JP2003307594A - Method for separating/recovering radioactive nuclide carbon 14 adsorbed on graphite structure material - Google Patents

Method for separating/recovering radioactive nuclide carbon 14 adsorbed on graphite structure material

Info

Publication number
JP2003307594A
JP2003307594A JP2002111516A JP2002111516A JP2003307594A JP 2003307594 A JP2003307594 A JP 2003307594A JP 2002111516 A JP2002111516 A JP 2002111516A JP 2002111516 A JP2002111516 A JP 2002111516A JP 2003307594 A JP2003307594 A JP 2003307594A
Authority
JP
Japan
Prior art keywords
graphite
radioactive
carbon
graphite structure
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002111516A
Other languages
Japanese (ja)
Other versions
JP3945757B2 (en
Inventor
Kimio Fujii
貴美夫 藤井
Hideto Matsuo
秀人 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2002111516A priority Critical patent/JP3945757B2/en
Publication of JP2003307594A publication Critical patent/JP2003307594A/en
Application granted granted Critical
Publication of JP3945757B2 publication Critical patent/JP3945757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of separating/recovering safely only<SP>14</SP>C by oxidizing collectively a graphite structure including<SP>14</SP>C in a nuclear reactor, while a processing/disposal method of a radioactive graphite structure is now under study wherein the whole structure is burned in a high temperature region and<SP>14</SP>C is collected by an absorbent such as zeolite. <P>SOLUTION: In this method, the radioactive graphite is oxidized by air at a temperature below 600°C, to thereby generate a gaseous mixture of<SP>14</SP>CO<SB>2</SB>and<SP>14</SP>CO. After converting<SP>14</SP>CO into<SP>14</SP>CO<SB>2</SB>,<SP>14</SP>CO<SB>2</SB>is selectively separated and recovered, to thereby separate/recover the radioactive nuclide carbon 14 adsorbed on the graphite structure material. In this case, the air oxidation of the radioactive graphite can be heated in a pressure vessel in the nuclear reactor. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】原子力施設から発生する14
は半減期が長く、かつ生体の健康に影響する核種である
ことから、局所的放出であっても環境中を拡散し、世界
的規模で人類に被爆被害を与える恐れがあり、対策を講
じる必要がある。したがって、これら気体状になり、生
体に影響を与える放射性核種の回収、処理、輸送及び処
理に関する研究は、重要度が高い分野である。
Technical Field of the Invention 14 C generated from a nuclear facility
, Which has a long half-life and is a nuclide that affects the health of living organisms, may diffuse into the environment even if it is released locally and may cause human-bombed damage on a global scale. There is. Therefore, research on recovery, treatment, transportation and treatment of these radionuclides which become gaseous and affect the living body is a highly important field.

【0002】本発明はマグノックス炉、改良型ガス冷却
炉、高温ガス炉の廃炉に伴って黒鉛構造物に含まれる14
Cを空気酸化により、分離し回収する方法である。
[0002] The present invention Magnox reactors, Advanced gas-cooled reactor, 14 contained in the graphite structure with the decommissioning of HTGR
It is a method of separating and recovering C by air oxidation.

【0003】[0003]

【従来の技術】マグノックス炉、改良型ガス冷却炉、高
温ガス炉の炉心構造物に使用されている黒鉛材料中には
極めて半減期の長い炭素14(14C)等の放射性核種が
生じる。黒鉛材料は複雑な形状を有する減速材や反射材
等の構造物として使用されているが、多孔質材料である
ことから、14Cは黒鉛部品の内部にまで吸着されていて
分離除去が極めて困難となっている。
2. Description of the Related Art Radioactive nuclides such as carbon 14 ( 14 C) having an extremely long half-life are generated in graphite materials used for core structures of magnox furnaces, improved gas cooling furnaces, and high temperature gas reactors. Graphite materials are used as structures such as moderators and reflectors with complicated shapes, but since they are porous materials, 14 C is adsorbed even inside the graphite parts, making separation and removal extremely difficult. Has become.

【0004】大型構造物として大量の黒鉛材料を使用し
ている原子炉は、世界に約110基以上が存在するが、
放射性黒鉛構造物の処理・処分方法は、未だに明確とな
っていないのが現状である。又、ガス冷却型原子炉の廃
炉に伴う黒鉛構造物中に含まれる14Cを回収除去する方
法は、現在各国において研究段階にあり確固たる方法が
定まっていない。
There are about 110 or so nuclear reactors in the world that use a large amount of graphite material as a large structure.
At present, the method of treating and disposing of radioactive graphite structures is not yet clear. In addition, the method for recovering and removing 14 C contained in the graphite structure accompanying the decommissioning of the gas-cooled reactor is currently in the research stage in each country, and a definite method has not been determined.

【0005】[0005]

【発明が解決しようとする課題】現在、14Cは黒鉛を燃
焼し、14CO2の化学形に転換してから、不溶性のCa
14CO3、Ba14CO3(沈殿物)を生成させて固定化す
る方法とゼオライト等の吸収材に吸収分離する方法とが
検討されている。
At present, 14 C burns graphite to convert it into a chemical form of 14 CO 2 , and then insoluble Ca
A method of generating and immobilizing 14 CO 3 and Ba 14 CO 3 (precipitate) and a method of absorbing and separating into an absorbent such as zeolite have been studied.

【0006】しかし、燃焼法では黒鉛構造物の全量をガ
ス化するために800℃以上の高温酸化装置が新たに必
要となる。また、黒鉛中に含まれる14C以外の放射性核
種の内、融点の高い核種はスラッジ中に、又融点の低い
核種は燃焼ガス中に同時に発生することになり、それら
を炭素14と分離して回収する装置が必要である。さら
に、分離回収された炭素14を安定保存できるところま
で研究が進んでいないのが現状である。
However, in the combustion method, a high temperature oxidizer having a temperature of 800 ° C. or higher is newly required to gasify the entire graphite structure. Among radionuclides other than 14 C contained in graphite, nuclides having a high melting point are simultaneously generated in sludge, and nuclides having a low melting point are simultaneously generated in combustion gas. Equipment for collection is required. Furthermore, the current situation is that research has not advanced to the point where the separated and recovered carbon-14 can be stably stored.

【0007】現時点で検討されている放射性黒鉛構造物
の処理・処分法は高温域において、全量を燃焼して14
をゼオライト等の吸収材で捕集する方法があるが、本発
明を適用することによって、14Cを含む黒鉛構造物を廃
原子炉内において一括酸化処理によって14Cだけを分離
・回収することができる。
The radioactive graphite structure treatment / disposal method currently being investigated is 14 C by burning all in a high temperature range.
There is a method of collecting carbon with an absorbent such as zeolite, but by applying the present invention, only 14 C can be separated and recovered by a collective oxidation treatment of a graphite structure containing 14 C in a waste nuclear reactor. it can.

【0008】[0008]

【課題を解決するための手段】本発明においては、放射
性黒鉛構造物を600℃以下の温度において空気酸化す
ることによって、14Cだけを選択的に分離・回収すると
ともに、本発明の酸化処理を廃原子炉内で行うことによ
って安全に一括分離・回収することができる。
In the present invention, the radioactive graphite structure is subjected to air oxidation at a temperature of 600 ° C. or less to selectively separate and recover only 14 C, and to carry out the oxidation treatment of the present invention. It is possible to safely separate and collect all at once by carrying out in an abandoned nuclear reactor.

【0009】即ち、本発明の空気酸化による乾式酸化を
用いることにより、14C放射性核種を選択的に分離する
ことができ、かかる空気酸化法では、酸化温度、酸化時
間等の処理条件は黒鉛材料の製造条件等に起因する材料
固有の微細気孔構造に依存するが、照射された黒鉛は未
照射のものに比べてより酸化され易いので、概ね600
℃以下の温度において均一に酸化することができるた
め、炭素14核種だけを 14CO2として気層に分離する
ことができる。
That is, the dry oxidation by air oxidation of the present invention is
By using14Selective separation of C radionuclides
It can take such an air oxidation method, oxidation temperature, during oxidation
The processing conditions such as the space are materials derived from the manufacturing conditions of the graphite material.
Irradiated graphite is not dependent on the intrinsic fine pore structure.
Since it is more easily oxidized than the irradiated one, it is approximately 600
It can oxidize uniformly at temperatures below ℃
Therefore, only carbon-14 nuclide 14CO2To separate into the air layer
be able to.

【0010】同時に、原子炉という非常に密閉性の高い
建造物中で炉心黒鉛構造物全体を一括酸化処理できるの
で、本発明方法を適用することによって、14C放射性核
種の選択的な分離・回収するとともに、放射性黒鉛構造
物の処理・処分及び安定保存方法の開発にも寄与するこ
とができる。
At the same time, since the whole core graphite structure can be collectively oxidized in a very tightly sealed structure called a nuclear reactor, by applying the method of the present invention, selective separation and recovery of 14 C radionuclides can be achieved. In addition, it can contribute to the treatment / disposal of radioactive graphite structures and the development of stable storage methods.

【0011】[0011]

【発明の実施の態様】本発明においては、放射性黒鉛構
造物を600℃以下の温度において空気酸化することに
よって、14Cだけを選択的に分離・回収するとともに、
本発明の処理を廃原子炉内で行うことによって安全に一
括分離・回収することができるが、その詳細は次のとお
りである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, 14 C alone is selectively separated and recovered by air-oxidizing a radioactive graphite structure at a temperature of 600 ° C. or lower,
By carrying out the treatment of the present invention in a waste nuclear reactor, it is possible to safely separate and collect all at once, and the details are as follows.

【0012】(イ) 本発明は、放射性黒鉛構造物を6
00℃以下の温度において空気酸化する。酸化の程度は
燃焼法と比較して非常に小さく、14Cのように黒鉛の表
面及び内部の気孔表面にある放射性核種は、選択的酸化
により分離・回収される。
(A) In the present invention, a radioactive graphite structure is used.
Air oxidizes at temperatures below 00 ° C. The degree of oxidation is much smaller than that of the combustion method, and radionuclides on the surface of graphite and on the surface of internal pores such as 14 C are separated and recovered by selective oxidation.

【0013】(ロ) 放射性黒鉛構造物が原子炉内に存
在していることを考慮し、本発明を適用して、既存の施
設を利用して一括処理する。即ち、1,000トン以上
の黒鉛構造物を解体しながら処理・処分することは、時
間と経費を要するばかりでなく、微粉末となり易い黒鉛
材料の特性から、周辺環境の汚染及び作業員の被曝の可
能性が大きい。そこで、本発明を廃原子炉内で適用する
には、周辺設備を含めた工学的な検討が必要であるが、
圧力容器内は外界から遮断された領域であり、放射性物
質の取り扱いには最適な場所である。
(B) Considering that the radioactive graphite structure exists in the nuclear reactor, the present invention is applied to carry out the batch treatment using the existing facility. That is, disposing and disposing of 1,000 tons or more of graphite structure while disassembling it not only requires time and cost, but also due to the characteristics of the graphite material, which tends to become fine powder, contamination of the surrounding environment and exposure of workers. There is a large possibility of. Therefore, in order to apply the present invention in an abandoned nuclear reactor, engineering studies including peripheral equipment are necessary.
The inside of the pressure vessel is a region that is shielded from the outside world, and is an optimal place for handling radioactive substances.

【0014】ところで、照射黒鉛中に存在している放射
性核種は、黒鉛材料中の含有不純物が放射化して生じた
核種が主である。これらを閉じこめる場所として黒鉛は
最適であり、黒鉛ブロック表面をリン酸塩系化合物で覆
うことで内部の放射性核種は安定的に存在している。し
かし、半減期が長く、かつ生体の健康に影響する核種で
ある14Cだけは取り除く必要がある。
By the way, the radionuclide existing in the irradiated graphite is mainly a nuclide produced by activation of impurities contained in the graphite material. Graphite is the most suitable place to confine these, and the radionuclides inside are stably present by covering the surface of the graphite block with a phosphate compound. However, it is necessary to remove only 14 C, which has a long half-life and is a nuclide that affects the health of living organisms.

【0015】又、分離・回収した14Cの安定保存方法が
確立していない現状では、ゼオライトを始めとする吸収
材に吸収させるよりは、アルカリ水溶液中で保存して、
14Cの安定化処理の研究開発を待つ方が得策と考えられ
る。
In addition, under the present circumstances where a stable storage method for the separated and recovered 14 C is not established, it is stored in an alkaline aqueous solution rather than absorbed by an absorbent such as zeolite.
It is considered a good idea to wait for the research and development of 14 C stabilization treatment.

【0016】本発明を実験室レベルで空気酸化処理を行
う場合には、図1に示されるように、照射黒鉛6を燃焼
炉3に配置し、空気(Air)をフィルタ1及び流量計
2を経て燃焼炉に供給し、照射黒鉛を約600℃で空気
酸化する。燃焼炉で発生した炭素酸化物等を含有するガ
スを炭酸ガス転換炉4の白金触媒に導入して炭素酸化物
14CO2に変換する。変換処理ガスは、H2SO4、K
MnO4を収容した捕集容器8及び9において134
s、137Cs等が捕集された後、水酸化ナトリウム水溶
液を収容した捕集容器10及び11に導入されて14CO
2が吸収される。その後のガスは活性炭吸収容器12を
経て吸引ポンプ13にて吸引されて大気中に排出され
る。
When carrying out the air oxidation treatment at the laboratory level in the present invention, as shown in FIG. 1, irradiation graphite 6 is placed in a combustion furnace 3 and air (Air) is supplied to a filter 1 and a flow meter 2. Then, it is supplied to a combustion furnace and the irradiated graphite is air-oxidized at about 600 ° C. A gas containing carbon oxides generated in the combustion furnace is introduced into the platinum catalyst of the carbon dioxide gas conversion furnace 4 to convert the carbon oxides into 14 CO 2 . The conversion processing gas is H 2 SO 4 , K
134 C in collection vessels 8 and 9 containing MnO4
s, 137 Cs, etc. are collected and then introduced into the collection containers 10 and 11 containing the aqueous sodium hydroxide solution to obtain 14 CO
2 is absorbed. The subsequent gas is sucked by the suction pump 13 through the activated carbon absorption container 12 and discharged into the atmosphere.

【0017】又、本発明を廃原子炉内で空気酸化処理を
行う場合には、図2に示されるように、原子炉の圧力容
器内の照射黒鉛ブロックに設けられた制御棒孔に発熱体
を挿入して加熱する。空気流はその流入筒を経て圧力容
器内及び照射黒鉛ブロックの冷却ガス流入孔内に供給さ
れる。照射黒鉛の空気の存在下での加熱により発生した
14CO2及び14COの混合ガスは、白金触媒炉に導入さ
れて14CO2に変換した後に、吸収筒に導入されて水酸
化ナトリウム水溶液に吸収される。
Further, when the present invention performs the air oxidation treatment in a waste nuclear reactor, as shown in FIG. 2, a heating element is provided in a control rod hole provided in the irradiation graphite block in the pressure vessel of the nuclear reactor. Insert and heat. The air flow is supplied into the pressure vessel and the cooling gas inflow holes of the irradiation graphite block through the inflow tube. Generated by heating irradiated graphite in the presence of air
A mixed gas of 14 CO 2 and 14 CO is introduced into a platinum catalyst furnace and converted into 14 CO 2 , then introduced into an absorption cylinder and absorbed in an aqueous sodium hydroxide solution.

【0018】即ち、原子炉においては、制御棒孔、冷却
ガス流入孔等がその炉心の黒鉛ブロック中に開いてい
る。そこで、原子炉の使用期限が過ぎて廃炉となった際
に、その廃炉の炉心に設けられた14Cで汚染された黒鉛
構造物から14Cを空気酸化により分離回収するに当たっ
ては、上記制御棒孔、流入孔等中に発熱体(カンタル発
熱体等)をその炉の圧力容器壁を通して挿入して炉心の
黒鉛構造物を加熱する。その際には、できるだけ均一な
温度分布が得られるように多くの発熱体を装填する。こ
の場合の発熱体は黒鉛が良電体であることから、シース
・ヒータとする。又、黒鉛材料は、電極に用いられるよ
うに、良電体であるので、直接通電でも昇温が可能であ
る。
That is, in the nuclear reactor, control rod holes, cooling gas inflow holes, etc. are opened in the graphite block of the core. Therefore, when the expiration date of the reactor became decommissioning past, when 14 C-graphite structure contaminated with 14 C provided on the core of its decommissioning separated and recovered by air oxidation, the A heating element (kanthal heating element, etc.) is inserted into the control rod hole, inflow hole, etc. through the pressure vessel wall of the furnace to heat the graphite structure of the core. In that case, many heating elements are loaded so that a temperature distribution as uniform as possible can be obtained. In this case, the heating element is a sheath heater because graphite is a good electric material. Further, since the graphite material is a good electric body as used in the electrode, it is possible to raise the temperature by directly energizing.

【0019】[0019]

【実施例】(実施例1) 実験室レベルでの空気酸化処
理 図1に示されるように、アルミナ製ボート5上の照射黒
鉛を流量約600ml/mmの空気流中585℃で酸化
し、発生した14CO2及び14COの混合ガスを白金触媒
6(680℃)を通して14CO2に変換して、水酸化ナ
トリウム水溶液10及び11中に回収し液体シンチレー
ションカウンターで炭素14の放射能濃度を分析した。
Example 1 Air-oxidation treatment at a laboratory level As shown in FIG. 1, irradiation graphite on an alumina boat 5 was oxidized at 585 ° C. in an air flow having a flow rate of about 600 ml / mm and generated. The mixed gas of 14 CO 2 and 14 CO thus prepared was converted into 14 CO 2 through platinum catalyst 6 (680 ° C.), recovered in sodium hydroxide aqueous solutions 10 and 11, and the radioactivity concentration of carbon 14 was analyzed by a liquid scintillation counter. did.

【0020】5時間の空気酸化処理によって、照射黒鉛
中に存在していた14C放射能量の33%が、10時間の
酸化処理によって42%が選択的に分離除去できた。照
射黒鉛1g当たりの14C濃度(Bq/g)で比較する
と、約90%が除去できた。
By the air oxidation treatment for 5 hours, 33% of the amount of 14 C activity existing in the irradiated graphite and 42% by the oxidation treatment for 10 hours could be selectively separated and removed. When compared in terms of 14 C concentration (Bq / g) per 1 g of irradiated graphite, about 90% could be removed.

【0021】また、14C以外の比較的融点の低い134
s、137Cs等の放射性核種を分別捕集するために設置
したH2SO4、KMnO4吸収カラムに汚染は無かっ
た。以上のように、空気酸化処理によって14Cサイトの
みが選択的に酸化され他の放射性核種と分別捕集できる
ことを実験的に証明した。
Also, other than 14 C, 134 C having a relatively low melting point
There was no contamination in the H 2 SO 4 and KMnO 4 absorption column installed to separately collect radionuclides such as s and 137 Cs. As described above, it was experimentally proved that only the 14 C site was selectively oxidized by the air oxidation treatment and could be separately collected with other radionuclides.

【0022】(実施例2) 原子炉内における空気酸化
処理 図2に示されるように、原子炉周辺機器を利用して発熱
体を黒鉛ブロック内の照射孔や制御棒用孔に装填して黒
鉛ブロック全体の温度を550〜585℃の範囲で加熱
する。その際、300〜600ml/minの流量で空
気を送り込みながら酸化する。発生した14CO214
Oを白金触媒炉で14CO2に変換して水酸化ナトリウム
水溶液に吸収する。水酸化ナトリウム水溶液中に吸収さ
れた炭素14の放射能濃度を液体シンチレーションカウ
ンターで分析した。
Example 2 Air Oxidation Treatment in Nuclear Reactor As shown in FIG. 2, graphite was prepared by loading a heating element into an irradiation hole or a control rod hole in a graphite block by utilizing peripheral equipment of the reactor. The temperature of the whole block is heated in the range of 550 to 585 ° C. At that time, oxidation is performed while feeding air at a flow rate of 300 to 600 ml / min. Generated 14 CO 2 , 14 C
O is converted to 14 CO 2 in a platinum catalyst furnace and absorbed in an aqueous sodium hydroxide solution. The radioactivity concentration of carbon-14 absorbed in the aqueous sodium hydroxide solution was analyzed by a liquid scintillation counter.

【0023】[0023]

【発明の効果】本発明により、下記に記載される本発明
に特有の顕著な効果が生ずる。 (イ) 照射黒鉛を約600℃で空気酸化して14C濃度
が低減できることが実験的に確認されたことによって、
原子炉内において放射性黒鉛構造物を一括処理できる。
EFFECTS OF THE INVENTION The present invention brings about the following remarkable effects peculiar to the present invention. (B) By experimentally confirming that 14 C concentration can be reduced by air oxidation of irradiated graphite at about 600 ° C,
The radioactive graphite structure can be collectively processed in the reactor.

【0024】(ロ) 本発明によって効果的かつ選択的
14C核種を分離・除去することによって放射性黒鉛構
造物を低レベル廃棄物として取り扱うことができる。 (ハ) 確実に14Cだけが回収できる結果が得られたこ
とによって、高分子膜、中空子膜を用いた安定化と安全
な貯蔵方法の開発に向けて貢献できる。
(B) According to the present invention, the radioactive graphite structure can be treated as low-level waste by effectively and selectively separating and removing 14 C nuclide. (C) The fact that only 14 C can be reliably recovered can contribute to the development of stabilization and safe storage methods using polymer membranes and hollow membranes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実験室レベルで行われる本発明の空気酸化処
理を示す図である。
FIG. 1 is a diagram showing the air oxidation treatment of the present invention performed at a laboratory level.

【図2】 原子炉内で行われる本発明の空気酸化処理を
示す図である。
FIG. 2 is a diagram showing an air oxidation treatment of the present invention performed in a nuclear reactor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 放射性黒鉛を600℃以下の温度におい
て空気酸化することによって、14CO2及び14COの混
合ガスを発生させ、14COを14CO2に変換した後、14
CO2を選択的に分離回収することを特徴とする、黒鉛
構造材料に吸着した放射性核種炭素14を分離・回収す
る方法。
By air oxidation 1. A temperature of the radioactive graphite 600 ° C. or less, to generate a mixed gas of 14 CO 2 and 14 CO, converts the 14 CO to 14 CO 2, 14
A method for separating and recovering radionuclide carbon 14 adsorbed on a graphite structure material, characterized by selectively separating and recovering CO 2 .
【請求項2】 放射性黒鉛の空気酸化を廃原子炉の加圧
容器内で加熱することにより行うことを特徴とする請求
項1記載の方法。
2. The method according to claim 1, wherein the air oxidation of radioactive graphite is performed by heating in a pressure vessel of a waste nuclear reactor.
JP2002111516A 2002-04-15 2002-04-15 Method for separating and recovering radionuclide carbon 14 adsorbed on graphite structural material Expired - Fee Related JP3945757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111516A JP3945757B2 (en) 2002-04-15 2002-04-15 Method for separating and recovering radionuclide carbon 14 adsorbed on graphite structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111516A JP3945757B2 (en) 2002-04-15 2002-04-15 Method for separating and recovering radionuclide carbon 14 adsorbed on graphite structural material

Publications (2)

Publication Number Publication Date
JP2003307594A true JP2003307594A (en) 2003-10-31
JP3945757B2 JP3945757B2 (en) 2007-07-18

Family

ID=29394281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111516A Expired - Fee Related JP3945757B2 (en) 2002-04-15 2002-04-15 Method for separating and recovering radionuclide carbon 14 adsorbed on graphite structural material

Country Status (1)

Country Link
JP (1) JP3945757B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161148A (en) * 2015-08-25 2015-12-16 天鼎联创密封技术(北京)有限公司 Connector suitable for molecular sieve device and using method
CN105225713A (en) * 2015-08-25 2016-01-06 天鼎联创密封技术(北京)有限公司 Molecular sieve replacement device
CN113851244A (en) * 2021-09-18 2021-12-28 浙江爱索拓科技有限公司 Method for treating wastewater containing radioactive isotope carbon-14

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304155B (en) * 2015-08-04 2018-02-09 清华大学 A kind of high temperature gas-cooled reactor coolant optimization cleaning system and renovation process
CN107610801A (en) * 2017-09-15 2018-01-19 中国工程物理研究院材料研究所 A kind of volume reduction method of radioactive pollution graphite
CN107658039A (en) * 2017-09-15 2018-02-02 中国工程物理研究院材料研究所 A kind of method that metal is reclaimed in radioactive pollution graphite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161148A (en) * 2015-08-25 2015-12-16 天鼎联创密封技术(北京)有限公司 Connector suitable for molecular sieve device and using method
CN105225713A (en) * 2015-08-25 2016-01-06 天鼎联创密封技术(北京)有限公司 Molecular sieve replacement device
CN113851244A (en) * 2021-09-18 2021-12-28 浙江爱索拓科技有限公司 Method for treating wastewater containing radioactive isotope carbon-14

Also Published As

Publication number Publication date
JP3945757B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
RU2568184C2 (en) Method for detritiation of soft household wastes and apparatus therefore
KR101113706B1 (en) Treatment methods and process for waste activated carbon contaminated by radiocarbon and tritium compounds
US8754283B2 (en) Method for partially decontaminating radioactive waste
RU2627237C2 (en) Installation for processing of radioactive carbon waste, in particular, graphite
KR101666138B1 (en) Graphite Thermal Decontamination with Reducing Gases
JP2004233066A (en) Reprocessing method for spent nuclear fuel
JP3945757B2 (en) Method for separating and recovering radionuclide carbon 14 adsorbed on graphite structural material
JP4843106B2 (en) Uranium recovery method using ionic liquid
RU2546981C1 (en) Method of treating irradiated reactor graphite
JP4753141B2 (en) Method for dissolving and separating uranium using ionic liquid, and method for recovering uranium using the same
JP5590527B2 (en) Molybdenum recovery from technetium 99m generator
JP4565124B2 (en) Separation and recovery method of radionuclide using ozone water
Kim et al. Volume reduction of uranium catalyst waste for final disposal
Volkova et al. Radionuclides in irradiated graphite of uranium–graphite reactors: decontamination by thermochemical methods
Vandegrift et al. RERTR progress in Mo-99 production from LEU
RU2363060C2 (en) Method of irradiated beryllium processing
KR101495546B1 (en) Processing Method of Radwaste Spent Activated Carbon
RU2212074C2 (en) Method for carbon extraction from neutron- irradiated graphite
JP3037178B2 (en) Equipment for treating plutonium-containing waste liquid using tannin
Voskresenskaya et al. Ruthenium Capture from the Gas Phase during Reprocessing of Spent Uranium-Plutonium Nitride Fuel from Fast Reactors
Stevens et al. Treatment of irradiated graphite from French Bugey reactor
KR100655586B1 (en) Trapping agent of volatile rhenium or technetium compounds and trapping method using its
JP2000121795A (en) Incineration processing method for radioactive graphite waste
Mozes Volume reduction of spent ion-exchange resin by acid digestion
KR101580271B1 (en) Processing Method of Radwaste Spent Activated Carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041029

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20060223

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Effective date: 20060817

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070309

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110420

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees