JP2011085566A - Method for facilitating recovery of uranium from catalyst containing uranium-antimony complex oxide - Google Patents

Method for facilitating recovery of uranium from catalyst containing uranium-antimony complex oxide Download PDF

Info

Publication number
JP2011085566A
JP2011085566A JP2009253466A JP2009253466A JP2011085566A JP 2011085566 A JP2011085566 A JP 2011085566A JP 2009253466 A JP2009253466 A JP 2009253466A JP 2009253466 A JP2009253466 A JP 2009253466A JP 2011085566 A JP2011085566 A JP 2011085566A
Authority
JP
Japan
Prior art keywords
uranium
gas
antimony
catalyst
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009253466A
Other languages
Japanese (ja)
Inventor
Kayo Sawada
佳代 澤田
Yoichi Enokida
洋一 榎田
Hiroshi Sugai
弘 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3R CORP
Nagoya University NUC
Original Assignee
3R CORP
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3R CORP, Nagoya University NUC filed Critical 3R CORP
Priority to JP2009253466A priority Critical patent/JP2011085566A/en
Publication of JP2011085566A publication Critical patent/JP2011085566A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate recovery of uranium from a catalyst supporting an uranium-antimony complex oxide. <P>SOLUTION: Recovery of uranium is facilitated by performing a chloriding treatment on a catalyst having an uranium-antimony complex supported on a porous carrier; volatilizing and separating antimony from the complex oxide as antimony chloride; and converting remaining uranium into an uranium oxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、一般的にはウランの回収方法に関し、具体的には、ウランとアンチモンの複合酸化物を担持した触媒からのウランの回収を容易にする方法に関する。  The present invention relates generally to a method for recovering uranium, and more specifically to a method for facilitating recovery of uranium from a catalyst supporting a composite oxide of uranium and antimony.

アクリルニトリル(AN)は、アクリル繊維や樹脂原料などの基礎化学品として幅広く使用されている。AN合成反応の一つであるプロピレンのアンモオキシデーション反応による合成反応触媒として、過去にアンチモンとウランの複合酸化物が利用されていた。このアンチモンとウランの複合酸化物は、硝酸や塩酸のような強酸を使用しても溶解し難い。このため、ウランとアンチモンの複合酸化物を担持した触媒は、未処理のまま、ウランを含む放射性廃棄物として厳重に保管し管理しなければならない。  Acrylic nitrile (AN) is widely used as a basic chemical such as acrylic fibers and resin raw materials. In the past, composite oxides of antimony and uranium have been used as a synthesis reaction catalyst by propylene ammoxidation reaction, which is one of the AN synthesis reactions. This composite oxide of antimony and uranium is difficult to dissolve even when a strong acid such as nitric acid or hydrochloric acid is used. For this reason, a catalyst supporting a composite oxide of uranium and antimony must be strictly stored and managed as a radioactive waste containing uranium without treatment.

特許文献1には、三フッ化塩素を循環通気しながら、ウランを含んだ廃棄物を加熱して六フッ化ウランを生成し、フッ化ナトリウムによって六フッ化ウランを捕捉した後、三フッ化塩素を冷却して液化回収し、ハロゲン系副次生成物をアルカリと反応させて塩を生成することを特徴するウラン廃棄物の除染方法が開示されている。  In Patent Document 1, waste containing uranium is heated while circulating and circulating chlorine trifluoride to produce uranium hexafluoride. After uranium hexafluoride is captured by sodium fluoride, trifluoride is collected. A method for decontaminating uranium waste is disclosed in which chlorine is cooled and liquefied and recovered, and a halogen-based by-product is reacted with an alkali to form a salt.

特許文献2には、ウラン酸化物(二酸化ウランあるいは八酸化三ウラン)で汚染された固体物質を、硝酸−リン酸トリブチル錯体(HNO−TBP錯体)を反応剤として含む超臨界二酸化炭素流体に浸し、これを50〜60℃、100〜200気圧に1〜2時間保ってウラン酸化物をウラン(VI)−TBP錯体(UO・2NO・2TBP)として選択的に超臨界二酸化炭素中に溶解することにより、ウラン酸化物で汚染された固体物質を除染する方法が開示されている。In Patent Document 2, a solid material contaminated with uranium oxide (uranium dioxide or triuranium octoxide) is converted into a supercritical carbon dioxide fluid containing a nitric acid-tributyl phosphate complex (HNO 3 -TBP complex) as a reactant. Immerse it and keep it at 50 to 60 ° C. and 100 to 200 atmospheres for 1 to 2 hours to selectively convert the uranium oxide into supercritical carbon dioxide as uranium (VI) -TBP complex (UO 2 .2NO 3 .2TBP). A method of decontaminating solid materials contaminated with uranium oxide by dissolution is disclosed.

特開2008−116245JP2008-116245 特開2002−303694JP 2002-303694 A

しかしながら、特許文献1の方法では、六フッ化ウランを生成するために毒性と腐食性の強いフッ化物を取扱う必要があり、またそもそもウランとアンチモンの複合酸化物からのウランの回収については何ら明らかにされていない。  However, in the method of Patent Document 1, it is necessary to handle highly toxic and corrosive fluorides in order to produce uranium hexafluoride, and in the first place, it is clear about the recovery of uranium from a composite oxide of uranium and antimony. Not been.

また、特許文献2の方法では、ウラン酸化物の反応剤として硝酸−リン酸トリブチル錯体を用いるが、ウランとアンチモンの複合酸化物は硝酸に難溶であるため、この方法を当該複合酸化物の溶解等のために利用することはできない。  In the method of Patent Document 2, nitric acid-tributyl phosphate complex is used as a uranium oxide reactant. However, since the composite oxide of uranium and antimony is hardly soluble in nitric acid, this method is used for the composite oxide. It cannot be used for dissolution.

そこで、本発明は、毒性と腐食性の強いフッ化物等を用いることなく、比較的容易な形態で、ウランとアンチモンの複合酸化物を担持した触媒からウランの回収を容易にするための方法を提供することを目的とする。  Therefore, the present invention provides a method for facilitating the recovery of uranium from a catalyst supporting a composite oxide of uranium and antimony in a relatively easy form without using a highly toxic and corrosive fluoride. The purpose is to provide.

本発明は、ウランとアンチモンの複合酸化物が多孔質の担体に担持された触媒を塩化処理して、当該複合酸化物からアンチモンを塩化アンチモンとして揮発分離し、残ったウランをウラン酸化物とすることでウランの回収を容易にする方法を提供する。  In the present invention, a catalyst in which a composite oxide of uranium and antimony is supported on a porous carrier is chlorinated, and antimony is volatilized and separated from the composite oxide as antimony chloride, and the remaining uranium is converted into uranium oxide. To provide a method for facilitating the recovery of uranium.

この本発明によれば、ウランとアンチモンの複合酸化物を含む触媒の塩化処理により、複合酸化物からアンチモンを塩化アンチモンとして選択的に除去することができる。また、残ったウラン酸化物は例えば八酸化三ウランであり、希硝酸にも溶解が可能となる。その結果、触媒からのウラン回収を比較的容易におこなうことができる。  According to the present invention, antimony can be selectively removed from the composite oxide as antimony chloride by chlorination treatment of the catalyst containing the composite oxide of uranium and antimony. The remaining uranium oxide is, for example, triuranium octoxide, and can be dissolved in dilute nitric acid. As a result, uranium recovery from the catalyst can be performed relatively easily.

本発明の一形態によると、ウランとアンチモンの複合酸化物が多孔質の担体に担持された触媒からウランの回収を容易にする方法であって、触媒を反応炉中に設置する工程と、反応炉中の触媒を不活性ガス雰囲気中で所定の温度まで加熱する工程と、反応炉中の不活性ガスを塩化ガスに置換する工程と、所定時間経過後、加熱を止めて、塩化ガスを不活性ガスに置換する工程と、を含む方法が提供される。  According to one aspect of the present invention, there is provided a method for facilitating recovery of uranium from a catalyst in which a composite oxide of uranium and antimony is supported on a porous carrier, the step of installing the catalyst in a reaction furnace, and the reaction A step of heating the catalyst in the furnace to a predetermined temperature in an inert gas atmosphere, a step of replacing the inert gas in the reaction furnace with a chloride gas, and after a predetermined time has elapsed, the heating is stopped and the chloride gas is inactivated. Substituting with an active gas.

この本発明の一形態によれば、塩化ガスは気体のため、多孔質の担体の細孔内への拡散も容易であり、担体表面のみならずその細孔内に担持されているウランとアンチモンの複合酸化物からもアンチモンを塩化アンチモンとして選択的に揮発させることができる。また、残ったウラン酸化物は例えば八酸化三ウランであり、希硝酸にも溶解が可能となる。その結果、触媒からのウラン回収を比較的容易におこなうことができる。さらに、ガスを用いる気体処理プロセスであるため、溶液を用いる液体処理プロセスに比べてその制御が容易である。  According to this embodiment of the present invention, since the chloride gas is a gas, it can be easily diffused into the pores of the porous carrier, and uranium and antimony supported in the pores as well as the carrier surface. Antimony can be selectively volatilized as antimony chloride from these composite oxides. The remaining uranium oxide is, for example, triuranium octoxide, and can be dissolved in dilute nitric acid. As a result, uranium recovery from the catalyst can be performed relatively easily. Furthermore, since it is a gas treatment process using gas, its control is easier compared to a liquid treatment process using solution.

本発明の一実施形態である処理装置の概要を示す図である。It is a figure which shows the outline | summary of the processing apparatus which is one Embodiment of this invention. 本発明の一実施形態である処理フローを示す図である。It is a figure which shows the processing flow which is one Embodiment of this invention.

以下、本発明の実施の形態について説明する。図1は、本発明の一実施形態である処理装置の概要を示す図である。処理装置100は、反応炉10とヒータ12からなる加熱炉、ガスボンベ22、24からのガスを反応炉10中へ供給する手段(弁、配管)18、26、28、およびコントローラ30を含む。  Embodiments of the present invention will be described below. FIG. 1 is a diagram showing an overview of a processing apparatus according to an embodiment of the present invention. The processing apparatus 100 includes a heating furnace including the reaction furnace 10 and the heater 12, means (valves, pipes) 18, 26, and 28 for supplying gas from the gas cylinders 22 and 24 into the reaction furnace 10, and a controller 30.

反応炉10は例えば石英製である管状炉とすることができる。ヒータ12は、電気ヒータ、赤外線ヒータ等を利用し、反応炉内を1000℃程度までの設定温度に加熱することができる。コントローラ30は、反応炉10内およびヒータ12の温度はコントローラ30でモニターし、検出した温度に応じてヒータ12のオン/オフを制御する。  The reaction furnace 10 may be a tubular furnace made of, for example, quartz. The heater 12 can use an electric heater, an infrared heater, or the like to heat the inside of the reaction furnace to a set temperature up to about 1000 ° C. The controller 30 monitors the temperature in the reaction furnace 10 and the heater 12 with the controller 30 and controls on / off of the heater 12 according to the detected temperature.

ガスボンベ22は、例えばアルゴンや窒素等の不活性ガスを含む。ガスボンベ24は、例えば塩化水素ガス等の塩化ガスを含む。ガスボンベ22と24は、弁26、28の開閉により、反応炉10へ通じる配管18に選択的に接続される。弁26、28は例えば電磁弁であり、コントローラ30によって、設定した所定の時間で開閉するよう制御される。ガスボンベ22、24からのガスは、反応炉10の上部から炉内に導入される。また、反応炉10には排気管20が接続され、反応炉内のガスは排気管20を介してガスの排気処理装置(図示なし)に導かれる。  The gas cylinder 22 contains an inert gas such as argon or nitrogen. The gas cylinder 24 contains a chloride gas such as hydrogen chloride gas. The gas cylinders 22 and 24 are selectively connected to the pipe 18 leading to the reaction furnace 10 by opening and closing the valves 26 and 28. The valves 26 and 28 are, for example, electromagnetic valves, and are controlled by the controller 30 to open and close at a set predetermined time. The gas from the gas cylinders 22 and 24 is introduced into the furnace from the upper part of the reaction furnace 10. An exhaust pipe 20 is connected to the reaction furnace 10, and the gas in the reaction furnace is guided to a gas exhaust treatment apparatus (not shown) through the exhaust pipe 20.

反応炉10内には、吊がね13によって、試料皿14が設置される。吊がね13と試料皿14は、高温ガス下でも腐食しない白金等の金属からなる。試料皿14には、試料であるウランとアンチモンの複合酸化物が多孔質の担体に担持された触媒16が置かれる。  A sample dish 14 is installed in the reaction furnace 10 by a hanging hook 13. The hanger 13 and the sample pan 14 are made of a metal such as platinum that does not corrode even under high temperature gas. A catalyst 16 in which a composite oxide of uranium and antimony as a sample is supported on a porous carrier is placed on the sample dish 14.

図2は、本発明の一実施形態である処理フローを示す図である。この処理フローは図1のコントローラ30による制御下で実行される。ステップS102において、ウランとアンチモンの複合酸化物が多孔質の担体に担持された触媒を、反応炉10内の試料皿14上に設置する。触媒は固形、粉体いずれの形態でもよい。ステップS104において、弁26を開いてガスボンベ22の不活性ガスを反応炉10内に供給する。その供給に先だって反応炉10内の空気は排気ポンプ(図示なし)で排気される。  FIG. 2 is a diagram showing a processing flow according to an embodiment of the present invention. This processing flow is executed under the control of the controller 30 in FIG. In step S <b> 102, a catalyst in which a composite oxide of uranium and antimony is supported on a porous carrier is placed on a sample dish 14 in the reaction furnace 10. The catalyst may be in the form of solid or powder. In step S <b> 104, the valve 26 is opened and the inert gas in the gas cylinder 22 is supplied into the reaction furnace 10. Prior to the supply, the air in the reactor 10 is exhausted by an exhaust pump (not shown).

反応炉10内の雰囲気が不活性ガスで満たされた後、ステップS106において、ヒータ12によって反応炉10内を加熱する。ステップS108において、反応炉10内の温度が所定の温度になったかを判定する。所定の温度は、およそ700℃以上の高温であればよく、例えば700〜800℃である。反応炉10内の温度が所定の温度になった後、ステップS110において、弁26を閉じてガスボンベ22の不活性ガスの供給を止めて排気する。その後、弁28を開いてガスボンベ24の塩化ガスを反応炉10内に供給する。塩化ガスは、複合酸化物に対して反応等量以上の十分な量(所定の流量)として供給する。塩化ガスは、多孔質の担体に固気接触し、担体の表面および細孔内に進行(拡散)する。  After the atmosphere in the reaction furnace 10 is filled with an inert gas, the interior of the reaction furnace 10 is heated by the heater 12 in step S106. In step S108, it is determined whether the temperature in the reaction furnace 10 has reached a predetermined temperature. The predetermined temperature should just be about 700 degreeC or more high temperature, for example, is 700-800 degreeC. After the temperature in the reaction furnace 10 reaches a predetermined temperature, in step S110, the valve 26 is closed, the supply of the inert gas from the gas cylinder 22 is stopped, and the exhaust is performed. Thereafter, the valve 28 is opened to supply the chloride gas in the gas cylinder 24 into the reactor 10. Chlorine gas is supplied to the composite oxide as a sufficient amount (predetermined flow rate) equal to or greater than the reaction equivalent. Chlorine gas comes into solid-gas contact with the porous carrier and proceeds (diffuses) into the surface and pores of the carrier.

反応炉10内の雰囲気が塩化ガスに置換されてから、ステップS112において、所定時間が経過したかを判定する。この所定時間は、複合酸化物の量等に応じて、アンチモンが塩化ガスと反応して塩化アンチモンが十分に生成され揮発される時間として決められる。なお、塩化アンチモン(SbCl)は、次の反応式(1)や(2)などにより生成する。
USb10+9HCl→3SbCl+(1/3)U+(9/2)HO+(17/12)O (1)
USbO+3HCl→SbCl+(1/3)U+(3/2)HO+(5/12)O (2)
In step S112, it is determined whether a predetermined time has elapsed after the atmosphere in the reaction furnace 10 is replaced with the chloride gas. This predetermined time is determined as the time during which antimony reacts with the chloride gas and the antimony chloride is sufficiently generated and volatilized according to the amount of the complex oxide and the like. Note that antimony chloride (SbCl 3 ) is generated by the following reaction formulas (1) and (2).
USb 3 O 10 + 9HCl → 3SbCl 3 + (1/3) U 3 O 8 + (9/2) H 2 O + (17/12) O 2 (1)
USbO 5 + 3HCl → SbCl 3 + (1/3) U 3 O 8 + (3/2) H 2 O + (5/12) O 2 (2)

反応により生成した塩化アンチモンは揮発性であり、排気ポンプ(図示なし)によって排気処理される。所定の時間後、ステップS114において、ヒータ12による反応炉10内の加熱を止める。  Antimony chloride produced by the reaction is volatile and is exhausted by an exhaust pump (not shown). After a predetermined time, heating in the reactor 10 by the heater 12 is stopped in step S114.

ステップS112において、弁28を閉じてガスボンベ24からの塩化ガスの供給を止める。反応炉10内の塩化ガスは排気ポンプ(図示なし)で排気される。このとき、弁26を開いてガスボンベ22から不活性ガスを反応炉10内に供給して、反応炉10内の雰囲気を塩化ガスから不活性ガスに置換する。反応炉10内は不活性ガス雰囲気中で常温まで降温される。試料皿14上の触媒には、ウランが酸化物(八酸化三ウラン)として残る。なお、八酸化三ウラン(U)は前記の反応式(1)や(2)などにより生成される。In step S112, the valve 28 is closed to stop the supply of the chloride gas from the gas cylinder 24. Chlorine gas in the reaction furnace 10 is exhausted by an exhaust pump (not shown). At this time, the valve 26 is opened, an inert gas is supplied from the gas cylinder 22 into the reaction furnace 10, and the atmosphere in the reaction furnace 10 is replaced with the inert gas from the chloride gas. The temperature in the reaction furnace 10 is lowered to normal temperature in an inert gas atmosphere. In the catalyst on the sample pan 14, uranium remains as an oxide (uranium trioxide). In addition, triuranium octoxide (U 3 O 8 ) is produced by the above reaction formulas (1) and (2).

以下、一実施例を説明する。実施例は、図1で例示される反応装置において、図2の処理フローを用いて実施した。試料として、二酸化ケイ素からなる多孔質のビーズ状担体にウランとアンチモンの複合酸化物を担持した試料(目開き0.125mmと0.212mmの篩で篩別したもの)を用いた。この試料のウラン、アンチモン、ケイ素の含有率は、それぞれ、12、12、21(wt%)であった。  Hereinafter, an embodiment will be described. The Example was implemented in the reaction apparatus illustrated by FIG. 1 using the processing flow of FIG. As a sample, a sample in which a composite oxide of uranium and antimony was supported on a porous bead-shaped carrier made of silicon dioxide (screened with a sieve having an opening of 0.125 mm and 0.212 mm) was used. The uranium, antimony, and silicon contents of this sample were 12, 12, and 21 (wt%), respectively.

試料40mgを試料皿14に装荷し、内径25mm、長さ400mmの炉心管が石英製である管状の反応炉10に設置した。アルゴンガスを50cm/minで反応炉10に供給しながら炉内をヒータ12で昇温した。炉内が、約800℃に到達後、ガスをアルゴンガスからアルゴン希釈の1vol%の塩化水素ガスに変えて、約800℃で約6時間処理を行った。その後、ヒータ12での加熱を止め、降温時は再び炉内のガスをアルゴンガスに置換した。A sample 40 mg was loaded on the sample pan 14 and placed in a tubular reactor 10 having a core tube having an inner diameter of 25 mm and a length of 400 mm made of quartz. While supplying argon gas to the reaction furnace 10 at 50 cm 3 / min, the temperature in the furnace was raised by the heater 12. After the inside of the furnace reached about 800 ° C., the gas was changed from argon gas to 1 vol% hydrogen chloride gas diluted with argon, and the treatment was performed at about 800 ° C. for about 6 hours. Thereafter, the heating in the heater 12 was stopped, and the gas in the furnace was replaced with argon gas again when the temperature dropped.

処理後の試料を3mol/dmの硝酸cmに80℃の水浴で10分間撹拌しながら浸漬し、ウランの溶解量を調べたところ、97%の溶解が確認できた。一方、処理を行わない試料40mgについても同様の浸漬を行ったところ、ウランの溶解量は1%以下であった。以上のことから、本発明の方法でアンチモンとの複合酸化物として存在するウランを回収に容易な形態(八酸化三ウラン)とすることができることが確認された。The treated sample was immersed in 3 mol / dm 3 of nitric acid cm 3 with stirring in an 80 ° C. water bath for 10 minutes, and the dissolution amount of uranium was examined. As a result, 97% dissolution was confirmed. On the other hand, when 40 mg of the sample not subjected to the treatment was immersed in the same manner, the dissolved amount of uranium was 1% or less. From the above, it was confirmed that uranium existing as a complex oxide with antimony can be made into a form that can be easily recovered (triuranium octoxide) by the method of the present invention.

上述した実施形態(実施例)は一例でありこれに限定されるものではない。本発明の趣旨を逸脱しない範囲で多様な変形が可能である。  The above-described embodiment (example) is an example, and the present invention is not limited to this. Various modifications are possible without departing from the spirit of the present invention.

Claims (4)

ウランとアンチモンの複合酸化物が多孔質の担体に担持された触媒を塩化処理して、当該複合酸化物からアンチモンを塩化アンチモンとして揮発分離し、残ったウランをウラン酸化物とすることでウランの回収を容易にする方法。  A catalyst in which a composite oxide of uranium and antimony is supported on a porous carrier is chlorinated, and antimony is volatilized and separated from the composite oxide as antimony chloride, and the remaining uranium is converted into uranium oxide. A method that facilitates recovery. 前記塩化処理は、前記複合酸化物に対して反応等量以上の塩化水素ガスを700℃以上の温度下で固気接触させることを含む、請求項1に記載の方法。  The method according to claim 1, wherein the chlorination treatment includes bringing hydrogen chloride gas having a reaction equivalent amount or more into solid-gas contact with the composite oxide at a temperature of 700 ° C. or more. ウランとアンチモンの複合酸化物が多孔質の担体に担持された触媒からウランの回収を容易にする方法であって、
前記触媒を反応炉中に設置する工程と、
前記触媒が設置された前記反応炉中に不活性ガスを供給して所定の温度まで加熱する工程と、
前記反応炉中の前記不活性ガスを塩化ガスに置換する工程と、
前記塩化ガスへの置換から所定時間経過後、前記加熱を止めて、前記塩化ガスを前記不活性ガスに置換する工程と、を含む方法。
A method for facilitating the recovery of uranium from a catalyst in which a composite oxide of uranium and antimony is supported on a porous carrier,
Installing the catalyst in a reactor;
Supplying an inert gas into the reaction furnace in which the catalyst is installed and heating to a predetermined temperature;
Replacing the inert gas in the reactor with chloride gas;
And after the elapse of a predetermined time from the replacement with the chloride gas, the heating is stopped and the chloride gas is replaced with the inert gas.
前記不活性ガスはアルゴンガスであり、前記塩化ガスは塩化水素ガスを含み、前記所定の温度は700℃以上である、請求項3に記載の方法。  The method according to claim 3, wherein the inert gas is argon gas, the chloride gas includes hydrogen chloride gas, and the predetermined temperature is 700 ° C. or higher.
JP2009253466A 2009-10-14 2009-10-14 Method for facilitating recovery of uranium from catalyst containing uranium-antimony complex oxide Pending JP2011085566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009253466A JP2011085566A (en) 2009-10-14 2009-10-14 Method for facilitating recovery of uranium from catalyst containing uranium-antimony complex oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253466A JP2011085566A (en) 2009-10-14 2009-10-14 Method for facilitating recovery of uranium from catalyst containing uranium-antimony complex oxide

Publications (1)

Publication Number Publication Date
JP2011085566A true JP2011085566A (en) 2011-04-28

Family

ID=44078603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009253466A Pending JP2011085566A (en) 2009-10-14 2009-10-14 Method for facilitating recovery of uranium from catalyst containing uranium-antimony complex oxide

Country Status (1)

Country Link
JP (1) JP2011085566A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077781A (en) * 2012-10-08 2014-05-01 Korea Atomic Energy Research Inst Treatment method of spent uranium catalyst
US9778481B2 (en) 2011-08-24 2017-10-03 Mitsumi Electric Co., Ltd. Lens drive apparatus including damper compound suppressing undesired resonance
JP2019020388A (en) * 2017-07-14 2019-02-07 コリア アトミック エナジー リサーチ インスティテュート Treatment method for volume reduction of spent uranium catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9778481B2 (en) 2011-08-24 2017-10-03 Mitsumi Electric Co., Ltd. Lens drive apparatus including damper compound suppressing undesired resonance
JP2014077781A (en) * 2012-10-08 2014-05-01 Korea Atomic Energy Research Inst Treatment method of spent uranium catalyst
JP2019020388A (en) * 2017-07-14 2019-02-07 コリア アトミック エナジー リサーチ インスティテュート Treatment method for volume reduction of spent uranium catalyst

Similar Documents

Publication Publication Date Title
US4663085A (en) Apparatus for decontamination of radiation contaminated metallic waste
JPH0545000B2 (en)
US20140209477A1 (en) Electro-deoxidation method, apparatus and product
Kang et al. Production of titanium dioxide directly from titanium ore through selective chlorination using titanium tetrachloride
JP2011085566A (en) Method for facilitating recovery of uranium from catalyst containing uranium-antimony complex oxide
JP5667193B2 (en) Mineral processing
JP2012136766A (en) Method for producing metal by electrolysis
WO2010014745A2 (en) Systems and methods for treating material
JP4528916B2 (en) Method for decontamination and treatment of spent alumina
CN104562089A (en) Method for preparing initial molten salt system in molten salt electrolysis dry after-treatment process
RU2687935C1 (en) Method of producing uranium tetrafluoride
JP2009036617A (en) Uranium dissolution and separation method using ionic liquid and uranium recovery method using it
Rasmussen et al. Preparing plutonium metal via the chloride process
JP4679070B2 (en) Method for reprocessing spent oxide fuel
JP5471313B2 (en) Methods for removing chlorine trifluoride
JP2003166094A (en) Electrolytic reduction apparatus and method
RU2625871C1 (en) Method for uranium tetrafluoride production
KR101903152B1 (en) Method for manufacturing uranium chloride using solid-state reaction and apparatus therof
TW202035279A (en) Method for decomposing hydrogen peroxide and device used therein
JP5409553B2 (en) Nuclear fuel material fluorination apparatus, fluorination method and reprocessing method
JP4025125B2 (en) How to reprocess spent fuel
CN216826132U (en) Bubbling reaction device
JP4724859B2 (en) Method for converting metal nitride to halide
JP2003307594A (en) Method for separating/recovering radioactive nuclide carbon 14 adsorbed on graphite structure material
JPH11169663A (en) Harm removing device for hot corrosive gaseous body and its method