JP2011080134A - Ozone gas treatment method - Google Patents

Ozone gas treatment method Download PDF

Info

Publication number
JP2011080134A
JP2011080134A JP2009235417A JP2009235417A JP2011080134A JP 2011080134 A JP2011080134 A JP 2011080134A JP 2009235417 A JP2009235417 A JP 2009235417A JP 2009235417 A JP2009235417 A JP 2009235417A JP 2011080134 A JP2011080134 A JP 2011080134A
Authority
JP
Japan
Prior art keywords
ozone gas
treatment
plating
resin
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009235417A
Other languages
Japanese (ja)
Other versions
JP4870804B2 (en
Inventor
Hiroshi Yanagimoto
博 柳本
Takeshi Bessho
毅 別所
Hiroshi Morita
博志 森田
Atsushi Nemoto
篤史 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Toyota Motor Corp
Original Assignee
Kurita Water Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Toyota Motor Corp filed Critical Kurita Water Industries Ltd
Priority to JP2009235417A priority Critical patent/JP4870804B2/en
Priority to PCT/IB2010/002515 priority patent/WO2011042792A2/en
Publication of JP2011080134A publication Critical patent/JP2011080134A/en
Application granted granted Critical
Publication of JP4870804B2 publication Critical patent/JP4870804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/2033Heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone gas treatment method which can ensure the deposition of a plating metal in electroless-plating treatment, and further can impart stable adhesion strength to the deposited and plated film by treating the surface of a resin substrate with ozone gas on the optimum condition. <P>SOLUTION: This ozone gas treatment method is a method for treating the surface of the resin substrate with ozone gas by bringing the surface into contact with ozone gas, and includes: a condition-setting step of setting the conditions of a concentration D of the ozone gas, a treatment period of time t and a temperature T of the ozone gas, while using an amount I of the exposure to the ozone gas as an index, which is obtained by the following expression I=D×t×exp(-L/(273.15+T)), (wherein D is the concentration (g/Nm<SP>3</SP>) of the ozone gas; t is the treatment period of time (minute); T is the temperature (°C) of the ozone gas; and L is a temperature coefficient); an exposing step of exposing the surface of the substrate to the ozone gas according to the set condition; and a step of subjecting the exposed surface of the substrate to alkaline treatment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、オゾンガスを樹脂基材の基材表面を暴露することにより、基材表面にオゾンガス処理を行うオゾンガス処理方法に係り、特に、処理後の基材表面に対して、無電解めっき処理を好適に行うことができるオゾンガス処理方法に関する。   The present invention relates to an ozone gas treatment method in which ozone gas treatment is performed on a substrate surface by exposing ozone gas to the substrate surface of a resin substrate, and in particular, electroless plating treatment is performed on the treated substrate surface. The present invention relates to an ozone gas treatment method that can be suitably performed.

従来から、高分子樹脂からなる樹脂基材の表面(基材表面)に、導電性や光沢性を付与する方法として、無電解めっき処理が知られている。この無電解めっき処理とは、溶液中の金属イオンを化学的に基材表面に還元析出させ、この表面に金属被膜(めっき被膜)を被覆する方法である。   Conventionally, electroless plating treatment is known as a method for imparting conductivity and gloss to the surface of a resin substrate made of a polymer resin (substrate surface). The electroless plating treatment is a method in which metal ions in a solution are chemically reduced and deposited on the surface of a substrate, and a metal coating (plating coating) is coated on the surface.

このような無電解めっき処理は、化学的な還元反応を利用しているので、電力によって電解析出させる電気めっきとは異なり、一般的に電気絶縁性を有する高分子樹脂の基材表面であっても、めっき被膜を形成することができる有効な方法である。   Since such an electroless plating treatment uses a chemical reduction reaction, unlike electroplating that is electrolytically deposited by electric power, the electroless plating treatment is generally performed on the surface of a polymer resin substrate having electrical insulation. However, this is an effective method capable of forming a plating film.

また、めっき被膜が形成された基材表面は、導電性を有することになるので、さらに、電解析出を利用した電気めっきをすることもできる。そのため、自動車部品、家電製品などの分野に用いられている樹脂製の基材表面に、金属光沢を付与して意匠性をも向上させることができる。   Moreover, since the base-material surface in which the plating film was formed has electroconductivity, it can also electroplate using electrolytic deposition further. Therefore, it is possible to improve the design by imparting a metallic luster to the surface of a resin base material used in the fields of automobile parts, home appliances, and the like.

しかしながら、無電解めっき処理によって得られためっき被膜は、基材に対する付着性が十分でない場合がある。そこで、無電解めっき処理を行なう前処理として、基材表面にオゾン処理(オゾン水を用いた処理(例えば特許文献1参照)や、オゾンガスを用いた処理(例えば特許文献2、3等参照))、クロム酸処理、又は、過マンガン酸処理等を行って、基材表面を改質する処理が提案されている。これらの処理のなかでも、オゾン処理が、利用されることが多い。これは、他の処理に比べて、樹脂からなる基材表面を粗化することなく、金属めっきの付着させることができるからである。   However, the plating film obtained by the electroless plating treatment may not have sufficient adhesion to the substrate. Therefore, as a pretreatment for performing the electroless plating treatment, the substrate surface is subjected to ozone treatment (treatment using ozone water (see, for example, Patent Document 1) or treatment using ozone gas (see, for example, Patent Documents 2 and 3)). There has been proposed a treatment for modifying the surface of a substrate by performing chromic acid treatment or permanganic acid treatment. Of these treatments, ozone treatment is often used. This is because metal plating can be attached without roughening the substrate surface made of resin as compared with other treatments.

特開2004−131804号公報JP 2004-131804 A 特開昭63−250468号公報JP-A 63-250468 特開2005−113162号公報JP 2005-113162 A

しかしながら、例えば、特許文献1に示すように、基材表面にオゾン水処理を行った場合には、オゾンと水の反応により、連続的に生成するヒドロキシラジカル(・OH)により、高分子樹脂が分子レベルで断裂し続ける。これにより、基材表面及びその近傍の樹脂層の強度が低下してしまい、この結果として、めっき被膜の密着性の低下を招くことがある。   However, as shown in Patent Document 1, for example, when ozone water treatment is performed on the surface of the substrate, the polymer resin is generated by hydroxy radicals (.OH) that are continuously generated by the reaction between ozone and water. Continue to tear at the molecular level. Thereby, the intensity | strength of the base-material surface and the resin layer of the vicinity of it falls, As a result, the fall of the adhesiveness of a plating film may be caused.

この点を鑑みれば、ヒドロキシラジカル(・OH)が発生しない、例えば、特許文献2及び3に示すオゾンガス処理を行うことが有効な方法であると考えられる。しかしながら、発明者らの実験によれば、オゾンガス処理を行った場合であっても、必ずしも、安定的に、密着性の高いめっき被膜を被覆することができないことがわかった。特に、生産性を考慮した場合には、処理時間が短い方がより好ましいが、この時間短縮に伴って、めっきが析出せずめっき被膜が形成されない場合や、めっき被膜が形成されたとしても、ある処理条件ではめっき被膜の密着力(密着強度)が十分でない場合があり、常に安定しためっき被膜を、基材表面に被覆することができないことがわかった。   In view of this point, it is considered that it is an effective method to perform the ozone gas treatment described in Patent Documents 2 and 3, for example, in which hydroxy radicals (.OH) are not generated. However, according to experiments by the inventors, it has been found that even when ozone gas treatment is performed, it is not always possible to stably and stably coat a plating film with high adhesion. In particular, when considering productivity, it is more preferable that the processing time is short, but with this time reduction, even if the plating film is not formed because the plating is not deposited, even if the plating film is formed, It was found that the adhesion strength (adhesion strength) of the plating film may not be sufficient under certain treatment conditions, and a stable plating film cannot always be coated on the substrate surface.

本発明は、このような問題に鑑みてなされたものであり、その目的とするところは、樹脂基材の基材表面にオゾンガス処理を最適な条件で行うことにより、無電解めっき処理において、めっきの析出を確実なものとし、さらには析出しためっき被膜が、安定した密着強度を有することができるオゾンガス処理方法を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to perform an ozone gas treatment on a substrate surface of a resin base material under an optimal condition, thereby performing plating in an electroless plating process. It is another object of the present invention to provide an ozone gas treatment method capable of ensuring that the deposited metal film has a stable adhesion strength.

前記課題を解決すべく、発明者らは、鋭意検討を重ねた結果、まず、オゾンガス処理後の基材表面には、官能基としてC=0(カルボニル基)が主に生成されるが、このカルボニル基により、めっき液の基材への浸透が十分になされないため、C=Oを、例えばCOONaなどのカルボン酸塩に酸化すれば、樹脂内部にまで、めっき液が浸透され易くなるとの新たな知見を得た。そこで、発明者らは、その後工程として、アルカリ処理に着目した。   In order to solve the above problems, the inventors have made extensive studies. As a result, C = 0 (carbonyl group) is mainly generated as a functional group on the substrate surface after the ozone gas treatment. Since the carbonyl group does not sufficiently penetrate the plating solution into the base material, if C = O is oxidized to a carboxylate such as COONa, the plating solution is easily penetrated into the resin. I got a good knowledge. Therefore, the inventors paid attention to alkali treatment as a subsequent process.

さらに、発明者らは、実験を進めて行く過程において、オゾンガス処理を行う場合には、オゾンガス濃度、処理時間、及びオゾンガス温度が、樹脂基材の表面改質の進行に寄与するパラメータであり、無電解めっき処理におけるめっきの析出、及び、析出しためっき被膜の密着力(密着強度)に寄与する重要なパラメータであると考えた。   Furthermore, the inventors, in the course of proceeding the experiment, when performing ozone gas treatment, the ozone gas concentration, treatment time, and ozone gas temperature are parameters that contribute to the progress of the surface modification of the resin substrate, It was considered to be an important parameter that contributes to the deposition of plating in the electroless plating treatment and the adhesion (adhesion strength) of the deposited plating film.

しかしながら、これら3つのパラメータを処理条件として設定したとしても、基材表面の改質には、これらのパラメータが複合的に影響するため、それぞれのパラメータが樹脂基材の基材表面の改質にどの程度、寄与するか明確ではなく、基材表面の改質度合いを把握することは難しい。   However, even if these three parameters are set as processing conditions, these parameters affect the modification of the substrate surface in a complex manner. Therefore, each parameter affects the modification of the substrate surface of the resin substrate. It is not clear how much it contributes, and it is difficult to grasp the degree of modification of the substrate surface.

特に、オゾンガス処理により樹脂を改質する場合、上述したヒドロキシラジカル(・OH)を有するオゾン水処理により樹脂を改質する場合に比べて、緩慢であるが基材表面の樹脂の劣化は進行する。このため、無電解めっきを行うための必要最低限の改質を行った場合には、めっき被膜の密着強度は確保できるが、それを超えたさらなる改質は、樹脂劣化が進行し、この結果として、めっき被膜の密着強度は低下する。しかしながら、一定の改質が進むと、その後のアルカリ処理によって、劣化した樹脂は溶解し、基材表面の脆化した樹脂層は、順次取り除かれるため、めっき被膜の密着強度が向上する。   In particular, when the resin is modified by ozone gas treatment, the deterioration of the resin on the surface of the base material progresses more slowly than when the resin is modified by treatment with ozone water having hydroxy radicals (.OH) described above. . For this reason, when the minimum modification necessary for performing electroless plating is performed, the adhesion strength of the plating film can be secured, but further modification beyond that leads to deterioration of the resin. As a result, the adhesion strength of the plating film decreases. However, when a certain reforming progresses, the deteriorated resin is dissolved by the subsequent alkali treatment, and the brittle resin layer on the substrate surface is sequentially removed, so that the adhesion strength of the plating film is improved.

このように、オゾンガス処理による基材表面の改質の進行が、不十分であればめっきは析出しない。さらに、オゾン水処理に比べて緩慢であるため、たとえ、オゾンガス処理を行ったとしても、めっき被膜の密着強度が確保できない条件が、局所的に成立することがあることがわかった。   Thus, if the progress of the modification of the substrate surface by the ozone gas treatment is insufficient, the plating does not precipitate. Furthermore, since it is slower than the ozone water treatment, it has been found that even if the ozone gas treatment is performed, a condition in which the adhesion strength of the plating film cannot be secured may be established locally.

そこで、発明者らは、めっき被膜が析出され、めっき被膜の密着強度が確保できない処理条件の設定を回避するために、オゾンガス濃度、処理時間、及びオゾンガス温度の3つのパラメータを用いて、樹脂基材の基材表面の改質度合いを間接的に把握できるオゾンガス暴露量を、新たなパラメータとして規定した。そして、オゾンガスの暴露量に基づいて、これらの3つのパラメータを設定すれば、無電解めっき処理に好適な、基材表面の改質を行うことができるとの新たな知見を得た。   Therefore, in order to avoid the setting of processing conditions in which the plating film is deposited and the adhesion strength of the plating film cannot be ensured, the inventors use three parameters: ozone gas concentration, processing time, and ozone gas temperature. The ozone gas exposure amount that can indirectly grasp the modification degree of the base material surface of the material was defined as a new parameter. And the new knowledge that the modification | reformation of the base-material surface suitable for an electroless-plating process could be performed if these three parameters were set based on the exposure amount of ozone gas was acquired.

本発明は、発明者らの前記新たな知見に基づくものであり、本発明に係るオゾンガス処理方法は、樹脂基材の表面にオゾンガスを接触させることにより、前記基材表面にオゾンガス処理を行う方法であって、
以下の式
I=D×t×exp((−L/(273.15+T))
ただし、D:オゾンガス濃度(g/Nm
t:処理時間(分)
T:オゾンガス温度(℃)
L:温度係数
で求められるオゾンガス暴露量Iを指標として、オゾンガス濃度D、処理時間t、オゾンガス温度Tの条件を設定する条件設定工程と、前記設定した条件に応じて、前記基材表面を前記オゾンガスに暴露する暴露工程と、前記暴露した基材表面にアルカリ処理を行う工程と、を含むことを特徴とするものである。
The present invention is based on the above-mentioned new findings of the inventors, and the ozone gas treatment method according to the present invention is a method of performing ozone gas treatment on the surface of the substrate by bringing ozone gas into contact with the surface of the resin substrate. Because
The following formula I = D × t × exp ((− L / (273.15 + T))
Where D: ozone gas concentration (g / Nm 3 )
t: Processing time (minutes)
T: Ozone gas temperature (° C)
L: A condition setting step for setting the conditions of ozone gas concentration D, treatment time t, ozone gas temperature T using the ozone gas exposure amount I obtained by the temperature coefficient as an index, and the substrate surface according to the set conditions The method includes an exposure step of exposing to ozone gas, and a step of performing an alkali treatment on the exposed substrate surface.

本発明によれば、オゾンガス暴露量Iの値に指標として、複合的に基材表面の改質の度合いに寄与するオゾンガス濃度D、処理時間t、及びオゾンガス温度Tを、適正な範囲に設定することができる。そして、この設定した条件で、基材表面にオゾンガスを暴露することにより、無電解めっき処理におけるめっきの析出、及び無電解めっき処理により析出しためっき被膜の密着強度を確保することができる。   According to the present invention, the ozone gas concentration D, the treatment time t, and the ozone gas temperature T, which contribute to the degree of modification of the substrate surface in a composite manner, are set to appropriate ranges, using the ozone gas exposure amount I as an index. be able to. Then, by exposing ozone gas to the substrate surface under the set conditions, it is possible to ensure the plating deposition in the electroless plating process and the adhesion strength of the plating film deposited by the electroless plating process.

換言すると、オゾンガス処理の段階で、オゾンガス暴露量Iを設定しさえすれば、そのオゾンガス暴露量Iにおいて、実際に、無電解めっき処理を行うまでもなく、基材表面の改質の度合いを間接的に把握し、無電解めっき処理によりめっきが析出するかどうか、さらには、めっきが析出した場合であっても、析出により被覆されためっき被膜の密着強度を確保することができるかどうかを、把握することができる。   In other words, as long as the ozone gas exposure amount I is set at the stage of ozone gas treatment, the degree of modification of the surface of the base material can be indirectly increased in the ozone gas exposure amount I without actually performing electroless plating treatment. Whether or not plating is deposited by electroless plating treatment, and whether or not the adhesion strength of the plating film coated by deposition can be secured even when plating is deposited, I can grasp it.

ここで、オゾンガス暴露量Iは、前述したように、無電解めっき処理において、めっきが析出し、かつ、析出して形成されためっき被膜の密着強度が確保されるための範囲に設定されることが望ましく、このようなオゾンガス暴露量の範囲は、予め実験した各パラメータ値(オゾンガス濃度D、処理時間t、及びオゾンガス温度T)から、最適な範囲を求めることができる。   Here, as described above, the ozone gas exposure amount I is set within a range in which the plating is deposited and the adhesion strength of the plating film formed by the deposition is ensured in the electroless plating process. It is desirable that the ozone gas exposure amount range can be determined as an optimum range from the parameter values (the ozone gas concentration D, the processing time t, and the ozone gas temperature T) that have been tested in advance.

なお、上述した式の一部であるexp((−L/(273+T))は、温度に依存したオゾンガス処理における反応速度に相当するのである。これは、発明者らが、温度の上昇が、反応速度を速めることから、以下に示すアレニウスの式から導出されるものである。
k=A×exp((−Ea/R×Ta))
In addition, exp ((− L / (273 + T)), which is a part of the above-described formula, corresponds to the reaction rate in the ozone gas treatment depending on the temperature. Since the reaction rate is increased, it is derived from the Arrhenius equation shown below.
k = A × exp ((− Ea / R × Ta))

ここで、k:反応速度定数、A:頻度因子、Ea:活性化エネルギー、R:気体定数、Ta:絶対温度であり、A,Eaは、温度に依存せず反応に固有の値である。   Here, k: reaction rate constant, A: frequency factor, Ea: activation energy, R: gas constant, Ta: absolute temperature, and A and Ea are values specific to the reaction without depending on temperature.

そこで、K=k/A、Ea/R=Lとおくと、K=exp(−L/Ta)が得られ、Lを、温度係数(オゾンガス濃度に係る定数)とすることができ、樹脂基材の樹脂等に依存した固有の値となる。したがって、温度係数Lは、予め実験や解析等により適正な範囲を設定することができる。   Therefore, if K = k / A and Ea / R = L, K = exp (−L / Ta) is obtained, and L can be a temperature coefficient (a constant related to the ozone gas concentration). It is a specific value depending on the resin of the material. Therefore, the temperature coefficient L can be set in an appropriate range in advance through experiments, analysis, or the like.

さらに、このようにして暴露工程後の基材表面にアルカリ処理を行うことにより、オゾンガス処理後の基材表面のカルボニル基がカルボン酸塩に酸化されるので、無電解めっき処理において、めっき液を基材表面から浸透させ、めっき被膜を確実に析出することができる。   Furthermore, by performing alkali treatment on the substrate surface after the exposure step in this way, the carbonyl group on the substrate surface after the ozone gas treatment is oxidized to carboxylate, so in the electroless plating treatment, The plating film can be surely deposited by permeating from the surface of the substrate.

さらに、本発明に係るオゾンガス処理方法は、前記条件設定工程において、温度係数Lを5000〜10000の範囲で、前記条件の設定を行うことがより好ましい。   Furthermore, in the ozone gas processing method according to the present invention, in the condition setting step, it is more preferable to set the conditions in a temperature coefficient L range of 5000 to 10,000.

本発明によれば、前記温度係数Lの範囲において、オゾンガス濃度D、処理時間t、オゾンガス温度Tを設定して、この設定した処理条件で、オゾンガス処理を行うことにより、基材表面の改質を好適に行い、無電解めっき工程において、めっきの析出を確実に行うことができる。すなわち、発明者らの実験及び解析から、温度係数Lが、5000未満、及び10000を超えた場合には、オゾンガス暴露量Iからめっき析出可否の閾値(上述した所望の範囲)を設定し難くなる。   According to the present invention, in the range of the temperature coefficient L, the ozone gas concentration D, the treatment time t, the ozone gas temperature T are set, and the ozone gas treatment is performed under the set treatment conditions, thereby modifying the substrate surface. In the electroless plating process, plating can be reliably deposited. That is, from experiments and analysis by the inventors, when the temperature coefficient L is less than 5000 and exceeds 10,000, it is difficult to set the threshold value for plating deposition from the ozone gas exposure amount I (the desired range described above). .

また、より好ましくは、前記条件設定工程において、オゾンガス濃度Dを300g/Nm以下、処理時間tを2〜10分、オゾンガス温度Tを20〜40℃に設定することがより好ましい。 More preferably, in the condition setting step, it is more preferable to set the ozone gas concentration D to 300 g / Nm 3 or less, the treatment time t to 2 to 10 minutes, and the ozone gas temperature T to 20 to 40 ° C.

本発明によれば、このような範囲に収まるオゾンガス濃度D、処理時間t、オゾンガス温度Tを設定して、この設定した処理条件で、オゾンガス処理を行うことにより、基材表面の改質を好適に行うことができる。   According to the present invention, the ozone gas concentration D, the treatment time t, and the ozone gas temperature T that fall within such ranges are set, and the ozone gas treatment is performed under the set treatment conditions, thereby favorably modifying the substrate surface. Can be done.

すなわち、オゾンガス濃度Dが、300g/Nmを超える場合には、生成コストが高くなってしまう。また、処理効率(改質の効率)の観点から、オゾンガス濃度Dは、40g/Nm以上であることがより好ましい。さらに、処理時間tが2分未満である場合には、安定して所望のオゾン濃度に到達するのに時間を要し、処理時間tが、10分を超えた場合には、生産性の観点から好ましくない。また、オゾンガス温度Tが20℃未満である場合には、オゾンガス発生装置に、オゾンガスを冷却する機構を設けなければならない。また、オゾンガス温度Tが、40℃を超える場合には、オゾンが自己分解するため、より高いオゾンガス濃度に、オゾンガスを保持することは難しい。 That is, when the ozone gas concentration D exceeds 300 g / Nm 3 , the generation cost is increased. Further, from the viewpoint of processing efficiency (reforming efficiency), the ozone gas concentration D is more preferably 40 g / Nm 3 or more. Furthermore, when the processing time t is less than 2 minutes, it takes time to stably reach the desired ozone concentration, and when the processing time t exceeds 10 minutes, the viewpoint of productivity. Is not preferable. Further, when the ozone gas temperature T is less than 20 ° C., the ozone gas generator must be provided with a mechanism for cooling the ozone gas. Moreover, since ozone self-decomposes when ozone gas temperature T exceeds 40 degreeC, it is difficult to hold | maintain ozone gas to a higher ozone gas density | concentration.

本発明に係るオゾンガス処理方法を行う基材表面の高分子樹脂は、C=C結合、C=N結合、C≡C結合などの不飽和結合をもつ樹脂が好ましく、このような不飽和結合をもつ樹脂としては、ABS樹脂、AS樹脂、PS樹脂、AN樹脂、エポキシ樹脂、PMMA樹脂、ポリイミド樹脂、ポリフェニルサルファイド樹脂、などを用いることができる。   The polymer resin on the substrate surface for performing the ozone gas treatment method according to the present invention is preferably a resin having an unsaturated bond such as a C═C bond, a C═N bond, or a C≡C bond. As the resin possessed, ABS resin, AS resin, PS resin, AN resin, epoxy resin, PMMA resin, polyimide resin, polyphenyl sulfide resin, and the like can be used.

しかしながら、より好ましくは、本発明に係るオゾンガス処理方法を行う前記基材表面が、ABS樹脂からなるものであり、前記条件設定工程において、前記温度係数を6000としたときに、前記オゾンガス暴露量Iの範囲が、3.3×10−7〜1.0×10−6、または、3.0×10−6以上となるように、前記条件の設定を行う。 However, more preferably, the surface of the base material on which the ozone gas treatment method according to the present invention is performed is made of ABS resin, and the ozone gas exposure amount I when the temperature coefficient is 6000 in the condition setting step. Is set to 3.3 × 10 −7 to 1.0 × 10 −6 , or 3.0 × 10 −6 or more.

本発明によれば、基材表面が、ABS樹脂からなる場合には、オゾンガス暴露量Iが、前記範囲に収まるように、オゾンガス濃度D、処理時間t、及びオゾンガス温度Tを設定すれば、無電解めっき時にめっきを確実に析出させることができ、さらには、析出しためっき被膜の密着強度も確保することができる。   According to the present invention, when the substrate surface is made of an ABS resin, the ozone gas concentration D, the processing time t, and the ozone gas temperature T are set so that the ozone gas exposure amount I falls within the above range. Plating can be reliably deposited at the time of electrolytic plating, and furthermore, adhesion strength of the deposited plating film can be ensured.

すなわち、オゾンガス暴露量Iが、3.3×10−7未満の場合には、無電解めっき処理においてめっきを析出することができない。これは、オゾンガス処理による樹脂基材の基材表面の改質が十分になされないからである。また、オゾンガス暴露量Iが、1.0×10−6を超え、3.0×10−6未満の場合には、めっき被膜の密着強度が低下してしまう。これは、オゾンガス処理による基材表面の改質により樹脂劣化が進行することが原因であると考えられる。しかしながら、3.0×10−6以上の場合には、一定の改質が進み、その後のアルカリ処理によって、劣化した樹脂は溶解し、基材表面の脆化した樹脂層は、順次取り除かれるため、めっき被膜の密着強度が向上する。 That is, when the ozone gas exposure amount I is less than 3.3 × 10 −7 , plating cannot be deposited in the electroless plating process. This is because the substrate surface of the resin substrate is not sufficiently modified by the ozone gas treatment. Moreover, when the ozone gas exposure amount I exceeds 1.0 × 10 −6 and less than 3.0 × 10 −6 , the adhesion strength of the plating film is lowered. This is considered to be caused by the progress of resin deterioration due to the modification of the substrate surface by the ozone gas treatment. However, in the case of 3.0 × 10 −6 or more, a certain reforming proceeds, and the degraded resin is dissolved by the subsequent alkali treatment, and the embrittled resin layer on the substrate surface is sequentially removed. The adhesion strength of the plating film is improved.

また、別の態様として、本発明に係るオゾンガス処理方法は、樹脂基材の表面にオゾンガスを接触させることにより、前記樹脂基材の基材表面にオゾンガス処理を行う方法であって、前記樹脂基材の基材表面を前記オゾンガスに暴露する暴露工程と、前記暴露した基材表面にアルカリ処理を行う工程と、を含むことを特徴とするものである。   Moreover, as another aspect, the ozone gas treatment method according to the present invention is a method of performing ozone gas treatment on the surface of the resin base material by bringing ozone gas into contact with the surface of the resin base material. It comprises an exposure step of exposing the substrate surface of the material to the ozone gas, and a step of performing an alkali treatment on the exposed substrate surface.

本発明によれば、暴露工程後の基材表面にアルカリ処理を行うことにより、オゾンガス処理後の基材表面のカルボニル基がカルボン酸塩に酸化されるので、無電解めっき処理において、めっき液を基材表面から浸透させ、めっき被膜を確実に析出することができる。   According to the present invention, the carbonyl group on the substrate surface after the ozone gas treatment is oxidized to a carboxylate by performing an alkali treatment on the substrate surface after the exposure step. The plating film can be surely deposited by permeating from the surface of the substrate.

本発明によれば、樹脂基材の基材表面にオゾンガス処理を最適な条件で行うことにより、無電解めっき処理において、めっきの析出を確実なものとし、さらには析出しためっき被膜が、安定した密着強度を有することができる。   According to the present invention, by performing ozone gas treatment on the base material surface of the resin base material under optimum conditions, in the electroless plating treatment, the deposition of the plating is ensured, and the deposited plating film is stable. It can have adhesion strength.

本実施形態に係るオゾンガス処理工程及び無電解めっき工程を説明するためのフロー図。The flowchart for demonstrating the ozone gas processing process and electroless-plating process which concern on this embodiment. 本実施形態に係るオゾンガス処理方法を実施するためのオゾンガス処理装置の概略図。Schematic of the ozone gas processing apparatus for enforcing the ozone gas processing method which concerns on this embodiment. 実施例に係るオゾンガス濃度を説明するための図。The figure for demonstrating the ozone gas density | concentration which concerns on an Example. 実施例に係るオゾンガス濃度と、密着強度の関係を示した図。The figure which showed the relationship between the ozone gas density | concentration which concerns on an Example, and adhesion strength.

以下に、図面を参照して、本発明に係るオゾンガス処理方法を含む、樹脂基材へのめっき方法を実施形態に基づいて説明する。図1は、本実施形態に係るめっき処理方法の各工程を説明するための作業フロー図である。   Below, with reference to drawings, the plating method to the resin base material including the ozone gas processing method which concerns on this invention is demonstrated based on embodiment. FIG. 1 is a work flow diagram for explaining each step of the plating method according to the present embodiment.

図1に示すように、ABS樹脂など、例えば不飽和結合を有する高分子樹脂から基材(樹脂基材)を成形する成形工程S11を行う。基材の成形方法は特に制限されず、圧縮成形、押出成形、ブロー成形、射出成形など各種成形方法を採用できる。   As shown in FIG. 1, a molding step S11 for molding a base material (resin base material) from a polymer resin having an unsaturated bond, such as an ABS resin, is performed. The molding method of the substrate is not particularly limited, and various molding methods such as compression molding, extrusion molding, blow molding and injection molding can be employed.

次に、処理条件設定工程(条件設定工程)S12に進む。ここでは、以下に示す式(1)を用いて、オゾンガス暴露量Iを指標として、オゾンガス濃度D(g/Nm)、処理時間t(分)、オゾンガス温度T(℃)の条件を設定する。
I=D×t×exp((−L/(273.15+T))・・・(式1)
Next, the process proceeds to a processing condition setting step (condition setting step) S12. Here, using the following equation (1), the ozone gas exposure amount I is used as an index to set the conditions of ozone gas concentration D (g / Nm 3 ), treatment time t (minutes), and ozone gas temperature T (° C.). .
I = D × t × exp ((− L / (273.15 + T)) (Formula 1)

具体的には、めっきが析出する条件で、かつ、めっき被膜の密着強度が所望の密着強度となるオゾンガス暴露条件(オゾンガス濃度D(g/Nm)、処理時間t(分)、及びオゾンガス温度T(℃)を変更した条件)を、予め実験等により抽出し、この条件を、式1に代入して、オゾンガス暴露量Iを算出しておく。 Specifically, ozone gas exposure conditions (ozone gas concentration D (g / Nm 3 ), treatment time t (min), and ozone gas temperature at which the plating film is deposited and the adhesion strength of the plating film becomes a desired adhesion strength. The condition (T (° C.) changed) is extracted in advance by experiments or the like, and this condition is substituted into Equation 1 to calculate the ozone gas exposure I.

このように、オゾンガス暴露量Iを予め実験から算出することにより、複合的に基材表面の改質の度合いに寄与するオゾンガス濃度D、処理時間t、及びオゾンガス温度Tを、実ラインにおいて適正な条件に設定することができる。すなわち、オゾンガス処理の段階で、上記条件を満たすオゾンガス暴露量Iを、式1を用いて設定しさえすれば、実際に、無電解めっき処理を行うまでもなく、基材表面の改質の度合いを間接的に把握し、無電解めっき処理によりめっきが析出するかどうか、さらには、めっきが析出した場合であっても、析出により被覆されためっき被膜の密着強度を確保することができるどうかを、把握することができる。   In this way, by calculating the ozone gas exposure amount I from an experiment in advance, the ozone gas concentration D, the treatment time t, and the ozone gas temperature T that contribute to the degree of modification of the surface of the base material in a complex manner are appropriately set in the actual line. Can be set in the condition. That is, as long as the ozone gas exposure amount I satisfying the above conditions is set using Equation 1 at the stage of ozone gas treatment, the degree of modification of the surface of the substrate can be achieved without actually performing electroless plating treatment. Whether the plating is deposited by electroless plating treatment, and whether the adhesion strength of the plating film coated by the deposition can be secured even if the plating is deposited. Can grasp.

条件設定工程において、オゾンガス濃度Dを40〜300g/Nm以下、処理時間tを2〜10分、オゾンガス温度Tを20〜40℃、温度係数Lを5000〜10000の範囲で、オゾンガス濃度D、処理時間t、オゾンガス温度Tを設定する。 In the condition setting step, the ozone gas concentration D is 40 to 300 g / Nm 3 or less, the treatment time t is 2 to 10 minutes, the ozone gas temperature T is 20 to 40 ° C., the temperature coefficient L is 5000 to 10,000, A processing time t and an ozone gas temperature T are set.

オゾンガス濃度Dが40g/Nm未満の場合には、処理効率(改質の効率)が低下してしまい、300g/Nmを超える場合には、生成コストが高くなってしまう。また、処理効率(改質の効率)の観点から、オゾンガス濃度Dは、40g/Nm以上であることがより好ましい。さらに、処理時間tが2分未満である場合には、安定して所望のオゾン濃度に到達するのに時間を要し、処理時間tが、10分を超えた場合には、生産性の観点から好ましくない。また、発明者らの実験及び解析から、温度係数Lが、5000未満、及び10000を超えた場合には、オゾンガス暴露量からめっき析出可否の閾値(上述した望ましいオゾンガス暴露量の範囲)を設定し難くなる。 When the ozone gas concentration D is less than 40 g / Nm 3 , the processing efficiency (reforming efficiency) decreases, and when it exceeds 300 g / Nm 3 , the production cost increases. Further, from the viewpoint of processing efficiency (reforming efficiency), the ozone gas concentration D is more preferably 40 g / Nm 3 or more. Furthermore, when the processing time t is less than 2 minutes, it takes time to stably reach the desired ozone concentration, and when the processing time t exceeds 10 minutes, the viewpoint of productivity. Is not preferable. Also, from the experiments and analysis by the inventors, when the temperature coefficient L is less than 5000 and exceeds 10,000, the threshold value for the plating deposition possibility (range of the above-mentioned desirable ozone gas exposure amount) is set from the ozone gas exposure amount. It becomes difficult.

特に、後述する実施例に示す発明者らの実験から、基材表面がABS樹脂からな場合には、前記条件設定工程において、前記温度係数を6000とし、前記オゾンガス暴露量Iの範囲が、3.3×10−7〜1.0×10−6、または、3.0×10−6以上となるように、オゾンガス濃度D、処理時間t、オゾンガス温度Tの設定を行う。 In particular, according to experiments conducted by the inventors shown in Examples to be described later, when the substrate surface is made of ABS resin, in the condition setting step, the temperature coefficient is set to 6000, and the range of the ozone gas exposure amount I is 3 The ozone gas concentration D, the processing time t, and the ozone gas temperature T are set so as to be 3 × 10 −7 to 1.0 × 10 −6 or 3.0 × 10 −6 or more.

すなわち、オゾンガス暴露量Iが、3.3×10−7未満の場合には、無電解めっき処理においてめっきを析出することができない。また、オゾンガス暴露量が、1.0×10−6を超え、3.0×10−6未満の場合には、めっき被膜の密着強度が低下する。 That is, when the ozone gas exposure amount I is less than 3.3 × 10 −7 , plating cannot be deposited in the electroless plating process. Moreover, when the ozone gas exposure amount exceeds 1.0 × 10 −6 and is less than 3.0 × 10 −6 , the adhesion strength of the plating film decreases.

このようにして、処理条件設定工程S12において、設定したオゾンガス暴露量Iを指標として、オゾンガス濃度D、処理時間t、オゾンガス温度Tを暴露条件として、S11で成形した樹脂基材の基材表面に対して、オゾンガスの暴露処理を行う。   In this manner, in the treatment condition setting step S12, the ozone gas concentration D, the treatment time t, and the ozone gas temperature T are used as exposure conditions, with the set ozone gas exposure amount I as an index, on the substrate surface of the resin base material molded in S11. On the other hand, exposure treatment of ozone gas is performed.

図2は、本実施形態に係るオゾンガス処理方法を実施するためのオゾンガス処理装置の概略図であり、このオゾンガス処理装置を用いて、オゾンガスの暴露処理工程S13を行う。具体的には、工業用酸素ガスボンベと工業用窒素ガスボンベにより混合された混合ガス(例えば、窒素ガス5体積%となる混合ガス)が充填された原料ガス供給源11を準備する。次に、原料ガス供給源11を、オゾン発生器12に供給し、所望のオゾンの濃度、温度となるオゾンガスを発生させる。   FIG. 2 is a schematic diagram of an ozone gas processing apparatus for carrying out the ozone gas processing method according to the present embodiment, and ozone gas exposure processing step S13 is performed using this ozone gas processing apparatus. Specifically, a raw material gas supply source 11 filled with a mixed gas (for example, a mixed gas of 5% by volume of nitrogen gas) mixed by an industrial oxygen gas cylinder and an industrial nitrogen gas cylinder is prepared. Next, the source gas supply source 11 is supplied to the ozone generator 12 to generate ozone gas having a desired ozone concentration and temperature.

次に、この際に、バルブ31と、バルブ32と、三方バルブ33とを調整して、所望の流量となるように、オゾンガス流量を調整し、その際の流量計22、23、及び圧力計21、24の値を計測する。さらに、オゾンガス濃度計35で、供給オゾンガス濃度を計測する。なお、三方バルブ33は、オゾン分解装置27に流れるように、設定する。   Next, at this time, the valve 31, the valve 32, and the three-way valve 33 are adjusted to adjust the ozone gas flow rate so that a desired flow rate is obtained, and the flow meters 22 and 23 and the pressure gauge at that time are adjusted. The values 21 and 24 are measured. Furthermore, the ozone gas concentration meter 35 measures the supply ozone gas concentration. The three-way valve 33 is set so as to flow to the ozonolysis device 27.

次に、被処理物である樹脂基材Wを反応槽50内に設置し、反応槽50をウオーターバス52に浸漬し、反応槽50内も目標のガス温度に調整する。そして、S12で設定した目標のオゾンガス濃度D、オゾンガス温度Tに調整し終えたら、三方バルブ34を回して、オゾンガスが反応槽50へ流れるようにする。なお、この時点のオゾンガスの処理時間を処理時間開始0分とする。この際に、設定した処理時間tに達するまで、反応槽内の温度を温度計28で測定し、反応槽出口のオゾンガス濃度を、オゾンガス濃度計26で測定する。   Next, the resin substrate W, which is an object to be processed, is installed in the reaction tank 50, the reaction tank 50 is immersed in the water bath 52, and the reaction tank 50 is also adjusted to the target gas temperature. Then, after the adjustment to the target ozone gas concentration D and ozone gas temperature T set in S12, the three-way valve 34 is turned so that the ozone gas flows into the reaction tank 50. In addition, the processing time of ozone gas at this time is set to 0 minutes from the processing time start. At this time, the temperature in the reaction vessel is measured with the thermometer 28 until the set processing time t is reached, and the ozone gas concentration at the outlet of the reaction vessel is measured with the ozone gas concentration meter 26.

その後、設定した処理時間tに達したら、オゾンガス分解装置27に流れるように、三方バルブ33を回し、さらに、窒素ガスが流れるように、バルブ33を開弁すると共に、三方バルブを回して、窒素ガスを反応槽内に送る。そして、オゾンガス濃度計26により、反応槽50の出口のオゾンガス濃度が、ほぼ0g/Nmになったことを確認したら、反応槽をあけて、樹脂基材を取り出す。このようにして、オゾンガス暴露処理工程S13を行う。 Thereafter, when the set processing time t is reached, the three-way valve 33 is turned so as to flow into the ozone gas decomposing apparatus 27, and further, the valve 33 is opened so that the nitrogen gas flows, and the three-way valve is turned so as to Gas is sent into the reaction vessel. By ozone concentration meter 26, the ozone gas concentration at the outlet of the reaction vessel 50, confirm that became almost 0 g / Nm 3, opening the reaction vessel, taking out the resin substrate. In this way, the ozone gas exposure treatment step S13 is performed.

次に、アルカリ処理工程S14を行う。このアルカリ処理工程S14において、オゾンガス処理後の処理表面に、界面活性剤を少なくとも含むアルカリ溶液を接触させる。界面活性剤は、後述するパラジウム触媒の吸着性を高めるためのものであり、ラウリル硫酸ナトリウムなどの陰イオン界面活性剤を挙げることができる。アルカリ溶液のアルカリ成分は、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを挙げることができ、樹脂基材の基材表面を分子レベルで溶解して脆化層を除去するとともに、ナトリウムなどのアルカリ金属を処理表面に付与する(オゾンガス処理後の基材表面のカルボニル基をカルボン酸塩に酸化させる)ことができる。   Next, alkali treatment process S14 is performed. In this alkali treatment step S14, an alkali solution containing at least a surfactant is brought into contact with the treated surface after the ozone gas treatment. Surfactant is for improving the adsorption property of the palladium catalyst mentioned later, and can mention anionic surfactants, such as sodium lauryl sulfate. Examples of the alkali component of the alkali solution include sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like. Alkali metal can be applied to the treated surface (the carbonyl group on the substrate surface after the ozone gas treatment is oxidized to a carboxylate).

さらに、界面活性剤とアルカリ成分とを含む溶液の溶媒としては、極性溶媒を用いることが望ましく、水を代表的に用いることができるが、場合によってはアルコール系溶媒あるいは水−アルコール混合溶媒を用いてもよい。またアルカリ溶液を樹脂基材と接触させるには、樹脂基材を溶液中に浸漬する方法、スプレー等により表面に溶液を塗布する方法、などを挙げることができる。   Furthermore, it is desirable to use a polar solvent as the solvent of the solution containing the surfactant and the alkali component, and water can be used as a representative, but in some cases, an alcohol solvent or a water-alcohol mixed solvent is used. May be. Moreover, in order to make an alkaline solution contact with a resin base material, the method of immersing a resin base material in a solution, the method of apply | coating a solution to the surface by spray etc. can be mentioned.

次に、触媒吸着処理工程S15を行う。この触媒吸着処理工程S15において、アルカリ処理された処理表面を、塩酸水溶液に塩化パラジウム及び塩化錫が溶解した触媒溶液中(キャタライザー)に浸漬する。これにより、基材の処理表面にパラジウム触媒を吸着させる。そして、処理表面を酸性溶液に接触させて、パラジウム触媒の活性化を図る。   Next, the catalyst adsorption processing step S15 is performed. In the catalyst adsorption treatment step S15, the treated surface subjected to alkali treatment is immersed in a catalyst solution (catalyzer) in which palladium chloride and tin chloride are dissolved in an aqueous hydrochloric acid solution. Thereby, a palladium catalyst is made to adsorb | suck to the process surface of a base material. Then, the treatment surface is brought into contact with an acidic solution to activate the palladium catalyst.

このような、高分子樹脂からなる樹脂基材の基材表面に吸着させる金属触媒としては、パラジウム、銀、コバルト、ニッケル、ルテニウム、セリウム、鉄、マンガン、ロジウムなどの金属触媒を挙げることができ、これらの組み合わせであってもよい。   Examples of the metal catalyst to be adsorbed on the surface of the resin substrate made of a polymer resin include metal catalysts such as palladium, silver, cobalt, nickel, ruthenium, cerium, iron, manganese, and rhodium. A combination of these may also be used.

次に、触媒が吸着された基材表面に、無電解めっき処理工程S16を行う。具体的には、無電解めっき処理工程S16において、該触媒吸着処理後の処理表面に、ニッケルめっき液を浸漬させて、ニッケルを表面に析出させて、触媒吸着処理を行った処理表面に、無電解ニッケルめっき被膜を形成する。さらに、無電解ニッケルめっき被膜の表面に、電気めっき処理工程S17を行う。具体的には、硫酸銅系電気めっき浴に浸漬し、電気めっきにより、銅めっきを析出させる。   Next, the electroless plating treatment step S16 is performed on the surface of the base material on which the catalyst is adsorbed. Specifically, in the electroless plating treatment step S16, a nickel plating solution is immersed in the treated surface after the catalyst adsorption treatment to deposit nickel on the surface, and the treated surface subjected to the catalyst adsorption treatment is subjected to no treatment. An electrolytic nickel plating film is formed. Further, an electroplating treatment step S17 is performed on the surface of the electroless nickel plating film. Specifically, it is immersed in a copper sulfate electroplating bath and copper plating is deposited by electroplating.

このようにして、無電解めっき処理工程の前処理工程として、オゾンガス暴露量Iを指標として、樹脂基材の基材表面にオゾンガス処理を最適な条件で行うことにより、無電解めっき処理において、めっきの析出を確実なものとし、さらには析出しためっき被膜が、安定した密着強度を有することができる。   In this way, as a pretreatment step of the electroless plating treatment step, by performing ozone gas treatment on the substrate surface of the resin base material under the optimum conditions using the ozone gas exposure amount I as an index, in the electroless plating treatment, It is possible to ensure the precipitation, and the deposited plating film can have a stable adhesion strength.

以下に本発明を実施例に基づいて説明する。なお、以下に示す実施例は、本発明の一実施例であり、本発明を限定的に解釈するものではない。
[実施例1]
〔処理条件設定工程〕
まず、樹脂基材として、ABS樹脂から成形されたテストピース(50mm×100mm×t3mm、取っ手付き(10mm×20mm×t3mm)を複数準備した。次に、I=D×t×exp((−L/(273.15+T))の関係式(Dはオゾンガス濃度(g/Nm)、tは、処理時間(分)、Tは、オゾンガス温度(℃)、Lは、温度係数6000)から、オゾンガス暴露量Iの範囲が、3.3×10−7〜1.0×10−6、または、3.0×10−6以上となるように、オゾンガス暴露量Iを指標として、表1に示すように、オゾンガス濃度D、処理時間t、オゾンガス温度Tの処理条件を設定した。なお、このオゾンガス暴露量Iの範囲は、予め、一連の処理工程を経て、無電解めっき処理により、めっきが析出し、さらに、析出しためっき被膜の密着強度が確保されたときの条件から、算出したオゾンガス暴露量の範囲である。但し、下記の処理条件は、この範囲を求めるために予め行った条件とは、異なる条件としている。
The present invention will be described below based on examples. In addition, the Example shown below is one Example of this invention, and this invention is not interpreted limitedly.
[Example 1]
[Processing condition setting process]
First, a plurality of test pieces (50 mm × 100 mm × t 3 mm, with a handle (10 mm × 20 mm × t 3 mm) molded from ABS resin were prepared as a resin base material, and then I = D × t × exp ((− L /(273.15+T)) (D is ozone gas concentration (g / Nm 3 ), t is treatment time (minutes), T is ozone gas temperature (° C.), and L is temperature coefficient 6000). Table 1 shows ozone gas exposure amount I as an index so that the range of exposure amount I is 3.3 × 10 −7 to 1.0 × 10 −6 or 3.0 × 10 −6 or more. As described above, the treatment conditions of ozone gas concentration D, treatment time t, and ozone gas temperature T were set, and the ozone gas exposure amount I ranged in advance through a series of treatment steps, and plating was deposited by electroless plating treatment. And then It is the range of the calculated ozone gas exposure amount from the conditions when the adhesion strength of the deposited plating film is ensured, provided that the following processing conditions are different from the conditions previously performed to obtain this range. Yes.

〔暴露処理工程〕
次に、上述した図2に示すオゾンガス処理装置と同様の装置を用いて、表1に示す処理条件(暴露条件)でオゾンガス暴露処理工程を実施した。工業用酸素ガスボンベと工業用窒素ガスボンベを用いて、酸素ガスと窒素ガスとを混合し、混合ガス(窒素ガスが5体積%となるように)を、オゾンガスの原料とした。
[Exposure treatment process]
Next, an ozone gas exposure treatment step was performed under the treatment conditions (exposure conditions) shown in Table 1 using an apparatus similar to the ozone gas treatment apparatus shown in FIG. Oxygen gas and nitrogen gas were mixed using an industrial oxygen gas cylinder and an industrial nitrogen gas cylinder, and a mixed gas (so that the nitrogen gas was 5% by volume) was used as a raw material for ozone gas.

そして、オゾン発生器(住友精密工業(株)製GR−RD)を用いて生成したオゾンガスを反応容器(1Lのオールフッ素樹脂製円筒容器)へ流した。より具体的には、オゾン発生器に直結された三方バルブ(図2の三方バルブ33に相当)をオゾン分解装置へ流れるようにしておき、任意のオゾンガス濃度のオゾンガスを0.6NL/minの流量で発生させた。   And the ozone gas produced | generated using the ozone generator (Sumitomo Precision Industries Co., Ltd. product GR-RD) was flowed to the reaction container (1 L all-fluororesin cylindrical container). More specifically, a three-way valve (corresponding to the three-way valve 33 in FIG. 2) directly connected to the ozone generator is allowed to flow to the ozone decomposition device, and an ozone gas having an arbitrary ozone gas concentration is flowed at 0.6 NL / min. Was generated.

次に、樹脂基材を反応槽へ設置し、反応槽をウオーターバス(東京理化器械(株)製クールエースCA−1111型)に浸漬し、設定した温度に、反応槽内を調整した。なお、反応槽内のオゾンガスの濃度を測定すべく、入口のオゾンガス濃度(供給オゾン濃度)と出口のオゾンガス濃度(槽内オゾン濃度)は各オゾン濃度計(入口及び出口:荏原実業(株)製EG−600)で測定した。   Next, the resin base material was installed in the reaction vessel, and the reaction vessel was immersed in a water bath (Cool Ace CA-1111 manufactured by Tokyo Rika Kikai Co., Ltd.), and the inside of the reaction vessel was adjusted to the set temperature. In addition, in order to measure the concentration of ozone gas in the reaction tank, the ozone gas concentration at the inlet (supply ozone concentration) and the ozone gas concentration at the outlet (ozone concentration in the tank) are each ozone concentration meters (inlet and outlet: manufactured by Sugawara Jitsugyo Co., Ltd.) EG-600).

そして、オゾンガス温度、オゾンガス濃度を、表1に示すように、調整し終えたら、上述した三方バルブを回してオゾンガスが反応槽へ流した。その時点を処理時間t=0分とした。その後、表1に示す処理時間に達した後、三方バルブで、供給するオゾンガスが、オゾン分解装置側へ流れるようにし、反応槽に、窒素ガスを反応槽へ流した(具体的には、約5NL/minで窒素ガスを2分間流した)。オゾンガス濃度計で、反応槽出口のオゾンガスがほぼ0g/Nmになったことを確認した後、反応槽を開け、樹脂基材を取り出した。 Then, as shown in Table 1, when the ozone gas temperature and the ozone gas concentration were adjusted, the above-described three-way valve was turned to allow the ozone gas to flow into the reaction vessel. The time was set as the processing time t = 0 minutes. Thereafter, after the processing time shown in Table 1 was reached, the ozone gas to be supplied was caused to flow to the ozonolysis apparatus side with a three-way valve, and nitrogen gas was allowed to flow to the reaction tank (specifically, about Nitrogen gas was flowed at 5 NL / min for 2 minutes). After confirming that the ozone gas at the outlet of the reaction vessel was approximately 0 g / Nm 3 with an ozone gas concentration meter, the reaction vessel was opened and the resin base material was taken out.

なお、オゾンガス濃度に関しては平均槽内オゾンガス濃度をパラメータとして用いた。表1に示す、供給オゾンガス濃度は、槽内入口オゾンガス濃度であり、オゾンガス発生直後の濃度とほぼ同一である。しかし、ABS樹脂の改質に寄与するオゾンガス濃度は処理槽内濃度であり、供給オゾンガス濃度と同一でない。そこで、出口オゾンガス濃度を槽内オゾンガス濃度と設定した。この槽内オゾンガス濃度は、処理時間と共に変化するため、何らかの方法で数値を決めなければならない。そこで、図3に示すように、モニターを行った槽内オゾンガス濃度の平均値を、平均槽内オゾンガス濃度(すなわち、表面改質に寄与したオゾンガス濃度)とし、これを用いて、オゾンガス暴露量Iを算出した。具体的には、以下の表1に示すような関係が得られた。   Regarding the ozone gas concentration, the average ozone gas concentration in the tank was used as a parameter. The supply ozone gas concentration shown in Table 1 is the ozone gas concentration at the inlet of the tank, and is almost the same as the concentration immediately after the ozone gas is generated. However, the ozone gas concentration that contributes to the reforming of the ABS resin is the concentration in the treatment tank and is not the same as the supply ozone gas concentration. Therefore, the outlet ozone gas concentration was set as the ozone gas concentration in the tank. Since the ozone gas concentration in the tank changes with the processing time, the numerical value must be determined by some method. Therefore, as shown in FIG. 3, the average value of the ozone gas concentration in the tank that was monitored was set as the average ozone gas concentration (that is, the ozone gas concentration that contributed to the surface modification), and this was used to determine the ozone gas exposure amount I. Was calculated. Specifically, the relationship shown in Table 1 below was obtained.

Figure 2011080134
Figure 2011080134

〔アルカリ処理工程〕
ラウリル硫酸ナトリウム(50g/L)と、NaOH(1g/L)とを含む混合水溶液を調製した。50℃に設定されたこの混合水溶液中にオゾンガス処理済みABSの樹脂基材を、2分間浸漬した。その後、水溶液から樹脂基材を取り出し、水洗を行った。
[Alkali treatment process]
A mixed aqueous solution containing sodium lauryl sulfate (50 g / L) and NaOH (1 g / L) was prepared. The ozone-treated ABS resin base material was immersed in this mixed aqueous solution set at 50 ° C. for 2 minutes. Then, the resin base material was taken out from the aqueous solution and washed with water.

〔触媒吸着工程〕
触媒吸着処理工程として、塩酸水溶液(3N)に、塩化パラジウム(0.1質量%)と、塩化スズ(5質量%)を溶解した触媒溶液に、処理温度40℃、浸漬時間4分の条件で、アルカリ処理後の樹脂基材を浸漬した。その後、パラジウムを活性化するために、塩酸水溶液(1N)中に、樹脂基材を2分間浸漬した。なお、塩酸水溶液の温度は、50℃に設定した。このようにして、ABSの樹脂基材の表面に触媒を吸着した。その後、樹脂基材を取り出して、水洗した。
[Catalyst adsorption process]
As a catalyst adsorption treatment step, a catalyst solution in which palladium chloride (0.1% by mass) and tin chloride (5% by mass) are dissolved in an aqueous hydrochloric acid solution (3N), at a treatment temperature of 40 ° C. and an immersion time of 4 minutes. The resin base material after alkali treatment was immersed. Then, in order to activate palladium, the resin base material was immersed for 2 minutes in hydrochloric acid aqueous solution (1N). The temperature of the aqueous hydrochloric acid solution was set to 50 ° C. In this way, the catalyst was adsorbed on the surface of the ABS resin substrate. Thereafter, the resin base material was taken out and washed with water.

〔めっき処理工程〕
まず、無電解めっき処理工程として、30℃に保温されたNi−P化学めっき浴(めっき液)中に、樹脂基材を10分間浸漬して、樹脂基材の表面にNi−Pめっき皮膜を形成した。そして、このように処理した樹脂基材には均一なめっき析出が確認された。この時点において、形成されためっき皮膜の厚みは、0.5μmであった。さらに、電気めっき処理工程として、硫酸銅系電気めっき浴(25℃、40分間)において、無電解Ni−Pめっき被膜の表面に、更に、銅めっき皮膜を形成して、無電解Ni−Pめっき皮膜の上に更に、銅めっきのめっき被膜を被覆した。
[Plating process]
First, as an electroless plating treatment step, a resin base material is immersed for 10 minutes in a Ni-P chemical plating bath (plating solution) kept at 30 ° C., and a Ni-P plating film is formed on the surface of the resin base material. Formed. And uniform plating precipitation was confirmed by the resin base material processed in this way. At this time, the thickness of the formed plating film was 0.5 μm. Furthermore, as an electroplating process, a copper plating film is further formed on the surface of the electroless Ni—P plating film in a copper sulfate electroplating bath (25 ° C., 40 minutes), and electroless Ni—P plating is performed. A copper plating film was further coated on the film.

〔比較例1〕
実施例1と同じようにして、オゾンガス設定工程から無電解めっき工程まで行った。実施例1と相違する点は、表1に示すように、オゾンガス暴露量Iを、3.3×10−7未満とした点である。この場合、無電解めっき処理工程において、めっきの析出は確認できなかった。
[Comparative Example 1]
The same procedure as in Example 1 was performed from the ozone gas setting step to the electroless plating step. The difference from Example 1 is that the ozone gas exposure amount I is less than 3.3 × 10 −7 as shown in Table 1. In this case, deposition of plating could not be confirmed in the electroless plating treatment process.

〔比較例2〕
実施例1と同じようにして、オゾンガス設定工程からめっき工程(電気めっき)まで行った。実施例1と相違する点は、表2に示すように、オゾンガス暴露量Iが、1.0×10−6を超え、3.0×10−6未満とした点である。
[Comparative Example 2]
The same procedure as in Example 1 was performed from the ozone gas setting step to the plating step (electroplating). As shown in Table 2, the difference from Example 1 is that the ozone gas exposure amount I exceeds 1.0 × 10 −6 and less than 3.0 × 10 −6 .

〔比較例3〕
実施例1と同じようにして、オゾンガス設定工程から無電解めっき工程まで行った。実施例1と相違する点は、アルカリ処理工程を行わなかった点である。この場合、無電解めっき処理工程において、めっきの析出は確認できなかった。
[Comparative Example 3]
The same procedure as in Example 1 was performed from the ozone gas setting step to the electroless plating step. The difference from Example 1 is that the alkali treatment step was not performed. In this case, deposition of plating could not be confirmed in the electroless plating treatment process.

〔密着強度試験〕
樹脂基材上の無電解めっき被膜の密着強度を評価するために、以下に示す条件の下、実施例1及び比較例2の引張り試験を行った。樹脂基材上のめっき皮膜に、幅10mmの短冊上の切れ込みを入れ、その試験片を用いて、JIS H8630(密着性試験方法)に準じ、めっき被膜の密着強度(ピール強度)を測定した。この結果を、表2及び図4に示す。なお、図4は、オゾンガス暴露量Iと、オゾンガス濃度との関係を示している。また、比較例1及び3は、無電解Ni−Pめっき被膜が形成されていないので、密着強度試験は行っていない。
[Adhesion strength test]
In order to evaluate the adhesion strength of the electroless plating film on the resin substrate, the tensile tests of Example 1 and Comparative Example 2 were performed under the following conditions. A notch on a strip having a width of 10 mm was made in the plating film on the resin base material, and the adhesion strength (peel strength) of the plating film was measured according to JIS H8630 (adhesion test method) using the test piece. The results are shown in Table 2 and FIG. FIG. 4 shows the relationship between the ozone gas exposure amount I and the ozone gas concentration. Moreover, since the electroless Ni-P plating film is not formed in Comparative Examples 1 and 3, the adhesion strength test is not performed.

Figure 2011080134
Figure 2011080134

[結果1及び考察1]
表2に示すように、実施例1は、無電解めっき処理工程において、めっきが析出したが、比較例1は、無電解めっき処理工程において、めっきは析出しなかった。これは、比較例1の処理条件設定工程におけるオゾンガス暴露量Iが、3.3×10−7未満の場合には、オゾンガスによる樹脂基材の基材表面の改質が十分になされないからであると考えられる。
[Result 1 and Discussion 1]
As shown in Table 2, in Example 1, plating was deposited in the electroless plating treatment step, but in Comparative Example 1, plating was not deposited in the electroless plating treatment step. This is because when the ozone gas exposure amount I in the treatment condition setting step of Comparative Example 1 is less than 3.3 × 10 −7 , the base material surface of the resin base material is not sufficiently modified with ozone gas. It is believed that there is.

[結果2及び考察2]
図4に示すように、実施例1のめっき被膜のピール強度は、常に1.00kg/cm以上確保されていたが、比較例2のめっき被膜のピール強度には、ばらつきがあり、1.00kgf/cmを下回るものが多かった。これは、オゾンガス暴露量Iが、1.0×10−6を超え、3.0×10−6未満の場合には、めっき被膜の密着強度が低下するからであると考えられ、オゾンガス処理による基材表面の改質により樹脂劣化が進行することが原因であると考えられる。
[Result 2 and Discussion 2]
As shown in FIG. 4, the peel strength of the plating film of Example 1 was always ensured to be 1.00 kg / cm or more, but the peel strength of the plating film of Comparative Example 2 varies, and is 1.00 kgf. Many were less than / cm. This is considered to be because when the ozone gas exposure amount I exceeds 1.0 × 10 −6 and is less than 3.0 × 10 −6 , the adhesion strength of the plating film is reduced. This is considered to be caused by the progress of resin deterioration due to the modification of the substrate surface.

しかしながら、実施例1のオゾンガス暴露量Iが、3.0×10−6以上の場合には、一定の改質が進み、その後のアルカリ処理によって、劣化した樹脂は溶解し、基材表面の脆化した樹脂層は、順次取り除かれるため、めっき被膜の密着強度が向上すると考えられる。したがって、このことから、さらに、オゾンガス暴露量Iを増加させれば、ピール強度(密着強度)は、一定になると考えられる。 However, when the ozone gas exposure amount I of Example 1 is 3.0 × 10 −6 or more, a certain reforming progresses, and the alkali treatment thereafter dissolves the deteriorated resin, and the substrate surface becomes brittle. Since the formed resin layer is sequentially removed, it is considered that the adhesion strength of the plating film is improved. Therefore, it is considered that the peel strength (adhesion strength) becomes constant if the ozone gas exposure amount I is further increased.

[結果3及び考察3]
比較例3は、無電解めっき処理において、めっきが析出しなかった。これは、実施例1の場合は、暴露工程後の基材表面にアルカリ処理を行うことにより、オゾンガス処理後の基材表面のカルボニル基がカルボン酸塩に酸化されるので、無電解めっき処理において、めっき液を基材表面から浸透させ、めっき被膜を確実に析出することができたが、比較例3の場合は、オゾンガス処理後の基材表面のカルボニル基のままではめっき液を基材表面から浸透させることができないため、めっき被膜が析出しなかったと考えられる。
[Result 3 and Discussion 3]
In Comparative Example 3, no plating was deposited in the electroless plating treatment. In the case of Example 1, since the carbonyl group on the substrate surface after the ozone gas treatment is oxidized to a carboxylate by performing an alkali treatment on the substrate surface after the exposure step, in the electroless plating treatment The plating solution was allowed to permeate from the substrate surface, and the plating film could be reliably deposited. In the case of Comparative Example 3, the plating solution was allowed to remain on the substrate surface with the carbonyl group remaining on the substrate surface after the ozone gas treatment. It is considered that the plating film did not precipitate because it was not possible to permeate.

このように、実施例1に示すように、オゾンガス暴露量Iの範囲が、3.3×10−7〜1.0×10−6、または、3.0×10−6以上となるように、前記条件の設定を行えば、オゾンガス濃度D、処理時間t、オゾンガス温度Tの、基材表面の改質に複合的に寄与する3つのパラメータを、所望の改質状態(無電解めっき処理工程において、めっきが析出し、めっき被膜の強度が所望の強度に確保できるような改質状態)となるように、容易に設定することができ、好適な無電解めっき処理を行うことができる。 Thus, as shown in Example 1, the range of the ozone gas exposure amount I is 3.3 × 10 −7 to 1.0 × 10 −6 , or 3.0 × 10 −6 or more. If the above conditions are set, the ozone gas concentration D, the processing time t, and the ozone gas temperature T can be set to the desired modified state (electroless plating treatment process) In this case, it can be easily set so that plating is deposited and the strength of the plating film can be ensured at a desired strength), and a suitable electroless plating treatment can be performed.

[温度係数Lの検討]
ここで、表2に示す暴露条件、めっきの析出の結果から、めっきが析出しなかった全試験条件(比較例1)のオゾンガス暴露量Iの最大値が、めっきが析出した全試験条件のオゾンガス暴露量Iの最小値を超えない条件を満たすときの温度係数Lを算出した。この結果、温度係数は、5000〜1000(具体的には、5813〜9180)の範囲であり、すなわち、少なくとも、この範囲の温度係数であれば、上述したオゾン暴露量Iの式から、めっきの析出を判定することができると考えられる。
[Examination of temperature coefficient L]
Here, from the exposure conditions shown in Table 2 and the results of plating deposition, the maximum value of the ozone gas exposure amount I under all test conditions (Comparative Example 1) where plating did not deposit is the ozone gas under all test conditions where plating was deposited. A temperature coefficient L was calculated when a condition not exceeding the minimum value of the exposure amount I was satisfied. As a result, the temperature coefficient is in the range of 5000 to 1000 (specifically, 5813 to 9180), that is, at least if the temperature coefficient is within this range, the above-described equation of ozone exposure I indicates that It is thought that precipitation can be determined.

以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。本実施形態では、処理条件を設定してから、オゾンガスの暴露処理を行ったが、たとえば、めっきが析出され、かつ、めっき被膜の密着強度が確保できるオゾンガス暴露量を予め実験等により調査しておけば、無電解めっき処理を行う前に、オゾンガス濃度、処理時間、オゾンガス温度から、オゾンガス暴露量を算出し、このオゾンガス暴露量に基づいて、めっき析出の判定、及びめっき被膜の密着強度の判定等を行うことができる。   Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention described in the claims. Design changes can be made. In this embodiment, the ozone gas exposure treatment was performed after setting the treatment conditions. For example, the amount of ozone gas exposure by which plating is deposited and the adhesion strength of the plating film can be ensured is investigated in advance through experiments or the like. If so, before performing the electroless plating treatment, calculate the ozone gas exposure amount from the ozone gas concentration, treatment time, and ozone gas temperature, and based on this ozone gas exposure amount, judge the plating deposition and judge the adhesion strength of the plating film Etc. can be performed.

S11:成形工程、S12:処理条件設定工程、S13:オゾンガス暴露処理工程、S14:アルカリ処理工程、S15:触媒吸着処理工程、S16:無電解めっき処理工程、S17:電気めっき処理工程   S11: Molding step, S12: Treatment condition setting step, S13: Ozone gas exposure treatment step, S14: Alkali treatment step, S15: Catalyst adsorption treatment step, S16: Electroless plating treatment step, S17: Electroplating treatment step

Claims (4)

樹脂基材の表面にオゾンガスを接触させることにより、前記基材表面にオゾンガス処理を行う方法であって、
以下の式
I=D×t×exp((−L/(273.15+T))
ただし、D:オゾンガス濃度(g/Nm
t:処理時間(分)
T:オゾンガス温度(℃)
L:温度係数
で求められるオゾンガス暴露量Iを指標として、オゾンガス濃度D、処理時間t、オゾンガス温度Tの条件を設定する条件設定工程と、
前記設定した条件に応じて、前記基材表面を前記オゾンガスに暴露する暴露工程と、
前記暴露した基材表面にアルカリ処理を行う工程と、を含むことを特徴とするオゾンガス処理方法。
A method of performing ozone gas treatment on the surface of the substrate by contacting ozone gas with the surface of the resin substrate,
The following formula I = D × t × exp ((− L / (273.15 + T))
Where D: ozone gas concentration (g / Nm 3 )
t: Processing time (minutes)
T: Ozone gas temperature (° C)
L: a condition setting step for setting the ozone gas concentration D, the processing time t, and the ozone gas temperature T using the ozone gas exposure amount I obtained by the temperature coefficient as an index;
According to the set conditions, an exposure step of exposing the substrate surface to the ozone gas;
And a step of performing an alkali treatment on the exposed substrate surface.
前記条件設定工程において、温度係数Lを5000〜10000の範囲で、前記条件の設定を行うことを特徴とする請求項1に記載のオゾンガス処理方法。   2. The ozone gas processing method according to claim 1, wherein in the condition setting step, the condition is set in a temperature coefficient L range of 5000 to 10,000. 前記基材表面は、ABS樹脂からなり、前記条件設定工程において、前記温度係数を6000としたときに、前記オゾンガス暴露量Iの範囲が、3.3×10−7〜1.0×10−6、または、3.0×10−6以上となるように、前記条件の設定を行うことを特徴とする請求項2に記載のオゾンガス処理方法。 The substrate surface is made of ABS resin, and the ozone gas exposure amount I ranges from 3.3 × 10 −7 to 1.0 × 10 when the temperature coefficient is set to 6000 in the condition setting step. 6, or, so that 3.0 × 10 -6 or more, the ozone gas processing method according to claim 2, characterized in that the setting of the condition. 樹脂基材の表面にオゾンガスを接触させることにより、前記基材表面にオゾンガス処理を行う方法であって、
前記樹脂基材の基材表面を前記オゾンガスに暴露する暴露工程と、
前記暴露した基材表面にアルカリ処理を行う工程と、を含むことを特徴とするオゾンガス処理方法。
A method of performing ozone gas treatment on the surface of the substrate by contacting ozone gas with the surface of the resin substrate,
An exposure step of exposing the substrate surface of the resin substrate to the ozone gas;
And a step of performing an alkali treatment on the exposed substrate surface.
JP2009235417A 2009-10-09 2009-10-09 Ozone gas treatment method Expired - Fee Related JP4870804B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009235417A JP4870804B2 (en) 2009-10-09 2009-10-09 Ozone gas treatment method
PCT/IB2010/002515 WO2011042792A2 (en) 2009-10-09 2010-10-05 Ozone gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235417A JP4870804B2 (en) 2009-10-09 2009-10-09 Ozone gas treatment method

Publications (2)

Publication Number Publication Date
JP2011080134A true JP2011080134A (en) 2011-04-21
JP4870804B2 JP4870804B2 (en) 2012-02-08

Family

ID=43778401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235417A Expired - Fee Related JP4870804B2 (en) 2009-10-09 2009-10-09 Ozone gas treatment method

Country Status (2)

Country Link
JP (1) JP4870804B2 (en)
WO (1) WO2011042792A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159784A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Method for producing plated material, and plated material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309377A (en) * 2001-04-12 2002-10-23 Toyota Motor Corp Pretreatment method for electroless plating material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528245A (en) * 1984-02-27 1985-07-09 Allied Corporation Pretreatment of plastic materials for metal plating
JPS63250468A (en) 1987-04-08 1988-10-18 Nippon Ozon Kk Pretreatment of stock before electroless plating
JP4135459B2 (en) * 2002-10-10 2008-08-20 トヨタ自動車株式会社 Method for pretreatment of electroless plating material and method for manufacturing plating coated member
JP3999623B2 (en) 2002-10-10 2007-10-31 トヨタ自動車株式会社 Method for pretreatment of electroless plating material and method for manufacturing plating coated member
JP2005113162A (en) 2003-10-02 2005-04-28 Ebara Corp Plating method and plating apparatus
JP4464990B2 (en) * 2007-05-22 2010-05-19 トヨタ自動車株式会社 Wiring board and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309377A (en) * 2001-04-12 2002-10-23 Toyota Motor Corp Pretreatment method for electroless plating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159784A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Method for producing plated material, and plated material

Also Published As

Publication number Publication date
JP4870804B2 (en) 2012-02-08
WO2011042792A3 (en) 2011-06-16
WO2011042792A2 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5177426B2 (en) Composition for etching treatment for resin molding
JPWO2007116493A1 (en) Surface modification liquid for plastic and method for metallizing plastic surface using the same
JP6482049B1 (en) Pretreatment composition for electroless plating, pretreatment method for electroless plating, electroless plating method
JP4135459B2 (en) Method for pretreatment of electroless plating material and method for manufacturing plating coated member
JP6288213B1 (en) Plastic surface treatment method
Jia et al. Photooxidation of the ABS resin surface for electroless metal plating
JP6750293B2 (en) How to treat plastic surface
Dechasit et al. Ni electroless plating of ABS polymer by palladium and tin-free process
JP2011063855A (en) Method for manufacturing base material to be electroless-plated
JP4870804B2 (en) Ozone gas treatment method
JP4918123B2 (en) Method for producing electroless plating material
JP2006104504A (en) Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same
JP2019173112A (en) Metal plating method
WO2019045047A1 (en) Plating pretreatment method for abs resin surface, plating treatment method for abs resin surface, and abs resin plated product
Lee et al. Aging effect on adhesion strength between electroless copper and polyimide films
JP6551563B1 (en) Pre-plating method for ABS resin surface, plating method for ABS resin surface, and ABS resin plating product
JP5495369B2 (en) Resin plating method using ozone water treatment
JP5642432B2 (en) Electroless plating treatment material manufacturing method and ozone gas treatment device
JP6566064B1 (en) Method for treating polyphenylene sulfide resin surface
JP2013189667A (en) Electroless plating method, and metallic film forming method
JP2011127152A (en) Electroless plating method to polystyrene-based resin
JP2012052214A (en) Resin plating method of syndiotactic polystyrene-based resin using ozone water treatment
JP2010065290A (en) Electroless plating method
JP2007262481A (en) Surface metallizing method of polyimide resin material
JP6953484B2 (en) ABS-based resin surface plating pretreatment method, ABS-based resin surface plating treatment method, and ABS-based resin plating products

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R151 Written notification of patent or utility model registration

Ref document number: 4870804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees