JP2011082639A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit Download PDF

Info

Publication number
JP2011082639A
JP2011082639A JP2009231106A JP2009231106A JP2011082639A JP 2011082639 A JP2011082639 A JP 2011082639A JP 2009231106 A JP2009231106 A JP 2009231106A JP 2009231106 A JP2009231106 A JP 2009231106A JP 2011082639 A JP2011082639 A JP 2011082639A
Authority
JP
Japan
Prior art keywords
current
variable delay
control current
control
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009231106A
Other languages
Japanese (ja)
Other versions
JP5241670B2 (en
Inventor
Tomoyuki Kamatsuka
友幸 鎌塚
Kozaburo Kurita
公三郎 栗田
Masayuki Iwahashi
誠之 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009231106A priority Critical patent/JP5241670B2/en
Publication of JP2011082639A publication Critical patent/JP2011082639A/en
Application granted granted Critical
Publication of JP5241670B2 publication Critical patent/JP5241670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform wide-range and high-accuracy delay adjustment which is resistant to a variation in delay caused by a PVT variation. <P>SOLUTION: A semiconductor integrated circuit includes: a first DLL 101 for outputting a first control current I1; a second DLL 102 for outputting a second control current I2; a plurality of first variable delay elements 104 controlled by the first control current; a selector 106 for changing the number of stages of the plurality of the first variable delay elements, based on a control signal SEL; a current complementing circuit 103 for outputting a third control current I3 for complementing a value of the first control current and a value of the second control current based on the control signal SEL; and a plurality of second variable delay elements 105 controlled by the third control current I3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体集積回路に関し、DLL回路と電流補間回路を用いたディレイ調整回路に関する。   The present invention relates to a semiconductor integrated circuit, and to a delay adjustment circuit using a DLL circuit and a current interpolation circuit.

近年、半導体集積回路の動作速度向上に伴い、より高精度でかつ、プロセスばらつき、電圧変動、温度変動(あわせてPVT変動と称する)等の環境に起因するディレイ変動に耐性のあるディレイ調整が要求されている。例えばDDR−IFの場合、装置、伝送路、DRAMの転送系全体で同期転送を行うため、転送レートが高い場合、初期トレーニングとして装置側で入出力ディレイを最適点に調整することが、一般的な技術となっている。   In recent years, with the improvement of the operation speed of semiconductor integrated circuits, there is a demand for delay adjustment with higher accuracy and resistance to delay fluctuations caused by environments such as process fluctuations, voltage fluctuations, temperature fluctuations (also referred to as PVT fluctuations). Has been. For example, in the case of DDR-IF, synchronous transfer is performed in the entire transfer system of the device, transmission path, and DRAM. Therefore, when the transfer rate is high, the input / output delay is generally adjusted to the optimum point on the device side as initial training. Technology.

特許文献1は、制御するディレイの異なるDLLを2つ使用し、それぞれのDLLで制御されるディレイ素子を複数直列に接続し、通過段数を切り替えることによって、高精度なディレイ調整を実現している。   Patent Document 1 uses two DLLs with different delays to be controlled, connects a plurality of delay elements controlled by the respective DLLs in series, and switches the number of passing stages, thereby realizing highly accurate delay adjustment. .

特許文献2は、電流制御によりディレイ調整を行う例が開示されている。   Patent Document 2 discloses an example in which delay adjustment is performed by current control.

特開2008−271533号公報JP 2008-271533 A 特開平8−255304号公報JP-A-8-255304

本願発明者等は本願に先立ち、高精度でかつPVT変動に耐性があるディレイ調整方式の検討を行った。PTV変動に追従するためには、一般的にDLL回路を使用するが、調整精度を上げるための代表的な方法として特許文献1に示される方式がある。図5に示されている通り、制御するディレイの異なる2種のディレイ素子の通過段数を制御することにより、精度は2つのディレイ素子のディレイ差となる。しかしこの方式の場合、制御するディレイと制御信号の対応をとるため、複雑なデコード論理を実装する必要がある。   Prior to the present application, the inventors of the present application examined a delay adjustment method that is highly accurate and resistant to PVT fluctuations. In order to follow the PTV fluctuation, a DLL circuit is generally used, but there is a method disclosed in Patent Document 1 as a typical method for improving the adjustment accuracy. As shown in FIG. 5, by controlling the number of passing stages of two types of delay elements having different delays to be controlled, the accuracy becomes the delay difference between the two delay elements. However, in the case of this method, it is necessary to implement complex decoding logic in order to correspond to the delay to be controlled and the control signal.

本発明の代表的なものの一例を示せば以下の通りである。すなわち、第1制御電流を出力する第1DLLと、第2制御電流を出力する第2DLLと、第1制御電流により制御される複数の第1可変ディレイ素子と、第1制御信号に基づき、複数の第1可変ディレイ素子の段数切り替えを行うセレクタと、第2制御信号に基づき、第1制御電流の電流値と第2制御電流の電流値とを補間する第3制御電流を出力する電流補間回路と、第3制御電流により制御される複数の第2可変ディレイ素子とを有し、入力された信号を、第1制御信号に基づく段数の第1可変ディレイ素子及び第2制御信号に基づく第3制御電流により制御される複数の第2可変ディレイ素子で遅延して出力する。   An example of a representative one of the present invention is as follows. That is, based on a first control signal, a first DLL that outputs a first control current, a second DLL that outputs a second control current, a plurality of first variable delay elements controlled by the first control current, and a plurality of first control signals, A selector that switches the number of stages of the first variable delay element, and a current interpolation circuit that outputs a third control current for interpolating between the current value of the first control current and the current value of the second control current based on the second control signal; A plurality of second variable delay elements controlled by a third control current, and a third control based on a first variable delay element having a number of stages based on the first control signal and a second control signal. Output is delayed by a plurality of second variable delay elements controlled by current.

本発明により、広範囲、高精度でかつPVT変動に耐性のあるディレイ調整を実現できる。   According to the present invention, it is possible to realize delay adjustment that is wide-range, highly accurate, and resistant to PVT fluctuations.

本発明の構成例である。It is an example of composition of the present invention. 可変ディレイ素子の構成例である。It is a structural example of a variable delay element. DLL回路の構成例である。It is a structural example of a DLL circuit. 電流補間回路の構成例である。It is a structural example of a current interpolation circuit. 電流補間回路で補間された電流値とその電流で制御される可変ディレイ素子のディレイの関係を示すグラフである。It is a graph which shows the relationship between the current value interpolated by the current interpolation circuit and the delay of the variable delay element controlled by the current. 制御ディレイ計算例である。It is an example of control delay calculation.

以下、本発明の実施形態を、図1〜図6を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明の全体構成例である。遅延回路は、制御電流I1で制御される可変ディレイ素子104、制御電流I3で制御される可変ディレイ素子105及び可変ディレイ素子104の通過段数を制御する段数切り替え用セレクタ106から構成される。また、遅延回路の制御回路として、可変ディレイ素子1段あたりのディレイがtCK/Mとなる制御電流I1を生成する第1DLL101、可変ディレイ素子1段あたりのディレイがtCK/Nとなる制御電流I2を生成する第2DLL102、制御電流I1と制御電流I2から制御電流I3を生成する電流補間回路103から構成される。ただし、tCKは外部から入力される基準クロックCLKの周期であり、また、M>N、つまりtCK/M<tCK/Nとする。図中のデータ入力DINからデータ出力DOUTまでがディレイ制御対象となるパスであり、SEL[S:0]に基づき可変ディレイ素子104の段数を切り替える。すなわち、大まかなディレイ調整は、可変ディレイ素子104の通過段数で調整し、高精度のディレイ調整は、電流補間回路103からの制御電流I3を制御することで実現される。また、調整されたディレイは、DLL101、102からの制御電流で保障されるため、PVT変動に耐性を持っている。   FIG. 1 shows an example of the overall configuration of the present invention. The delay circuit includes a variable delay element 104 controlled by a control current I1, a variable delay element 105 controlled by a control current I3, and a stage number switching selector 106 for controlling the number of passing stages of the variable delay element 104. Further, as a control circuit for the delay circuit, a first DLL 101 that generates a control current I1 with a delay per variable delay element tCK / M, and a control current I2 with a delay per variable delay element tCK / N. A second DLL 102 to be generated, and a current interpolation circuit 103 that generates a control current I3 from the control current I1 and the control current I2 are configured. However, tCK is the period of the reference clock CLK input from the outside, and M> N, that is, tCK / M <tCK / N. The path from the data input DIN to the data output DOUT in the figure is a path subject to delay control, and the number of stages of the variable delay element 104 is switched based on SEL [S: 0]. That is, rough delay adjustment is performed by adjusting the number of passing stages of the variable delay element 104, and highly accurate delay adjustment is realized by controlling the control current I3 from the current interpolation circuit 103. Further, since the adjusted delay is guaranteed by the control current from the DLLs 101 and 102, it has resistance to PVT fluctuation.

図2は可変ディレイ素子104,105の構成例である。制御電流Iの大きさで、データ入力DINからデータ出力DOUTまでのディレイを変化させることができる。   FIG. 2 shows a configuration example of the variable delay elements 104 and 105. The delay from the data input DIN to the data output DOUT can be changed by the magnitude of the control current I.

図3は、DLL101,102の構成例である。電流によりディレイを制御する可変ディレイ素子301、位相比較回路302、UP/DOWNカウンタ303、DAC304から構成される。可変ディレイ素子は例えば図2のように構成する。DLLにクロックCLKを入力することにより、位相比較回路302は、可変ディレイ素子301を通過したクロックと通過しないクロックの位相差を検知し、その情報をUP/DOWNカウンタ303に入力する。UP/DOWNカウンタ303は、位相が合う方向に電流IのUP(増加)とDOWN(減少)をDAC304に指示する。DAC304は、UP/DOWNカウンタからの信号を元に電流量の再調整を行い、可変ディレイ素子304と出力端子へ電流Iを分配する。つまり、入力CLKの周期をtCK、DLL回路内の可変ディレイ素子304の数をX段とすると、DLL回路は、可変ディレイ素子304のディレイがtCK/Xとなるような制御電流を出力するようになる。この電流Iをあらかじめディレイ制御したい経路に挿入しておいた可変ディレイ素子に制御電流として入力することで、ディレイ制御できる。チップの動作中はDLLを常に動作させるため、電流IはPVT変動に追従し、可変ディレイ素子のディレイを一定化できる。   FIG. 3 is a configuration example of the DLLs 101 and 102. It is composed of a variable delay element 301 that controls a delay by a current, a phase comparison circuit 302, an UP / DOWN counter 303, and a DAC 304. The variable delay element is configured as shown in FIG. By inputting the clock CLK to the DLL, the phase comparison circuit 302 detects the phase difference between the clock that has passed through the variable delay element 301 and the clock that has not passed, and inputs the information to the UP / DOWN counter 303. The UP / DOWN counter 303 instructs the DAC 304 to UP (increase) and DOWN (decrease) the current I in the direction in which the phases match. The DAC 304 readjusts the amount of current based on the signal from the UP / DOWN counter, and distributes the current I to the variable delay element 304 and the output terminal. In other words, when the period of the input CLK is tCK and the number of variable delay elements 304 in the DLL circuit is X stages, the DLL circuit outputs a control current such that the delay of the variable delay element 304 is tCK / X. Become. Delay control can be performed by inputting this current I as a control current into a variable delay element that has been inserted in advance in a path where delay control is desired. Since the DLL is always operated during the operation of the chip, the current I follows the PVT variation, and the delay of the variable delay element can be made constant.

図4は、電流補間回路103の構成例である。入力電流I1、I2を制御信号SEL[2:0]の値に基づいて演算し、制御電流I3を出力する。SEL[2:0]のビットが0の時、そのビットに対応する電流I1を基準としたMOS401がONする。SEL[2:0]のビットが1の時、そのビットに対応する電流I2を基準としたMOS402がONする。また、SEL[2:0]で制御するMOSのサイズはビット毎に異なっており、ONするMOSの組み合わせで、制御電流I3の電流値を制御する。   FIG. 4 is a configuration example of the current interpolation circuit 103. The input currents I1 and I2 are calculated based on the value of the control signal SEL [2: 0], and the control current I3 is output. When the bit of SEL [2: 0] is 0, the MOS 401 based on the current I1 corresponding to that bit is turned on. When the bit of SEL [2: 0] is 1, the MOS 402 based on the current I2 corresponding to the bit is turned on. Further, the size of the MOS controlled by SEL [2: 0] differs for each bit, and the current value of the control current I3 is controlled by a combination of MOSs that are turned on.

SEL[2:0]の3ビットで制御電流I3の電流値を制御するため、I1>I2、α=(I1−I2)/2とすると、図4に示す構成の場合、
SEL=k(0≦k≦2−1)のとき、I3=I2+(7−k)α
となり、SEL[2:0]に対し、線形的に制御電流I3が小さくなっていく。なお、制御電流I3を制御するための制御信号SELのビット幅やMOSサイズは、制御したいディレイ精度等に応じて最適な値にすればよい。
In order to control the current value of the control current I3 with 3 bits of SEL [2: 0], assuming that I1> I2 and α = (I1−I2) / 2 3 , in the configuration shown in FIG.
When SEL = k (0 ≦ k ≦ 2 3 −1), I3 = I2 + (7−k) α
Thus, the control current I3 decreases linearly with respect to SEL [2: 0]. Note that the bit width and MOS size of the control signal SEL for controlling the control current I3 may be set to optimum values according to the delay accuracy to be controlled.

図5は、電流補間回路103の構成を図4に示す構成とした時の、制御電流値I3とその電流I3で制御される可変ディレイ素子のディレイを示したグラフである。制御電流I3と可変ディレイ素子のディレイの関係は、おおよそ反比例の関係にあるが、局所的には線形近似しても問題ない。つまり、図4に示す電流補正回路は、SEL[2:0]に対して線形的に電流が減少するため、SEL[2:0]と可変ディレイ素子のディレイの関係は線形的に増加することになる。   FIG. 5 is a graph showing the control current value I3 and the delay of the variable delay element controlled by the current I3 when the current interpolation circuit 103 is configured as shown in FIG. The relationship between the control current I3 and the delay of the variable delay element is approximately inversely proportional, but there is no problem even if it is linearly approximated locally. That is, in the current correction circuit shown in FIG. 4, since the current decreases linearly with respect to SEL [2: 0], the relationship between SEL [2: 0] and the delay of the variable delay element increases linearly. become.

ここで、図1の構成において、SEL[S:0]と制御するディレイ値の関係を線形にするには次のようにすればよい。SEL[S:0]の各ビットは、それぞれ
SEL[S:3]:可変ディレイ素子D1の通過段数
SEL[2:0]:可変ディレイ素子D3のディレイ値
を制御する。ここで、ディレイ素子D1のディレイ=tCK/M=Dm、ディレイ素子D3のディレイ=tCK/N=Dn、ディレイ素子D3がX段であるとする。SEL[2:0]の1ビットインクリメントすることによるディレイの刻みAは、制御電流によるディレイの変化量を線形近似すると、A=X×(Dn−Dm)/8となる。
Here, in the configuration of FIG. 1, the relationship between SEL [S: 0] and the delay value to be controlled may be made linear as follows. Each bit of SEL [S: 0] controls the delay value of SEL [S: 3]: the number of passing stages of variable delay element D1 SEL [2: 0]: variable delay element D3. Here, it is assumed that the delay of the delay element D1 = tCK / M = Dm, the delay of the delay element D3 = tCK / N = Dn, and the delay element D3 is in the X stage. The increment A of the delay by incrementing 1 bit of SEL [2: 0] is A = X × (Dn−Dm) / 8 when linearly approximating the amount of change in the delay due to the control current.

ここで、SEL=7の状態から1ビット増加したとすると、
SEL[2:0]が7から0となり、制御電流I3は7α増加し、ディレイ素子D3により制御されるディレイの減少量Bは、B=7A=7X×(Dn−Dm)/8となる。一方、SEL[S:3]が1ビット増加することによりディレイ素子D3が一段増加することによるディレイの増加量Cは、C=Dmとなる。ここで、SEL=7の状態から1ビット増加したときのディレイがSEL[2:0]を1ビット増加させたときのディレイと等しければ、SEL[S:0]全体としてディレイを線形に保つことができる。すなわち、C−B=Aの関係を満たせばよい。
Here, if 1 bit is increased from the state of SEL = 7,
SEL [2: 0] is changed from 7 to 0, the control current I3 is increased by 7α, and the delay reduction amount B controlled by the delay element D3 is B = 7A = 7X × (Dn−Dm) / 8. On the other hand, the increase amount C of the delay due to the increase of the delay element D3 by one step due to the increase of SEL [S: 3] by 1 bit is C = Dm. Here, if the delay when 1 bit is increased from the state of SEL = 7 is equal to the delay when SEL [2: 0] is increased by 1 bit, the delay is kept linear as a whole for SEL [S: 0]. Can do. That is, the relationship of C−B = A may be satisfied.

よって、Dm−(7X×(Dn−Dm)/8)=(X×(Dn−Dm)/8)
これを変形すると、Dm=X×(Dn−Dm)
ここで、Dm=tCK/M、Dn=tCK/Nであるから、X=N/(M−N)となる。X,M,Nが整数となるようにその値を決めればよい。この場合、ディレイ調整精度Zは、電流補間回路103の補間点数をP(図4に示す電流補間回路の構成だと8)とすると、Z=(tCK/M)/Pとなる。なお、上記のような所定の関係を満たす限り、tCK、M、N、P、Sの数は、様々な組み合わせが考えられる。制御の利便性や制御したいディレイ精度、ディレイの絶対値等を考慮し、装置に最適な値を適用すればよい。
Therefore, Dm− (7X × (Dn−Dm) / 8) = (X × (Dn−Dm) / 8)
When this is transformed, Dm = X × (Dn−Dm)
Here, since Dm = tCK / M and Dn = tCK / N, X = N / (MN). The values may be determined so that X, M, and N are integers. In this case, the delay adjustment accuracy Z is Z = (tCK / M) / P, where P is the number of interpolation points of the current interpolation circuit 103 (8 in the configuration of the current interpolation circuit shown in FIG. 4). Note that various combinations of the numbers of tCK, M, N, P, and S are possible as long as the above-described predetermined relationship is satisfied. Considering the convenience of control, the delay accuracy to be controlled, the absolute value of the delay, etc., the optimum value may be applied to the apparatus.

図6は、tCK=1500ps、M=16、N=12、P=8、図1のI3で制御される可変ディレイ素子105の段数を3段とした時の制御ディレイ計算例である。図1のSEL[S:0]の下位3ビットを電流補間回路103へ、その他の上位ビットを可変ディレイ素子104の通過段数の切り替えに割り当てることにより、SEL[S:0]と制御するディレイ値の関係を線形とすることができる。ディレイ調整精度Zは、Z=(1500/16)/(7+1)=11.71875ps≒11.72psとなる。   6 is an example of control delay calculation when tCK = 1500 ps, M = 16, N = 12, P = 8, and the number of stages of the variable delay element 105 controlled by I3 in FIG. 1 is three. A delay value for controlling SEL [S: 0] by assigning the lower 3 bits of SEL [S: 0] in FIG. 1 to the current interpolation circuit 103 and assigning the other upper bits to the switching of the number of passing stages of the variable delay element 104. Can be linear. The delay adjustment accuracy Z is Z = (1500/16) / (7 + 1) = 11.771875 ps≈11.72 ps.

なお、本発明の趣旨を逸脱しない限り、さまざまな変形が可能である。例えば、SEL[S:0]は電流補間回路103とセレクタ106を制御しているが、それぞれこれらの回路はそれぞれ別の制御信号によって制御されることも可能である。   Various modifications can be made without departing from the spirit of the present invention. For example, SEL [S: 0] controls the current interpolation circuit 103 and the selector 106, but these circuits can be controlled by different control signals.

101…DLL(Delay Locked Loop)、102…DLL(Delay Locked Loop)、103…電流補間回路、104…可変ディレイ素子、105…可変ディレイ素子、106…段数切り替え用セレクタ、301…可変ディレイ素子、302…位相比較回路、303…UP/DOWNカウンタ、304…DAC、401…MOSスイッチ、402…MOSスイッチ。 DESCRIPTION OF SYMBOLS 101 ... DLL (Delay Locked Loop), 102 ... DLL (Delay Locked Loop), 103 ... Current interpolation circuit, 104 ... Variable delay element, 105 ... Variable delay element, 106 ... Selector for number of stages switching, 301 ... Variable delay element, 302 ... Phase comparison circuit, 303 ... UP / DOWN counter, 304 ... DAC, 401 ... MOS switch, 402 ... MOS switch.

Claims (5)

第1制御電流を出力する第1DLLと、
第2制御電流を出力する第2DLLと、
上記第1制御電流により制御される複数の第1可変ディレイ素子と、
第1制御信号に基づき、上記複数の第1可変ディレイ素子の段数切り替えを行うセレクタと、
第2制御信号に基づき、上記第1制御電流の電流値と上記第2制御電流の電流値とを補間する第3制御電流を出力する電流補間回路と、
上記第3制御電流により制御される複数の第2可変ディレイ素子とを有し、
入力された信号を、上記第1制御信号に基づく段数の上記第1可変ディレイ素子及び上記第2制御信号に基づく上記第3制御電流により制御される上記複数の第2可変ディレイ素子で遅延して出力する半導体集積回路。
A first DLL that outputs a first control current;
A second DLL that outputs a second control current;
A plurality of first variable delay elements controlled by the first control current;
A selector for switching the number of stages of the plurality of first variable delay elements based on a first control signal;
A current interpolation circuit for outputting a third control current for interpolating between the current value of the first control current and the current value of the second control current based on a second control signal;
A plurality of second variable delay elements controlled by the third control current,
The input signal is delayed by the first variable delay element having the number of stages based on the first control signal and the plurality of second variable delay elements controlled by the third control current based on the second control signal. Output semiconductor integrated circuit.
請求項1において、
周期tCKの基準クロックが入力され、
上記第1DLLはM段の可変ディレイ素子を含み、上記第1制御電流は可変ディレイ素子のディレイが(tCK/M)となる制御電流であり、
上記第2DLLはN段の可変ディレイ素子を含み、上記第2制御電流は可変ディレイ素子のディレイが(tCK/N)となる制御電流であり、
N<Mの関係を満たす半導体集積回路。
In claim 1,
A reference clock with a period tCK is input,
The first DLL includes M stages of variable delay elements, and the first control current is a control current at which the delay of the variable delay elements is (tCK / M).
The second DLL includes an N-stage variable delay element, and the second control current is a control current at which the delay of the variable delay element is (tCK / N).
A semiconductor integrated circuit satisfying a relationship of N <M.
請求項2において、
上記第2可変ディレイ素子はX段であり、
X=N/(M−N)を満たす整数である半導体集積回路。
In claim 2,
The second variable delay element has X stages,
A semiconductor integrated circuit which is an integer satisfying X = N / (MN).
請求項1において、
上記第1制御信号及び上記第2制御信号は、一つの制御信号の上位ビット、下位ビットとして与えられる半導体集積回路。
In claim 1,
The semiconductor integrated circuit, wherein the first control signal and the second control signal are given as upper bits and lower bits of one control signal.
請求項1において、
上記第1可変ディレイ素子及び上記第2可変ディレイ素子は同じ回路構成を有する半導体集積回路。
In claim 1,
The first variable delay element and the second variable delay element are semiconductor integrated circuits having the same circuit configuration.
JP2009231106A 2009-10-05 2009-10-05 Semiconductor integrated circuit Expired - Fee Related JP5241670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231106A JP5241670B2 (en) 2009-10-05 2009-10-05 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231106A JP5241670B2 (en) 2009-10-05 2009-10-05 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JP2011082639A true JP2011082639A (en) 2011-04-21
JP5241670B2 JP5241670B2 (en) 2013-07-17

Family

ID=44076273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231106A Expired - Fee Related JP5241670B2 (en) 2009-10-05 2009-10-05 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP5241670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046321A (en) * 2011-08-26 2013-03-04 Hitachi Ltd Delay circuit, dll circuit, and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159815A (en) * 1988-12-13 1990-06-20 Sony Corp Variable delay device
JPH0854957A (en) * 1994-08-12 1996-02-27 Hitachi Ltd Clock distribution system
JPH0918305A (en) * 1995-06-26 1997-01-17 Ando Electric Co Ltd Delay circuit
JP2006018654A (en) * 2004-07-02 2006-01-19 Ricoh Co Ltd Printer, printing method, printing program and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159815A (en) * 1988-12-13 1990-06-20 Sony Corp Variable delay device
JPH0854957A (en) * 1994-08-12 1996-02-27 Hitachi Ltd Clock distribution system
JPH0918305A (en) * 1995-06-26 1997-01-17 Ando Electric Co Ltd Delay circuit
JP2006018654A (en) * 2004-07-02 2006-01-19 Ricoh Co Ltd Printer, printing method, printing program and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046321A (en) * 2011-08-26 2013-03-04 Hitachi Ltd Delay circuit, dll circuit, and semiconductor device
US8710890B2 (en) 2011-08-26 2014-04-29 Hitachi, Ltd. Variable delay line for delay locked loop

Also Published As

Publication number Publication date
JP5241670B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
US10158352B2 (en) Delay signal generating apparatus using glitch free digitally controlled delay line and associated delay signal generating method
US7443219B2 (en) Phase interpolation apparatus, systems, and methods
US7224199B1 (en) Circuit and method for digital delay and circuits incorporating the same
US5489864A (en) Delay interpolation circuitry
US7298195B2 (en) Methods and apparatus for improved phase switching and linearity in an analog phase interpolator
US6486716B1 (en) Phase compensation circuit
US8154330B2 (en) Delay line calibration mechanism and related multi-clock signal generator
US7525364B2 (en) Delay control circuit
JP3575430B2 (en) Two-stage variable length delay circuit
US20110102029A1 (en) Delay lines, methods for delaying a signal, and delay lock loops
KR20090040725A (en) Linear digital phase interpolator and semi-digital delay locked loop including the same
US7825712B2 (en) Multi-phase clock signal generating circuit having improved phase difference and a controlling method thereof
WO1999007070A1 (en) Circuitry for the delay adjustment of a clock signal
US8427211B2 (en) Clock generation circuit and delay locked loop using the same
JP6783535B2 (en) Clock correction device and clock correction method
KR20080076615A (en) Delay locked loop and clock delay method controlling delay time using shifter and adder
US9577622B2 (en) Phase interpolator
CN108134605B (en) Phase interpolator and device comprising a phase interpolator
US6281728B1 (en) Delay locked loop circuit
JP5241670B2 (en) Semiconductor integrated circuit
US9379881B1 (en) Phase interpolator circuit, clock data recovery circuit including the same, and phase interpolation method
JP2007228145A (en) Semiconductor integrated circuit
JP2008172574A (en) Clock phase shift circuit
US6975260B1 (en) Geometric D/A converter for a delay-locked loop
US9537475B1 (en) Phase interpolator device using dynamic stop and phase code update and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees