JP2011084778A - Nonoriented electrical steel sheet for high frequency excitation - Google Patents

Nonoriented electrical steel sheet for high frequency excitation Download PDF

Info

Publication number
JP2011084778A
JP2011084778A JP2009238412A JP2009238412A JP2011084778A JP 2011084778 A JP2011084778 A JP 2011084778A JP 2009238412 A JP2009238412 A JP 2009238412A JP 2009238412 A JP2009238412 A JP 2009238412A JP 2011084778 A JP2011084778 A JP 2011084778A
Authority
JP
Japan
Prior art keywords
steel sheet
electrical steel
iron loss
less
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009238412A
Other languages
Japanese (ja)
Inventor
Satoshi Arai
聡 新井
Takahide Shimazu
高英 島津
Kenji Kosuge
健司 小菅
Masahiro Fujikura
昌浩 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009238412A priority Critical patent/JP2011084778A/en
Publication of JP2011084778A publication Critical patent/JP2011084778A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonoriented electrical steel sheet which has reduced deterioration in core loss even if compressive stress is acted thereon, by which deterioration in core loss caused by assembling of an iron core can be suppressed, and finally, which can contribute to the improvement in the efficiency of a high performance motor or the like. <P>SOLUTION: The nonoriented silicon steel sheet for high frequency has a composition comprising, ≤0.002% C, 0.1 to 4.0% Si, 0.1 to 4.0% Al, and the balance iron with inevitable impurity elements, and in which a core loss deterioration rate A defined by A=[W<SB>1</SB>-W<SB>0</SB>]/W<SB>0</SB>(W<SB>1</SB>denotes a core loss value in a high frequency region upon stress application of 30 to 50 MPa; and W<SB>0</SB>denotes a core loss value in a high frequency region upon no application of stress) is ≤50%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ハイブリッド自動車、エアコンコンプレッサー等、高周波励磁により使用される鉄心の効率改善に寄与する無方向性電磁鋼板に関するものである。   The present invention relates to a non-oriented electrical steel sheet that contributes to improving the efficiency of an iron core used by high-frequency excitation, such as a hybrid vehicle and an air conditioner compressor.

近年、二酸化炭素削減の動向および石油資源の枯渇の問題から、排出ガスを抑制し燃費を良くするために、ガソリンエンジンと電気モーターを併用するハイブリッド車などに使用される高性能モーターの高効率化指向が高まっている。電気モーターはエンジンに比べると応答性がよく精密なトルク制御が可能であることから、地球環境への対応とともに優れた駆動性能が求められるスポーツ車種への展開が図られている。これら電気自動車の駆動モーターは従来車のエンジンに替わる駆動機構の心臓部であり、電磁鋼板は鉄心素材としてEVの駆動性能や燃費の改善に大きく貢献する。このため、高性能モーターの鉄心として使用される無方向性電磁鋼板の高周波域における鉄損向上の要請がこれまで以上に高まっている。   In recent years, due to the trend of carbon dioxide reduction and the problem of exhaustion of petroleum resources, to improve the efficiency of high-performance motors used in hybrid vehicles that use gasoline engines and electric motors in order to reduce exhaust gas and improve fuel efficiency. Orientation is increasing. Since electric motors are more responsive than those of engines and enable precise torque control, they are being developed for sports vehicles that require excellent driving performance as well as support for the global environment. The drive motor of these electric vehicles is the heart of a drive mechanism that replaces the engine of a conventional vehicle, and the electromagnetic steel sheet greatly contributes to the improvement of EV drive performance and fuel consumption as a core material. For this reason, the request | requirement of the iron loss improvement in the high frequency region of the non-oriented electrical steel sheet used as an iron core of a high performance motor is increasing more than before.

これまでに、無方向性電磁鋼板の鉄損低減のために多数の手段がとられてきた。例えば、渦電流損失低減の観点から、SiやAlの含有量を高め、固有抵抗を高める方法は一般的である。また、C、N、Sなどの不純物を極力減少させ高純度鋼化し、ヒステリシス損失を低減する方法も一般的である。また、特許文献1に記載されるREM添加技術のように、鋼を清浄化し結晶粒成長性を改善することによって、生産性の向上と鉄損低減を両立させる方法も開発されている。   Until now, many measures have been taken to reduce iron loss of non-oriented electrical steel sheets. For example, from the viewpoint of reducing eddy current loss, a method of increasing the specific resistance by increasing the content of Si or Al is common. In addition, a method is generally used in which impurities such as C, N, and S are reduced as much as possible to obtain high-purity steel to reduce hysteresis loss. In addition, as in the REM addition technique described in Patent Document 1, a method has been developed that achieves both improvement in productivity and reduction in iron loss by cleaning steel and improving crystal grain growth.

上記のような無方向性電磁鋼板の鉄損改善においては、通常、JISに規定された方法で鉄損が評価される。即ち、何の外力も加えない状態で、鋼板圧延方向および直角方向の、二方向の鉄損の平均値が測定されるのみである。しかしながら実際の鉄心では、鋼板は所定の形状に打ち抜かれた後積層され、ボルト締めやカシメなどの方法によって固定され、更にコンプレッサーモーターなどでは、焼き嵌めにより外枠に固定される。これらボルト締め、かしめ、焼き嵌めされた鉄心については、鉄心に対して鋼板面内の円周方向に圧縮応力が作用しており、この応力によって鉄損が増加することが知られている。   In improving the iron loss of the non-oriented electrical steel sheet as described above, the iron loss is usually evaluated by a method defined in JIS. That is, the average value of the iron loss in the two directions in the rolling direction of the steel sheet and the direction perpendicular to the steel plate is only measured in the state where no external force is applied. However, in an actual iron core, the steel sheet is punched into a predetermined shape and then laminated and fixed by a method such as bolting or caulking. Further, in a compressor motor or the like, it is fixed to the outer frame by shrink fitting. For these bolted, caulked, and shrink-fitted iron cores, it is known that a compressive stress acts on the iron core in the circumferential direction in the steel sheet surface, and the iron loss increases due to this stress.

そこで、特許文献2および特許文献3では、面内方向の圧縮応力に対して性能劣化の小さい無方向性電磁鋼板が提案されている。   In view of this, Patent Document 2 and Patent Document 3 propose non-oriented electrical steel sheets with small performance deterioration against in-plane compressive stress.

また、特許文献4では、鋼板の板厚中心層における板面と平行な{111}面のX線ランダム強度比が2.5以上、10.0以下とすることにより、圧縮応力による鉄損劣化の小さい無方向性電磁鋼板が提案されている。   Moreover, in patent document 4, the iron loss deterioration by a compressive stress is made by making X-ray random intensity ratio of {111} surface parallel to the plate surface in the plate | board thickness center layer of a steel plate into 2.5 or more and 10.0 or less. A small non-oriented electrical steel sheet has been proposed.

WO2004/099457号パンフレットWO2004 / 099457 pamphlet 特開2003−253404号公報JP 2003-253404 A 特開2005−307258号公報JP 2005-307258 A 特開2008−189976号公報JP 2008-189976 A

本発明の目的は、圧縮応力が作用しても、鉄損の劣化が小さい無方向性電磁鋼板を提供することにある。これにより、鉄心組み立てによる鉄損劣化を小さく抑えることができ、最終的に高性能モーターなどの効率向上に寄与することである。   An object of the present invention is to provide a non-oriented electrical steel sheet in which deterioration of iron loss is small even when compressive stress acts. As a result, iron loss deterioration due to the assembly of the iron core can be suppressed to a small extent, which ultimately contributes to improving the efficiency of high performance motors and the like.

本発明者らは、鋼板の材料要因が鉄損の応力依存性に与える影響について検討を重ねた結果、鋼板の結晶粒径が応力下の鉄損に大きな影響を与えることを発見し、圧縮応力による鉄損劣化の小さい無方向性電磁鋼板を開発するに至った。本発明の要旨は、結晶粒径が小さく、応力下での鉄損劣化率の低い無方向性電磁鋼板である。   As a result of repeated studies on the influence of the material factor of the steel sheet on the stress dependence of the iron loss, the present inventors have found that the crystal grain size of the steel sheet has a large influence on the iron loss under the stress, and the compression stress Has led to the development of non-oriented electrical steel sheets with low iron loss degradation. The gist of the present invention is a non-oriented electrical steel sheet having a small crystal grain size and a low iron loss deterioration rate under stress.

本発明の具体的な要旨は次のとおりである。
(1)質量%で、
C:0.002%以下、
Si:0.1%以上、4.0%以下、
Al:0.1%以上、4.0%以下、
残部鉄および不可避的不純物元素からなり、式(I)で定義される鉄損劣化率Aが50%以下であることを特徴とする高周波励磁用無方向性電磁鋼板。
The specific gist of the present invention is as follows.
(1) In mass%,
C: 0.002% or less,
Si: 0.1% or more and 4.0% or less,
Al: 0.1% to 4.0%,
A non-oriented electrical steel sheet for high-frequency excitation, comprising a balance iron and unavoidable impurity elements and having an iron loss deterioration rate A defined by the formula (I) of 50% or less.

A=[W−W]/W ・・・(I)
ここで、Wは応力30MPa〜50MPa付加時の高周波域における鉄損値であり、Wは応力付加の無いときの高周波域における鉄損値を表す。
(2)質量%で、
さらにCr:3.0%以下および/またはMn:1.0%以下を含むことを特徴とする請求項1に記載の高周波励磁用無方向性電磁鋼板。
(3)WおよびWは、共に鋼板の圧延方向(L方向)と圧延に直角の方向(C方向)に励磁して測定される鉄損値の平均値であることを特徴とする上記(1)または(2)に記載の高周波励磁用無方向性電磁鋼板。
(4)Wは応力30MPa付加時の1700Hz励磁による鉄損値であり、Wは応力付加の無いときの1700Hz励磁による鉄損値であることを特徴とする上記(1)〜(3)のいずれかに記載の高周波励磁用無方向性電磁鋼板。
(5)前記無方向性電磁鋼板の平均結晶粒径が100μm以下であることを特徴とする上記(1)〜(4)のいずれかに記載の高周波励磁用無方向性電磁鋼板。
(6)前記無方向性電磁鋼板の平均結晶粒径が40μm以下であることを特徴とする上記(1)〜(5)のいずれかに記載の高周波励磁用無方向性電磁鋼板。
(7)モーターの鉄心に使用される上記(1)〜(6)のいずれかに記載の高周波励磁用無方向性電磁鋼板。
(8)質量%で、
C:0.002%以下、
Si:0.1%以上、4.0%以下、
Al:0.1%以上、4.0%以下、
残部鉄および不回避的不純物元素からなるスラブを、熱間圧延により熱延板として、熱延板焼鈍を施し、表面スケールを酸洗により除去した後、冷間圧延し最終板厚として、850〜1000℃の範囲で10秒〜1分間、仕上げ焼鈍を施すことを特徴とする圧縮応力による鉄損劣化率の小さい高周波励磁用無方向性電磁鋼板の製造方法。
(9)前記スラブはさらに、質量%で、Cr:3.0%以下および/またはMn1.0%以下を含む上記(8)に記載の高周波励磁用無方向性電磁鋼板の製造方法。
A = [W 1 −W 0 ] / W 0 (I)
Here, W 1 is the iron loss value in the high frequency region of stress at 30MPa~50MPa addition, W 0 denotes the iron loss value in the high frequency range in the absence of stressing.
(2) In mass%,
The non-oriented electrical steel sheet for high frequency excitation according to claim 1, further comprising Cr: 3.0% or less and / or Mn: 1.0% or less.
(3) W 1 and W 0 are both average values of iron loss values measured by exciting in the rolling direction (L direction) and the direction perpendicular to rolling (C direction) of the steel sheet. The non-oriented electrical steel sheet for high frequency excitation according to (1) or (2).
(4) W 1 is an iron loss value by 1700 Hz excitation when a stress of 30 MPa is applied, and W 0 is an iron loss value by 1700 Hz excitation when no stress is applied. A non-oriented electrical steel sheet for high frequency excitation according to any one of the above.
(5) The non-oriented electrical steel sheet for high frequency excitation according to any one of (1) to (4), wherein the non-oriented electrical steel sheet has an average grain size of 100 μm or less.
(6) The non-oriented electrical steel sheet for high frequency excitation according to any one of (1) to (5), wherein the non-oriented electrical steel sheet has an average crystal grain size of 40 μm or less.
(7) The non-oriented electrical steel sheet for high-frequency excitation according to any one of (1) to (6), which is used for a motor core.
(8) By mass%
C: 0.002% or less,
Si: 0.1% or more and 4.0% or less,
Al: 0.1% to 4.0%,
The slab composed of the remaining iron and unavoidable impurity elements is subjected to hot rolling as a hot-rolled sheet by hot rolling, the surface scale is removed by pickling, and then cold-rolled to obtain a final sheet thickness of 850 to 850. A method for producing a non-oriented electrical steel sheet for high-frequency excitation with a low iron loss deterioration rate due to compressive stress, wherein finish annealing is performed at 1000 ° C. for 10 seconds to 1 minute.
(9) The method for producing a non-oriented electrical steel sheet for high-frequency excitation according to (8), wherein the slab further includes, by mass%, Cr: 3.0% or less and / or Mn 1.0% or less.

本発明の無方向性電磁鋼板をモーターの鉄心材料として用いた場合、鉄心に圧縮応力が作用しても鉄心の鉄損劣化は小さく、最終的にモーターの効率向上に寄与することができる。   When the non-oriented electrical steel sheet of the present invention is used as a core material for a motor, even if a compressive stress acts on the iron core, the iron core has little deterioration in iron loss, and can ultimately contribute to improving the efficiency of the motor.

異なる仕上げ焼鈍温度における鋼板の断面金属組織の顕微鏡写真を示す。The micrograph of the cross-sectional metal structure of the steel plate in different finish annealing temperature is shown. 50Hzにおける応力0〜50MPa付加による鉄損の結晶粒径依存性を示す。The crystal grain size dependence of iron loss due to the addition of stress 0 to 50 MPa at 50 Hz is shown. 800Hzにおける応力0〜50MPa付加による鉄損の結晶粒径依存性を示す。It shows the crystal grain size dependence of iron loss due to the addition of stress 0 to 50 MPa at 800 Hz. 1700Hzにおける応力0〜50MPa付加による鉄損の結晶粒径依存性を示す。It shows the crystal grain size dependence of iron loss due to the addition of stress 0 to 50 MPa at 1700 Hz. 3000Hzにおける応力0〜50MPa付加による鉄損の結晶粒径依存性を示す。The crystal grain size dependence of the iron loss due to the addition of stress 0 to 50 MPa at 3000 Hz is shown. 50Hzにおける応力0〜50MPa付加による鉄損劣化率(%)の結晶粒径依存性を示す。The crystal grain size dependence of the iron loss deterioration rate (%) due to the addition of stress 0 to 50 MPa at 50 Hz is shown. 800Hzにおける応力0〜50MPa付加による鉄損劣化率(%)の結晶粒径依存性を示す。The crystal grain size dependence of the iron loss deterioration rate (%) due to the addition of stress 0 to 50 MPa at 800 Hz is shown. 1700Hzにおける応力0〜50MPa付加による鉄損劣化率(%)の結晶粒径依存性を示す。It shows the crystal grain size dependence of the iron loss deterioration rate (%) due to the addition of stress 0 to 50 MPa at 1700 Hz. 3000Hzにおける応力0〜50MPa付加による鉄損劣化率(%)の結晶粒径依存性を示す。The crystal grain size dependence of the iron loss deterioration rate (%) due to the addition of stress 0 to 50 MPa at 3000 Hz is shown.

以下に本発明を詳細に説明する。 The present invention is described in detail below.

本発明は、面内圧縮応力による鉄損劣化を小さくするため、応力が存在しない状態における鉄損値に対する30MPa応力下における鉄損値の劣化量の比で定義される鉄損劣化率が、50%以下であることを特徴とするものである。すなわち、A=[W−W]/W(Wは応力30MPa〜50MPa付加時の高周波域における鉄損値であり、Wは応力付加の無いときの高周波域における鉄損値を表す)で定義される30MPaにおける鉄損劣化率が50%以下であることを特徴とするものである。 In the present invention, in order to reduce the iron loss deterioration due to the in-plane compressive stress, the iron loss deterioration rate defined by the ratio of the deterioration amount of the iron loss value under the 30 MPa pressure to the iron loss value in the absence of stress is 50 % Or less. That is, A = [W 1 −W 0 ] / W 0 (W 1 is the iron loss value in the high frequency range when stress 30 MPa to 50 MPa is applied, and W 0 is the iron loss value in the high frequency range when no stress is applied. The iron loss deterioration rate at 30 MPa defined by (1) is 50% or less.

本発明者らは、上記で定義される鉄損劣化率を50%以下にするためには、結晶粒径を100μ以下にする必要があることを見出した。具体的には、Cを0.01%、Siを2.0%、Alを2.0%、Crを2%含有する鋼を熱延後、熱延板焼鈍、冷延、仕上げ焼鈍を施し無方向性電磁鋼板を作製した。その際、仕上げ焼鈍の条件を種々変化させ、鋼板の平均結晶粒径を変化させた。最終板厚は0.25mmである。図1に仕上げ焼鈍温度と得られた鋼板の断面金属組織の顕微鏡写真を示した。表1には、仕上げ焼鈍温度と得られた鋼板の平均結晶粒径を示した。なお、平均粒径は、表面、端部にかかる粒は1/2と数え、総面積を結晶粒数で割った面積より円相当径で求めた。   The present inventors have found that the crystal grain size must be 100 μm or less in order to make the iron loss deterioration rate defined above 50% or less. Specifically, steel containing 0.01% C, 2.0% Si, 2.0% Al, and 2% Cr is hot-rolled and then subjected to hot-rolled sheet annealing, cold rolling, and finish annealing. A non-oriented electrical steel sheet was produced. At that time, various conditions of finish annealing were changed to change the average crystal grain size of the steel sheet. The final plate thickness is 0.25 mm. FIG. 1 shows a photomicrograph of the finish annealing temperature and the cross-sectional metal structure of the obtained steel sheet. Table 1 shows the finish annealing temperature and the average crystal grain size of the obtained steel sheet. In addition, the average particle diameter was calculated | required by the equivalent circle diameter from the area which counted the grain concerning a surface and an edge part as 1/2, and divided the total area by the number of crystal grains.

次に、得られた鋼板から、55mm×55mmの板を切り出し、磁気測定用の試料とした。磁気測定には、鋼板の断面に圧縮応力を付加させながら磁気測定ができる双ヨーク式のHコイル法単板試験機を用いた。圧縮応力は30〜50MPaとし、応力の方向と励磁方向は平行である。   Next, a 55 mm × 55 mm plate was cut out from the obtained steel plate and used as a sample for magnetic measurement. For the magnetic measurement, a double-yoke type H coil method single plate testing machine capable of performing magnetic measurement while applying compressive stress to the cross section of the steel plate was used. The compressive stress is 30 to 50 MPa, and the stress direction and the excitation direction are parallel.

図2〜5には、応力0、および30MPa、50MPa応力付加時において、圧延方向(L方向)と圧延に直角の方向(C方向)にそれぞれ50Hz、800Hz、1700Hz、3000Hzに励磁したときの鉄損値(L方向およびC方向の平均値)の結晶粒径依存性が示されている。   FIGS. 2 to 5 show irons when excited at 50 Hz, 800 Hz, 1700 Hz, and 3000 Hz in the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction), respectively, when stress is 0, and 30 MPa and 50 MPa are applied. The crystal grain size dependence of the loss value (average value in the L direction and C direction) is shown.

図2に示されるように、低周波(50Hz)においては、応力付加、応力付加無し共に、結晶粒径が小さいほど鉄損値は増加する傾向にあるのに対し、高周波(800〜3000Hz)においては、応力付加では、平均結晶粒径100μm以下の結晶粒径が小さい領域で鉄損値が低くなり、平均結晶粒径100μmを超えると結晶粒径の増大に伴い鉄損も増大することが示されている。これは、高周波において、応力が付加されない場合に、鉄損値は結晶粒径によって変化しないことと対照的である。すなわち、高周波においては、応力付加時と応力の付加の無い場合で鉄損値の結晶粒径依存性が大きく変わることが見出された。本発明は、当該知見を基に、高周波における鉄損値の制御を行おうとするものである。   As shown in FIG. 2, at low frequency (50 Hz), the iron loss value tends to increase as the crystal grain size decreases with and without stress applied, whereas at high frequency (800 to 3000 Hz). Shows that when stress is applied, the iron loss value decreases in a region where the crystal grain size is less than 100 μm and the average crystal grain size exceeds 100 μm, and the iron loss increases as the crystal grain size increases. Has been. This is in contrast to the fact that the iron loss value does not change with the crystal grain size when no stress is applied at high frequencies. That is, at high frequencies, it has been found that the dependence of the iron loss value on the crystal grain size varies greatly between when stress is applied and when no stress is applied. The present invention intends to control the iron loss value at high frequency based on the knowledge.

図6〜9には、図2〜5に基づいて、それぞれ50Hz、800Hz、1700Hz、3000Hzにおける、応力0による鉄損値に対する応力30MPa,50MPa付加による鉄損劣化量の割合(%)の結晶粒径依存性が示されている。図5〜8に共通して見られるように、結晶粒径が小さいほど鉄損劣化率が低下することがわかる。特に、高周波においては、鉄損劣化率60%以下にするためには、平均結晶粒は100μm以下とすることが有効であり、より好ましくは、40μm以下とすると有効であることがわかる。   FIGS. 6 to 9 show, based on FIGS. 2 to 5, the crystal grains of the ratio (%) of the iron loss deterioration amount due to the addition of stress 30 MPa and 50 MPa to the iron loss value by stress 0 at 50 Hz, 800 Hz, 1700 Hz, and 3000 Hz, respectively Diameter dependence is shown. As can be seen in FIGS. 5 to 8, it can be seen that the iron loss deterioration rate decreases as the crystal grain size decreases. In particular, at high frequencies, it can be seen that the average crystal grain is effective to be 100 μm or less, more preferably 40 μm or less, in order to make the iron loss deterioration rate 60% or less.

次に、本発明の鋼成分の限定理由について述べる。   Next, the reasons for limiting the steel components of the present invention will be described.

Cは鉄損を増加させる有害な元素であり、磁気時効の原因ともなるので、0.002%以下とする。   C is a harmful element that increases iron loss and causes magnetic aging, so it is 0.002% or less.

Siは、固有抵抗を増大させて渦電流損失を減少させる元素である。その効果を享受するには、0.1%以上含有させる必要がある。ただし含有量が増えすぎると、磁束密度の低下に加え、冷延性の低下を招き、更にコストも上昇するので、4.0%以下とする。   Si is an element that increases specific resistance and decreases eddy current loss. In order to enjoy the effect, it is necessary to contain 0.1% or more. However, if the content is excessively increased, in addition to a decrease in magnetic flux density, a decrease in cold-rollability is caused and the cost is further increased.

AlもSiと同様、固有抵抗を増大させる元素であり、0.1%以上含有させる必要がある。一方、増えすぎると磁束密度の低下に加え、冷延性の低下を招き、更にコストも上昇するので、4.0%以下とする。   Al, like Si, is an element that increases the specific resistance and needs to be contained in an amount of 0.1% or more. On the other hand, if it increases too much, in addition to the decrease in magnetic flux density, it causes a decrease in cold-rollability and further increases the cost, so 4.0% or less.

Crは、固有抵抗を増大させて渦電流損失を減少させるために、3.0%以下添加することができるが、3.0%を超えると磁束密度が低下するため、上限を3.0%とした。   Cr can be added in an amount of 3.0% or less in order to increase the specific resistance and decrease the eddy current loss. However, if it exceeds 3.0%, the magnetic flux density decreases, so the upper limit is set to 3.0%. It was.

MnはSiと同様に、電気抵抗を増加させるために有効な元素であるが、1%を超えて添加すると、焼鈍での結晶粒成長が阻害されるので、1%以下とする。Mnは、鋼中のSを無害化(MnS化)するので、0.1%以上添加するのが好ましい。   Mn is an element effective for increasing the electrical resistance, similar to Si, but if added over 1%, crystal grain growth during annealing is inhibited, so it is made 1% or less. Since Mn renders S in steel harmless (MnS), it is preferable to add 0.1% or more.

それ以外の元素は特に規定するものではないが、表層からの窒化を防ぐ目的でSn、Sb、Cuなどの元素を適宜量添加したりすることはできる、またSやN、Tiなどのように介在物を生成し磁気特性や結晶粒成長性に悪影響を与える元素は、極力低減することが望ましい。REMを添加してSやTiを固定し、鋼の清浄化を図ることもが可能である。   Other elements are not particularly specified, but elements such as Sn, Sb, and Cu can be added in an appropriate amount for the purpose of preventing nitridation from the surface layer, and S, N, Ti, etc. It is desirable to reduce as much as possible the elements that generate inclusions and adversely affect magnetic properties and grain growth. It is also possible to add REM to fix S and Ti to clean the steel.

次に本発明の鋼板を得るための製造方法について説明する。   Next, the manufacturing method for obtaining the steel plate of this invention is demonstrated.

製造方法の一つは、製鋼工程において所定の元素を添加したスラブを、熱間圧延により熱延板とし、熱延板焼鈍を行わずに、その表面スケールを酸洗により除去した後、1回の冷間圧延を施し最終板厚としてから、850〜1000℃の範囲で10秒〜1分間、再結晶のための仕上げ焼鈍を施す方法である。   One of the manufacturing methods is to use a slab to which a predetermined element is added in a steelmaking process as a hot-rolled sheet by hot rolling, and after removing the surface scale by pickling without performing hot-rolled sheet annealing, once After the cold rolling is performed to obtain a final plate thickness, finish annealing for recrystallization is performed in a range of 850 to 1000 ° C. for 10 seconds to 1 minute.

また別の方法は、製鋼工程において所定の元素を添加したスラブを、熱間圧延により熱延板とし、熱延板焼鈍を施し、表面スケールを酸洗により除去した後、冷間圧延し最終板厚として、850〜1000℃の範囲で10秒〜1分間、再結晶のための仕上げ焼鈍を施す方法である。   In another method, a slab to which a predetermined element is added in the steel making process is hot rolled into a hot-rolled sheet, subjected to hot-rolled sheet annealing, the surface scale is removed by pickling, and then cold-rolled to the final sheet. The thickness is a method in which finish annealing is performed for recrystallization in the range of 850 to 1000 ° C. for 10 seconds to 1 minute.

仕上げ焼鈍温度が1000℃を超えるか、または仕上げ焼鈍時間が1分を超えると平均結晶粒径は100μm超え粗粒化する傾向にある。また、仕上げ焼鈍温度が1000℃未満または仕上げ焼鈍時間が10秒未満では、再結晶化が不十分である。   If the finish annealing temperature exceeds 1000 ° C. or the finish annealing time exceeds 1 minute, the average crystal grain size tends to exceed 100 μm and become coarse. Further, if the final annealing temperature is less than 1000 ° C. or the final annealing time is less than 10 seconds, recrystallization is insufficient.

本発明の実施例を示す。
(実施例1)
C:0.0020%、Si:2.0%、Al:0.3%、Mn0.2%、残部Feおよび不可避的不純物からなる鋼を2.3mmに熱間圧延し、熱延板焼鈍を施すことなく、酸洗後、冷間圧延し0.5mm厚(圧延率は78.3%)とした。その後900℃、15秒の仕上げ焼鈍を行い、55mmSST試料を切り出した。平均結晶粒径は38μmであった。次に、1700Hzの周波数で1.0Tの磁束密度まで励磁し、30MPaの応力加状態の鉄損と応力付加無しの鉄損を測定し、鉄損劣化率を算出した。結果を表2に示した。
(比較例1)
また比較例1として、実施例1と同じ組成の鋼を2.3mmに熱間圧延し、酸洗、冷間圧延し0.5mm厚とした。その後1000℃、2分の仕上げ焼鈍を行い、55mmSST試料を切り出した。平均結晶粒径は105μmであった。次に、1700Hzの周波数で1.0Tまで励磁し、30MPaの応力加状態の鉄損と応力付加無しの鉄損を測定し、鉄損劣化率を算出した。結果を表2に示した。
(実施例2)
C:0.0020%、Si:3.1%、Al:1.1%、Mn:0.35%残部Feおよび不可避的不純物からなる鋼を1.8mmに熱間圧延し、1000℃、2分間の熱延板焼鈍し、酸洗、冷間圧延し0.35mm厚(圧延率は80.5%)とした。その後900℃、30秒の仕上げ焼鈍を行い、55mmSST試料を切り出し、平均結晶粒径は50μmであった。次に、800Hzの周波数で1.0Tまで励磁し、30MPaの応力加状態の鉄損と応力付加無しの鉄損を測定し、鉄損劣化率を算出した。結果を表2に示した。
(比較例2)
また比較例2として、実施例2と同じ組成の鋼を1.8mmに熱間圧延し、1000℃、2分間の熱延板焼鈍し、酸洗、冷間圧延し0.35mm厚(圧延率は80.5%)とし、その後1050℃、1分の仕上げ焼鈍を行い、55mmSST試料を切り出した。その平均結晶粒径は110μmであった。次に、1700Hzの周波数で1.0Tまで励磁し、30MPaの応力加状態の鉄損と応力付加無しの鉄損を測定し、鉄損劣化率を算出した。結果を表2に示した。
(実施例3)
C:0.0010、Si:2.0%、Al:2.3%、Cr:2.0%、Mn:0.4%残部Feおよび不可避的不純物からなる鋼を2.5mmに熱間圧延し、800℃、2分の熱延焼鈍を施し、酸洗、冷間圧延し0.25mm厚(圧延率は90%)とした。その後900℃、30秒の仕上げ焼鈍を行い、55mmSST試料を切り出し、磁気測定に供した。
(比較例3)
また比較例3として、実施例3と同じ組成の鋼を2.5mmに熱間圧延し、1000℃、2分間の熱延板焼鈍し、酸洗、冷間圧延し0.25mm厚(圧延率は90%)とし、その後1200℃15秒の仕上げ焼鈍を行い、55mmSST試料を切り出した。次に、3000Hzの周波数で1.0まで励磁し、30MPaの応力加状態の鉄損と応力付加無しの鉄損を測定し、鉄損劣化率を算出した。結果を表2に示した。
The Example of this invention is shown.
Example 1
C: 0.0020%, Si: 2.0%, Al: 0.3%, Mn 0.2%, balance Fe and steel made of inevitable impurities are hot-rolled to 2.3 mm, and hot-rolled sheet annealing is performed. Without application, after pickling, it was cold-rolled to a thickness of 0.5 mm (rolling rate: 78.3%). Thereafter, finish annealing was performed at 900 ° C. for 15 seconds to cut out a 55 mm SST sample. The average crystal grain size was 38 μm. Next, excitation was performed at a frequency of 1700 Hz to a magnetic flux density of 1.0 T, and the iron loss in a stressed state of 30 MPa and the iron loss without stress were measured, and the iron loss deterioration rate was calculated. The results are shown in Table 2.
(Comparative Example 1)
As Comparative Example 1, steel having the same composition as Example 1 was hot-rolled to 2.3 mm, pickled, and cold-rolled to a thickness of 0.5 mm. Thereafter, finish annealing was performed at 1000 ° C. for 2 minutes, and a 55 mm SST sample was cut out. The average crystal grain size was 105 μm. Next, excitation was performed up to 1.0 T at a frequency of 1700 Hz, and the iron loss in a stressed state of 30 MPa and the iron loss without application of stress were measured, and the iron loss deterioration rate was calculated. The results are shown in Table 2.
(Example 2)
C: 0.0020%, Si: 3.1%, Al: 1.1%, Mn: 0.35% Steel made of the remaining Fe and inevitable impurities and hot rolled to 1.8 mm, The hot-rolled sheet was annealed for a minute, pickled, and cold-rolled to a thickness of 0.35 mm (rolling rate: 80.5%). Thereafter, finish annealing was performed at 900 ° C. for 30 seconds, a 55 mm SST sample was cut out, and the average crystal grain size was 50 μm. Next, excitation was performed up to 1.0 T at a frequency of 800 Hz, and the iron loss in the stressed state of 30 MPa and the iron loss without stress were measured, and the iron loss deterioration rate was calculated. The results are shown in Table 2.
(Comparative Example 2)
As Comparative Example 2, a steel having the same composition as Example 2 was hot-rolled to 1.8 mm, annealed at 1000 ° C. for 2 minutes, pickled and cold-rolled, and 0.35 mm thick (rolling rate) Was 80.5%), and then finish annealing was performed at 1050 ° C. for 1 minute, and a 55 mm SST sample was cut out. The average crystal grain size was 110 μm. Next, excitation was performed up to 1.0 T at a frequency of 1700 Hz, and the iron loss in a stressed state of 30 MPa and the iron loss without application of stress were measured, and the iron loss deterioration rate was calculated. The results are shown in Table 2.
(Example 3)
C: 0.0010, Si: 2.0%, Al: 2.3%, Cr: 2.0%, Mn: 0.4% Hot-rolled steel made of Fe and unavoidable impurities to 2.5 mm Then, hot rolling annealing was performed at 800 ° C. for 2 minutes, pickling and cold rolling to obtain a thickness of 0.25 mm (rolling rate: 90%). Thereafter, finish annealing was performed at 900 ° C. for 30 seconds, and a 55 mm SST sample was cut out and subjected to magnetic measurement.
(Comparative Example 3)
As Comparative Example 3, steel having the same composition as Example 3 was hot-rolled to 2.5 mm, hot-rolled sheet annealed at 1000 ° C. for 2 minutes, pickled and cold-rolled, and 0.25 mm thick (rolling rate) Was 90%), and then a final annealing was performed at 1200 ° C. for 15 seconds to cut out a 55 mm SST sample. Next, excitation was performed up to 1.0 at a frequency of 3000 Hz, and the iron loss in a stressed state of 30 MPa and the iron loss without stress were measured, and the iron loss deterioration rate was calculated. The results are shown in Table 2.

表2を参照すると、実施例1〜3では、平均結晶粒径が100μm以下であり、鉄損劣化率が50%以下となっているのに対し、同じ組成の比較例1〜3では、平均結晶粒は100μmを超え、鉄損劣化率も50%を超えていることがわかる。   Referring to Table 2, in Examples 1 to 3, the average crystal grain size is 100 μm or less and the iron loss deterioration rate is 50% or less, while in Comparative Examples 1 to 3 having the same composition, the average It can be seen that the crystal grains exceed 100 μm and the iron loss deterioration rate also exceeds 50%.

本発明の無方向性電磁鋼板をモーターの鉄心材料として用いた場合、鉄心に圧縮応力が作用しても鉄心の鉄損劣化は小さく、最終的にモーターの効率向上に寄与することができ、産業上の利用可能性が高い。   When the non-oriented electrical steel sheet of the present invention is used as a core material for a motor, even if a compressive stress acts on the iron core, the iron core has little deterioration in iron loss, and can ultimately contribute to improving the efficiency of the motor. High availability on.

Claims (9)

質量%で、
C:0.002%以下、
Si:0.1%以上、4.0%以下、
Al:0.1%以上、4.0%以下、
残部鉄および不可避的不純物元素からなり、式(I)で定義される鉄損劣化率Aが50%以下であることを特徴とする高周励磁波用無方向性電磁鋼板。
A=[W−W]/W ・・・(I)
ここで、Wは応力30MPa〜50MPa付加時の高周波域における鉄損値であり、Wは応力付加の無いときの高周波域における鉄損値を表す。
% By mass
C: 0.002% or less,
Si: 0.1% or more and 4.0% or less,
Al: 0.1% to 4.0%,
A non-oriented electrical steel sheet for high-frequency excitation waves, comprising a balance iron and unavoidable impurity elements and having an iron loss deterioration rate A defined by the formula (I) of 50% or less.
A = [W 1 −W 0 ] / W 0 (I)
Here, W 1 is the iron loss value in the high frequency region of stress at 30MPa~50MPa addition, W 0 denotes the iron loss value in the high frequency range in the absence of stressing.
質量%で、
さらにCr:3.0%以下および/またはMn:1,0%以下を含むことを特徴とする請求項1に記載の高周波励磁用無方向性電磁鋼板。
% By mass
The non-oriented electrical steel sheet for high frequency excitation according to claim 1, further comprising Cr: 3.0% or less and / or Mn: 1.0% or less.
およびWは、共に鋼板の圧延方向(L方向)と圧延に直角の方向(C方向)に励磁して測定される鉄損値の平均値であることを特徴とする請求項1または2に記載の高周波励磁用無方向性電磁鋼板。 W 1 and W 0 are both average values of iron loss values measured by exciting in the rolling direction (L direction) and the direction perpendicular to rolling (C direction) of the steel sheet. 2. A non-oriented electrical steel sheet for high frequency excitation according to 2. は応力30MPa付加時の1700Hz励磁による鉄損値であり、Wは応力付加の無いときの1700Hz励磁による鉄損値であることを特徴とする請求項1〜3のいずれかに記載の高周波励磁用無方向性電磁鋼板。 4. W 1 is an iron loss value by 1700 Hz excitation when stress 30 MPa is applied, and W 0 is an iron loss value by 1700 Hz excitation when no stress is applied. Non-oriented electrical steel sheet for high frequency excitation. 前記無方向性電磁鋼板の平均結晶粒径が100μm以下であることを特徴とする請求項1〜4のいずれかに記載の高周波励磁用無方向性電磁鋼板。   5. The non-oriented electrical steel sheet for high-frequency excitation according to claim 1, wherein the non-oriented electrical steel sheet has an average crystal grain size of 100 μm or less. 前記無方向性電磁鋼板の平均結晶粒径が40μm以下であることを特徴とする請求項1〜5のいずれかに記載の高周波励磁用無方向性電磁鋼板。   The non-oriented electrical steel sheet for high frequency excitation according to any one of claims 1 to 5, wherein the non-oriented electrical steel sheet has an average crystal grain size of 40 µm or less. モーターの鉄心に使用される請求項1〜6のいずれかに記載の高周波励磁用無方向性電磁鋼板。   The non-oriented electrical steel sheet for high frequency excitation according to any one of claims 1 to 6, which is used for an iron core of a motor. 質量%で、
C:0.002%以下、
Si:0.1%以上、4.0%以下、
Al:0.1%以上、4.0%以下、
残部鉄および不回避的不純物元素からなるスラブを、熱間圧延により熱延板として、熱延板焼鈍を施し、表面スケールを酸洗により除去した後、冷間圧延し最終板厚として、850〜1000℃の範囲で10秒〜1分間、仕上げ焼鈍を施すことを特徴とする圧縮応力による鉄損劣化率の小さい高周波励磁用無方向性電磁鋼板の製造方法。
% By mass
C: 0.002% or less,
Si: 0.1% or more and 4.0% or less,
Al: 0.1% to 4.0%,
The slab composed of the remaining iron and unavoidable impurity elements is subjected to hot rolling as a hot-rolled sheet by hot rolling, the surface scale is removed by pickling, and then cold-rolled to obtain a final sheet thickness of 850 to 850. A method for producing a non-oriented electrical steel sheet for high-frequency excitation with a low iron loss deterioration rate due to compressive stress, wherein finish annealing is performed at 1000 ° C. for 10 seconds to 1 minute.
前記スラブはさらに、質量%で、Cr:3.0%以下および/またはMn:1.0%以下を含む請求項8に記載の高周波励磁用無方向性電磁鋼板の製造方法。   The said slab is a manufacturing method of the non-oriented electrical steel sheet for high frequency excitation of Claim 8 which is further mass% and contains Cr: 3.0% or less and / or Mn: 1.0% or less.
JP2009238412A 2009-10-15 2009-10-15 Nonoriented electrical steel sheet for high frequency excitation Pending JP2011084778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009238412A JP2011084778A (en) 2009-10-15 2009-10-15 Nonoriented electrical steel sheet for high frequency excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009238412A JP2011084778A (en) 2009-10-15 2009-10-15 Nonoriented electrical steel sheet for high frequency excitation

Publications (1)

Publication Number Publication Date
JP2011084778A true JP2011084778A (en) 2011-04-28

Family

ID=44077943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009238412A Pending JP2011084778A (en) 2009-10-15 2009-10-15 Nonoriented electrical steel sheet for high frequency excitation

Country Status (1)

Country Link
JP (1) JP2011084778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886932A (en) * 2016-05-09 2016-08-24 武汉钢铁股份有限公司 Non-oriented silicon steel for high-power-factor motor and production method
WO2019151401A1 (en) * 2018-01-31 2019-08-08 Jfeスチール株式会社 Grain-oriented electrical steel sheet, transformer stacked core using same, and method for producing stacked core
JP2020041169A (en) * 2018-09-06 2020-03-19 日本製鉄株式会社 Non-oriented magnetic steel sheet and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223445A (en) * 1990-01-25 1991-10-02 Nippon Steel Corp Nonoriented silicon steel sheet for high frequency
JPH11229095A (en) * 1998-02-10 1999-08-24 Nippon Steel Corp Nonoriented silicon steel sheet for high frequency use and its production
JP2003253404A (en) * 2002-02-26 2003-09-10 Sumitomo Metal Ind Ltd Non-oriented silicon steel sheet for rotating machine and production method thereof
JP2005307258A (en) * 2004-04-20 2005-11-04 Nippon Steel Corp Nonoriented silicon steel sheet having reduced deterioration in core loss caused by compressive stress and its production method
JP2008189976A (en) * 2007-02-02 2008-08-21 Nippon Steel Corp Nonoriented electrical steel sheet having reduced in core loss degradation caused by compressive stress, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223445A (en) * 1990-01-25 1991-10-02 Nippon Steel Corp Nonoriented silicon steel sheet for high frequency
JPH11229095A (en) * 1998-02-10 1999-08-24 Nippon Steel Corp Nonoriented silicon steel sheet for high frequency use and its production
JP2003253404A (en) * 2002-02-26 2003-09-10 Sumitomo Metal Ind Ltd Non-oriented silicon steel sheet for rotating machine and production method thereof
JP2005307258A (en) * 2004-04-20 2005-11-04 Nippon Steel Corp Nonoriented silicon steel sheet having reduced deterioration in core loss caused by compressive stress and its production method
JP2008189976A (en) * 2007-02-02 2008-08-21 Nippon Steel Corp Nonoriented electrical steel sheet having reduced in core loss degradation caused by compressive stress, and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886932A (en) * 2016-05-09 2016-08-24 武汉钢铁股份有限公司 Non-oriented silicon steel for high-power-factor motor and production method
CN105886932B (en) * 2016-05-09 2017-08-25 武汉钢铁有限公司 A kind of High Power Factor Non-oriented silicon steel for motors and production method
WO2019151401A1 (en) * 2018-01-31 2019-08-08 Jfeスチール株式会社 Grain-oriented electrical steel sheet, transformer stacked core using same, and method for producing stacked core
JPWO2019151401A1 (en) * 2018-01-31 2020-12-03 Jfeスチール株式会社 Directional electromagnetic steel sheets and transformer cores using them and methods for manufacturing the cores
RU2741585C1 (en) * 2018-01-31 2021-01-27 ДжФЕ СТИЛ КОРПОРЕЙШН Textured sheet of electrical steel, transformer stacked core from textured sheet of electrical steel and method of making a stacked core
US11495378B2 (en) 2018-01-31 2022-11-08 Jfe Steel Corporation Grain-oriented electrical steel sheet, stacked transformer core using the same, and method for producing stacked core
JP2020041169A (en) * 2018-09-06 2020-03-19 日本製鉄株式会社 Non-oriented magnetic steel sheet and manufacturing method therefor
JP7315811B2 (en) 2018-09-06 2023-07-27 日本製鉄株式会社 Method for manufacturing non-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP6690714B2 (en) Non-oriented electrical steel sheet, method for producing non-oriented electrical steel sheet, and method for producing motor core
JP5126788B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
WO2015199211A1 (en) Electrical steel sheet
JP2007016278A (en) Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
JP2008050686A (en) Nonoriented silicon steel sheet having excellent strength and magnetic property and its production method
JP2012036474A (en) Non-oriented magnetic steel sheet and production method therefor
JP5326441B2 (en) Motor core and motor core material
JPWO2019117095A1 (en) Multi-layer electrical steel sheet
JP2009299102A (en) Nonoriented silicon steel sheet for rotor and production method therefor
JP4710465B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP2001059145A (en) Nonoriented silicon steel sheet and its manufacture
JP3815336B2 (en) Non-oriented electrical steel sheet
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP5671869B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP2008189976A (en) Nonoriented electrical steel sheet having reduced in core loss degradation caused by compressive stress, and method for producing the same
JP7192887B2 (en) Non-oriented electrical steel sheet, split type stator and rotating electric machine
JP2011084778A (en) Nonoriented electrical steel sheet for high frequency excitation
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP5671871B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4613414B2 (en) Electrical steel sheet for motor core and method for manufacturing the same
WO2019117089A1 (en) Multilayer electromagnetic steel sheet
JP2003055746A (en) Nonoriented silicon steel sheet and production method therefor
JP2012036458A (en) Non-oriented magnetic steel sheet and production method therefor
JP7120038B2 (en) Split type stator and rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140617

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140912