) made of porous polyethylene having a plurality of through-holes as a whole was thermally compressed using a hot compression press (not shown). Note that, in the periphery of the separator before processing, when it was laminated together with the positive electrode plate 130, the portion that did not face the positive electrode active material layer 131 was thermally compressed.
As a result, the separator 120 having the second separator portion 123 and the third separator portion 127, which are made of a non-permeable portion through which lithium ions cannot permeate, is melted in the polyethylene at the heat-compressed portion to completely fill the through-hole in the portion. It ’s done.

上述のように作製した正電極板130と負電極板140との間に、セパレータ120を介在させて積層し、発電要素110とする。なお、負極活物質層141の第1負極部142に、セパレータ120(第1セパレータ部122)を介して正極活物質層131が対向するように、かつ、第2セパレータ部123が第2負極部143に対向するように、負電極板140、セパレータ120、正電極板130、セパレータ120の順に繰り返し積層する。
さらに、積層方向の最外側に位置する負電極板140のうち、外側に露出している負極活物質層141の外側に、セパレータ120を介して、アルミ箔138の一方の主面にのみ正極活物質層131を形成した正電極板(図示しない)を配置、積層する。一方、積層方向の他方の最外側に位置するセパレータ120の外側に、銅箔148の一方の主面にのみ負極活物質層141を形成した負電極板(図示しない)を配置、積層する。
これにより、複数の負電極板140の全てにおいて、負極活物質層141の第1負極部142に、セパレータ120(第1セパレータ部122)を介して正極活物質層131が、かつ、第2負極部143に第2セパレータ部123がそれぞれ対向する積層型の発電要素110ができあがる。
The positive electrode plate 130 and the negative electrode plate 140 manufactured as described above are stacked with the separator 120 interposed therebetween to form the power generation element 110. The first negative electrode part 142 of the negative electrode active material layer 141 is opposed to the positive electrode active material layer 131 via the separator 120 (first separator part 122), and the second separator part 123 is the second negative electrode part. The negative electrode plate 140, the separator 120, the positive electrode plate 130, and the separator 120 are repeatedly laminated in this order so as to face 143.
Further, of the negative electrode plate 140 located on the outermost side in the stacking direction, the positive electrode active material is only formed on one main surface of the aluminum foil 138 on the outer side of the negative electrode active material layer 141 exposed to the outside via the separator 120. A positive electrode plate (not shown) on which the material layer 131 is formed is disposed and laminated. On the other hand, a negative electrode plate (not shown) in which the negative electrode active material layer 141 is formed only on one main surface of the copper foil 148 is disposed and laminated outside the separator 120 located on the other outermost side in the lamination direction.
Accordingly, in all of the plurality of negative electrode plates 140, the positive electrode active material layer 131 is disposed on the first negative electrode portion 142 of the negative electrode active material layer 141 via the separator 120 (first separator portion 122), and the second negative electrode plate Thus, the stacked power generation element 110 in which the second separator portion 123 faces the portion 143 is completed.

その後は、正電極板130(アルミ箔138)及び負電極板140(銅箔148)にそれぞれ正極集電部材91或いは負極集電部材92を溶接し、電池ケース本体81に挿入し、前述した電解液60を注入後、封口蓋82で電池ケース本体81を溶接で封口する。かくして、電池101が完成する(図6参照)。   Thereafter, the positive electrode collector member 91 or the negative electrode collector member 92 is welded to the positive electrode plate 130 (aluminum foil 138) and the negative electrode plate 140 (copper foil 148), respectively, inserted into the battery case body 81, and the above-described electrolysis is performed. After injecting the liquid 60, the battery case body 81 is sealed with a sealing lid 82 by welding. Thus, the battery 101 is completed (see FIG. 6).

(実施形態2)
本実施形態2にかかる車両200は、前述した電池1,101を複数含むバッテリパック210を搭載したものである。具体的には、図10に示すように、車両200は、エンジン240、フロントモータ220及びリアモータ230を併用して駆動するハイブリッド自動車である。この車両200は、車体290、エンジン240、これに取り付けられたフロントモータ220、リアモータ230、ケーブル250、インバータ260、及び、矩形箱形状のバッテリパック210を有している。このうちバッテリパック210は、前述した電池1,101を複数収容してなる。
(Embodiment 2)
A vehicle 200 according to the second embodiment is equipped with a battery pack 210 including a plurality of the batteries 1 and 101 described above. Specifically, as shown in FIG. 10, vehicle 200 is a hybrid vehicle that is driven by using engine 240, front motor 220, and rear motor 230 in combination. The vehicle 200 includes a vehicle body 290, an engine 240, a front motor 220, a rear motor 230, a cable 250, an inverter 260, and a battery pack 210 having a rectangular box shape. Among these, the battery pack 210 contains a plurality of the above-described batteries 1 and 101.

本実施形態2にかかる車両200は、電池容量の低下を抑制した電池1,101を搭載しているので、安定した性能の動力源を有する車両200とすることができる。   Since the vehicle 200 according to the second embodiment is equipped with the batteries 1 and 101 that suppress the decrease in battery capacity, the vehicle 200 having a power source with stable performance can be obtained.

(実施形態3)
また、本実施形態3のハンマードリル300は、前述した電池1,101を含むバッテリパック310を搭載したものであり、図11に示すように、バッテリパック310、本体320を有する電池搭載機器である。なお、バッテリパック310はハンマードリル300の本体320のうち底部321に可能に収容されている。
(Embodiment 3)
Further, the hammer drill 300 according to the third embodiment is equipped with the battery pack 310 including the batteries 1 and 101 described above, and is a battery-equipped device having the battery pack 310 and the main body 320 as shown in FIG. . Note that the battery pack 310 is accommodated in the bottom portion 321 of the main body 320 of the hammer drill 300.

本実施形態3にかかるハンマードリル300は、電池容量の低下を抑制した電池1,101を搭載しているので、安定した性能の駆動エネルギ源を有する電池搭載機器とすることができる。   Since the hammer drill 300 according to the third embodiment is equipped with the batteries 1 and 101 in which the decrease in battery capacity is suppressed, it can be a battery-equipped device having a drive energy source with stable performance.

以上において、本発明を実施形態1〜3及び変形形態1に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1では第2セパレータ部23のうち短手端側第2セパレータ部24を、変形形態1では第2セパレータ部123をそれぞれ、透孔を有せずリチウムイオンが透過不能である透過不能部とした。しかし、短手端側第2セパレータ部24や第2セパレータ部123について、リチウムイオンが完全に透過しない形態ではなく、第1セパレータ部に比して多孔度を低くした透過困難部としても良い。
また、実施形態1の短手端側第2セパレータ部24、及び、変形形態1の第2セパレータ部123を、多孔質のセパレータを熱圧縮して完全に透孔を塞いでなる透過不能部とした。しかし、これらを、例えば、溶剤を塗布してセパレータを溶かして完全に透孔を埋めてなる部位、樹脂を含んだ溶液を塗布して孔を塞いでなる部位、多孔質のセパレータに、リチウムイオンを透過不能な材質からなる部材を担持、接着(接合)、貼付或いは塗布してなる部位などとしても良い。
さらに、実施形態1では、第1セパレータ部23のうち、短手端側第2セパレータ部24を透過不能部としたが、例えば、短手端側第2セパレータ部24と共に、長手端側第2セパレータ部25についても透過不能部としても良い。この場合には、電池の充電の際に、リチウムイオンが挿入される第2負極部43の領域をなくすことができる。
In the above, the present invention has been described with reference to the first to third embodiments and the first modified embodiment, but the present invention is not limited to the above-described embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say, you can.
For example, the first separator portion 24 of the second separator portion 23 in the first embodiment is used as the second separator portion 24, and the second separator portion 123 is provided in the first embodiment as a permeation that does not have a through-hole and cannot transmit lithium ions. The impossible part. However, the short-side second separator part 24 and the second separator part 123 do not have a form in which lithium ions do not completely permeate, and may be difficult-to-permeate parts having a lower porosity than the first separator part.
In addition, the short-end-side second separator portion 24 of the first embodiment and the second separator portion 123 of the first modified embodiment are impregnated with a non-permeable portion in which a porous separator is thermally compressed to completely close a through hole. did. However, for example, a lithium ion is applied to a portion where a pore is completely filled by applying a solvent to dissolve the separator, a portion where a resin-containing solution is applied and a hole is plugged, and a porous separator. It is good also as a site | part formed by carrying | supporting, adhere | attaching (bonding), sticking, or apply | coating the member which consists of a material which cannot permeate | transmit.
Furthermore, in Embodiment 1, the short end side second separator part 24 of the first separator part 23 is the non-transmissible part. For example, the long end side second second together with the short end side second separator part 24 is used. The separator portion 25 may also be a non-transmissive portion. In this case, when the battery is charged, the region of the second negative electrode portion 43 into which lithium ions are inserted can be eliminated.

1,101 電池(リチウムイオン二次電池)
10,110 発電要素(捲回型発電要素)
20,120 セパレータ
22,122 第1セパレータ部
23,123 第2セパレータ部
24 短手端側第2セパレータ部
30,130 正電極板
31,131 正極活物質層
38,138 アルミ箔(正極集電板)
40,140 負電極板
41,141 負極活物質層
42,142 第1負極部
43,143 第2負極部
44 短手端側第2負極部
48,148 銅箔(負極集電板)
60 電解液
200 車両
300 ハンマードリル(電池搭載機器)
DA 長手方向
DB 短手方向
DC 厚み方向
1,101 battery (lithium ion secondary battery)
10,110 Power generation element (winding power generation element)
20, 120 Separator 22, 122 First separator part 23, 123 Second separator part 24 Short end side second separator part 30, 130 Positive electrode plate 31, 131 Positive electrode active material layer 38, 138 Aluminum foil (positive electrode current collector plate) )
40, 140 Negative electrode plate 41, 141 Negative electrode active material layer 42, 142 First negative electrode portion 43, 143 Second negative electrode portion 44 Short end side second negative electrode portion 48, 148 Copper foil (negative electrode current collector plate)
60 Electrolyte 200 Vehicle 300 Hammer drill (battery-equipped equipment)
DA Longitudinal direction DB Short direction DC Thickness direction

Claims (5)

導電性を有する正極集電板、及び、上記正極集電板上に配置された正極活物質層を有する正電極板と、
導電性を有する負極集電板、及び、上記負極集電板上に配置された負極活物質層を有する負電極板と、
上記正電極板と上記負電極板との間に介在してなるセパレータと、
リチウムイオンを含む電解液と、を備える
リチウムイオン二次電池であって、
上記負極活物質層は、
上記セパレータを介して、上記正極活物質層に対向する第1負極部と、
上記セパレータを介して対向する上記正極活物質層が存在しない第2負極部と、からなり、
上記セパレータは、
上記第1負極部に対向し、リチウムイオンを自身の厚み方向に透過可能な多孔質の第1セパレータ部と、
上記第2負極部に対向する第2セパレータ部と、を有し、
上記第2セパレータ部の少なくとも一部は、
上記第1セパレータ部に比して、リチウムイオンの上記厚み方向への透過が困難な形態とされた透過困難部とされてなる
リチウムイオン二次電池。
A positive electrode current collector plate having conductivity, and a positive electrode plate having a positive electrode active material layer disposed on the positive electrode current collector plate;
A negative electrode current collector plate having conductivity, and a negative electrode plate having a negative electrode active material layer disposed on the negative electrode current collector plate;
A separator interposed between the positive electrode plate and the negative electrode plate;
A lithium ion secondary battery comprising an electrolyte solution containing lithium ions,
The negative electrode active material layer is
A first negative electrode portion facing the positive electrode active material layer via the separator;
A second negative electrode portion where the positive electrode active material layer facing through the separator does not exist, and
The separator is
A porous first separator portion facing the first negative electrode portion and capable of transmitting lithium ions in its thickness direction;
A second separator portion facing the second negative electrode portion,
At least a part of the second separator portion is
A lithium ion secondary battery formed as a difficult-to-penetrate portion in which it is difficult to transmit lithium ions in the thickness direction as compared to the first separator portion.
請求項1に記載のリチウムイオン二次電池であって、
前記透過困難部は、
リチウムイオンを自身の厚み方向に透過不能とされてなる透過不能部である
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 1,
The transmission difficulty portion is
A lithium ion secondary battery which is a non-permeable portion formed by making lithium ions impermeable in its thickness direction.
請求項1又は請求項2に記載のリチウムイオン二次電池であって、
いずれも長手方向に延びる帯状の前記正電極板、前記負電極板及び前記セパレータは、
上記長手方向に捲回されて捲回型発電要素をなし、
上記長手方向に延びる帯状の前記負極活物質層のうち、前記第2負極部は、
短手方向の両端側にそれぞれ位置する短手端側第2負極部を含み、
前記第2セパレータ部は、
上記短手方向の両端側にそれぞれ位置し、上記長手方向に延びる帯状の短手端側第2セパレータ部を含み、
上記短手端側第2セパレータ部は、
前記透過困難部からなる
リチウムイオン二次電池。
The lithium ion secondary battery according to claim 1 or 2,
The strip-like positive electrode plate, the negative electrode plate, and the separator, all extending in the longitudinal direction,
Wound in the longitudinal direction to form a wound power generation element,
Among the strip-like negative electrode active material layers extending in the longitudinal direction, the second negative electrode portion is
A short end side second negative electrode portion positioned on each of both ends in the short direction,
The second separator portion is
A strip-shaped short end side second separator portion located on both ends in the short direction and extending in the longitudinal direction;
The short side second separator part is:
The lithium ion secondary battery which consists of the said permeation | transmission difficult part.
請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを動力源の全部又は一部に使用する車両。 A vehicle on which the lithium ion secondary battery according to any one of claims 1 to 3 is mounted and the electric energy stored in the lithium ion secondary battery is used for all or part of a power source. 請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池を搭載し、このリチウムイオン二次電池に蓄えた電気エネルギを駆動エネルギ源の全部又は一部に使用する電池搭載機器。 A battery-equipped device in which the lithium ion secondary battery according to any one of claims 1 to 3 is mounted and the electric energy stored in the lithium ion secondary battery is used for all or a part of a drive energy source. .
JP2009236485A 2009-10-13 2009-10-13 Lithium ion secondary battery, vehicle and battery-equipped equipment Expired - Fee Related JP5343808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236485A JP5343808B2 (en) 2009-10-13 2009-10-13 Lithium ion secondary battery, vehicle and battery-equipped equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236485A JP5343808B2 (en) 2009-10-13 2009-10-13 Lithium ion secondary battery, vehicle and battery-equipped equipment

Publications (2)

Publication Number Publication Date
JP2011086406A true JP2011086406A (en) 2011-04-28
JP5343808B2 JP5343808B2 (en) 2013-11-13

Family

ID=44079213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236485A Expired - Fee Related JP5343808B2 (en) 2009-10-13 2009-10-13 Lithium ion secondary battery, vehicle and battery-equipped equipment

Country Status (1)

Country Link
JP (1) JP5343808B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035936A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2014086293A (en) * 2012-10-24 2014-05-12 Toyota Motor Corp Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2014238990A (en) * 2013-06-07 2014-12-18 トヨタ自動車株式会社 Lithium ion secondary battery
US9419304B2 (en) 2012-08-09 2016-08-16 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
CN107895772A (en) * 2017-11-14 2018-04-10 惠州亿纬锂能股份有限公司 Lithium piece is molded into housing system and its lithium battery forming production device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140551A (en) * 2006-11-29 2008-06-19 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008140551A (en) * 2006-11-29 2008-06-19 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035936A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US9419304B2 (en) 2012-08-09 2016-08-16 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US9450269B2 (en) 2012-08-09 2016-09-20 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2014086293A (en) * 2012-10-24 2014-05-12 Toyota Motor Corp Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2014238990A (en) * 2013-06-07 2014-12-18 トヨタ自動車株式会社 Lithium ion secondary battery
CN107895772A (en) * 2017-11-14 2018-04-10 惠州亿纬锂能股份有限公司 Lithium piece is molded into housing system and its lithium battery forming production device

Also Published As

Publication number Publication date
JP5343808B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP6137556B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5888551B2 (en) Manufacturing method of sealed lithium secondary battery
JP6460418B2 (en) Secondary battery
US20120100413A1 (en) Secondary battery and assembled battery
US9859534B2 (en) Secondary battery
JP3745593B2 (en) Battery and manufacturing method thereof
KR101456901B1 (en) Device for Removing Gas from Battery Cell
JP4426861B2 (en) Thin secondary battery cell, method for manufacturing the same, and secondary battery module
JP2008097991A (en) Electric storage device
JP5343808B2 (en) Lithium ion secondary battery, vehicle and battery-equipped equipment
WO2018092640A1 (en) High power battery and battery case
JP5381588B2 (en) Lithium ion secondary battery, vehicle and battery-equipped equipment
JP7212845B2 (en) secondary battery
JP2012164476A (en) Laminate type battery and lamination layer type battery with it
JP6682203B2 (en) Secondary battery manufacturing method
JP5205749B2 (en) Bipolar battery manufacturing method
JP2011124058A (en) Lithium-ion secondary battery, vehicle and battery-equipped apparatus with the battery
JP2011216209A (en) Laminated battery and its manufacturing method
JP2011081973A (en) Lithium ion secondary battery, vehicle, and battery mounting equipment
JP2004349156A (en) Secondary battery and stacked secondary battery
JP2005166353A (en) Secondary battery, battery pack, composite battery pack, vehicle, and manufacturing method of secondary battery
JP2007035576A (en) Nonaqueous electrolyte secondary battery
JP7417840B2 (en) secondary battery
JP7373120B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

LAPS Cancellation because of no payment of annual fees