JP2011082252A - Three-dimensional semiconductor device and method for cooling the same - Google Patents

Three-dimensional semiconductor device and method for cooling the same Download PDF

Info

Publication number
JP2011082252A
JP2011082252A JP2009231431A JP2009231431A JP2011082252A JP 2011082252 A JP2011082252 A JP 2011082252A JP 2009231431 A JP2009231431 A JP 2009231431A JP 2009231431 A JP2009231431 A JP 2009231431A JP 2011082252 A JP2011082252 A JP 2011082252A
Authority
JP
Japan
Prior art keywords
electrodes
semiconductor device
wiring
electrode
dimensional semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009231431A
Other languages
Japanese (ja)
Other versions
JP5347886B2 (en
Inventor
Takashi Masako
隆志 眞子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009231431A priority Critical patent/JP5347886B2/en
Publication of JP2011082252A publication Critical patent/JP2011082252A/en
Application granted granted Critical
Publication of JP5347886B2 publication Critical patent/JP5347886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional semiconductor device efficiently cooling a hot spot in a three-dimensional circuit by reducing or removing a limitation to a circuit design. <P>SOLUTION: The three-dimensional semiconductor device is formed by laminating a plurality of semiconductor chips 1 each having through-electrodes penetrating through chips. The three-dimensional semiconductor device includes first and second through-electrodes (4 and 5) composed of first and second materials of different kinds as the through-electrodes. The three-dimensional semiconductor device includes first and second surface wiring being electrically connected to the first and second through-electrodes respectively, consisting of the materials of the same kinds as the first and second through-electrodes respectively, being arranged on the circuit surfaces of the chips and being connected on the circuit surfaces. In the semiconductor device, a Peltier endothermic phenomenon is conducted on junctions (2) among the first surface wiring and the second surface wiring on the circuit surfaces by letting a current flow along the first through-electrodes, the first surface wiring, the second surface wiring, and the second through-electrodes. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体装置に関し、特に、複数の半導体集積回路(半導体チップ)を積層して構成される3次元半導体装置の冷却に好適な方法と装置に関する。   The present invention relates to a semiconductor device, and more particularly, to a method and apparatus suitable for cooling a three-dimensional semiconductor device configured by stacking a plurality of semiconductor integrated circuits (semiconductor chips).

プロセスの微細化による半導体集積回路(LSI)の高機能化、高集積化の進展に行き詰まりが見える中で、複数のLSIチップを積層することにより、集積度や高速性の向上を図る試みが多く為されている。   There are many attempts to improve the degree of integration and high speed by stacking multiple LSI chips amidst the impediments to advanced functions and integration of semiconductor integrated circuits (LSIs) due to process miniaturization. It has been done.

例えば特許文献1(特開平11−261001号公報)、特許文献2(特開2001−189419号公報)、特許文献3(特開2001−250913号公報)等には、積層された半導体チップ間の電気的接続のために、半導体チップを貫通し、半導体基板そのものとは絶縁されている配線、いわゆる貫通電極(TSV: through silicon via:シリコン貫通ビア)を用いた3次元集積回路が開示されている。貫通電極(TSV)は、シリコンウェハ等の半導体基板に貫通孔を開け、貫通孔に例えばCu等の金属を充填しさらにチップ回路面の配線パターンに接続し、チップを積層するために、上段のチップの貫通電極と下段の貫通電極をバンプで接続し、垂直方向に積層可能としている。なお、特許文献1乃至3には、半導体チップに対して如何にして貫通電極を設けるか、チップ同士を積層する際に確実な電気的な接続をどのようにしてとるか、積層したチップ同士をどのように接着固定するか等について解決策がそれぞれ提案されている。   For example, Patent Document 1 (Japanese Patent Laid-Open No. 11-261001), Patent Document 2 (Japanese Patent Laid-Open No. 2001-189419), Patent Document 3 (Japanese Patent Laid-Open No. 2001-250913), etc. For electrical connection, a three-dimensional integrated circuit using a wiring that penetrates a semiconductor chip and is insulated from the semiconductor substrate itself, a so-called through-silicon via (TSV) is disclosed. . The through electrode (TSV) is formed by forming a through hole in a semiconductor substrate such as a silicon wafer, filling the through hole with a metal such as Cu, and connecting it to a wiring pattern on the chip circuit surface. The chip through electrode and the lower through electrode are connected by a bump so that they can be stacked vertically. In Patent Documents 1 to 3, how to provide a through electrode to a semiconductor chip, how to make a reliable electrical connection when stacking chips, and how to stack stacked chips Solutions have been proposed for how to fix them.

特開平11−261001号公報Japanese Patent Laid-Open No. 11-261001 特開2001−189419号公報JP 2001-189419 A 特開2001−250913号公報JP 2001-250913 A 特開平03−214653号公報Japanese Patent Laid-Open No. 03-214653 特開平09−064255号公報Japanese Patent Laid-Open No. 09-064255 特開2008−244370号公報JP 2008-244370 A 特開2005−259810号公報JP 2005-259810 A 特開2006−108631号公報JP 2006-108631 A

以下に本発明による関連技術の分析を与える。3次元集積回路を実用化するための課題の一つに、積層される半導体チップからの発熱の問題がある。特に、多バス、短距離接続による動作の高速化が、3次元化の最大のメリットと考えられるハイエンドLSIなどにおいては、効果的な放熱手法の確立が3次元集積回路化の必須要件となっている。現状では、放熱のためのTSV(放熱ビア)を多数配置することにより、求められる放熱性能を確保することが検討されている。しかしながら、このような放熱ビアが必ずしもデバイスの発熱極大点(ホットスポット)近傍に配置できる保証はないことから、回路設計に放熱設計をも加えた複雑なデバイス設計を行わなければならない。このため、3次元集積回路素子の設計自由度を著しく減少させている。   The following is an analysis of the related art according to the present invention. One of the problems for putting a three-dimensional integrated circuit into practical use is a problem of heat generation from stacked semiconductor chips. In particular, in high-end LSIs where high-speed operation by multiple buses and short-distance connections is considered to be the greatest merit of three-dimensionalization, the establishment of an effective heat dissipation technique is an essential requirement for three-dimensional integrated circuit integration. Yes. At present, it is considered to secure required heat dissipation performance by arranging a large number of TSVs (heat dissipation vias) for heat dissipation. However, since there is no guarantee that such heat radiation vias can be disposed in the vicinity of the heat generation maximum point (hot spot) of the device, a complicated device design in which a heat radiation design is added to the circuit design must be performed. For this reason, the design freedom of the three-dimensional integrated circuit element is significantly reduced.

したがって、本発明の目的は、回路設計に大きな制限を加えることなく3次元回路内のホットスポットを効率的に冷却可能とする装置と方法を提供することにある。   Accordingly, it is an object of the present invention to provide an apparatus and method that can efficiently cool hot spots in a three-dimensional circuit without greatly restricting circuit design.

本願で開示される発明は前記課題を解決するため、概略以下のように構成される。   In order to solve the above problems, the invention disclosed in the present application is generally configured as follows.

本発明によれば、それぞれがチップを貫通する貫通電極を有する複数の半導体チップを積層してなる3次元半導体装置であって、前記半導体チップは、前記貫通電極として、異種の第1、第2の材料でそれぞれ構成された第1、第2の貫通電極を備え、前記第1、第2の貫通電極とそれぞれ電気的に接続され、前記第1、第2の貫通電極とそれぞれ同一又は同種の材料からなり、前記半導体チップの回路面上に配置され、前記回路面上で接続された第1、第2の表面配線を有し、前記第1の貫通電極側から前記第1の表面配線、前記第2の表面配線を介して前記第2の貫通電極に沿って電流を流すことにより、前記回路面上の前記第1の表面配線と前記第2の表面配線の接合部でペルチェ吸熱が行われる3次元半導体装置が提供される。   According to the present invention, there is provided a three-dimensional semiconductor device in which a plurality of semiconductor chips each having a through electrode penetrating a chip are stacked, wherein the semiconductor chip is used as the first through second electrodes as the through electrodes. First and second through electrodes each made of the same material, and electrically connected to the first and second through electrodes, respectively, and the same or the same kind as the first and second through electrodes, respectively. Made of a material, disposed on the circuit surface of the semiconductor chip, and having first and second surface wirings connected on the circuit surface, the first surface wiring from the first through electrode side; Peltier heat absorption is performed at the junction between the first surface wiring and the second surface wiring on the circuit surface by passing a current along the second through electrode through the second surface wiring. A three-dimensional semiconductor device is provided.

本発明によれば、チップを貫通する貫通電極を有する複数の半導体チップを積層してなる3次元半導体装置の冷却方法であって、
前記貫通電極として、異種の第1、第2の材料でそれぞれ構成された第1、第2の貫通電極を設け、
前記第1、第2の貫通電極とそれぞれ電気的に接続され、前記第1、第2の貫通電極とそれぞれ同一又は同種の材料からなり、前記半導体チップの回路面上に配置され第1、第2の表面配線を前記回路面上で接続し、
前記第1の貫通電極側から前記第1の表面配線、前記第2の表面配線を介して前記第2の貫通電極に沿って電流を流すことにより、前記回路面上の前記第1の表面配線と前記第2の表面配線の接合部でペルチェ吸熱が行われる、3次元半導体装置の冷却方法が提供される。
According to the present invention, there is provided a cooling method for a three-dimensional semiconductor device in which a plurality of semiconductor chips having through electrodes penetrating a chip are stacked,
As the through electrode, there are provided first and second through electrodes made of different first and second materials,
The first and second through electrodes are electrically connected to each other, are made of the same or the same material as the first and second through electrodes, and are disposed on the circuit surface of the semiconductor chip. 2 surface wirings are connected on the circuit surface,
The first surface wiring on the circuit surface is caused to flow along the second through electrode from the first through electrode side through the first surface wiring and the second surface wiring. And a method for cooling a three-dimensional semiconductor device, in which Peltier heat absorption is performed at the junction of the second surface wiring.

本発明によれば、回路設計に大きな制限を加えることなく3次元回路内のホットスポットを効率的に冷却することができる。   According to the present invention, hot spots in a three-dimensional circuit can be efficiently cooled without greatly restricting circuit design.

本発明の一実施形態の構成を示す図である。It is a figure which shows the structure of one Embodiment of this invention. 本発明の一実施形態のチップ冷却効果を示す図である。It is a figure which shows the chip | tip cooling effect of one Embodiment of this invention.

本発明の実施形態について説明する。本発明は、チップを貫通する貫通電極を有する複数の半導体チップを積層してなる3次元半導体装置において、貫通電極と、該貫通電極に直接接続されたチップ回路面上の表面配線の組を、熱電能(ゼーベック係数)の差の大きな2種類の材料で作成し、それら2種類の表面配線の接合部に電流を流したときに起こるペルチェ吸熱により、半導体チップ内のホットスポットが直接冷却するできることを見出して創案されたものである。ペルチェ吸熱は、異種の材料の接合部のみで起こる。このため、この接合部を半導体チップ内のホットスポット直上に配置するならば、該接合部に接続されるTSV自体の位置は、該接合部から離して配置することが出来る。これにより、回路設計に大きな制限を加えることなく、半導体チップの面内の任意の位置を冷却することが出来る。   An embodiment of the present invention will be described. The present invention provides a three-dimensional semiconductor device in which a plurality of semiconductor chips each having a through electrode penetrating a chip are stacked, and a set of a through electrode and a surface wiring on a chip circuit surface directly connected to the through electrode, A hot spot in a semiconductor chip can be directly cooled by Peltier heat absorption that occurs when two types of materials with large differences in thermoelectric power (Seebeck coefficient) are applied and current flows through the junction of the two types of surface wiring. It was created by finding Peltier heat absorption occurs only at the junction of dissimilar materials. For this reason, if this junction is arranged immediately above the hot spot in the semiconductor chip, the position of the TSV itself connected to the junction can be arranged away from the junction. As a result, it is possible to cool an arbitrary position in the surface of the semiconductor chip without greatly restricting the circuit design.

ここで、上記した本発明と、関連技術との相違点について説明しておく。半導体素子冷却にペルチェ効果あるいはペルチェ素子を用いる試みは、例えば特許文献4(特開平03−214653号公報)、特許文献5(特開平09−064255号公報)等に開示されている。しかしながら、これら特許文献4、5等に記載されて構成は、半導体素子基板の裏面にペルチェ素子を設けているため、複数の半導体チップを積層した3次元LSIには適用することが出来ない。また、本発明のように、チップ内のホットスポットを狙って冷却することも出来ない。   Here, the difference between the present invention described above and the related art will be described. Attempts to use the Peltier effect or the Peltier element for cooling the semiconductor element are disclosed in, for example, Japanese Patent Application Laid-Open No. 03-214653, Japanese Patent Application Laid-Open No. 09-064255, and the like. However, the configurations described in Patent Documents 4 and 5 and the like cannot be applied to a three-dimensional LSI in which a plurality of semiconductor chips are stacked because a Peltier element is provided on the back surface of a semiconductor element substrate. In addition, unlike the present invention, it is not possible to cool by aiming at a hot spot in the chip.

また、特許文献6(特開2008−244370号公報)、特許文献7(特開2005−259810号公報)には、半導体素子基板自体をペルチェ素子として用いる技術が開示されているが、基板であるSiの熱電性能が低いために、放熱能力はそれほど高く出来ない。   Further, Patent Document 6 (Japanese Patent Laid-Open No. 2008-244370) and Patent Document 7 (Japanese Patent Laid-Open No. 2005-259810) disclose a technique of using a semiconductor element substrate itself as a Peltier element. Since the thermoelectric performance of Si is low, the heat dissipation capability cannot be so high.

さらに、特許文献8(特開2006−108631号公報)には、柱状構造のCPP(Current Perpendicular to Plain)配線部分を異種材料界面を持つ熱電材料で作成することにより、デバイス冷却を行う構成が開示されているが、ペルチェ吸熱が起こる接合部(異種材料界面)を、CPP配線内部に設ける構造のため、デバイス中の任意の位置を冷却することはできない。以下、本発明の実施の形態を具体的に説明する。   Further, Patent Document 8 (Japanese Patent Laid-Open No. 2006-108631) discloses a configuration in which device cooling is performed by forming a CPP (Current Perpendicular to Plain) wiring portion having a columnar structure with a thermoelectric material having a heterogeneous material interface. However, due to the structure in which the junction (dissimilar material interface) where Peltier heat absorption occurs is provided inside the CPP wiring, it is not possible to cool any position in the device. Hereinafter, embodiments of the present invention will be specifically described.

図1は、本発明の一実施形態を説明する図である。半導体チップ1を貫通する貫通電極(TSV)は上下チップ間で接続され、複数の半導体チップ1を張り合わせて積層した3次元半導体装置が構成されている。貫通電極(TSV)4、5はそれぞれp型、n型熱電材料からなる。異種の熱電材料の接合部で吸収される熱の量は、接合される2種の熱電材料のゼーベック係数の差に比例するため、n型(ゼーベック係数が負)の熱電材料と、p型(ゼーベック係数が正)の熱電材料とを組み合わせることが効果的である。接合部2を、n型熱電材料からp型熱電材料の向きに電流が流れるときに、接合部2で吸熱が起こるため、積層されたチップ表面(回路面)の所望の位置に接合部2を配置することで、積層体内部で局所的に発生する熱を吸収することが出来る。   FIG. 1 is a diagram for explaining an embodiment of the present invention. A through-electrode (TSV) penetrating the semiconductor chip 1 is connected between the upper and lower chips, and a three-dimensional semiconductor device is configured in which a plurality of semiconductor chips 1 are laminated together. The through electrodes (TSV) 4 and 5 are made of p-type and n-type thermoelectric materials, respectively. The amount of heat absorbed at the junction of different types of thermoelectric materials is proportional to the difference between the Seebeck coefficients of the two types of thermoelectric materials to be joined, so that the n-type (negative Seebeck coefficient) thermoelectric material and the p-type ( It is effective to combine with a thermoelectric material having a positive Seebeck coefficient. When current flows from the n-type thermoelectric material to the p-type thermoelectric material, heat is absorbed at the junction 2, so the junction 2 is placed at a desired position on the stacked chip surface (circuit surface). By disposing, heat generated locally within the laminate can be absorbed.

p型、n型熱電材料からなる貫通電極(TSV)4、5をチップの回路面上で銅等の配線で接続しπ型構造のペルチェ素子を構成とした場合と相違して、本実施形態によれば、貫通電極(TSV)4、5とそれぞれ電気的に接続されたp型、n型熱電材料からなる表面配線を備え、これらをチップの回路面上で接続したことにより、例えば回路設計の都合で、貫通電極(TSV)4、5が相当離間して配置される場合であても、チップ回路面上の接合部2で局所的にペルチェ吸熱が行われ、積層体内部で局所的に発生する熱を吸収することが出来る。貫通電極(TSV)4、5をチップの回路面上で銅等の配線で接続してπ型構造とした場合、吸熱は銅等の配線全体に亘り、貫通電極(TSV)4、5の間隔が広がる場合、局所的に吸熱を行うことはできない。   Unlike the case where through electrodes (TSV) 4 and 5 made of p-type and n-type thermoelectric materials are connected by wiring such as copper on the circuit surface of the chip to form a Peltier element having a π-type structure, this embodiment According to the present invention, it is possible to provide surface wiring made of p-type and n-type thermoelectric materials electrically connected to the through-electrodes (TSV) 4 and 5, respectively, and connect them on the circuit surface of the chip. Even if the through-electrodes (TSV) 4 and 5 are arranged at a considerable distance, Peltier heat absorption is performed locally at the joint 2 on the chip circuit surface, and locally inside the laminate. The generated heat can be absorbed. When the through electrodes (TSV) 4 and 5 are connected to each other by wiring such as copper on the circuit surface of the chip to form a π-type structure, the heat absorption is spread over the entire wiring such as copper and the interval between the through electrodes (TSV) 4 and 5. In the case of spreading, heat cannot be absorbed locally.

また図1に示すように、貫通電極(TSV)5を構成するn型熱電材料、接合部2、貫通電極(TSV)4を構成するp型熱電材料の組を、複数段直列につなぐことも可能である。この場合、チップ裏面の接合部3では、電流がp型熱電材料からn型熱電材料の向きに流れるため、ペルチェ発熱が起こる。しかしながら、この発熱は、積層されたチップの最外層での発熱であるため、積層体内部での発熱に比べて、放熱は容易である。   In addition, as shown in FIG. 1, a combination of an n-type thermoelectric material constituting the through electrode (TSV) 5, a junction portion 2, and a p-type thermoelectric material constituting the through electrode (TSV) 4 may be connected in series. Is possible. In this case, the current flows from the p-type thermoelectric material to the n-type thermoelectric material at the junction 3 on the back surface of the chip, so that Peltier heat generation occurs. However, since this heat generation is heat generation in the outermost layer of the stacked chips, heat dissipation is easier than heat generation in the stacked body.

本実施形態では、積層された複数の半導体チップ1の最下段の半導体チップ1のチップ裏面において、貫通電極(TSV)4、5とそれぞれ電気的に接続されたp型、n型熱電材料からなる表面配線を備え、これらをチップ裏面で接続しているが、チップ裏面側の貫通電極(TSV)4、5を銅等の配線で接続しπ型構造のペルチェ素子を構成してもよい。   In the present embodiment, it is made of p-type and n-type thermoelectric materials electrically connected to the through-electrodes (TSV) 4 and 5 on the chip back surface of the lowermost semiconductor chip 1 of the plurality of stacked semiconductor chips 1. Although front surface wiring is provided and these are connected on the back surface of the chip, through electrodes (TSV) 4 and 5 on the back surface side of the chip may be connected by wiring such as copper to form a Peltier element having a π-type structure.

なお、図1では、3次元半導体装置を構成する複数の半導体チップ1のn型熱電材料の貫通電極(TSV)4、接合部2、p型熱電材料の貫通電極(TSV)5、接合部3、n型熱電材料の貫通電極(TSV)4・・・というように、全ての貫通電極、接合部を直列接続し(数珠繋ぎ)、チップ裏面側の貫通電極(TSV)4から電流を供給する構成が示されているが、3次元半導体装置を構成する複数の半導体チップ1のn型熱電材料の貫通電極(TSV)4、接合部2、p型熱電材料の貫通電極(TSV)5の一部の組で直列回路を構成、他の組では別の直列回路を構成するようにしてもよい。   In FIG. 1, the n-type thermoelectric material through electrode (TSV) 4, the junction 2, the p-type thermoelectric material through electrode (TSV) 5, and the junction 3 of the plurality of semiconductor chips 1 constituting the three-dimensional semiconductor device. , N-type thermoelectric material penetrating electrodes (TSV) 4..., All penetrating electrodes and junctions are connected in series (connected together), and current is supplied from the penetrating electrodes (TSV) 4 on the back side of the chip. Is shown, but a part of the n-type thermoelectric material penetration electrode (TSV) 4, the junction 2, and the p-type thermoelectric material penetration electrode (TSV) 5 of the plurality of semiconductor chips 1 constituting the three-dimensional semiconductor device. A series circuit may be configured with one set, and another series circuit may be configured with another set.

熱電材料の性能を示す指標としては、熱電性能指数Zが一般に用いられる。Zは次式(1)で表わされる。   As an index indicating the performance of the thermoelectric material, a thermoelectric performance index Z is generally used. Z is represented by the following formula (1).

Figure 2011082252
・・・(1)
Figure 2011082252
... (1)

ただし、Sはゼーベック係数(V/K)、σは導電率(1/Ω/m)、κは熱伝導率(W/mK)である(括弧内の次元において、Vは電圧、KはKelvin(温度)、Ωは抵抗、mはmeter、WはWattを表す)。   Where S is the Seebeck coefficient (V / K), σ is the conductivity (1 / Ω / m), and κ is the thermal conductivity (W / mK) (in the dimensions in parentheses, V is voltage, K is Kelvin) (Temperature), Ω is resistance, m is meter, and W is Watt).

熱電材料を、温度差から電力を取り出す熱電変換システムに用いる場合や、低温部から高温部に熱を輸送する熱電冷却システムに用いる場合には、性能指数Zと、動作温度T(絶対温度)の積である無次元量ZTが、システムの効率を決定する。このため、ZTの高い材料を用いることが高効率なシステム構築の鍵となる。   When the thermoelectric material is used in a thermoelectric conversion system that extracts power from a temperature difference or in a thermoelectric cooling system that transports heat from a low temperature part to a high temperature part, the figure of merit Z and the operating temperature T (absolute temperature) The product, the dimensionless quantity ZT, determines the efficiency of the system. For this reason, the use of a material having a high ZT is the key to constructing a highly efficient system.

熱電変換システムの場合、高温部から熱を取り出し、そのエネルギーの一部を電気に変換して、残りを低温部に捨てることで動作する。高温部から単位時間に取り出される熱量Qと、取り出される電力Pの比ηは次式(2)で与えられる。   In the case of a thermoelectric conversion system, heat is extracted from a high temperature part, a part of the energy is converted into electricity, and the rest is discarded to a low temperature part. The ratio η between the amount of heat Q extracted from the high temperature unit per unit time and the electric power P extracted is given by the following equation (2).


Figure 2011082252
・・・(2)
Figure 2011082252
... (2)

ただし、Tは高温部の温度、Tは低温部の温度、ΔTは、低温部と高温部の温度差T−Tである。 However, the T H the temperature of the high temperature portion, the T C temperature of the low temperature portion, [Delta] T is the temperature difference T H -T C of low temperature part and the high-temperature portion.

システムの効率ηがZTという因子を通してのみ、熱電材料の材料物性に依存していることが式(2)からもわかる。   It can also be seen from equation (2) that the system efficiency η depends on the material properties of the thermoelectric material only through the factor ZT.

一方、通常の熱電冷却システムの場合、外部から電力を投入して、低温部から熱を取り出し高温部で熱を放出する。   On the other hand, in the case of a normal thermoelectric cooling system, electric power is input from the outside, heat is extracted from the low temperature portion, and heat is released at the high temperature portion.

ここで、低温部から単位時間に取り出される熱量Qと投入する電力Pとの比φは、次式(3)で与えられる。   Here, the ratio φ between the amount of heat Q taken out from the low temperature unit per unit time and the electric power P to be input is given by the following equation (3).


Figure 2011082252

・・・(3)
Figure 2011082252

... (3)

この場合も、効率φはZTのみを通して、熱電材料の材料物性に依存する。   Again, the efficiency φ depends on the material properties of the thermoelectric material only through ZT.

式(2)、(3)より、熱電変換、熱電冷却のいずれの場合でも、そのZTが無限大になる極限で、効率がカルノー機関の効率と一致する。   From Equations (2) and (3), in either case of thermoelectric conversion or thermoelectric cooling, the efficiency is equal to the efficiency of the Carnot engine at the limit where the ZT is infinite.

これらに対し、本発明の場合、熱電材料に望ましい性質は、熱電変換や熱電冷却システム用の通常の熱電材料にとって最良とされるものとは異なる。   On the other hand, in the case of the present invention, desirable properties for thermoelectric materials are different from those that are best for conventional thermoelectric materials for thermoelectric conversion and thermoelectric cooling systems.

具体的には、式(2)のZの分子に当たる出力因子(Sσ)は、通常あるいは関連技術の用途においても、本発明の用途においても、大きければ大きいほど望ましいことに変わりは無い。 Specifically, the output factor (S 2 σ) corresponding to the numerator of Z in the formula (2) is preferably as large as possible in both normal and related art applications and the present invention.

式(2)のZの分母の熱伝導率については、通常あるいは関連技術の用途では、可能な限り小さいことが望まれるのに対し、本発明の用途では、逆に大きい方が望ましいものとなる。つまり、本発明の用途においては、ZTは必ずしも良い性能指標にはならない。   As for the thermal conductivity of the denominator of Z in the formula (2), it is desired to be as small as possible in normal or related art applications, whereas in the application of the present invention, the larger one is desirable. . That is, ZT is not always a good performance index for the application of the present invention.

表1に、代表的な熱電材料の出力因子Sσ、熱伝導率κ、ZT、動作温度を示す。出力因子(Sσ)の次元はW/Kmである。 Table 1 shows output factors S 2 σ, thermal conductivity κ, ZT, and operating temperature of typical thermoelectric materials. The dimension of the output factor (S 2 σ) is W / K 2 m.

Figure 2011082252
Figure 2011082252

室温付近で利用する熱電材料としては、1を超えるZTを持つBiTeだけが実用となっているが、本発明の用途には、ホイッスラー合金
(Fe1−x(V1−y)(Al1−z
(X=Co、Pt、Y=Ti、Zr、Mo、W、Z=Si,Ge、0≦x≦0.1、0≦y≦0.2、0≦z≦0.1)も、適している。
As a thermoelectric material used near room temperature, only Bi 2 Te 3 having a ZT exceeding 1 has been put into practical use. For the use of the present invention, a Whistler alloy (Fe 1-x X x ) 2 (V 1 -y Y y) (Al 1- z Z z)
(X = Co, Pt, Y = Ti, Zr, Mo, W, Z = Si, Ge, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.1) are also suitable. ing.

ホイッスラー合金は、BiTeと同等の値の出力因子を持ちながら、熱伝導率κがBiTeよりも10倍程度高い(ホイッスラー合金の熱伝導率は10〜15W/mK)。この熱伝導率の高さのために、ホイッスラー合金のZTの値は0.2と小さく、実用性は低かった。 While the Whistler alloy has an output factor equivalent to that of Bi 2 Te 3 , the thermal conductivity κ is about 10 times higher than Bi 2 Te 3 (the thermal conductivity of the Whistler alloy is 10 to 15 W / mK). Due to the high thermal conductivity, the value of ZT of the Whistler alloy was as small as 0.2, and the practicality was low.

この点から、本発明に用いる熱電材料に好ましい物性は、ZTが大きいことではなく、出力因子Sσと熱伝導率κがともに大きいことである。この性質を持つ材料であれば、ホイッスラー合金に以外にも、本発明における、TSV材料(シリコン貫通ビアTSVの充填材料)として用いることが出来る。 From this point, a preferable physical property for the thermoelectric material used in the present invention is not that ZT is large, but that both output factor S 2 σ and thermal conductivity κ are large. Any material having this property can be used as a TSV material (filling material for a through silicon via TSV) in the present invention, in addition to a Whistler alloy.

本発明において、TSVを構成する異種材料の組としては、通常用いられるn型とp型のBiTeのように、ゼーベック係数が大きく、符号が反対の材料を用いることが好ましいが、必ずしも、その条件だけに制限されるものではない。 In the present invention, as a set of different materials constituting the TSV, it is preferable to use a material having a large Seebeck coefficient and an opposite sign, such as a commonly used n-type and p-type Bi 2 Te 3. It is not limited only to the conditions.

異種の材料の一方を、ゼーベック係数の小さな銅(Cu)にして、他方をn型のホイッスラー合金とすることも可能である。これ以外の組でも、異種の材料のゼーベック係数の差が50μV/K以上、望ましくは100μV/K以上の組み合わせであれば、本発明を構成する電極材料(貫通電極及びそれに接続される表面配線)として使用できる。   One of the different materials can be made of copper (Cu) having a small Seebeck coefficient and the other can be made of an n-type Heusler alloy. In other combinations, if the difference in Seebeck coefficient of different materials is 50 μV / K or more, preferably 100 μV / K or more, the electrode material constituting the present invention (through electrode and surface wiring connected thereto) Can be used as

図2は、本発明の一実施例の冷却効果を示す図である。図2には、チップ表面に発熱素子と温度測定用素子を作りこんだシリコンチップを積層した試験デバイスにおける、温度測定結果が示されている。図2において、横軸は冷却電流(mA)、縦軸は発熱温度(℃)である。デバイスの冷却用TSVおよび表面配線パターンは、ホイッスラー合金Fe(V0.9Mo0.1)Alと、銅の組で作成し、冷却点における電流が、ホイスラー合金から銅の方向になるようにした。 FIG. 2 is a diagram showing the cooling effect of one embodiment of the present invention. FIG. 2 shows a temperature measurement result in a test device in which a silicon chip in which a heating element and a temperature measuring element are formed is laminated on the chip surface. In FIG. 2, the horizontal axis represents the cooling current (mA), and the vertical axis represents the heat generation temperature (° C.). The cooling TSV and surface wiring pattern of the device are made of a set of Heusler alloy Fe 2 (V 0.9 Mo 0.1 ) Al and copper so that the current at the cooling point is from Heusler alloy to copper. I made it.

発熱素子に給電し、冷却用のTSVに全く電流を流さない場合(冷却電流=0)には、発熱点周辺の温度は、190℃以上まで上昇して定常状態となった。この状態で、冷却TSVに電流を流すと、電流が多くなるほど、発熱点周辺の温度は、より低下し、50mA程度の冷却電流で、発熱点の温度を80℃以下にすることが出来た。   When power was supplied to the heating element and no current was supplied to the cooling TSV (cooling current = 0), the temperature around the heating point rose to 190 ° C. or higher and became a steady state. In this state, when a current was passed through the cooling TSV, the temperature around the heating point decreased as the current increased, and the temperature at the heating point could be reduced to 80 ° C. or less with a cooling current of about 50 mA.

上記実施例で説明したように、本発明によれば、半導体集積回路内のホットスポットを局所的に効率的に冷却することが可能になり、電力消費量の大きなハイスペックLSIの3次元半導体集積化を、容易に行うことが出来るようになる。   As described in the above embodiments, according to the present invention, a hot spot in a semiconductor integrated circuit can be locally and efficiently cooled, and a three-dimensional semiconductor integrated circuit of a high-spec LSI with high power consumption. Can be easily performed.

なお、上記の特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。   It should be noted that the disclosures of the above patent documents are incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Various combinations and selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.

1 基板(チップ)
2 接合部(吸熱部)
3 接合部(放熱部)
4 貫通電極(TSV:n型熱電材料)
5 貫通電極(TSV:p型熱電材料)
1 Substrate (chip)
2 Junction (heat absorption part)
3 Junction (heat dissipation part)
4 Through electrode (TSV: n-type thermoelectric material)
5 Through electrode (TSV: p-type thermoelectric material)

Claims (16)

それぞれがチップを貫通する貫通電極を有する複数の半導体チップを積層してなる3次元半導体装置であって、
前記半導体チップは、前記貫通電極として、異種の第1、第2の材料でそれぞれ構成された第1、第2の貫通電極を備え、
前記第1、第2の貫通電極とそれぞれ電気的に接続され、前記第1、第2の貫通電極とそれぞれ同一又は同種の材料からなり、前記半導体チップの回路面上に配置され、前記回路面上で接続された第1、第2の表面配線を有し、
前記第1の貫通電極側から前記第1の表面配線、前記第2の表面配線を介して前記第2の貫通電極に沿って電流を流すことにより、前記回路面上の前記第1の表面配線と前記第2の表面配線の接合部でペルチェ吸熱が行われる、ことを特徴とする3次元半導体装置。
A three-dimensional semiconductor device formed by laminating a plurality of semiconductor chips each having a through electrode penetrating the chip,
The semiconductor chip includes first and second through electrodes made of different first and second materials as the through electrodes,
The circuit surface is electrically connected to the first and second through electrodes, is made of the same or the same material as the first and second through electrodes, and is disposed on the circuit surface of the semiconductor chip. Having first and second surface wirings connected above,
The first surface wiring on the circuit surface is caused to flow along the second through electrode from the first through electrode side through the first surface wiring and the second surface wiring. And a Peltier heat absorption at the junction of the second surface wiring.
前記第1の表面配線と前記第2の表面配線の接合部を、前記半導体チップの回路面において、前記半導体チップ内のホットスポット直上に対応する位置に配置し、前記第1の表面配線と前記第2の表面配線の接合部に接続される前記第1及び第2の貫通電極を、前記接合部から離間させた位置に配置可能としてなる、ことを特徴とする請求項1記載の3次元半導体装置。   The junction between the first surface wiring and the second surface wiring is disposed at a position corresponding to the hot spot in the semiconductor chip on the circuit surface of the semiconductor chip, and the first surface wiring and the 2. The three-dimensional semiconductor according to claim 1, wherein the first and second through electrodes connected to the joint portion of the second surface wiring can be disposed at a position separated from the joint portion. apparatus. 前記第1、第2の材料のゼーベック係数の差の絶対値が50μV/K以上である、ことを特徴とする請求項1又は2記載の3次元半導体装置。   3. The three-dimensional semiconductor device according to claim 1, wherein an absolute value of a difference between Seebeck coefficients of the first and second materials is 50 μV / K or more. 前記第1、第2の材料のうち、少なくとも1方の材料の熱伝導率が10W/mK以上である、ことを特徴とする請求項3記載の3次元半導体装置。   4. The three-dimensional semiconductor device according to claim 3, wherein the thermal conductivity of at least one of the first and second materials is 10 W / mK or more. 前記第1、第2の材料のうち、少なくとも一方の材料が、ホイッスラー合金、
(Fe1−x(V1−y)(Al1−z
(X=Co、Pt、Y=Ti、Zr、Mo、W、Z=Si、Ge、0≦x≦0.1、0≦y≦0.2、0≦z≦0.1)である、ことを特徴とする請求項4記載の3次元半導体装置。
At least one of the first and second materials is a Whistler alloy,
(Fe 1-x X x) 2 (V 1-y Y y) (Al 1-z Z z)
(X = Co, Pt, Y = Ti, Zr, Mo, W, Z = Si, Ge, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.1) The three-dimensional semiconductor device according to claim 4.
前記第1の貫通電極、前記第1の表面配線、前記第2の表面配線、前記第2の貫通電極の組を、前記複数の半導体チップに亘って、複数組、直列に接続してなる直列回路を備え、前記直列回路の一端から電流を供給する、ことを特徴とする請求項1乃至5のいずれか1項に記載の3次元半導体装置。   A series formed by connecting a plurality of sets of the first through electrode, the first surface wiring, the second surface wiring, and the second through electrode in series across the plurality of semiconductor chips. The three-dimensional semiconductor device according to claim 1, further comprising a circuit, wherein current is supplied from one end of the series circuit. 積層された前記複数の半導体チップのうち最下段の半導体チップの回路面と反対側のチップ裏面において、前記第1の貫通電極と前記第2の貫通電極が配線で接続される、ことを特徴とする請求項5記載の3次元半導体装置。   The first through electrode and the second through electrode are connected by wiring on the chip back surface opposite to the circuit surface of the lowermost semiconductor chip among the plurality of stacked semiconductor chips. The three-dimensional semiconductor device according to claim 5. 前記配線が、前記第1、第2の貫通電極とそれぞれ電気的に接続され、前記第1、第2の貫通電極とそれぞれ同一又は同種の材料からなり、前記チップ裏面に配置され、前記チップ裏面で接続された第3、第4の表面配線を有し、前記第3、第4の表面配線の接合部でペルチェ発熱が行われる、ことを特徴とする請求項7に記載の3次元半導体装置。   The wiring is electrically connected to each of the first and second through electrodes, and is made of the same or the same material as each of the first and second through electrodes, and is disposed on the back surface of the chip. 8. The three-dimensional semiconductor device according to claim 7, wherein the three-dimensional semiconductor device has third and fourth surface wirings connected to each other, and Peltier heat generation is performed at a joint portion between the third and fourth surface wirings. . それぞれがチップを貫通する貫通電極を有する複数の半導体チップを積層してなる3次元半導体装置の冷却方法であって、
前記貫通電極として、異種の第1、第2の材料でそれぞれ構成された第1、第2の貫通電極を設け、
前記第1、第2の貫通電極とそれぞれ電気的に接続され、前記第1、第2の貫通電極とそれぞれ同一又は同種の材料からなり、前記半導体チップの回路面上に配置され第1、第2の表面配線を前記回路面上で接続し、
前記第1の貫通電極側から前記第1の表面配線、前記第2の表面配線を介して前記第2の貫通電極に沿って電流を流すことにより、前記回路面上の前記第1の表面配線と前記第2の表面配線の接合部でペルチェ吸熱が行われる、ことを特徴とする3次元半導体装置の冷却方法。
A cooling method for a three-dimensional semiconductor device, in which a plurality of semiconductor chips each having a through electrode penetrating the chip are stacked,
As the through electrode, there are provided first and second through electrodes made of different first and second materials,
The first and second through electrodes are electrically connected to each other, are made of the same or the same material as the first and second through electrodes, and are disposed on the circuit surface of the semiconductor chip. 2 surface wirings are connected on the circuit surface,
The first surface wiring on the circuit surface is caused to flow along the second through electrode from the first through electrode side through the first surface wiring and the second surface wiring. And a method of cooling a three-dimensional semiconductor device, wherein Peltier heat absorption is performed at a junction between the second surface wiring and the second surface wiring.
前記第1の表面配線と前記第2の表面配線の接合部を、前記半導体チップの回路面において、前記半導体チップ内のホットスポット直上に対応する位置に配置し、前記第1の表面配線と前記第2の表面配線の接合部に接続される前記第1及び第2の貫通電極を、前記接合部から離間させた位置に配置可能としてなる、ことを特徴とする請求項9記載の3次元半導体装置の冷却方法。   The junction between the first surface wiring and the second surface wiring is disposed at a position corresponding to the hot spot in the semiconductor chip on the circuit surface of the semiconductor chip, and the first surface wiring and the The three-dimensional semiconductor according to claim 9, wherein the first and second through electrodes connected to the joint portion of the second surface wiring can be arranged at a position spaced apart from the joint portion. How to cool the device. 前記第1、第2の材料のゼーベック係数の差の絶対値が50μV/K以上である、ことを特徴とする請求項9又は10記載の3次元半導体装置の冷却方法。   The method for cooling a three-dimensional semiconductor device according to claim 9 or 10, wherein an absolute value of a difference between Seebeck coefficients of the first and second materials is 50 µV / K or more. 前記第1、第2の材料のうち少なくとも1方の材料の熱伝導率が10W/mK以上である、ことを特徴とする請求項11記載の3次元半導体装置の冷却方法。   12. The method of cooling a three-dimensional semiconductor device according to claim 11, wherein the thermal conductivity of at least one of the first and second materials is 10 W / mK or more. 第1、第2の材料のうち、少なくとも一方の材料の熱伝導率が、ホイッスラー合金、
(Fe1−x(V1−y)(Al1−z
(X=Co、Pt、Y=Ti、Zr、Mo、W、Z=Si、Ge、0≦x≦0.1、0≦y≦0.2、0≦z≦0.1)である、ことを特徴とする請求項12記載の3次元半導体装置の冷却方法。
The thermal conductivity of at least one of the first and second materials is a Whistler alloy,
(Fe 1-x X x) 2 (V 1-y Y y) (Al 1-z Z z)
(X = Co, Pt, Y = Ti, Zr, Mo, W, Z = Si, Ge, 0 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.1) The method for cooling a three-dimensional semiconductor device according to claim 12.
前記第1の貫通電極、前記第1の表面配線、前記第2の表面配線、前記第2の貫通電極の組を、前記複数の半導体チップに亘って、複数組、直列に接続して直列回路を形成し、前記直列回路の一端から電流を供給する、ことを特徴とする請求項9乃至13のいずれか1項に記載の3次元半導体装置の冷却方法。   A series circuit in which a plurality of sets of the first through electrode, the first surface wiring, the second surface wiring, and the second through electrode are connected in series across the plurality of semiconductor chips. The method for cooling a three-dimensional semiconductor device according to claim 9, wherein a current is supplied from one end of the series circuit. 積層された前記複数の半導体チップのうち最下段の半導体チップの回路面と反対側のチップ裏面において、前記第1の貫通電極と前記第2の貫通電極が配線で接続される、ことを特徴とする請求項14記載の3次元半導体装置の冷却方法。   The first through electrode and the second through electrode are connected by wiring on the chip back surface opposite to the circuit surface of the lowermost semiconductor chip among the plurality of stacked semiconductor chips. The method for cooling a three-dimensional semiconductor device according to claim 14. 前記配線を、前記第1、第2の貫通電極とそれぞれ電気的に接続され、前記第1、第2の貫通電極とそれぞれ同一又は同種の材料からなり、前記チップ裏面に配置され、前記チップ裏面で接続された第3、第4の表面配線で構成し、前記第3、第4の表面配線の接合部でペルチェ発熱が行われる、ことを特徴とする請求項15記載の3次元半導体装置の冷却方法。   The wiring is electrically connected to each of the first and second through electrodes, and is made of the same or the same material as each of the first and second through electrodes, and is disposed on the back surface of the chip. 16. The three-dimensional semiconductor device according to claim 15, wherein the Peltier heat is generated at a junction between the third and fourth surface wirings. Cooling method.
JP2009231431A 2009-10-05 2009-10-05 Three-dimensional semiconductor device and method for cooling three-dimensional semiconductor device Expired - Fee Related JP5347886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231431A JP5347886B2 (en) 2009-10-05 2009-10-05 Three-dimensional semiconductor device and method for cooling three-dimensional semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009231431A JP5347886B2 (en) 2009-10-05 2009-10-05 Three-dimensional semiconductor device and method for cooling three-dimensional semiconductor device

Publications (2)

Publication Number Publication Date
JP2011082252A true JP2011082252A (en) 2011-04-21
JP5347886B2 JP5347886B2 (en) 2013-11-20

Family

ID=44076024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231431A Expired - Fee Related JP5347886B2 (en) 2009-10-05 2009-10-05 Three-dimensional semiconductor device and method for cooling three-dimensional semiconductor device

Country Status (1)

Country Link
JP (1) JP5347886B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191753A (en) * 2012-03-14 2013-09-26 Fujitsu Ltd Semiconductor device and method for using the same
KR20150146365A (en) * 2014-06-23 2015-12-31 삼성전기주식회사 Substrate having an thermoelectric module and semiconductor package using the same
JP2017531922A (en) * 2014-10-09 2017-10-26 コンソルツィオ デルタ ティ リサーチ 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction path adjusting vias
CN112004312A (en) * 2020-09-25 2020-11-27 广州小鹏汽车科技有限公司 Printed circuit board and overcurrent upper limit adjusting method of printed circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870070A (en) * 1994-06-20 1996-03-12 Yamaha Corp Semiconductor device
JP2004342690A (en) * 2003-05-13 2004-12-02 Rohm Co Ltd Semiconductor chip, method of manufacturing the same, semiconductor device, and method of manufacturing the same
JP2004349537A (en) * 2003-05-23 2004-12-09 Renesas Technology Corp Semiconductor device
JP2008113010A (en) * 2006-10-30 2008-05-15 Samsung Electronics Co Ltd Stacked semiconductor package having vertical heat dissipating path, and its manufacturing method
JP2010205818A (en) * 2009-03-02 2010-09-16 Oki Semiconductor Co Ltd Semiconductor device
JP2011526081A (en) * 2008-06-27 2011-09-29 クゥアルコム・インコーポレイテッド Active thermal control for stacked IC devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870070A (en) * 1994-06-20 1996-03-12 Yamaha Corp Semiconductor device
JP2004342690A (en) * 2003-05-13 2004-12-02 Rohm Co Ltd Semiconductor chip, method of manufacturing the same, semiconductor device, and method of manufacturing the same
JP2004349537A (en) * 2003-05-23 2004-12-09 Renesas Technology Corp Semiconductor device
JP2008113010A (en) * 2006-10-30 2008-05-15 Samsung Electronics Co Ltd Stacked semiconductor package having vertical heat dissipating path, and its manufacturing method
JP2011526081A (en) * 2008-06-27 2011-09-29 クゥアルコム・インコーポレイテッド Active thermal control for stacked IC devices
JP2010205818A (en) * 2009-03-02 2010-09-16 Oki Semiconductor Co Ltd Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191753A (en) * 2012-03-14 2013-09-26 Fujitsu Ltd Semiconductor device and method for using the same
KR20150146365A (en) * 2014-06-23 2015-12-31 삼성전기주식회사 Substrate having an thermoelectric module and semiconductor package using the same
KR102297283B1 (en) 2014-06-23 2021-09-03 삼성전기주식회사 Substrate having an thermoelectric module and semiconductor package using the same
JP2017531922A (en) * 2014-10-09 2017-10-26 コンソルツィオ デルタ ティ リサーチ 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction path adjusting vias
CN112004312A (en) * 2020-09-25 2020-11-27 广州小鹏汽车科技有限公司 Printed circuit board and overcurrent upper limit adjusting method of printed circuit board
CN112004312B (en) * 2020-09-25 2022-03-18 广州小鹏汽车科技有限公司 Printed circuit board and overcurrent upper limit adjusting method of printed circuit board

Also Published As

Publication number Publication date
JP5347886B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
Li et al. Bismuth telluride/half‐Heusler segmented thermoelectric unicouple modules provide 12% conversion efficiency
JP4472359B2 (en) Thermoelectric device using double-sided Peltier junction and manufacturing method thereof
Zebarjadi Electronic cooling using thermoelectric devices
US7851905B2 (en) Microelectronic package and method of cooling an interconnect feature in same
US6278049B1 (en) Thermoelectric devices and methods for making the same
Adams et al. Active peltier coolers based on correlated and magnon-drag metals
TWI360901B (en) Thermoelectric device with thin film elements, app
US20100257871A1 (en) Thin film thermoelectric devices for power conversion and cooling
US20080017237A1 (en) Heat transfer and power generation device
US20090000652A1 (en) Thermoelectric Structures Including Bridging Thermoelectric Elements
JP2007095897A (en) Semiconductor device and its manufacturing method
JP5788501B2 (en) Thermoelectric element
JP2007535803A (en) Thin film thermoelectric devices for power conversion and cooling
JP2012124469A (en) Thermoelectric element and thermoelectric module
JP5347886B2 (en) Three-dimensional semiconductor device and method for cooling three-dimensional semiconductor device
CN103000799A (en) Cold end and hot end separated type thermoelectric refrigeration semiconductor technology
JP2003092435A (en) Thermoelectric module and its manufacturing method
KR102022429B1 (en) Cooling thermoelectric moudule and method of manufacturing method of the same
KR101824695B1 (en) Heat sink structure for energy harvest
CN103794581B (en) A kind of thermoelectric radiating device
WO2011162726A1 (en) Thermoelectric device and method for manufacturing a thermoelectric device
JPWO2018180131A1 (en) Thermoelectric generation cell and thermoelectric generation module
Bhatt et al. Bismuth telluride based efficient thermoelectric power generator with electrically conducive interfaces for harvesting low-temperature heat
US20140360549A1 (en) Thermoelectric Module and Method of Making Same
Bass et al. New technology for thermoelectric cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees